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PROBLEM No. 1 
 

 

a. 1p  

From the symmetry of the situation we take the 

magnetomotive force along a circular path of radius r, 

centered on the wire. 
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b. 1.5p  

Consider two elements dx of the rod placed symmetrically at distances x from its 

center. The corresponding forces acting on them are: 
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The sum of their torques is: 
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For very small angles, the total torque is: 
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c. 1p  

Taking path integrals along circular field lines exactly like at the first point, we get: 
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d. 0.5p  

The above argument keeps holding, and the results are: 
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e. 1p  
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f. 1.5p  

Consider a small region of the plane having dimensions da along J and db across J. 
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2 1
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Let B0 be the external magnetic field and B' the field 

generated by the conducting plane. 
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g. 0.5p  

Just as before, 
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h. 1p  

This time the path integrals go the other way around. 
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i. 1p  

Consider two elements dl of the wire, placed symmetrically at a distance l from the 

center of the wire. Their contributions to the magnetic field in the mediator plane are 

equal: 
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j. 1p  

From a point in the equatorial plane, the axis of the poles of the sphere is seen under 

an angle 2α, with tan α = R/r. 

Outside, the sphere behaves similarly to an 

electric current flowing directly from one pole 

to the other through a wire connecting the poles 

directly: 
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Inside, the sphere behaves similarly to two 

semi-infinite straight conductors connecting the 

two poles of the sphere and carrying the current 

I in the opposite direction: 
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PROBLEM No. 2 
 

 

a. 1p  

Consider an element dx of the rod, placed at distance x from the center of the rod. Its 

mass is dm = mdx/L each. Let 2l be the length of the rod at some moment, and let y be 

the corresponding length of the region x. 

Since the object is homogenous at all times, 
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Let v be the velocity of the two ends of the rod at some moment. 
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The velocity of the element considered is 
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The kinetic energy of the rod is 
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b. 0.5p  

Let S be the cross section of the rod, and V its volume. The elementary work done by 

the tensile force σS equals the increase in elastic potential energy. 
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c. 0.5p  
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Dividing by L we get: 
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d. 0.5p  

Dividing also by m we get: 
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e. 0.5p  

Consider very thin spherical layers of radius x and thickness dx. Their masses are: 
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Let r be the radius of the sphere and v the velocity of its surface at some moment. The 

argument goes similarly as in section A. 
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f. 0.5p  
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g. 0.5p  
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h. 0.5p  
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i. 1.5p  

By replacing the sought solutions into the system of equations we get 
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By dividing the two equations term by term we get a simpler one: 
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Let us denote the ratio of the two amplitudes by r. 
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Returning r in the second equation we get: 
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j. 0.5p  
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k. 1.5p  

Let d be the thickness of the plate. The shear 

force τld can be decomposed into a stretching 

component along L (x-axis) and a shrinking 

component along l (y-axis). 

( )
sin cos

;
cos

x y

ld ld

ld L d

τ γ τ γ
σ σ

γ
= = ⇒  

2

2

sin cos

cos sin

x

y

l

E LE

l

LE E

τ γ τ γ
ε µ

τ γ τ γ
ε µ

 
= − − 

 

= − −

 

But 

( )1 cos coscos
; 1 cos

cos
x y

L
L

l l

L l

γ γγε ε γ
γ

−
− −

= = = = − − ⇒  

( )

2

2

1 cos
sin cos

cos

1 cos cos sin

E l

L

E l

L

γ
γ µ γ

τ γ

γ γ µ γ
τ

− = +

 − = +


 

Multiplying the second equation by µ and subtracting it from the first one we get: 
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( )2 1
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l. 0.5p  

The quantities involved in the shear deformation are absolutely analogous to those 

describing the longitudinal deformation. 
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m. 0.5p  

Consider very thin cylindrical layers of radius x and thickness dx. When the cylinder 

is twisting, each one of them is subject to a very small shear. 

twist
3

T L
G

ρ
π=  

 

n. 1p  

Let α be a very small angle with witch one cap of the cylinder rotates with respect to 

the other. Then the slanting angle of a cylindrical layer is: 
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The elementary shear force acting on the cap is 
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PROBLEM No. 3 
 

 

a. 0.5p  

Deriving the Lorentz transformations two-fold, we get 
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In our case u = vx and vx' = 0. 
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b. 0.5p  
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At t = 0, vx = 0, so α = 0 and C = 0. 
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c. 0.5p  
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d. 1p  

( ) ( ) ( )
( ) ( )( )

2 2 22 2
4 2

2 22

2

d d d

d cosh 1 d sinh d
sinh d cosh d

c t c t x
c c

x dxa t c a at
c a

τ τ τ τ
τ τ τ

′− = − +

⇒ = − ⇒ = ⇒′ ′ ′= ⇒ = 

′ 

 

2

cosh
c

x C
a

τ= +
′

 

At t = t' = 0, x0 = c
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/a', so again C = 0. 
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e. 1p  
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f. 0.5p  
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g. 0.5p  
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These equations require that x > 0 and ρ > 0, so using these new parameters one can 

cover only the quadrant of spacetime characterized by x > |ct|. 
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i. 0.5p  
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j. 0.5p  

The observer will receive only those signals emitted before the beacon exits the 

quadrant of spacetime described by the Rindler metric. 
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In the case of the light, 
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k. 1.5p  

Let ρe and τe be the spacetime coordinates for the emission of a pulse. 
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Let t* be the moment the observer receives the last signal. 

2

*

( *)

*
1

a t

cv t c

a t

c

′

=
′ +  

 

 

The frequency received is 
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l. 0.5p  
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Upon reception, 
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m. 1p  

( )
2 2

20 0

2 2

0 0 0

1
tanh d d d 1 tanh d 1 d

cosh

x xct c c t
t t

x x c c x
τ τ τ τ τ

τ
 

= ⇒ = ⇒ = − = − 
 

 

( )

2 2 2

0

2 2 2
0 0

2

0 0 0

d
d d d d

d d

x c t

xt x c t

x c x c x

τ τ

 −
 

+ = =  

2 2 2

0
02 2 2 2

0 0 0

2 2 2 2 2 2

0 0 0

0

d

d

x c t
x

c x x c t x

x c t x c t x

c x

τ

ε
τ

+
∆

+ ∆
= =

− −
 

 

n. 0.5p  
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