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SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL 

COMPETITION 
Attention. Points in grading are not divided! 

Problem 1 (10.0 points) 

Problem 1.1 (4.0 points) 
Let x  be the spring compression, and y  be the change in the water level in the tube leg in which the 

pistons are located. When water moves in a tube, an inertial force acts on the body, which is equal to 

F my= − ,           (1) 

so that the equation of the weight motion is written as 

mx kx mg my= − + − .          (2) 

The equation of motion of water in the tube has the form 

2sly sgy kx = − + .          (3) 

The new equilibrium position is determined by the conditions 0x x const= =  and 0y y const= = , so 

that substitution into equations (2) and (3) gives rise to 

0

mg
x

k
= ,           (4) 

0
0
2 2

kx m
y

gs s 
= = .          (5) 

According to the problem statement, it is said that the system performs harmonic oscillations about 

the new equilibrium position, therefore, a solution to equations (2) and (3) is sought in the following form 

0 cosx x A t= + ,          (6) 

0 cosy y B t= + ,          (7) 

and after substitution we obtain the following set of equations 
2 2 2

1( )A B  − = ,          (8) 

2 2 2

3 2( )A B  = − ,          (9) 

where 
2

1

k

m
 = , 

2

2

2g

l
 = , 2

3

k

sl



= . 

After dividing equations (8) and (9), we obtain a quadratic equation for a possible oscillation 

frequencies 
2 2 2 2 2 2

1 2 3( )( )     − − = ,         (10) 

which admits the solution 
2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 22

1,2

( ) 4

2

       


+ +  + + −
= .      (11) 

Note that both roots are always positive and give the following possible frequencies of harmonic 

oscillations  

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 1

1

( ) 4
5.19

2
s

       
 −

+ + − + + −
= = ,    (12) 

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 1

2

( ) 4
12.07

2
s

       
 −

+ + + + + −
= = .    (13) 

In reality, the motion of the system is represented by the addition of harmonic oscillations with frequencies 

(12) and (13). 

 

Content Points 

Formula (1): F my= −  0.3 

Formula (2): mx kx mg my= − + −  0.3 
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Formula (3): 2sly sgy kx = − +  0.3 

Formula (4): 0

mg
x

k
=  0.3 

Formula (5): 0
0
2 2

kx m
y

gs s 
= =  0.3 

Formula (6): 0 cosx x A t= +  0.3 

Formula (7): 0 cosy y B t= +  0.3 

Formula (8): 
2 2 2

1( )A B  − =  0.2 

Formula (9): 
2 2 2

3 2( )A B  = −  0.2 

Formula (10): 
2 2 2 2 2 2

1 2 3( )( )     − − =  0.4 

Formula (11): 

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 22

1,2

( ) 4

2

       


+ +  + + −
=  0.3 

Formula (12): 

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2

1

( ) 4

2

       


+ + − + + −
=  

0.2 

Numerical value in formula (12): 
1

1 5.19s −=  0.2 

Formula (13): 

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2

2

( ) 4

2

       


+ + + + + −
=  0.2 

Numerical value in formula (13): 
1

2 12.07s −=  0.2 

Total 4.0 

 

Problem 1.2 (3.0 points) 
The plate has volume 

2V a h= ,           (1) 

and it is subject to the gravity force 

pF Vg= .           (2) 

At the line of contact between the plate and water, a difference in water levels occurs, as shown in 

the figure below. 

 
As a result, on the lower surface of the plate with the area 

2S a=             (3) 

differential pressure applies 

0 ( )p g H h = + ,          (4) 

which results in a vertically upward force 

F pS=  .           (5) 

To determine the value of H , we select a certain volume of water with the width l  near its contact 

line with the plate. It is subject to the surface tension force equal to 

2F l = ,           (6) 

as well as the force due to the pressure of the liquid column 

pF p S=  ,           (7) 
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where the average pressure ia found as 

0

1

2
p gH=            (8) 

together with the cross-sectional area 

S Hl = .           (9) 

From the water equilibrium condition 

pF F =            (10) 

it follows that the height difference is obtained as 

0

2H
g




= .           (11) 

The additional weight on the plate is acted upon by the gravity force 

mF mg= ,           (12) 

and equilibrium condition 

p mF F F+ =            (13) 

the mass of the weight is finally derived as  

2 2 0
0( ) 2 52.6m a h a g

g


 = − + = .       (14) 

 

Content Points 

Formula (1): 
2V a h=  0.2 

Formula (2): 
pF Vg=  0.2 

Formula (3): 
2S a=  0.2 

Formula (4): 0 ( )p g H h = +  0.2 

Formula (5): F pS=   0.2 

Formula (6): 2F l =  0.2 

Formula (7): pF p S=   0.2 

Formula (8): 0

1

2
p gH=  

0.2 

Formula (9): S Hl =  0.2 

Formula (10): pF F =  0.2 

Formula (11): 
0

2H
g




=  

0.2 

Formula (12): mF mg=  0.2 

Formula (13): p mF F F+ =  0.2 

Formula (14): 2 2 0
0( ) 2m a h a

g


 = − +  

0.2 

Numerical value in formula (14): 52.6m g=  0.2 

Total 3.0 

 

Problem 1.3 (3.0 points) 
The current through the coil cannot change instantly and immediately after the key K  is shorted it 

remains equal to zero. At the same time, since the resistance of the connecting wires is very small, the 

capacitors 1C  and 2C  are almost instantly charged up to charges 10q  and 20q  respectively, whereas the 

capacitor 3C  remains uncharged 
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30 0q = ,           (1) 

since it can only be charged through the coil. Note that Joule heat is generated in the connecting wires. 

Thus, at the initial moment of time, the capacitors 1C  and 2C  are connected in series to a constant 

voltage source 0U  and their charges are equal 

10 20q q= ,           (2) 

and the corresponding voltages add up, so that 

10 20
0

1 2

q q
U

C C
+ = .          (3) 

Thus, we find from equations (2) and (3) that 

1 2
10 20 0

1 2

C C
q q U

C C
= =

+
.         (4) 

The total energy of the system immediately after the key K  shortening turns out to be 
2 2 2

10 20 1 2 0
0

1 2 1 22 2 2( )

q q C C U
W

C C C C
= + =

+
.        (5) 

After charging the capacitors 1C  and 2C , the current through the coil starts to increase and harmonic 

oscillations are generated in the system, at which Joule losses can already be neglected, since the resistance 

of the connecting wires is very small. 

Note that at that moment in time when the current in the coil is maximum, the voltage across it is 

zero and the capacitors 2C  and 3C  turn out to be connected in parallel. For such a connection of capacitors, 

the following relations for charges are satisfied 

1 2 3q q q= + .           (6) 

32

2 3

qq

C C
= .           (7) 

1 2
0

1 2

q q
U

C C
+ = .           (8) 

Solving together the set of equations (6)-(8), we find the charges of the capacitors 

1 2 3
1 0

1 2 3

( )C C C
q U

C C C

+
=

+ +
.          (9) 

1 2
2 0

1 2 3

C C
q U

C C C
=

+ +
.          (10) 

1 3
3 0

1 2 3

C C
q U

C C C
=

+ +
,          (11) 

and the energy of the system in this state is obviously equal to 
2 2

1 2 3 0 max

1 2 3

( )

2( ) 2

C C C U LI
W

C C C

+
= +

+ +
.         (12) 

In this case, the work of the source is found as 

1 10 0( )A q q U= − ,          (13) 

and the energy conservation law is written in the following form 

0W A W+ = ,           (14) 

which provides the maximum currect 

3
max 1 0

1 2 1 2 3( )( )

C
I CU

C C C C C L
=

+ + +
.       (15) 

Finding the minimum voltage minU  across the capacitor 2C  is a slightly more difficult task that has a 

rather simple solution. It is obvious that harmonic oscillations occur in the system, at which the potential 

energy is constantly transformed into kinetic energy and backwards. For the presented electrical circuit, the 
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role of the kinetic energy is played by the energy of the coil. Therefore, when the current through the coil is 

zero, then the system is in its large deviation from equilibrium, while the voltage across the capacitor 2C  is 

20 1
20 0

2 1 2

q C
U U

C C C
= =

+
.         (16) 

Note that the zero coil current corresponds to the initial moment when the key K  is just shorted. 

After a quarter of a period has passed, the current in the coil becomes maximum and the system 

passes the equilibrium position, whereas the voltage across the capacitor 2C  drops to the value 

2 1
2 0

2 1 2 3

q C
U U

C C C C
= =

+ +
,         (17) 

that is, it falls by 20 2U U− . After another quarter of the period, the voltage across the capacitor will further 

drop by the same amount, which is, at the same time, equal to 2 minU U− , so the minimum voltage is 

ultimately obtained as 

1 1 2 3
min 2 20 0

1 2 1 2 3

( )
2

( )( )

C C C C
U U U U

C C C C C

+ −
= − =

+ + +
.      (18) 

 

Content Points 

Formula (1): 30 0q =  0.2 

Formula (2): 10 20q q=  0.2 

Formula (3): 10 20
0

1 2

q q
U

C C
+ =  

0.2 

Formula (4): 1 2
10 20 0

1 2

C C
q q U

C C
= =

+
 

0.2 

Formula (5): 
2 2 2

10 20 1 2 0
0

1 2 1 22 2 2( )

q q C C U
W

C C C C
= + =

+
 

0.2 

Formula (6): 1 2 3q q q= +  0.2 

Formula (7): 32

2 3

qq

C C
=  

0.2 

Formula (8): 1 2
0

1 2

q q
U

C C
+ =  

0.2 

Formula (10): 1 2
2 0

1 2 3

C C
q U

C C C
=

+ +
 

0.2 

Formula (12): 
2 2

1 2 3 0 max

1 2 3

( )

2( ) 2

C C C U LI
W

C C C

+
= +

+ +
 

0.2 

Formula (13): 1 10 0( )A q q U= −  0.2 

Formula (14): 0W A W+ =  0.2 

Formula (15): 3
max 1 0

1 2 1 2 3( )( )

C
I CU

C C C C C L
=

+ + +
 

0.2 

Formula (18): min 2 202U U U= −  0.2 

Formula (18): 1 1 2 3
min 0

1 2 1 2 3

( )

( )( )

C C C C
U U

C C C C C

+ −
=

+ + +
 

0.2 

Total 3.0 
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Problem 2. Thermodynamics of one-component plasma (10.0 points) 
2.1 The smallest distance between neighboring deuterium nuclei coincides with the edge of the cube, and 

since there is 1 nucleus per cube, their concentration is 

3

1
n

a
= ,           (1) 

therefore 

12

3

1
8.51 10a м

n

−= =            (2) 

2.2 The electrostatic energy of interaction of two nuclei located at the distance a  from each other is found 

as 
2

04
p

e
W

a
= ,           (3) 

and their thermal energy is evaluated by the formula 

T BE k T= ,           (4) 

whence the sought ratio is obtained in the form 
2

0

111
4

p

T B

W e

E ak T
 = = = .         (5) 

2.3 In general, the spherical cell is neutral, and its radius is equal to 

/ 2R a=            (6) 

with the corresponding volume 

34

3
V R= ,           (7) 

therefore, the bulk charge density is expressed as 

14 3

3

6 6
4.95 10 /

e e
ne Cl m

V a


 
= − = − = − = −  .       (8) 

2.4 Let us apply Gauss’s theorem  

0S

Q
d


 = E S             (9) 

to the sphere of radius r  centered at the location of the nucleus. The flux of the electric field strength E
through this sphere, due to symmetry, is delivered by 

24
S

d E r = E S ,          (10) 

and the net charge Q  inside the sphere is obtained as 

34

3
Q e r = + .          (11) 

 It follows from equations (9)-(11) that 

2

0 04 3

e r
E

r



 
= + ,          (12) 

and the sought potential difference is determined by the expression 
/4

/2

( / 4) ( / 2)

a

a

a a Edr − = −  ,         (13) 

which finally yields 

0

5
( / 4) ( / 2) 211

16

e
a a V

a
 


− = = .        (14) 

2.5 The second term on the right-hand side of expression (12) determines the strength of the electric field 

created by the uniform charge distribution; therefore, the equation of motion of the nucleus projected onto 

the radial direction has the form 
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03

e
mr r




= ,           (15) 

which is an equation of harmonic oscillations with a frequency   
2 2

16 1

3

0 0 0

2 2
2.94 10

3
p

p p p

e e ne
s

m m a m




    

−= − = = =  .     (16) 

2.6 At a fixed temperature, the mean square thermal velocity of the nucleus is derived as 

B

p

k T
v

m
= ,           (17) 

and the corresponding amplitude of deviation from the equilibrium position is determined as  

132,85 10
p

v
A m



−= =  .         (18) 

It can be seen that the condition A a  holds, i.e. the deuterium nuclei do indeed perform small oscillations 

near their equilibrium positions. 

2.7 The internal energy of the system consists of the thermal energy of the thermal motiont of nuclei and the 

electrostatic energy of each cell. In turn, the electrostatic energy of each cell consists of the interaction 

energy of nuclei with the surrounding electron neutralizing background and the energy of the background 

itself. 

Let us divide the cell into spherical layers and consider the layer located at the distance r  from the 

cell center and having the thickness dr . Its charge is obtained as 
24dq r dr = ,          (19) 

and the corresponding interaction energy with the nucleus is 
2

1
0

0 0

3

4 4

R edq e
W

r a 
= = − .         (20) 

 The energy density of the electric field is found by the formula 

2

0

1

2
w E= ,           (21) 

and since the electric field strength of the uniform background is determined by the second term in 

expression (12) and outside the sphere has the form like that of a point-дшлу charge, which formally 

coincides with the first term of expression (12),, then the electrostatic energy of the uniform background is 

evaluated as follows 
2 2

2
2 2

2 0 0 2

0 0 00

1 1 3
4 4

2 3 2 4 10

R

R

r e e
W r dr r dr

r a


   

  

   
= + =   

   
  .    (22) 

 Thus, the total electrostatic energy of a single cell is written as 
2

1 2

0

9

20

e
W W W

a
= + = −          (23) 

and is equal to the work that must be done to create it. 

 As shown above, the nucleus in the cell center is a three-dimensional harmonic oscillator, so its 

thermal chaotic energy is determined as 

3 BE Nk T= ,           (24) 

and hence the internal energy of N cells has the form 
2 4/3

1/3

0

9
3

20
B

e N
U E NW Nk T

V
= + = − .        (25) 

Thus, the sought constants are found as 

1 3 Bk T = ,           (26) 

2

2

0

9

20

e



= − .           (27) 
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2.8 In the absence of the neutralizing backgrounds of two nuclei, their fusion corresponds to the bare 

Coulomb barrier. The presence of neutralizing backgrounds leads to a decrease in the Coulomb barrier, 

which is obviously determined by the interaction of nuclei with their backgrounds and the self-energy of the 

backgrounds, i.e. by expression (23). In this case, the thermal energy of nuclei remains small in comparison 

with the lowering of the Coulomb barrier. 

Each of the two cells before fusing has the electrostatic energy 
2 1/3

0

9

20

e n
W


= − .          (28) 

After fusion, a new cell is formed with the volume 

' 2V V=            (29) 

with a helium nucleus in the center having an electric charge  

' 2e e= .           (30) 

In accordance with the general formula, the electrostatic energy of the formed cell is derived as 
2 1/3

5/3

0

9
' 2

20

e n
W


= − ,          (31) 

whence the following expression for the Coulomb barrier lowering is obtained 
2/3 2 1/3

17

0

(2 1)9
2 ' 5.72 10

10
c

e n
U W W J



−−
= − = =  .      (32) 

2.9 The circular process ABCD  is the Carnot cycle. Let us denote the 

temperature on the isotherm AB  as ABT , and on the isotherm CD  as CDT , while 

they differ very little from each other, so that AB CDT T T   and AB CDT T T− . 

The work A  done in the cycle is equal to the area of the parallelogram ABCD , 

which is, in turn, equal to the area of the parallelogram ABEF . Since 

( / ) ( )V AB CDAF P T T T=   − , the work in the cycle is derived as 

( )( )AB CD B A

V

P
A T T V V

T

 
= − − 

 
.   (33) 

In the process AB , the temperature is constant, so the change in internal energy is expressed as 

( )B A B A

T

U
U U V V

V

 
− = − 

 
,         (34) 

and the supplied amount of heat according to the first law of thermodynamics takes the form 

( )B A B AQ U U P V V= − + − .         (35) 

Since the process ABCD  is a Carnot cycle, its efficiency is written as 

AB CD

AB

T TA

Q T

−
= ,          (36) 

and combining equations (33) - (36), we obtain the required relation 

T V

U P
T P

V T

    
= −   

    
.         (37) 

2.10 Substituting formula (25) into equation (37), we obtain the first-order differential equation 
2 4/3

4/3

0

3

20V

P e N
T P

T V

 
− = 

 
,         (38) 

whose solution takes the form 
2 4/3

4/3

0

3
( , ) ( )

20

e N
P T V C V T

V
= − ,        (39) 

where ( )C V  refers to some constant, which, in principle, can depend on the volume of the system. 

 In the absence of interaction between the nuclei, the pressure of the system should be reduced to the 

pressure of an ideal gas 
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0( , ) | B
e

Nk T
P T V

V
→ = ,          (40) 

and we immediately find 
2 4/3

4/3

0

3
( , )

20

BNk T e N
P T V

V V
= − .        (41) 

Thus, the sought constants are obtained as 

1 Bk T = ,           (42) 

2

2

0

3

20

e



= − .,          (43) 

3

4

3
 = .           (44) 

Substituting the numerical values, we obtain the numerical value for the pressure 
162,59 10P Па= −  .          (45) 

The pressure turns out to be negative! In fact, the pressure of the entire system includes the pressure of the 

electronic component and is definitely positive. 

 

 Content Points 

2.1 
Formula (2): 

3

1
a

n
=           

0.2 

0.4 

Numerical value in formula (2): 
128.51 10a m−=           0.2 

2.2 

Formula (3): 
2

04
p

e
W

a
=         

0.2 

0.8 
Formula (4): T BE k T=           0.2 

Formula (5): 
2

04 B

e

ak T
 =           

0.2 

Numerical value in formula (5): 111 =  0.2 

2.3 

Formula (6): / 2R a=        0.1 

0.6 

Formula (7): 
34

3
V R=        

0.1 

Formula (8): 
6
ne


= −        

0.2 

Numerical value in formula (8): 
14 34.95 10 /Cl m = −   0.2 

2.4 

Formula (9): 
0S

Q
d


 = E S  

0.2 

1.4 

Formula (10): 24
S

d E r = E S  0.2 

Formula (11): 
34

3
Q e r = +  

0.2 

Formula (12): 
2

0 04 3

e r
E

r



 
= +  

0.2 

Formula (13): 

/4

/2

( / 4) ( / 2)

a

a

a a Edr − = −   
0.2 

Formula (14): 
0

5
( / 4) ( / 2)

16

e
a a

a
 


− =  

0.2 
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Numerical value in formula (14): ( / 4) ( / 2) 211a a V − =  0.2 

2.5 

Formula (15): 
03

e
mr r




=  

0.2 

0.6 
Formula (16): 

2

0

2
p

p

ne

m


 
=           

0.2 

Numerical value in formula (16): 16 12.94 10p s −=            0.2 

2.6 

Formula (17): B

p

k T
v

m
=  

0.2 

0.6 
Formula (18): 

p

v
A


=           

0.2 

Numerical value in formula (18): 132.85 10A m−=   0.2 

2.7 

Formula (19): 24dq r dr =  0.2 

1.8 

Formula (20): 
2

1

0

3

4

e
W

a
= −  

0.2 

Formula (21): 
2

0

1

2
w E=  

0.2 

Formula (22): 
2

2

0

3

10

e
W

a
=  

0.2 

Formula (23): 
2

0

9

20

e
W

a
= −  

0.2 

Formula (24): 3 BE Nk T=  0.2 

Formula (25): 
2 4/3

1/3

0

9
3

20
B

e N
U E NW Nk T

V
= + = −  

0.2 

Formula (26): 1 3 Bk T =  0.2 

Formula (27): 
2

2

0

9

20

e



= −  

0.2 

2.8 

Formula (28): 
2 1/3

0

9

20

e n
W


= −  

0.2 

1.2 

Formula (29): ' 2V V=  0.2 

Formula (30): ' 2e e=  0.2 

Formula (31): 
2 1/3

5/3

0

9
' 2

20

e n
W


= −  

0.2 

Formula (32): 
2/3 2 1/3

0

(2 1)9

10
c

e n
U



−
=  

0.2 

Numerical value in formula (32): 
175.72 10cU J −=   0.2 

2.9 

Formula (33): ( )( )AB CD B A

V

P
A T T V V

T

 
= − − 

 
 

0.2 

1.0 
Formula (34): ( )B A B A

T

U
U U V V

V

 
− = − 

 
 

0.2 

Formula (35): ( )B A B AQ U U P V V= − + −  0.2 
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Formula (36): AB CD

AB

T TA

Q T

−
=  

0.2 

Formula (37): 
T V

U P
T P

V T

    
= −   

    
 

0.2 

2.10 

Formula (38): 
2 4/3

4/3

0

3

20V

P e N
T P

T V

 
− = 

 
 

0.2 

1.6 

Formula (39): 
2 4/3

4/3

0

3
( , ) ( )

20

e N
P T V C V T

V
= −  

0.2 

Formula (40): 0( , ) | B
e

Nk T
P T V

V
→ =  

0.2 

Formula (41): 
2 4/3

4/3

0

3
( , )

20

BNk T e N
P T V

V V
= −  

0.2 

Formula (42): 1 Bk T =  0.2 

Formula (43): 
2

2

0

3

20

e



= −  

0.2 

Formula (44): 
3

4

3
 =  

0.2 

Numerical value in formula (45): 162.59 10P Pa= −   0.2 

Total   10.0 

 

Problem 3. Optical waveguide (10.0 points) 
Description of waves 

3.1 The function 

( ) +−= kxtExtE cos),( 0


,         (1)  

describing a wave at a fixed moment in time 0tt =  gives the distribution of the electric field strength in 

space. When the coordinate is changed by the wavelength  , the argument of the cosine must change to  

2 , therefore 

( )( ) ( )  200 =+−−++− kxtxkt .       (2) 

It follows from this relation that  



2
=k .           (3) 

Fixing a point in space 0xx =  and reasoning similarly, we can write 

( )( ) ( )  200 =+−−+−+ kxtkxTt ,       (4) 

which yields 

T




2
= .           (5) 

3.2 The speed of propagation of a monochromatic wave is the speed of motion of a certain wave surface of 

constant phase. This surface satisfies the equation 

constkxt =+−  .          (6) 

It follows from this relation that the wave propagation speed is 

dx
c

dt k


= = .           (7) 

 

3.3 The surface of the constant phase at a fixed time instant satisfies the equation 

constrk =


,           (8) 
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and this is a family of planes perpendicular to the wave vector. 

 
3.4 Expanding the scalar product, we obtain the wave equation in the coordinate representation: 

( ) +−−= sincoscos0 kykxtEE        (9) 

3.5 Since the superposition principle is valid for the electric field strength, we can write for a composite 

wave 

( ) ( )( )








 
−

















 
+−







 
+=

=+−++−=

x
k

tx
k

ktE

xkktExktEE

22
cos

22
cos2

cos)cos(

000

000000






 .    (10) 

Taking into account that 0   , and, consequently, 0kk  , we rewrite this expression as: 

( ) ( )xkttxAE 000 cos, −=  .         (11) 

Here the following notation is used 

( ) 






 
−


= x

k
tEtxA

22
cos2, 00


        (12) 

for slowly varying wave amplitude. 

3.6 To determine the time duration of the packet, it should be taken into account that when passing from one 

"zero" of the cosine to the next, the argument of the cosine changes to  , therefore 

     








==

 2

2
.         (13) 

Taking into account that  = 2 , we obtain from expression (13) the relationship between the 

packet duration and its spectral width as 

1= .           (14) 

3.7 For a similar reasoning, it is not difficult to find that 

k
LL

k


==

 


2

2
.         (15) 

3.8 The phase velocity can be found as the velocity of motion of the wave surface of constant phase. It is 

derived from function (11) that this surface satisfies the condition  

( ) constxkt =− 00 ,          (16) 

which results in the phase velocity 

0

0

k
vp


= .           (17) 

3.9 To determine the group velocity, we write down the condition that the wave amplitude, for example, is 

maximum 

0
22

=


−


x
k

t


.          (18) 

It is concluded from this expression that the group velocity is given by the formula 

k
vg




=


.           (19) 

3.10 For electromagnetic waves in vacuum, the relation c=  is fulfilled, which validates  

kc = ,           (20) 

and it is finally obtained that 

pv c
k


= = ,           (21)  
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g pv c v
k


= = =


,          (22) 

i.e. both the phase and group speeds are equal to the speed of light c  in a vacuum. 

Plane waveguide 

3.11 The function proposed in the problem statement describes the field in a plane waveguide  

( ) ( )ykxktEyxtE yx sincos),,( 0 −=          (23) 

and satisfies one boundary condition: at 0y =  the electric field strength 0=E . Therefore, one should 

choose such values of yk  so that the second boundary condition is fulfilled: at y a=  the field strength 

should also vanish. This condition is satisfied when 

a
mkmakak yyy


 === 0sin .      (24) 

In the expressions above m  stands for a positive integer, ...3,2,1=m   

3.12 Let us write the equations of symmetric waves 

( )1 0 0 0cos cos sinE E t k x k y   = − + + ,       (25) 

( )2 0 0 0cos cos sinE E t k x k y   = − − − ,       (26) 

where 
c

k


=0  is the wavenumber for waves, propagating at an angle   to the planes of the waveguide, 

and summing them up yileds 

( ) ( )1 2 0 0 02 cos cos cos sinE E E E t k x k y   = + = − + ,     (27) 

with the following relation 

0 0 / 2E E = .           (28) 

Note that there should be / 2 = − . 

3.13 Comparison of the obtained formulas (23) and (27) implies that they coincide if 

0 cosxk k = ,           (29)  

0 sinyk k = .           (30) 

3.14 Comparing the values of yk  in formulas (24) and (30), we find 

0

0 sinsin
ak

m
a

mkk mmy





 === .       (31) 

The wavenumber of the considered waves in vacuum is related to the wavelength by 



2
0 =k ,           (32) 

then the values of the possible angles are given by the formula 

a
m

ak
mm

2
sin

0


 == .         (33) 

3.15 Equation (23) implies that the phase velocity of wave propagation in the waveguide is given by the 

formula 





cos0kk
v

x

p == .          (34) 

Expressing the value of the cosine of the angle in terms of its sine, which is determined by formula 

(33), we obtain 

2

0

2

00

2
1

sin1cos








−

=
−

==

a
mk

kk
vp












.      (35) 
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Finally, using formulas relating frequencies, wavelengths and the speed of light in a vacuum c
k

=
0


, 

c





2
= , it is derived that 

22

00

1
sin1cos









−

=
−

==

a

c
m

c

kk
vp










.      (36) 

Thus, it turns out that the phase velocity of propagation of an undamped wave in the waveguide is greater 

than the speed of light in vacuum. 

3.16 The propagation velocity of a pulse is the group velocity, therefore, it is determined by formula (19), in 

which the ratio of the increments can be replaced by the derivative 
1−









==




=





d

dk

dk

d

k
vg .         (37) 

To evaluate the velocity using this formula, it is necessary to obtain explicitly the dependence of the 

wavenumber on the frequency, ( )k . To do so, we use the general formula for the phase velocity 
k

vp


=  

and obtain 
2

2

2
1

1 







−=








−==

a

c
m

ca

c
m

cv
k

p







,      (38) 

and the pulse propagation velocity is written as 

2

1

2

2

1

1
1









−=





























−

=







==

−

−










 a

c
mc

a

c
m

cd

dk
vv g .    (39) 

As follows from this formula, the group velocity is naturally less than the speed of light in a vacuum. Also, 

it should be indicated that this speed is equal to cosc , which is quite obvious. 

3.17 Let us turn to formula (33) and substitute the given ratio / 1.2a  =  

m
a

mm 42,0
2

sin =


 .         (40) 

Since the sine of any argument does not exceed unity, it follows from the obtained expression that 

only two modes with 1=m  and 2=m  can propagate in a given waveguide, and, in other words, the input 

pulse generate two pulses of these modes in the waveguide. The propagation velocities of pulses in these 

modes differ markedly. First of all, let us express these velocities in terms of a given ratio /a   in the form 
22

2
11 








−=








−=

a
mc

a

c
mcv






 .       (41) 

At the waveguide input, pulses in both modes are excited simultaneously, but since they move at 

different speeds, as the distance traveled increases, they diverge in time. The number of pulses doubles when 

pulses in different modes diverge for a time exceeding the pulse duration, hence, the minimum distance X  

can be found from the condition 

=−
12 v

X

v

X
,           (42) 

which leads to the final answer 
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 




c

aa

c

vv

X 4,1

2
21

1

2
1

111
22

12











−

−









−

=

−

= .     (43) 

3.18 For a waveguide to operate in a single-mode regime, it is necessary to satisfy the following condition 

1
2
2sin 2 =
a


 ,          (44) 

which yields the inequality 

1


a
.            (45) 

 

 Content Points 

3.1 

Formula (2): ( )( ) ( )  200 =+−−++− kxtxkt  0.2 

0.8 

Formula (3): 


2
=k  0.2 

Formula (4): ( )( ) ( )  200 =+−−+−+ kxtkxTt  0.2 

Formula (5): 
T




2
=  0.2 

3.2 

Формула (6): constkxt =+−   0.2 

0.4 
Formula (7): 

kdt

dx
v


==  0.2 

3.3 A family of planes, perpendicular to the wave vector.. 0.2 0.2 

3.4 Formula (9): ( ) +−−= sincoscos0 kykxtEE  0.2 0.2 

3.5 

Formula (10): 0 0 02 cos cos
2 2 2 2

k k
E E t k x t x

 


          
= + − + −      

      
 0.2 

0.4 

Formula (12): ( ) 






 
−


= x

k
tEtxA

22
cos2, 00


 0.2 

3.6 
Formula (13): 









==

 2

2
 0.2 

0.4 

Formula (14): 1=  0.2 

3.7 Formula (15): 
k

LL
k


==

 


2

2
 0.2 0.2 

3.8 

Formula (16): ( ) constxkt =− 00  0.2 

0.4 
Formula (17): 

0

0

k
vp


=  0.2 

3.9 

Formula (18): 0
22

=


−


x
k

t


 0.2 

0.4 

Formula (19): 
k

vg



=


 0.2 

3.10 

Formula (20): kc =  0.2 

0.6 
Formula (21): pv c

k


= =  0.2 

Formula (22): g pv c v
k


= = =


 0.2 
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3.11 Formula (24): yk m
a


=  0.2 0.2 

3.12 

Formula (25): ( )1 0 0 0cos cos sinE E t k x k y   = − + +  0.2 

0.8 
Formula (26): ( )2 0 0 0cos cos sinE E t k x k y   = − − −  0.2 

Formula (28): 0 0 / 2E E =  0.2 

Condition: / 2 = −  0.2 

3.13 
Formula (29): 0 cosxk k =  0.2 

0.4 
Formula (30): 

0 sinyk k =  0.2 

3.14 

Formula (31): 
0

0 sinsin
ak

m
a

mkk mmy





 ===  0.3 

0.6 

Formula (33): 
a

m
ak

mm
2

sin
0


 ==  0.3 

3.15 

Formula (34): 




cos0kk
v

x

p ==  0.3 

0.6 Formula (36): 
2

1

p

c
v

c
m

a





=

 
−  
 

 
0.3 

3.16 

Formula (37): 

1−









==




=





d

dk

dk

d

k
vg  0.3 

1.0 Formula (38): 

2

2

2
1

1 







−=








−==

a

c
m

ca

c
m

cv
k

p







 0.4 

Formula (39): 

2

1g

c
v c m

a





 
= −  

 
 0.3 

3.17 

Формула (40): sin 0,42m m   0.2 

1.8 

Possible modes with 1=m  and 2=m  0.4 

Formula (41): 

2

1
2

v c m
a

 
= −  

 
 0.4 

Formula (42): =−
12 v

X

v

X
 0.4 

Formula (43): 1,4X c  0.4 

3.18 

Formula (44): 1
2
2sin 2 =
a


  0.3 

0.6 

Formula (45): 1


a
 0.3 

Total   10.0 

 


