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SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL 

COMPETITION 
Attention. Points in grading are not divided! 

Problem 1 (10.0 points) 
Problem A (3.0 points) 

А1. When the test-tube is immersed to the depth x , it experiences the Archimedes' 

force and the force of gravity. Therefore, the equation of Newton's second law for 

the test-tube has the form 

 gxhSmgma  00 .   (1) 

Here m  is the mass of the test-tube and   stands for the water density. 

In the equilibrium position, the following condition holds 

ghSmg 00 .    (2) 

It is thus immediately obtained that  

x
h

g
a

0

 .     (3) 

This is the equation of harmonic oscillations with the period 

g

h
T 02 .       (4) 

А2.1 When the test-tube is lowered to the depth x , its potential energy is 

reduced by an amount 

mgxU  1
.       (5) 

If the test-tube is lowered to the depth x , the water level in the vessel rises to a 

height 𝑦 that satisfies the condition (the condition of constancy of the water 

volume) 
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Consequently, the water that was under the test tube rises above the original 

water level in the vessel. The mass of this water is found as 

xSm 0 ,       (7) 

Its center of mass rises to a height 
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The change in the potential energy of water is derived as 
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hxgShmgU C      (9) 

The total change in the potential energy (with relation (2)) is finally 

obtained as: 
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 .    (10) 

А2.2 If the tube drops with the velocity 0v , then the water between the 

walls and the test-tube rises at the speed of  

  0

0

0
000 v
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S
vSSvSv


 .   (11) 

The mass of rising water reads as 
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  001 hSSm         (12) 

The total kinetic energy of the test-tube and the rising water is equal to 

 
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. (13) 

А2.3 The equation of the law of conservation of energy for the system under consideration is 

written as 
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This equation is also an equation of harmonic oscillations with the same period 

 
g

h
T 02 .       (15) 

 

Part Content Points 

А1 

Formula (1)  gxhSmgma  00  0,2 

0,8 

Formula (2) ghSmg 00  0,2 

Formula (3) x
h

g
a

0

  0,2 

Formula (4) 
g

h
T 02  0,2 

А2.1 

Formula (5) mgxU  1
 0,2 

1,2 

Formula (6)   x
SS

S
yySSxS
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0
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
  0,2 

Formula (7) xSm 0  0,2 
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А2.2 
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Formula (12)   001 hSSm    0,2 
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А2.3 Formula (14) constEgx
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Formula (15) 
g

h
T 02  0,2 

Total   3,0 

 
Problem В (4.0 points) 

Let Ik be the current through the resistor number k (see 

Fig.), qk be the charge that has flowed through it up to the moment 

of closing the diode, q be the charge that has flowed through the 

diode, and Q be the charge of the capacitor. 

Immediately after shortening the switch, the voltage across 

the capacitor is zero, the is true for the second resistor. Thus, 

I2 = 0 and the answer to the first question is simply found as 

I0 = I1(0) =U/R = 1 mA.         (1) 

В момент, когда ток через диод станет нулевым, токи 

через первый и второй резисторы будут одинаковы, поэтому 

будут одинаковы и напряжения на них: U1 = U2 = U/2. Такое же напряжение будет на 

конденсаторе и его заряд в этот момент: At the moment when the current through the diode 

becomes zero, the currents through the first and second resistors are equal, therefore, the voltages 

across them are also equal: U1 = U2 = U/2. The same voltage is across on the capacitor and its 

charge at this moment: 

 Q = CU/2.         (2) 

Kirchhoff's rules give: 

 q1 = q + q2,         (3) 

 q3 + q = Q.         (4) 

 I1R = I3R,            

q1 = q3,         (5) 

 U = I1R + I2R.         (6) 

Integrating the last equation in time from 0 to τ, we obtain: 

 Uτ = q1R + q2R.        (7) 

Solving the obtained set of equations, we obtain the final answer as 

𝑞 =
1

3
𝐶𝑈 (1 −

𝜏

𝑅𝐶
) = 179 μCl.      (8) 

 

Content Points 

Formula (1) I0 = I1(0) =U/R = 1 mA 0.5 

Numerical value I0 = 1 mA 0.1 

Formula (2) Q = CU/2 0.5 

Formula (3) q1 = q + q2 0.5 

Formula (4) q3 + q = Q 0.5 

Formula (5) q1 = q3 0.5 

Formula (6) U = I1R + I2R 0.2 

Formula (7) Uτ = q1R + q2R 0.5 

Formula (8) 𝑞 =
1

3
𝐶𝑈 (1 −

𝜏

𝑅𝐶
) 0.5 

Numerical value 𝑞 = 179 μCl 0.2 

Total 4.0 
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Problem С (3.0 points) 

Consider a ray AB  passing parallel to one of the sides of the polygon. To describe a closed 

trajectory, it is necessary that, after refraction in the lens, the ray should run parallel to the next 

side. To do this, the ray must be deflected by an angle 

17

2
  .           (1) 

 
Since this ray is parallel to the optical axis, after the refraction it passes through the focus 

F . The required condition is satisfied by the ray moving at a distance  

 FtgFd        (2) 

From the optical axes. Obviously, this ray propagates along the sides of the regular 

17-gon, whose side length is equal to the length of the segment AB , or 

)1( 2  FtgdFl .     (3) 

The radius of the circle, inscribed in this 17-gon, is finally found as 

 
sm

F

tg

l
R 8,30

1

2
2

2










.    (4) 

For diverging lenses, the solution is similar, but we should only consider a 

ray that hits the lens below the optical axis. 

 
In this case, the length of the side of the 17-gon, formed by the trajectory of the ray, is equal 

to 

 22 1   FtgFFl        (5) 

then, the radius of the inscribed circles found as  

смFR 4,23
1 2


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



.      (6) 
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Content Points 

Formula (1) 
17

2
   0,2 

Formula (2) Fd   0,6 

Formula (3) )1( 2  FtgdFl  0,4 

Formula (4) 






)1(

2
2

2


F

tg

l
R  

0,4 

𝛼2 is neglected (-0,2) 

Numerical value smR 8,30  0,2 

Formula (5)  22 1   FtgFFl  0,6 

Formula (6) 


 21
 FR  0,4 

𝛼2 is neglected (-0,2) 

Numerical value smR 4,23  0,2 

Total 3,0 

 

Problem 2. Physics in the mountains (10,0 points) 
Part 1. Isothermal atmosphere (3,2 points) 

1.1 [1,0 points] The air pressure on the Earth's surface is caused by its gravity acting on the 

atmosphere, such that the equilibrium condition requires 

   𝑝0𝑆 = 𝑀𝑔,         (1) 

where 

   𝑆 = 4𝜋𝑅𝐸
2          (2) 

designates the Earth’s surface. 

From (1) and (2) one obtains 

   𝑀 =
4𝜋𝑝0𝑅𝐸

2

𝑔
= 5.32 ∙ 1018 kg.      (3)   

1.2 [1,0 points] The pressure of the atmosphere varies with altitude due to the action of gravity on 

the gas. Let us consider the equilibrium of a layer of gas of thickness 𝑑ℎ. The pressure difference 

𝑑𝑝 at these altitudes must compensate for the gravitational forces of the gas layer of density 𝜌, 

which leads to the equation 

   𝑑𝑝 = −𝜌𝑔𝑑ℎ.         (4) 

On the other hand, from the equation of an ideal gas we find the relation between its density 

and pressure 

   𝜌 =
𝜇𝑎𝑖𝑟𝑝

𝑅𝑇0
.         (5) 

From expressions (4) and (5), we find that the pressure of the atmosphere at an altitude ℎ is 

determined by the so-called barometric formula 

   𝑝(ℎ) = 𝑝0 exp (−
𝜇𝑎𝑖𝑟𝑔

𝑅𝑇0
ℎ)       (6) 

and at the altitude of 𝐻 = 1500 𝑚 it is equal to 

   𝑝(𝐻) = 85.0 ∙ 103 Pa.       (7) 

1.3 [0,6 points] In a homogeneous gravity field, the pressure of the atmosphere is determined by 

the mass of air above it, so the heating process can be considered isobaric, which means 

   𝛿𝑄 =
𝑀

𝜇𝑎𝑖𝑟

𝛾𝑅

𝛾−1
∆𝑇 = 5.33 ∙ 1021 J,      (8) 

where the adiabatic index of the diatomic gas is 

   𝛾 = 7/5.         (9)  
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1.4 [0,6 points] For the time interval 𝜏 the amount of solar energy, absorbed by the Earth, is equal 

to 

   𝛿𝑄 = 𝛼𝜋𝑅𝐸
2𝜏         (10) 

and the time interval sought is obtained as 

   𝜏 =
𝑀

𝛼𝜋𝑅𝐸
2𝜇𝑎𝑖𝑟

𝛾𝑅∆𝑇

𝛾−1
= 30.3 ∙ 103 s.      (11) 

Part 2. Adiabatic atmosphere (6,8 points) 

2.1 [1,2 points] The temperature of the atmosphere does not remain constant with altitude, so 

equation (5) should be rewritten in the form 

   𝜌 =
𝜇𝑎𝑖𝑟𝑝

𝑅𝑇
.         (12) 

Since the atmosphere is assumed adiabatic, one can write that 

   𝑝𝑇
𝛾

1−𝛾 = 𝑐𝑜𝑛𝑠𝑡.        (13) 

Solving together equations (4), (12) and (13) yields 

   
𝑑𝑇

𝑑ℎ
= −

(𝛾−1)𝜇𝑎𝑖𝑟𝑔

𝛾𝑅
= −𝛽 = 𝑐𝑜𝑛𝑠𝑡.      (14) 

Formula (14) proves that the temperature of the adiabatic atmosphere decreases with altitude 

as 

   𝑇(ℎ) = 𝑇0 −
(𝛾−1)𝜇𝑎𝑖𝑟𝑔

𝛾𝑅
ℎ = 𝑇0 − 𝛽ℎ      (15) 

and is found at 𝐻 = 1500 𝑚 to be equal 

   𝑇(𝐻) = 278 К.        (16) 

2.2 [0,4 points] The pressure distribution over the altitude is determined by the adiabatic equation 

(13) 

   𝑝(ℎ) = 𝑝0 (
𝑇0

𝑇(ℎ)
)

𝛾

1−𝛾
= 𝑝0 (

𝑇0

𝑇0−𝛽ℎ
)

𝛾

1−𝛾
      (17) 

and is found at 𝐻 = 1500 𝑚 to be equal 

   𝑝(𝐻) = 84.6 ∙ 103 𝑃𝑎.       (18) 

2.3 [0,8 points] Since the temperature of the upper part of the troposphere is fixed, it follows from 

(15) that its height is determined by the condition 

   𝑇(ℎ) = 𝑇0 − 𝛽ℎ = 𝑐𝑜𝑛𝑠𝑡.       (19) 

Thus, the change in the height of the troposphere at daytime and nighttime is derived as 

   ∆𝐻𝑎𝑡𝑚 =
𝛾𝑅∆𝑇𝑑𝑛

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
= 2,05 ∙ 103 m.      (20) 

2.4 [0,6 points] In the stated range of temperatures and pressures, one can approximate the 

saturated water vapor pressure by a linear function of the form 

   𝑝(𝑇) = 𝑝1 +
𝑝2−𝑝1

𝑇2−𝑇1
(𝑇 − 𝑇1).       (21) 

The boiling of the liquid begins when the saturated vapor pressure is equalized with the 

external pressure of the atmosphere, which allows an intensive vaporization process to occur in the 

emerging bubbles. Equating expressions (18) and (21) gives rise to 

   𝑇𝑏𝑜𝑖𝑙 = 368 К.        (22) 

2.5 [0,8 points] The melting point of ice varies little with the external pressure, so snow appears 

when the temperature reaches 0 ℃, i.e. 

   𝑇𝑚𝑒𝑙𝑡 = 273 К.        (23) 

Consequently, using formula (15), we determine the altitude at which the snow cover 

appears as  

   ℎ0 =
𝛾𝑅(𝑇0−𝑇𝑚𝑒𝑙𝑡)

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
= 2.05 ∙ 103 m.      (24) 

2.6 [0,4 points] If the air at the foot of the mountain is quite hot, then the temperature over the 

entire mountain slope cannot fall to zero degrees Celsius. Then, formula (24) provides the height of 

the mountain to be 

   𝐻0 =
𝛾𝑅(𝑇−𝑇𝑚𝑒𝑙𝑡)

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
= 3.78 ∙ 103 m.      (25) 
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2.7 [2,0 points] Since the water vapor is in thermodynamic equilibrium with the surrounding air, 

their temperatures are equal at all altitudes. The equilibrium condition for the vapor is written 

analogously to (4) as 

   𝑑𝑝𝑣𝑎𝑝 = −𝜌𝑣𝑎𝑝𝑔𝑑ℎ,        (26) 

and its density is obtained from the ideal gas equation of state in the following form 

   𝜌𝑣𝑎𝑝 =
𝜇𝐻2𝑂𝑝𝑣𝑎𝑝

𝑅𝑇
,        (27) 

in which the temperature dependence on the altitude is governed by formula (15). 

By formulation, the pressure of unsaturated water vapor at the foot of the mountain reads as 

𝑝𝑣𝑎𝑝(0) = 𝜑𝑝𝑣𝑎𝑝0,        (28) 

whereas the saturated vapor pressure at the altitude 𝐻′ is denoted as 

𝑝𝑣𝑎𝑝(ℎ) = 𝑝𝑣𝑎𝑝.        (29) 

Integrating equation (25) with the aid of (26) and (15) and initial conditions (28) and (29), it 

is found that 

ln
𝑝𝑣𝑎𝑝

𝑝𝑣𝑎𝑝0
= ln 𝜑 +

𝜇𝐻2𝑂𝑔

𝛽𝑅
ln

𝑇

𝑇0
.      (30) 

On the other hand, it is known from the handbook that  

ln
𝑃𝑣𝑎𝑝

𝑃𝑣𝑎𝑝0
= 𝑎 + 𝑏 ln

𝑇

𝑇0
,        (31) 

and solving it together with (30) provides the following temperature at the altitude 𝐻′ 

𝑇(𝐻′) = 𝑇0 exp (
𝑎−ln 𝜑

𝜇𝐻2𝑂𝑔

𝛽𝑅
−𝑏

).       (32) 

Then, the altitude itself is delivered by formula (15) as 

𝐻′ =
𝑇0−𝑇(𝐻′)

𝛽
=

𝑇0

𝛽
(1 − exp (

𝑎−ln 𝜑
𝜇𝐻2𝑂𝑔

𝛽𝑅
−𝑏

)) = 2.55 ∙ 103 m.  (33) 

2.8 [0,6 points] For the fog to be absent on the mountain, one has to put in formula (33) 

𝐻′ = 𝐻0,         (34) 

from which we obtain the desired expression for the air humidity 

 𝜑𝑚𝑖𝑛 = (1 −
𝛽𝐻0

𝑇0
)

𝑏−
𝜇𝐻2𝑂𝑔

𝛽𝑅
exp 𝑎 = 0.119.    (35) 

 

 Content Points 

1.1 

Formula (1) 𝑝0𝑆 = 𝑀𝑔 0,4 

1,0 
Formula (2) 𝑆 = 4𝜋𝑅𝐸

2 0,2 

Formula (3) 𝑀 =
4𝜋𝑝0𝑅𝐸

2

𝑔
 0,2 

Correct numerical value 𝑀 = 5.32 ∙ 1018 kg 0,2 

1.2 

Formula (4) 𝑑𝑝 = −𝜌𝑔𝑑ℎ  0,2 

1,0 

Formula (5) 𝜌 =
𝜇𝑎𝑖𝑟𝑝

𝑅𝑇0
 0,2 

Formula (6) 𝑝(ℎ) = 𝑝0 exp (−
𝜇𝑎𝑖𝑟𝑔

𝑅𝑇0
ℎ) 0,4 

Correct numerical value 𝑝(𝐻) = 85.0 ∙ 103 Pa 0,2 

1.3 

Formula (8) 𝛿𝑄 =
𝑀

𝜇𝑎𝑖𝑟

𝛾𝑅

𝛾−1
∆𝑇 0,2 

0,6 Correct numerical value 𝛿𝑄 = 5.33 ∙ 1021 J 0,2 

Formula (9) 𝛾 = 7/5 or equivalent 𝐶𝑃 = 7/2𝑅  0,2 

1.4 

Formula (10) 𝛿𝑄 = 𝛼𝜋𝑅𝐸
2𝜏 0,2 

0,6 Formula (11) 𝜏 =
𝑀

𝛼𝜋𝑅𝐸
2𝜇𝑎𝑖𝑟

𝛾𝑅∆𝑇

𝛾−1
 0,2 

Correct numerical value 𝜏 = 30.3 ∙ 103 s 0,2 
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2.1 

Formula (12) 𝜌 =
𝜇𝑎𝑖𝑟𝑝

𝑅𝑇
 0,2 

1,2 

Formula (13) 𝑝𝑇
𝛾

1−𝛾 = 𝑐𝑜𝑛𝑠𝑡 0,2 

Formula (14) 
𝑑𝑇

𝑑ℎ
= −

(𝛾−1)𝜇𝑎𝑖𝑟𝑔

𝛾𝑅
= −𝛽 = 𝑐𝑜𝑛𝑠𝑡 0,4 

Formula (15) 𝑇(ℎ) = 𝑇0 −
(𝛾−1)𝜇𝑎𝑖𝑟𝑔

𝛾𝑅
ℎ = 𝑇0 − 𝛽ℎ 0,2 

Correct numerical value 𝑇(𝐻) = 278 К 0,2 

2.2 
Formula (17) 𝑝(ℎ) = 𝑝0 (

𝑇0

𝑇(ℎ)
)

𝛾

1−𝛾
= 𝑝0 (

𝑇0

𝑇0−𝛽ℎ
)

𝛾

1−𝛾
 0,2 

0,4 
Correct numerical value 𝑝(𝐻) = 84.6 ∙ 103 Pa 0,2 

2.3 

Formula (19) 𝐻𝑎𝑡𝑚 =
𝛾𝑅𝑇0

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
 0,4 

0,8 Formula (20) ∆𝐻𝑎𝑡𝑚 =
𝛾𝑅∆𝑇𝑑𝑛

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
 0,2 

Correct numerical value ∆𝐻𝑎𝑡𝑚 = 2,05 ∙ 103 𝑚 0,2 

2.4 
Formula (21) 𝑝(𝑇) = 𝑝1 +

𝑝2−𝑝1

𝑇2−𝑇1
(𝑇 − 𝑇1) 0,4 

0,6 
Correct numerical value 𝑇𝑏𝑜𝑖𝑙 = 368 К 0,2 

2.5 

Formula (23) 𝑇𝑚𝑒𝑙𝑡 = 273 К. 0,2 

0,8 Formula (24) ℎ0 =
𝛾𝑅(𝑇0−𝑇𝑚𝑒𝑙𝑡)

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
 0,4 

Correct numerical value ℎ0 = 2.05 ∙ 103𝑚 0,2 

2.6 
Formula (25) 𝐻0 =

𝛾𝑅(𝑇−𝑇𝑚𝑒𝑙𝑡)

(𝛾−1)𝜇𝑎𝑖𝑟𝑔
  0,2 

0,4 
Correct numerical value 𝐻0 = 3.78 ∙ 103 𝑚 0,2 

2.7 

Formula (26) 𝑑𝑝𝑣𝑎𝑝 = −𝜌𝑣𝑎𝑝𝑔𝑑ℎ 0,2 

2,0 

Formula (27) 𝜌𝑣𝑎𝑝 =
𝜇𝐻2𝑂𝑝𝑣𝑎𝑝

𝑅𝑇
 0,2 

Formula (28) 𝑝𝑣𝑎𝑝(0) = 𝜑𝑝𝑣𝑎𝑝0 0,2 

Formula (30) ln
𝑝𝑣𝑎𝑝

𝑝𝑣𝑎𝑝0
= ln 𝜑 +

𝜇𝐻2𝑂𝑔

𝛽𝑅
ln

𝑇

𝑇0
 0,6 

Formula (32) 𝑇(𝐻′) = 𝑇0 exp (
𝑎−ln 𝜑

𝜇𝐻2𝑂𝑔

𝛽𝑅
−𝑏

) 0,2 

Formula (33) 𝐻′ =
𝑇0−𝑇(𝐻′)

𝛽
=

𝑇0

𝛽
(1 − exp (

𝑎−ln 𝜑
𝜇𝐻2𝑂𝑔

𝛽𝑅
−𝑏

)) 0,4 

Correct numerical value 𝐻′ = 2.55 ∙ 103 𝑚  0,2 

2.8 

Formula (34) 𝐻′ = 𝐻0 0,2 

0,6 Formula (35) 𝜑𝑚𝑎𝑥 = (1 −
𝛽𝐻0

𝑇0
)

𝑏−
𝜇𝐻2𝑂𝑔𝛽

𝑅
exp 𝑎 0,2 

Correct numerical value 𝜑𝑚𝑎𝑥 = 0.119 0,2 

Total   10,0 

 

Problem 3. Optics of moving media (10.0 points) 
Part 1. 4-dimensional vectors (1,4 points) 

1.1 [0,8 points] To bring the momentum and the energy to the same unit it is sufficient to divide the 

energy by the speed of light or to multiply the momentum by the speed of light. Moreover, by 

virtue of the principle of relativity, it is necessary to make the substitution 𝑉 → −𝑉. Thus, one gets 

2 2

( / )( / )
'

1 /

x
x

p V c E c
p

V c





,       (1) 
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'y yp p ,         (2) 

'z zp p ,         (3) 

2 2

/ ( / )
'/

1 /

xE c V c p
E c

V c





.       (4) 

1.2 [0,6 points] In any inertial frame of reference the expression for the momentum is written as 

2 21 /

mv
p

v c



,        (5) 

and the expression for the total energy has the form 
2

2 21 /

mc
E

v c



.        (6) 

This implies that the invariant sought is equal to 
2 2 2 2 4inv E p c m c   .       (7) 

Part 2. Doppler effect and light aberration (4,6 points) 

2.1 [1,0 points] Since the rest mass of photons is zero, it follows from (7) that the momentum and 

energy of a photon are related as follows 

E
p

c
 .         (8) 

It is known that the photon energy is given by the Planck formula as 

E  .         (9) 

The photon momentum projections on the coordinate axes are written as 

cosxp p  ,         (10) 

sinyp p  ,         (11) 

and on substituting into (B1.4), one finds 

2 2

1 cos /
'

1 /

V c

V c


 





.        (12) 

This is the well known formula for the relativistic Doppler effect. 

2.2 [0,4 points] It follows from (2), 8) and (9) that 

'
sin ' sin

c c

 
  .       (13) 

Using (12), it is merely found that 
2 21 / sin

sin '
1 cos /

V c

V c










.       (14) 

Expression (14) is a classical formula for the light aberration. 

2.3 [1,0 points] The position of the star on the celestial sphere varies throughout the year due to the 

orbital motion of the Earth around the Sun and the aberration of light which is schematically shown 

in the figure on the right. Since the speed of Earth's orbital motion is much less than the speed of 

light, it follows from (14) that the aberration angle is equal to 

' sin
V

c
      ,        (15) 

where 𝜑 denotes the angle between 𝑉 and the direction towards the star. 
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The figure shows that the angle 𝜑 varies periodically from a minimum value 𝛿 at the point 

D, reaches the value of 𝜋/2 at the point B, has a maximum value of 𝜋 − 𝛿 at point C, and finally 

becomes equal to 𝜋/2 at point 𝐴. Hence, one can infer that the star apparent position on the 

celestial sphere moves along an ellipse with angular dimensions of the semi-axes 

1

V
a

c
          (16) 

and 

2 sin
V

a
c

 .         (17) 

It is found from the given data that 

2

1

arcsin 64.2
a

a


 
   

 
.       (18) 

2.4 [2,2 points] According to formula (12) for the Doppler effect the relative frequency shift at 

0   is found to be 

31 /
1 9.95 10

1 /

X

D X

v c

v c





 
    

 
.     (19) 

This shows that the Doppler effect cannot fully explain the red shift in the spectrum of the 

star. It is natural to assume that when the light leaves the surface of the star the photon frequency 

decreases due to the gravitational redshift. 

 The gravitational mass is found from the principle of equivalence as 

2phm
c


 ,         (20) 

and the gravity force, acting on the photon at a distance 𝑟 from the star, is equal, according to the 

Newton law, to 

2

phm M
F G

r
 .         (21) 

The energy conservation law for the motion of the photon can be written as 

d Fdr   .         (22) 

Thus, 

2 2

d GM dr

c r




  .        (23) 

On integrating (B4.5) in the range of the stellar radius 𝑅 до ∞ leads to the following 

equation 

2

0

ln
GM

c R





 
  

 
,        (24) 

where 𝜔0 and 𝜔  stand for the frequencies of the photon on the stellar surface and at infinite 

distance from it, respectively. 
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Hence, the frequency of the photon at infinite distance from the star is obtained as 
2

0 02 2
exp exp

2

IIvGM

c R c
  

  
     

   
,     (25) 

where the escape velocity is determined by the classical expression 

2
II

GM
v

R
 .         (26) 

Combining formulas (19) and (25) yields 
2

2

0

1 /
1 exp

2 1 /

II X

X

v v c

c v c





   
    

   
.     (27) 

On substituting numerical values, one gets 

6

0

1 /

1 /
2ln 2.83 10 m/s

1

X

X

II

v c

v c
v c





 
 

   
  

     

.     (28) 

Part C. Light in a moving medium (4,0 points) 

3.1 [1,1 points] By definition, the projections of the object velocity in the reference frame 𝑆′ are 

defined as expressions 

'
'

'
x

dx
u

dt
 ,         (29) 

'
'

'
y

dy
u

dt
 .         (30) 

The same projections in the reference frame 𝑆 are given by 

x

dx
u

dt
 ,         (31) 

y

dy
u

dt
 .         (32) 

The Lorentz transformations can be rewritten in the form of finite differences as 

2 2

' '

1 /

dx Vdt
dx

V c





,        (33) 

'dy dy ,         (34) 
2

2 2

' ' /

1 /

dt dx V c
dt

V c





.        (35) 

On dividing term by term the left and right hand sides of (33)-(35) and using (29)-(32) 

yields 

2

'

'
1

x
x

x

u V
u

u V

c






,        (36) 

2 2

2

1 /
'

'
1

y y
x

V c
u u

u V

c






.        (37) 

3.2 [1,4 points] Let us sit in the reference frame associated with the water. According to formula 

(14) the light aberration appears in this reference frame, whereby making the angle 𝛼′ of incidence 

of a plane wave on the water surface equal to 
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 
2 21 / cos

cos ' cos 1 sin /
1 sin /

V c
V c

V c


  




  


  or 

 
2sin /

sin ' sin cos /
1 sin /

V c
V c

V c


  




  


.     (38) 

In the reference frame associated with the water flow, the refraction law has a usual form 

sin ' sin 'n  ,        (39) 

and the speed of light propagation is 

ph

c
v

n
 .         (40) 

Going back to the laboratory reference frame with the aid of (36) and (37) one finds 

2

sin '
sin sin '

sin '
1

ph

m ph
ph

v V
v v V

v V

c


 




  



,     (41) 

2 2

2

1 /
cos cos ' cos '

sin '
1

m ph ph
ph

V c
v v v

v V

c

  



 



.    (42) 

Using (38)-(42), it is finally obtained that 
21 cos 2

sin sin
n V

n n c


 


  ,      (43) 

making 

1

1
sinA

n
 ,         (44) 

2

1

cos 2n
B

n


  .        (45) 

3.3 [0,4 points] Again using (38)-(42) yields 

2

1
1 sinm

c
v V

n n


 
   

 
.       (46) 

whereby 

2

c
A

n
 ,         (47) 

2 2

1
1 sinB

n


 
  
 

.        (48) 

3.4 [0,9 points] When the light propagates in the direction of the water flow, the angle 𝛽 in formula 

(48) should be taken 𝜋/2 and the corresponding speed is found as 

2

1
1

c
v V

n n


 
   

 
,        (49) 

when the light propagates in the direction opposite to the water flow, the corresponding speed is 

obtained as 

2

1
1

c
v V

n n


 
   

 
.        (50) 

Since the total path covered by the two light beams in water is 2𝐿, the difference in their 

propagation time ∆𝑡 is equal to 

 2

2

4 12 2 Lv nL L
t

v v c 


    ,       (51) 

and the corresponding path difference is derived as follows 
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 24 1Lv n
l c t

c


    .       (52) 

Thus, the interference pattern is shifted by the number of bands equal to 

 24 1Lv nl
N

c 


   .       (53) 

3.5 [0,2 points] Using formula (53) the water refraction index is found to be 

1 1.37
4

c N
n

Lv


   .       (54) 

 

Part Content Points 

1.1 

Formula (1) 
2 2

( / )( / )
'

1 /

x
x

p V c E c
p

V c





 0,2 

0,8 
Formula (2) 'y yp p  0,2 

Formula (3) 'z zp p  0,2 

Formula (4) 
2 2

/ ( / )
'/

1 /

xE c V c p
E c

V c





 0,2 

1.2 

Formula (5) 
2 21 /

mv
p

v c



 0,2 

0,6 
Formula (6) 

2

2 21 /

mc
E

v c



 0,2 

Formula (7) 
2 2 2 2 4inv E p c m c    0,2 

2.1 

Formula (8) 
E

p
c

  0,2 

1,0 

Formula (9) E h  0,2 

Formula (10) cosxp p   0,2 

Formula (11) sinyp p   0,2 

Formula (12) 
2 2

1 cos /
'

1 /

V c

V c


 





 0,2 

2.2 

Formula (13) 
'
sin ' sin

h h

c c

 
   0,2 

0,4 

Formula (14) 
2 21 / sin

sin '
1 cos /

V c

V c










  0,2 

2.3 

Formula (15) ' sin
V

c
       0,2 

1,0 

Formula (16) 1

V
a

c
  0,2 

Formula (17) 2 sin
V

a
c

  0,2 

Formula (18) 2

1

arcsin
a

a



 

 
 0,2 

Numerical value 64.2    0,2 
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2.4 

 

Formula (19) 
31 /

1 9.95 10
1 /

X

D X

v c

v c





 
    

 
 0,2 

2,2 

Formula (20) 
2phm

c


  0,2 

Formula (21) 
2

phm M
F G

r
  0,2 

Formula (22) d Fdr    0,2 

Formula (23) 
2 2

d GM dr

c r




   0,2 

Formula (24) 
2

0

ln
GM

c R





 
  

 
 0,2 

Formula (25) 
2

0 02 2
exp exp

2

IIvGM

c R c
  

  
     

   
 0,2 

Formula (26) 
2

II

GM
v

R
  0,2 

Formula (27) 
2

2

0

1 /
1 exp

1 / 2

X II

X

v c v

v c c





    
      

    
 0,2 

Formula (28) 

0

1 /
1

1 /
2 ln

X

X

II

v c

v c
v c





 
 

 
  

  
  

 0,2 

Numerical value 
47.108 10 21.31km/sIIv c    0,2 

3.1 

Formula (29) 
'

'
'

x

dx
u

dt
  0,1 

1,1 

Formula (30) 
'

'
'

y

dy
u

dt
  0,1 

Formula (31) x

dx
u

dt
  0,1 

Formula (32) y

dy
u

dt
  0,1 

Formula (33) 
2 2

' '

1 /

dx Vdt
dx

V c





 0,1 

Formula (34) 'dy dy  0,1 

Formula (35) 
2

2 2

' ' /

1 /

dt dx V c
dt

V c





 0,1 

Formula (36) 

2

'

'
1

x
x

x

u V
u

u V

c






 
0,2 

Formula (37) 
2 2

2

1 /
'

'
1

y y
x

V c
u u

u V

c






 
0,2 
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3.2 

Formula (38)  
2 21 / cos

cos ' cos 1 sin /
1 sin /

V c
V c

V c


  




  


 or 

2sin /
sin ' sin cos /

1 sin /

V c
V c

V c


  




  


 

0,2 

1,4 

Formula (39) sin ' sin 'n   0,2 

Formula (40) ph

c
v

n
  0,2 

Formula (41) 

2

sin '
sin sin '

sin '
1

ph

m ph
ph

v V
v v V

v V

c


 




  



 
0,2 

Formula (42) 
2 2

2

1 /
cos cos ' cos '

sin '
1

m ph ph
ph

V c
v v v

v V

c

  



 



 
0,2 

Formula (44) 1

1
sinA

n
  0,2 

Formula (45) 
2

1

cos 2n
B

n


   0,2 

3.3 

Formula (47) 2

c
A

n
  0,2 

0,4 

Formula (48) 2 2

1
1 sinB

n


 
  
 

 
0,2 

 

3.4 

Formula (49) 
2

1
1

c
v V

n n


 
   

 
 0,2 

0,9 

Formula (50) 
2

1
1

c
v V

n n


 
   

 
 0,2 

Formula (51) 
 2

2

4 12 2 Lv nL L
t

v v c 


     0,2 

Formula (52) 
 24 1Lv n

l c t
c


     0,2 

Formula (53) 
 24 1Lv nl

N
c 


    0,1 

3.5 

Formula (54) 1
4

c N
n

Lv


   0,1 

0,2 

Numerical value 1 1.37
4

c N
n

Lv


    0,1 

Total   10,0 
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