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SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL

COMPETITION
Attention. Points in grading are not divided!
Problem 1 (10.0 points)
Problem A (3.0 points)
A1l. When the test-tube is immersed to the depth x, it experiences the Archimedes'
force and the force of gravity. Therefore, the equation of Newton's second law for
the test-tube has the form
ma=mg — pS, (ho + X)g : 1) 1
Here m is the mass of the test-tube and p stands for the water density.
In the equilibrium position, the following condition holds
mg = psohog . ()
It is thus immediately obtained that il

g ;|
a hOx (3)

This is the equation of harmonic oscillations with the period

/h
T=27 2. 4
i ] 4

A2.1 When the test-tube is lowered to the depth x, its potential energy is
reduced by an amount

AU, =—-mgx. (5)
If the test-tube is lowered to the depth x, the water level in the vessel rises to a
height y that satisfies the condition (the condition of constancy of the water
volume)

S0
S-S,
Consequently, the water that was under the test tube rises above the original
water level in the vessel. The mass of this water is found as

Am = pS X, (7)
Its center of mass rises to a height

SOX:(S_SO)y = Y= X. (6)

1 1 S 1 S
Ah. =h, +=(Xx+Yy)=h, + 2| x+—2—Xx |=h,+= X. 8
© 2( )=, 2( S-S, ] ° 2S-5, ®)
The change in the potential energy of water is derived as
AU, = AmgAh. = pS,xg h0+1 S X | 9)
2S-S,
The total change in the potential energy (with relation (2)) is finally
obtained as:
1 S,S
AU =AU, +AU, ==-—=2 X2, 10
AU, =5 (10)

A2.2 If the tube drops with the velocity v,, then the water between the
walls and the test-tube rises at the speed of

S

S-S,

V,S, =V(S-S,) = v= Vs - (11)

The mass of rising water reads as
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m, = p(S —S, )h, (12)
The total kinetic energy of the test-tube and the rising water is equal to
mvZ  myV? v 1( S 185
K=—2+—"2"=pSh2+p(S-S,)h,=| —2—v, | ==—2ph’. 13
> 5 Poo2 ,0( O)OZ(S—SO oj ZS—SopOO (13)

A2.3 The equation of the law of conservation of energy for the system under consideration is
written as

1 S,S » 1 S,S
25—soph°° 25-5,
This equation is also an equation of harmonic oscillations with the same period

h
T=27 |2, 15
"\ (15)

pox> = E = const . (14)

Part Content Points
Formula (1) ma =mg— oS, (h, + x)g 0,2
Formula (2) mg = pS,h,g 0,2
Al | Formula (3) a= —hi X 0,2 0,8
0
hO
Formula (4) T =2« E 0,2
Formula (5) AU, =—mgx 0,2
Formula (6) Spx=(S-S,)y = y= S SOS X 0,2
>
Formula (7) Am = pS,x 0,2
Formula (8)
A2l Ahc =h0+1(X+ y): ho—}-1 X+ SO X =h0+1 S X 0,2 1,2
2 2 S-S, 2S5-5,
1 S
Formula (9) AU, = AmgAh. = pS,xg| h, + = X 0,2
2S-5,
1 S,S 2
Formula (10) AU =AU, +AU, == OX 0.2
2S-5, ’
Formula (11) v,S, =v(S-S,) = v= S SOS A 0,2
>
Formula (12) m, = p(S =S, ), 0,2
Formula (13)
A2.2 ) ) ) 2 0,6
mv, myv Vv 1( S
K=—2+-—2"—=p55h-2+p(S-S,)h, = o v, | =
5 5 PRl 5 :0( 0)02[8_SO OJ 0.2
1 S,S )
== Vv
25-3, PhoVs
1 S,S 1 S,S
Formula (14) = —2 vi+ =0 x* = E = const
A23 ( ) 28—80 phO 0 ZS—SOm 012 014
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h
Formula (15) T = Zn\/g 0,2

Total 3,0
Problem B (4.0 points)
] Let Ik be the current through the resistor number k (see
1 ]2 Fig.), gk be the charge that has flowed through it up to the moment

of closing the diode, q be the charge that has flowed through the
diode, and Q be the charge of the capacitor.

Immediately after shortening the switch, the voltage across
the capacitor is zero, the is true for the second resistor. Thus,
I> = 0 and the answer to the first question is simply found as

lo = 11(0) =U/R = 1 mA. 1)

OyaoyT OIMHAKOBBI H
KOHJIGHCATOPE U €ro

B MoMeHT, Kor/ia TOK 4epe3 JAMOJ CTAaHET HYJICBBIM, TOKU

qyepes MEpBBId U BTOPOUM PE3UCTOPBI OYIYyT OJMHAKOBBI, IIOATOMY
Hanpsokenuss Ha Hux: Ui = Uz = U/2. Takoe xe HampspkeHue OyneT Ha
3apsin B 9toT MomeHT: At the moment when the current through the diode

becomes zero, the currents through the first and second resistors are equal, therefore, the voltages

across them are also
charge at this moment

equal: Uy = Uz =U/2. The same voltage is across on the capacitor and its

Q=Cul2. (2)
Kirchhoff's rules give:
01 =0+ 02 ©)
gs+q=Q. (4)
iR = I3R,
Q1 =03, (5)
U=1IR+I2R. (6)
Integrating the last equation in time from 0 to t, we obtain:
Ut =qiR + q2R. (7)
Solving the obtained set of equations, we obtain the final answer as
g=3CU(1-—) =179 uCl 8)
Content Points
Formula (1) lo = 11(0) =U/R =1 mA 0.5
Numerical value lo =1 mA 0.1
Formula (2) Q = CU/2 0.5
Formula(3) g1 =g+ Q2 0.5
Formula (4) gz +q=Q 0.5
Formula (5) g1 = g3 0.5
Formula (6) U = 1R + I2R 0.2
Formula (7) Ut = q:R + Q2R 0.5
1 T
Formula (8) g = ECU (1 — E) 0.5
Numerical value g = 179 puCl 0.2
Total 4.0
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Problem C (3.0 points)

Consider aray AB passing parallel to one of the sides of the polygon. To describe a closed
trajectory, it is necessary that, after refraction in the lens, the ray should run parallel to the next
side. To do this, the ray must be deflected by an angle

2
a=—. 1
17 @)

N C
A\ia
0

2

Since this ray is parallel to the optical axis, after the refraction it passes through the focus
F . The required condition is satisfied by the ray moving at a distance
d=Ftga = Fa )] /
From the optical axes. Obviously, this ray propagates along the sides of the regular

17-gon, whose side length is equal to the length of the segment AB, or
|=F +dtga=F(1+a?). (3) R
The radius of the circle, inscribed in this 17-gon, is finally found as
2
e _Fl+a ):30,83m. )
a (04
2tgE a

For diverging lenses, the solution is similar, but we should only consider a
ray that hits the lens below the optical axis.

v

In this case, the length of the side of the 17-gon, formed by the trajectory of the ray, is equal

to
| =F -Ftg’a = F(l-a?) )
then, the radius of the inscribed circles found as
_ 2
R=FIZ% _2340m. (6)

(24
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Content Points
Formula (1) o = 2—” 0,2
17
Formula (2) d =F « 0,6
Formula (3) | =F +dtga ~ F(1+a?) 0,4
2
Formula (4) R= ! ~ F+a’)
(04 (04 0!4
2tg—
2
a? is neglected (-0,2)
Numerical value R =30,8 sm 0,2
Formula (5) | = F — Ftg’a ~ F(1—&?) 0,6
1-a°
Formula (6) R~ F 0,4
a? is neglected (-0,2)
Numerical value R=23,4sm 0,2
Total 3,0

Problem 2. Physics in the mountains (10,0 points)

Part 1. Isothermal atmosphere (3,2 points)

1.1 [1,0 points] The air pressure on the Earth's surface is caused by its gravity acting on the

atmosphere, such that the equilibrium condition requires

PoS = Mg, 1)
where
S = 4mR} )
designates the Earth’s surface.
From (1) and (2) one obtains
M = *TPoRE _ 5351018 kg @3)

g
1.2 [1,0 points] The pressure of the atmosphere varies with altitude due to the action of gravity on
the gas. Let us consider the equilibrium of a layer of gas of thickness dh. The pressure difference
dp at these altitudes must compensate for the gravitational forces of the gas layer of density p,
which leads to the equation

dp = —pgdh. 4)

On the other hand, from the equation of an ideal gas we find the relation between its density

and pressure

p =t (5)

RT,
From expressions (4) and (5), we find that the pressure of the atmosphere at an altitude h is
determined by the so-called barometric formula

_ Hairg
p(h) = po exp (— RT. h) (6)
and at the altitude of H = 1500 m it is equal to
p(H) = 85.0 - 10° Pa. (7)

1.3 [0,6 points] In a homogeneous gravity field, the pressure of the atmosphere is determined by
the mass of air above it, so the heating process can be considered isobaric, which means

5Q: M YR

v EAT =5.33" 1021 ], (8)
where the adiabatic index of the diatomic gas is
Yy =7/5. (9)
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1.4 [0,6 points] For the time interval T the amount of solar energy, absorbed by the Earth, is equal
to

5Q = anR2T (10)
and the time interval sought is obtained as
r=—0 YR _303.103s. (11)

anREpqir ¥—1
Part 2. Adiabatic atmosphere (6,8 points)
2.1 [1,2 points] The temperature of the atmosphere does not remain constant with altitude, so
equation (5) should be rewritten in the form
p="rut, (12)

Since the atmosphere is assumed adiabatic, one can write that
Y

pT1-v = const. (13)
Solving together equations (4), (12) and (13) yields
% = ——(y_?:“”g = —fB = const. (14)
Formula (14) proves that the temperature of the adiabatic atmosphere decreases with altitude
as
T(h) = To - L2kl p = 7, — ph (15)
and is found at H = 1500 m to be equal
T(H) = 278 K. (16)

2.2 [0,4 points] The pressure distribution over the altitude is determined by the adiabatic equation
(13)

Y Y
_ To \1-v _ To \1-y
(W) = po (755)" " = po (55) (17)
and is found at H = 1500 m to be equal
p(H) = 84.6 - 10° Pa. (18)

2.3 [0,8 points] Since the temperature of the upper part of the troposphere is fixed, it follows from
(15) that its height is determined by the condition

T(h) =T, — Bh = const. (19)
Thus, the change in the height of the troposphere at daytime and nighttime is derived as
_ YRAT gn — . 3
AHgem = o 5o 2,05 103 m. (20)

2.4 [0,6 points] In the stated range of temperatures and pressures, one can approximate the
saturated water vapor pressure by a linear function of the form

p(T) =py + (T = T0). (21)

The boiling of the liquid begins when the saturated vapor pressure is equalized with the
external pressure of the atmosphere, which allows an intensive vaporization process to occur in the
emerging bubbles. Equating expressions (18) and (21) gives rise to

Tboil == 368 K (22)
2.5 [0,8 points] The melting point of ice varies little with the external pressure, so snow appears
when the temperature reaches 0 °C, i.e.

Trerr = 273 K. (23)

Consequently, using formula (15), we determine the altitude at which the snow cover
appears as

_ YR(To—Tmeit) — . 3
ho = T2 = 2,05 10° m. (24)

2.6 [0,4 points] If the air at the foot of the mountain is quite hot, then the temperature over the
entire mountain slope cannot fall to zero degrees Celsius. Then, formula (24) provides the height of
the mountain to be

— YR(T—Tmeit) — . 3
Ho =17omd) = 37810 m. (25)
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2.7 [2,0 points] Since the water vapor is in thermodynamic equilibrium with the surrounding air,
their temperatures are equal at all altitudes. The equilibrium condition for the vapor is written
analogously to (4) as

dpvap = _pvapgdh’ (26)
and its density is obtained from the ideal gas equation of state in the following form
UH,0Pvap
Pvap = T rT (27)

in which the temperature dependence on the altitude is governed by formula (15).
By formulation, the pressure of unsaturated water vapor at the foot of the mountain reads as

pvap(o) = PDyapo: (28)
whereas the saturated vapor pressure at the altitude H' is denoted as
Pvap (h) = Pvap- (29)

Integrating equation (25) with the aid of (26) and (15) and initial conditions (28) and (29), it
is found that

Pvap — HHy09 1
In —pvapo Ingp + —2— SR In = (30)
On the other hand, it is known from the handbook that
lnp"——a+bln— (31)
vapo
and solving it together with (30) provides the following temperature at the altitude H
, 1
) = Toexp it ) 32)
BR
Then, the altitude itself is delivered by formula (15) as
,  To-T(H -1
H OT() " <1 — exp (,%,—21)) — 2.55-10° m. (33)
R
2.8 [0,6 points] For the fog to be absent on the mountain, one has to put in formula (33)
H' =H,, (34)
from which we obtain the desired expression for the air humidity
b_#Hzog
Omin = (1 - %) PR expa = 0.119. (35)
Ty
Content Points
Formula (1) poS = Mg 0,4
Formula (2) S = 4nR2 0,2
2
L1 rormula (B)YM = 4"’;# 0,2 10
Correct numerical value M = 5.32 - 108 kg 0,2
Formula (4) dp = —pgdh 0,2
Formula (5) p = ““‘Tp 0,2
1.2 1,0
Formula (6) p(h) = p, exp( Mairg h) 0,4
Correct numerical value p(H) = 85.0 103 Pa 0,2
Formula (8) 6Q = iyy—RlAT 0,2
1.3 | Correct numerical value §Q = 5.33 - 10%1] 0,2 0,6
Formula (9) y = 7/5 or equivalent C, = 7/2R 0,2
Formula (10) 6Q = anR2t 0,2
M RAT
14 |Formula(1l)t = a”R%ﬂair);’Tl 0,2 0.6
Correct numerical value T = 30.3- 103 s 0,2
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Formula (12) p =y% 0,2
Formula (13) pT1-v = const 0,2
2.1 | Formula (14) Z—Z = —(V_l;+"g = —f = const 0,4 1,2
Formula (15) T(h) = T, — (y‘ly)—:gh =T, — Bh 0,2
Correct numerical value T(H) = 278 K 0,2
Y Y
— o ()7 = To_\i-v 0,2
59 Formula (17) p(h) = p, (T(h)) = Do (To_ﬁh) 0.4
Correct numerical value p(H) = 84.6 - 103 Pa 0,2
_ )/RTO
Formula (19) H,tpp = R 0,4
2.3 — YRTdn 0,8
Formula (20) AH g4, & —Ducis 0,2
Correct numerical value AH,;,,, = 2,05+ 103 m 0,2
y Formula (21) p(T) = p, + % (T—-T,) 0.4 o6
' Correct numerical value Ty,; = 368 K 0,2 ’
Formula (23) Tpeir = 273 K. 0,2
_ YR(To—Tmelt)
2.5 | Formula (24) hy = v Dming 0,4 0,8
Correct numerical value hy = 2.05 - 103m 0,2
_ YR(T=Tmelt)
26 | TomMula(25) Ho =" 02 0,4
Correct numerical value H, = 3.78- 103 m 0,2
Formula (26) dpyap = —prapgdh 0,2
Formula (27) pyqp = = HZ;’:”“” 0,2
Formula (28) Pvap (0) = PPvapo 0,2
Pvap — HHy09, T
Formula (30) In — Ingp + NTH In ™ 0,6
2.7 aln 2,0
Formula (32) T(H') = T, exp <#> 0,2
BR
Formula (33) H' = %(H) = %(1 — exp (;‘,;é‘;"’ )) 0,4
pr_ P
Correct numerical value H' = 2.55-103m 0,2
Formula (34) H' = H, 0,2
_HHy098
28 | Formula (35) @0y = (1 - ”’Ti) R expa 0,2 0,6
0
Correct numerical value ¢,,,, = 0.119 0,2
Total 10,0

Problem 3. Optics of moving media (10.0 points)
Part 1. 4-dimensional vectors (1,4 points)
1.1 [0,8 points] To bring the momentum and the energy to the same unit it is sufficient to divide the
energy by the speed of light or to multiply the momentum by the speed of light. Moreover, by
virtue of the principle of relativity, it is necessary to make the substitution V' — —V. Thus, one gets

) BV IOE/) "
" N/RVENT
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p, =Py, (2)
p,"=P,, 3)
E'/c:E/C_(V/C)pX. 4)

J1-v?/c?
1.2 [0,6 points] In any inertial frame of reference the expression for the momentum is written as
mv

_ | 5
P N1-v?/c? G

and the expression for the total energy has the form

L ©)

V1-v?/c?
This implies that the invariant sought is equal to
inv=E?*-p°c®=m’*. (7)
Part 2. Doppler effect and light aberration (4,6 points)
2.1 [1,0 points] Since the rest mass of photons is zero, it follows from (7) that the momentum and
energy of a photon are related as follows
E

p= s 8
It is known that the photon energy is given by the Planck formula as
E=ho. ©)
The photon momentum projections on the coordinate axes are written as
Py = PCOS @, (10)
p, = Ppsing, (11)
and on substituting into (B1.4), one finds
J1-V?/c?
This is the well known formula for the relativistic Doppler effect.
2.2 [0,4 points] It follows from (2), 8) and (9) that
h—wsingo':h—wsingo. (13)
C C

Using (12), it is merely found that

2 2 i
J1-V?/c sing (14)

1-V cosgl/c
Expression (14) is a classical formula for the light aberration.
2.3 [1,0 points] The position of the star on the celestial sphere varies throughout the year due to the
orbital motion of the Earth around the Sun and the aberration of light which is schematically shown
in the figure on the right. Since the speed of Earth's orbital motion is much less than the speed of
light, it follows from (14) that the aberration angle is equal to

sing'=

5¢=¢'—¢~%Sin(p, (15)

where ¢ denotes the angle between IV and the direction towards the star.
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C

Sun .‘h 32

Earth D

The figure shows that the angle ¢ varies periodically from a minimum value § at the point
D, reaches the value of /2 at the point B, has a maximum value of = — § at point C, and finally
becomes equal to m/2 at point A. Hence, one can infer that the star apparent position on the
celestial sphere moves along an ellipse with angular dimensions of the semi-axes

3= (16)
and
a, =%sin5. a7
It is found from the given data that
o =arcsin (%j =64.2°. (18)

2.4 [2,2 points] According to formula (12) for the Doppler effect the relative frequency shift at
¢ =0 is found to be

(%J _1- [/ 9954107, (19)
@ )y 1+v, /c
This shows that the Doppler effect cannot fully explain the red shift in the spectrum of the
star. It is natural to assume that when the light leaves the surface of the star the photon frequency
decreases due to the gravitational redshift.
The gravitational mass is found from the principle of equivalence as
ho
ph = C_21

(20)

and the gravity force, acting on the photon at a distance r from the star, is equal, according to the
Newton law, to

m,,M

F=G 7 (21)
The energy conservation law for the motion of the photon can be written as

hdw=—Fdr. (22)
Thus,

do GM dr

o2 23

® c® r? 23)
On integrating (B4.5) in the range of the stellar radius R mo oo leads to the following

equation
|n(2]=—GZM , (24)
W, c’R

where w, and w stand for the frequencies of the photon on the stellar surface and at infinite
distance from it, respectively.
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Hence, the frequency of the photon at infinite distance from the star is obtained as

GM V2
® = w, exp(—cz—R) = @, exp (—2—(':'2j , (25)

where the escape velocity is determined by the classical expression

/ZGM
Vi = T (26)

Combining formulas (19) and (25) yields

2 J—
(%j =1-exp| - V”2 17v, Je : (27)
@ )y 2c” )\1+v, /c

On substituting numerical values, one gets

1-v,/c
1+v, /c 6
v, = [2In IV €c=2.83-10"m/s. (28)
%)
@ Jo

Part C. Light in a moving medium (4,0 points)
3.1[1,1 points] By definition, the projections of the object velocity in the reference frame S’ are
defined as expressions

,dx!

u'=—, 29
= (29)
dy'
u,'=—. 30
y dtl ( )
The same projections in the reference frame S are given by
dx
u =—, 31
=3 (31)
dy
u =—. 32
o (32)
The Lorentz transformations can be rewritten in the form of finite differences as
dx — dx'+Vdt | (33)
J1-V?/¢?
dy =dy’, (34)
1 ] 2
dt:dt+de/c (35)

Ji-v2/c?

On dividing term by term the left and right hand sides of (33)-(35) and using (29)-(32)

yields

u,+V

UX=W1 (36)
1+

C

1-V?/c?

y u 'V Uy ' (37)
1+ XCZ

3.2 [1,4 points] Let us sit in the reference frame associated with the water. According to formula
(14) the light aberration appears in this reference frame, whereby making the angle ' of incidence
of a plane wave on the water surface equal to
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J1-V?/c? cosa

cosa'= _ ~cosa(1+Vsina/c) or
1-Vsinalc
sina':Mzsina—VcomZ/c. (38)
1-Vsinalc
In the reference frame associated with the water flow, the refraction law has a usual form
sina'=nsin ', (39)
and the speed of light propagation is
c
Vph = H (40)
Going back to the laboratory reference frame with the aid of (36) and (37) one finds
.V sin gtV Y m
vm3|nﬁ_m~vphsmﬂ+ , (41)
1+p7
C2
J1-v2/¢? , ,
V. COSf = vah cosB'~v, cosB'. (42)
Using (38)-(42), it is finally obtained that
2
sinﬁzlsina——n +C0$2a\i, 43)
n n c
making
A= %sin a, (44)
2
Bl:_n +(;032a. (45)
3.3 [0,4 points] Again using (38)-(42) yields
V., ~Shv (1—%)sinﬁ. (46)
n n
whereby
C
=—, 47
A= (47)
1.
B, =[1—Fjsm/3. (48)

3.4 [0,9 points] When the light propagates in the direction of the water flow, the angle £ in formula
(48) should be taken /2 and the corresponding speed is found as

v, =24V [1-%) , (49)
n n
when the light propagates in the direction opposite to the water flow, the corresponding speed is
obtained as
v=S_v (1-%}. (50)
n n

Since the total path covered by the two light beams in water is 2L, the difference in their
propagation time At is equal to

aLv(n?-1
Atzz_L_&z#, (51)
V_ \Y C

+

and the corresponding path difference is derived as follows
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4Lv(n*-1)
Al = cAt = (52)
Thus, the interference pattern is shifted by the number of bands equal to
4Lv(n*-1
an oA A L) (53)
A cA
3.5 [0,2 points] Using formula (53) the water refraction index is found to be
ne e 8N g 37, (54)
4Lv
Part Content Points
Formula (1) p,'= b, ~(V/e)E/C) 0,2
J1-V?/c?
1 Formula (2) p,'=p, 0,2 08
' Formula (3) p,'=p, 0,2 ’
Formula (4) E/c= Efc-(Viop, 0,2
J1-V2/c?
Formula (5) p:% 0,2
1-v°/c
2
1.2 Formula (6) E:L 0,2 0.6
V1-Vv?/c?
Formula (7) inv=E’ - p*c® =m** 0,2
Formula (8) p =% 0,2
Formula (9) E =hw 0,2
21 | Formula (10) p, = pcosg 0,2 1,0
Formula (11) p, = psing 0,2
Formula (12) a)':a)M 0,2
2 2 !
V1-V?/c
ho' . |, ho .
Formula (13) Tsm(p :Tsm(p 0,2
2.2 7 2 0,4
Formula (14) sing'= 1V /c sing 0,2
1-Vcosel/c
Formula (15) op=¢'-¢ z%sin(p 0,2
Vv
Formula (16) a, = < 0,2
23 | Vi 1,0
: ormula (17) a, —Esmé 0,2 ,
Formula (18) 5:arcsin[%j 0,2

Numerical value 6 =64.2°

0,2
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Formula (19) (%j - 2%/ 995410 0,2
@ Jp 1+v, /c
Formula (20) m, = Tz—? 0,2
m,,M
Formula (21) F =G—— 0,2
r
Formula (22) hdw =—Fdr 0,2
Formula (23) d_a):_GI\Z/I d_;' 0,2
@ c‘r
Formula (24) In(ﬂj:—GzM 0,2
@, c’R
24 GM V2 22
Formula (25) o= o, exp R = @, EXP ey 0,2
Formula (26) v, = ,/% 0,2
. 2
Formula (27) (A_a)j =|1- 1=vy Ic exp —V—”2 0,2
@ ) 1+v, /c 2C
1 fl—vX /c
1 /
Formula (28) v, =~/21In % C 0,2
Numerical value v, = 7.108x10™*c = 21.31km/s 0,2
Formula (29) ux'z% 0,1
Formula (30) u, ' = ‘;—i’ 0,1
Formula (31) u, :% 0,1
Formula (32) u, :3—{ 0,1
dx'+\Vvdt'
Formula (33) dx = ————= 0,1
3.1 V1-V*/c? 11
Formula (34) dy =dy’ 0,1
1 ) 2
Formula (35) dt:M 0,1
J1-VZ/c?
u,'+Vv
Formula (36) u, = Y 0.2
1+
c
H-viie
FOI‘mula (37) Uy =Wuy 0’2

C2
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M _\2 /a2
Formula (38) cosa'= 11 \\//s/rf c/osa ~cosa(1+Vsina/c) or
- N 0’2
sina'z%zsina—Vcos(xz/c
-Vsinal/c
Formula (39) sina'=nsin g’ 0,2
Formula (40) v, :% 0,2
Formula (41) v, sin _ VmSINAHV ~V, sin f'+V
3o | Formula(4l) v, sinf = v Vsing = Vmsin AT 0,2 14
J1-V?/c? .
Formula (42) v, COS'B:W on COS B' =V, cos B 0.2
+7
c?
Formula (44) A = —sma 0,2
Formula (45) Bl:—M 0,2
Formula (47) A, —% 0,2
3.3 0,4
Formula (48) B, = (1—%jsin,8 0.2
n
_C 1
Formula (49) v, =—+V |1-= 0,2
n n’
c 1
Formula(50) v.=—-V|1-= 0,2
n n’
4Lv(n® -1
34 | Formula (51) At—&—& # 0,2 0,9
VooV, C
ALv(n® -1
Formula (52) Al :cAt:Q 0,2
c
4Lv(n® -1
Formula (53) AN :AI:Q 0,1
A cA
Formula (54) n= /1+ cAAN 0,1
35 aLv 0,2
Numerical value n= /l+ CAAN =137 0,1
4Lv
Total 10,0
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