SOLUTION TO THE EXPERIMENTAL COMPETITION

The Law of Archimedes (15.0 points)

Part 1. Installation parameters

1.1 A strip of millimeter paper is screwed onto the test-tube. We make marks on the strip, untwist it and obtain the lengths of 1, 2, 3 and 4 revolutions as

$$l_1 = 63 \, mm$$

$$l_2 = 127 \, mm$$

$$l_3 = 191 mm$$

$$l_4 = 255 mm$$

From these data we find that the length of one revolution is equal to $\langle l \rangle = (64.0 \pm 0.3) mm$

The diameter is then calculated by the formula $D = \frac{\langle l \rangle}{\pi} = 20{,}372\,mm$, the unstrumental error is found

as
$$\Delta D = D \frac{\Delta l}{\langle l \rangle} = 0,1 \, mm$$
 and the final result is written as

$$D = (20.4 \pm 0.1)mm$$
.

- **1.2** The length of the test-tube is obtained as $L = (175 \pm 1)mm$.
- 1.3.1 1.3.2. Dependence of the immersion depth of the tesr-tube on the number of nuts, placed in it, is shown in Table 1. First, the length x of the part of the test-tube, protruding above the water level, is measured. And then the immersion depth is calculated by the formula h = L x.

Table 1

Number		_
of nuts	x, mm	h, mm
1	80	95
2	65	110
3	50	125
4	37	138
5	22	153
6	10	165

The dependence obtained is linear and is described by the formula

$$h = an + b. (1)$$

The parameters, calculated by the least square method, are equal

$$a = (14,1 \pm 0,5)mm$$

$$b = (81,8 \pm 1,8)mm$$
(2)

1.3.3 The theoretical formula for the resulting dependence follows from the equilibrium condition

$$(M + mn)g = \rho Shd \implies h = \frac{M + mn}{\rho S}.$$
 (3)

where $S = \frac{\pi D^2}{4}$ stands for the cross-sectional area of the test tube.

From the comparison of expressions (3) and (1) it follows that

$$a = \frac{m}{\rho S} \implies m = \rho Sa$$
. (4)

Numerical calculations lead to the following result

$$m = \rho \frac{\pi D^2}{4} a = 4,58 \cdot 10^{-3} kg = 4,58 g.$$
 (5)

The instrumental error in measuring the mass of the nut is calculated by the formula

$$\Delta m = m \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(2\frac{\Delta D}{D}\right)^2} = 1.6 \cdot 10^{-4} kg. \tag{6}$$

The final weight of the nut is written as

$$m = (4,58 \pm 0,16) g. \tag{7}$$

The weight of the test-tube is calculated by the formula

$$b = \frac{M}{\rho S}$$
 \Rightarrow $M = \rho Sb = \rho \frac{\pi D^2}{4}b = 2,67 \cdot 10^{-2}kg = 26,7g.$

The error in calculating the mass of the test-tube is found as

$$\Delta M = M \sqrt{\left(\frac{\Delta b}{b}\right)^2 + \left(2\frac{\Delta D}{D}\right)^2} = 0.6g.. \tag{8}$$

To simplify further calculations, we note that the ratio of the parameters of the linear dependence (2) is equal to the ratio of the mass of the test-tube and the nut:

$$n^* = \frac{M}{m} = \frac{b}{a} = 5,82. (9)$$

Part 2. Oscillations of the test-tube

2.1 To simplify the calculations, the formula for the period of oscillations can be rewritten in the form

$$T_n = 2\pi \sqrt{\frac{h_0}{g}} = 2\pi \sqrt{\frac{an+b}{g}}$$
 (10)

To linearize this dependence, it is necessary to plot and analyze the dependence of the squared period on the number of nuts $T^2(n)$. The results are summarized in Table 2.

Table 2

1 aut 2.		
Number	T,s	T^2, s^2
of nuts		ŕ
1	0,680	0,463
2	0,717	0,514
3	0,752	0,565

4	0,785	0,617
5	0,817	0,668
6	0,848	0,720

The graph of the dependence $T^2(n)$ is shown in the figure below.

2.2 The results of the measurements are given in tables

The random error in measuring the period is estimated from the following formula

$$\Delta t = 2\sqrt{\frac{\sum_{k} (t_k - \langle t \rangle)^2}{N(N-1)}} \; ; \qquad \Delta T = \frac{\Delta t}{k}. \tag{11}$$

Here t refers to the time needed to perform k periods of oscillations (in our case k = 5 and k = 3 respectively), N = 10 stands for the number of measurements.

Table 3. Oscillations in the wide vessel

Number of nuts	Number of periods k	Time t,s	Period T, s	Averaged period $\langle T \rangle$, s	Error in the period ΔT	Squared period T^2, s^2
4	5	3,74	0,748	0,744	0,009	0,554
	5	3,64	0,728			
	5	3,77	0,754			
	5	3,71	0,742			
	5	3,74	0,748			
5	5	3,93	0,786	0,770	0,010	0,594
	5	3,81	0,762			
	5	3,89	0,778			
	5	3,83	0,766			
	5	3,80	0,760			

6	5	3,93	0,786	0,789	0,010	0,622
	5	3,93	0,786			
	5	4,04	0,808			
	5	3,93	0,786			
	5	3,89	0,778			

Table 3. Oscillations in the beaker

Number of nuts	Number of periods <i>k</i>	Time t,s	Period T, s	Averaged period $\langle T \rangle$, s	Error in the period ΔT	Squared period T^2, s^2
4	3	2,21	0,74	0,742	0,014	0,551
	3	2,25	0,75			
	3	2,27	0,76			
	3	2,20	0,73			
	3	2,20	0,73			
5	3	2,38	0,79	0,789	0,015	0,623
	3	2,37	0,79			
	3	2,34	0,78			
	3	2,42	0,81			
	3	2,33	0,78			
6	2	1,61	0,81	0,818	0,036	0,669
	2	1,59	0,80			
	2	1,66	0,83			
	2	1,63	0,82			
	2	1,69	0,85			

2.4 What possible reasons can explain the deviation between experimental data and theoretical calculations?

Table 4

No.	Possible reasons	«Yes»	«No»
1	Measurement errors	X	
2	Oscillation damping		X
3	An increase in the effective mass of a moving		X
	test-tube due to water entraining		
4	Change in pressure under the tube when it moves	X	
	as compared to hydrostatic pressure		
5	Surface tension forces		X

Comments:

- 1. Of course, errors ifluence any result.
- 2.3 These reasons should lead to an increase in the period, and not to a decrease.
- 4. Apparently, the main reason, leading to a reduction in the period.
- 5. Too small forces.

Marking scheme

Part1. Installation parameters

No	Criteria	Total	Points
1.1	Diamater measurement	0,9	
	- sketch of the measurements:	,	
	- rolling on the test-tube (2-3 revolutions; 1 revolution);		0,2 (0,1)
	- rolling the test-tube on the millimeter paper;		(0,1)
	- direct measurement of the diameter;		(0,1)
	Measurement results:		
	- circumference in the range of 63-66 mm (61-68 mm, out of		0,2 (0,1; 0)
	range)		
	Evaluation of the diameter:		
	- formula:		0,1
	- numerical value (in accordance with the previous part)		0,2 (0,1; 0)
	Instrumental errpr 0,25-0,35 mm (<i>larger</i>)		0,1 (0)
	Correctly rouded results*		0,1
1.2	Measurement of the test-tube length	0,3	
	- length in the range of 170-180 mm (out of range)	- ,	0,1 (0)
	- instrumental error 1 mm (иное)		0,1 (0)
	Correctly rounded result*		0,1
1.3.1	Results of the immersion depth measurement	1,8	0,1
1.0.1	Results differ from tabulated $\pm 2 \text{ mm} (\pm 4 \text{ mm}, \text{larger})$	1,0	1,2 (0,6; 0)
	Number of points* 6 (3, less)		0,6 (0,3, 0)
1.3.2	Plotting the graph and calculating the parameters of the	1,0	0,0 (0,5, 0)
1.5.2	dependence	1,0	
	(marked only if 1.3.1 has been marked)		
	- axes are signed and ticked;		0,1
	- points are plotted in accordance with the table		0,1
	Parameters of the dependence:		0,2
	- form of dependence is a linear function		0,1
	- evaluation of the parameters;		2x0.2
	- errors of the parameters;		2x0.2 $2x0.2$
1.3.3	Calculation of masses of the nut and the test tube:	2,0	240,2
1.0.0	(marked only if 1.3.1 has been marked)	2,0	
	- formula of the theoretical dependence		0,4
	- formulas for calculating masses through the parameters of the		0,1
	linear dependence;		2x0,2
	- calculation of the mass of the nut: within 10% from the		0,4 (0,2, 0)
	tabulated value (20%, larger)		0,7 (0,2,0)
	- Nut mass error: errors in the slope and the diameter are taken		
	into account (only one contribution)		0.2 (0.1)
 	- calculation of the test-tube mass: within 10% from the tabulated		0,2 (0,1)
	value (20%, larger)		0,4 (0,2,0)
-	- error in the mass of the test-tube: errors in the shift and the		0,2 (0,1)
	diameter: erroes in the shift and in the diameter are taken into		0,2 (0,1)
	account (only one contribution)		
	account tomy one commonnon)		

^{* -} marked only if the measurements are marked.

Part 2. Oscillations of the test-tube

No	Criteria	Total	Points
2.1	Theoretical dependence	1,2	
	- formula for the period $T(n)$ via measured parameters		0,2
	- periods are calculated		6x0,1
	- linearization $T^2(n)$ (other)		0,1(0)
	Plotting the graph:		
	- axes are signed and ticked;		0,1
	- points are plotted in accordance with the table;		0,2
2.2	Formula for evaluating the error in the period:		
	- decrease of the random error with increasing the number of		
	measurements;		0,2
	- modulus of the average deviation from the mean value;		(0,1)
	Oscillations in the wide vessel	3,0	
	Results within the range $\pm 20\%$ ($\pm 30\%$, larger)		3x0,3 (0,2;
			0)
	More than 7 measuments are taken (more than 4, less)*		3x0,3 (0.2;
			0)
	Periods are calculated*		3x0,1
	Errors are calculated*		3x0,1
	Points are plotted in accordance with the table *		0.2
	Errors are stated in the graph*		0,2
	The periods of oscillations are found to be less than the		0,2
	theoretical one (more than 0,1 s)*		
	Oscillations in the beaker	3,3	
	The results of the measurements within the range $\pm 20\%$ ($\pm 30\%$		3x0,3 (0,2;
	, larger)		0)
	More than 7 measuments are taken (more than 4, less)*		3x0,3 (0.2;
			0)
	Periods are calculated*		3x0,1
	Errors are calculated*		3x0,1
	Points are plotted in accordance with the table *		0.2
	Errors are stated in the graph*		0,2
	The periods of oscillations are close to theoretical (the difference		0,3
-	is not more than 0,2 s)*		
	The periods of oscillations in different vessels are similar		0,2
	(differences not more than 0.2 s) *		
2.4	Possible reasons	1,5	7.00
	- each correct answer		5x0,3
	Total	15	

^{* -} marked only if the measurements are marked.