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SOLUTIONS FOR THEORETICAL COMPETITION 
Theoretical Question 1 (10 points) 

1A (3.5 points) 
 
It is elementary to show that the jump of the cube appears at 
the puck position depicted in the picture on the left hand side. 
Let u  be the cube velocity of mass M  at this time moment 
and let w  be the horizontal relative velocity of the puck of 
mass m  with respect to the cube. Since the friction in the 
system is totally absent, the horizontal projection of the total 
momentum of the system is conserved, 

v ( )m Mu m u w= + − ,            (1) 
as well as with the total mechanical energy, 

2 2
2 2v ( ) 2

2 2 2
m Mu m w u w mgR = + + − +  .      (2) 

In the instant frame of reference associated with the cube, the puck moves with the velocity 
w  along the circle of radius R  and its equation of motion projected on the radial direction is given 
by 

2mwN mg
R

+ = .         (3) 

It is rather obvious that the condition of the cube’s jump from the plane of the table is found, 
according to Newton's third law, as 

N Mg= .          (4) 
Solving the set of equations (1)-(4), the puck velocity is obtained as 

v 5 4M mgR
m M

= + + .        (5) 

The minimal velocity of the puck is derived from relation (5) by differentiating over /M m ,  

minv 3 gR=           (6) 
and it is achieved at the mass ratio 

/ 2M m = .          (7)  
Marking scheme 

 
№ Content points 
1 Formula (1) 0.5 
2 Formula (2) 0.5 
3 Formula (3) 0.5 
4 Formula (4) 0.5 
5 Formula (5) 0.5 
6 Formula (6) 0.5 
7 Formula (7) 0.5 

 
1В (4 points) 

We can replace the infinite circuit of current sources by an effective current source with an 
emf ε  and an internal resistance r . Thus, we obtain the circuit shown in the figure on the left hand 
side.  Then, we disconnect the resistance R , add another two current sources and connect back the 
resistance R . Hence, we obtain the circuit shown in the figure on the right hand side. Since the 

N 

mg 
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number of cells with the sources is infinite, then both circuits should be equivalent at any value of 
R . 

 
 

It can be shown from the direct current laws that the following two statements are valid: 
1. Let us take two current sources with 1 1, rε  and 2 2, rε , connected in series. Then, they can be 
replaced by a single source with 1 2ε ε ε= +  and 1 2r r r= + . 
2. Let us take two current sources with 1 1, rε  and 2 2, rε , connected in parallel. Then, they can be 
replaced by a single source with 1 2 2 1 1 2( ) /( )r r r rε ε ε= + +  and 1 2 1 2/( )r r r r r= + . 

Now, applying 1 and 2 to the circuit shown on the right hand side, we should obtain the 
circuit shown on the left hand side, thus the following relations must be satisfied: 

1 2 2 1

1 2

( ) ( )r r r
r r r

ε ε εε + + +
=

+ +
,        (1) 

2 1

1 2

( )r r rr
r r r

+
=

+ +
.          (2) 

Solution is given by 

1 2
2

1

41 1 3.0
2

r
r

εε ε
 

= + + − =  
 

V,       (3) 

1 2

1

41 1 1.0
2
r rr

r
 

= + − =  
 

 Ω.        (4) 

Therefore, the current flowing through the resistance R  is found as 

1.0I
R r
ε

= =
+

A.         (5) 

Marking scheme 
 

№ Content Points 
1 Equivalent circuit 1,0 
2 Rule 1 0.5 
3 Rule 2 0.5 
4 Formula (1) 0.5 
5 Formula (2) 0.5 
6 Formula (3) 0.25 
7 Formula (4) 0.25 
8 Formula (5) 0.5 
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1C (2.5 points) 

 
All the rays eradiated from the point A have to pass through the point A' after refraction in 

the lens; all the rays eradiated from the point B have to pass through the point B' after refraction in 
the lens. Rays passing through the optical center of the lens do not change direction. Therefore, the 
point of intersection of lines AA' and BB' is the optical center O of the lens. If a ray passes through 
both the points A and B, then it should necessarily pass through the points A' and B'. Consequently, 
the point of the intersection of lines AB and A'B' lies in the plane of the lens. Thus, the plane of the 
lens passes through the points O and C. The main optical axis of the lens passes through its optical 
center and is perpendicular to the plane of the lens, Further constructions are traditional: we draw 
ray BD through the point B which is parallel to the main optical axis, and after refraction in the lens 
the ray (or its extension) should pass through B'. From its continuation to the intersection with the 
main optical axis, we find one of the main focuses F1. Similarly, we find the second main focus F2. 
The drawing above shows that the lens is concave (diverging).  
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Theoretical Question 2 (10 points) 
Electrical conductivity of metals  

 
Ohm's law 

 
1. [1 point] 

In accordance with the Joule-Lentz law, the heat power released in the conductor is found as 
2UP

R
= ,          (1) 

which means that the specific heat power VP   is written as 
2 2

V
U UP
RV RSl

= = .         (2) 

With the aid of 
1l lR

S S
ρ

σ
= =  and UE

l
= ,        (3) 

one gets  
2

VP Eσ= .          (4) 
 

The Drude model 
 
2. [1 point] 

The second law of Newton for the electron motion in a constant electric field is read as  
m e= = −a F E .         (5) 

It follows from Eq.(5)  that for the time interval τ  the electron passes the distance 
2

2
as τ

= ,          (6) 

which means that the module of the average velocity of the electron is 

2 2
s a eEu

m
τ τ

τ
= = = ,         (7) 

or, in the vector form, 

2
e
m
τ

= −u E .          (8) 

 
3. [1 point] 

The current density depends on the electron number density, its electric charge, and its 
average velocity as follows: 

2

2
e nne

m
τ

= − =j u E ,         (9) 

which is Ohm’s law with the specific conductivity found as 
2

2
e n

m
τσ = .          (10) 

 
4. [1 point] 

Each electron transfers its kinetic energy at the end of the acceleration, i.e. at the moment of 
collision with an ion, 
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22
max

2 2k
mu m eEE

m
τ = =  

 
.        (11) 

By definition there are n  electrons in the cubic meter of the conductor, and each of them 
transfers its kinetic energy (11) for the time interval τ . Thus, the total specific energy VQ  
transferred by electrons to the crystal lattice in the unit of volume and in the unit of time, 

2 2
2 2

2 2
k

V
nE nmu e nQ E E

m
τ σ

τ τ
= = = = .       (12) 

This expression coincides with Eq.(4), thus proving the validity of the Joule-Lenz law in the 
Drude model. 
 

Magnetoresistance 
 
5. [1 point] 

In the presence of magnetic field the equation of motion for the electron is written as 
dm e e
dt

= − − ×
u E u B .         (13) 

The projections on the coordinate axes are found as 
x

y
dum eE eBu
dt

= + ,         (14) 

y
x

du
m eBu

dt
= − ,         (15) 

0zdum
dt

= .          (16) 

Eq.(16) shows that the electron trajectory lies in XY plane. Substituting '
x xu u= , 

' /y yu u E B= +  into Eqs. (14)-(15), we obtain 
'
x

y
dum eBu
dt

= ,         (17) 
'

'y
x

du
m eBu

dt
= − .         (18) 

Solutions to Eqs. (17) and (18) are derived as harmonic oscillations of the form 
' cos( )xu A tω α= + ,         (19) 
' sin( )yu A tω α= + ,         (20) 

or, in terms of the previous variables, 
cos( )xu A tω α= + ,         (21) 

sin( )y
Eu A t
B

ω α= + − ,        (22) 

where /eB mω = . 
From initial conditions 0xu =  and 0yu = , we determine the constants /A E B=  and 

/ 2α π= . Substitution into Eqs. (21) and (22) yields 

( ) sinx
E eBu t t
B m

 =  
 

,         (23) 

( ) 1 cosy
E eBu t t
B m
  = − −     

.        (24) 
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6. [2 points] 
At small magnitude of the magnetic field induction, Eq. (23) takes the form 

3 2
3

36x
eE e EBu t t
m m

= − .         (25) 

The displacement of the electron along the OX axis over the time interval τ  equals 
3 2

2 4
32 24

eE e EBs
m m
τ τ= − ,        (26) 

and the average speed is found as 
3 2

3
32 24av

s eE e EBu
m m
τ τ

τ
= = − .        (27) 

Thus, we are able to determine the relative deviation of the specific conductivity as 
2( ) ( 0) 1

( 0) 12
av av

av

neu B neu B e B
neu B m

σ τ
σ

− =∆  = = −  =  
,     (28) 

and, therefore, 
21

12
e
m
τµ  = −  

 
, 2ν = .        (29) 

 
The Hall effect 

 
7. [0.5 points] 

The Lorentz force acting on the electrons is directed downward, therefore the negative 
charge is accumulated near the bottom face. 
 
8. [1.5 points] 

Since the electrons are accumulated near the bottom face of the bar, the Hall electric field is 
oppositely directed with respect to the OY axis.  Hence, the electron equation of motion (13) is 
rewritten as 

x
y

dum eE eBu
dt

= + ,         (30) 

y
H x

du
m eE eBu

dt
= − ,         (31) 

0zdum
dt

= .          (32) 

Again, the electron trajectory lies in the XY plane. Making substitution ' /x x Hu u E B= − , 
' /y yu u E B= +  in Eqs. (30) and (31), one gets 

'
'x
y

dum eBu
dt

= ,         (33) 
'

'y
x

du
m eBu

dt
= − .         (34) 

Solutions to Eqs. (33) and (34) are again derived as harmonic oscillations of the form 
' cos( )xu A tω α= + ,         (35) 
' sin( )yu A tω α= + ,         (36) 

or, in terms of the previous variables, 

cos( ) H
x

Eu A t
B

ω α= + + ,        (37) 
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sin( )y
Eu A t
B

ω α= + − .        (38) 

From initial conditions 0xu =  and 0yu = , we obtain the following final solution 

( ) sin 1 cosH
x

EE eB eBu t t t
B m B m

    = + −        
,      (39) 

( ) sin 1 cosH
y

E eB E eBu t t t
B m B m

    = − −        
.      (40) 

 
9. [1 point] 
At small magnitudes of the magnetic field induction, the condition for zero final displacement 

( ) 0y τ =  along the OY axis at the time moment  τ  

0

( ) 0
3y H
eEu t dt E B

m

τ τ
= ⇒ =∫ ,       (41) 

or 
2
3H

jE B
ne

= .          (42) 

 
Marking scheme 

 
 Content points 
1 The Joule-Lenz law (1) 0.25 
2 The specific heat power (2) 0.25 
3 Formulae (3) 0.25 
4 Final result (4) 0.25 
5 Equation of motion (5) 0.25 
6 Path (6) 0.25 
7 Average speed (7) 0.25 
8 Vector of the average velocity (8) 0.25 
9 Current density (9) 0.5 
10 Specific conductivity (10) 0.5 
11 Kinetic energy of electrons (11) 0.5 
12 Total heat transferred (12) 0.5 
13 Equation of motion (13) 0,25 
14 Equations of motion (14)-(16) 0,25 
15 Velocity (23) 0,25 
16 Velocity (24) 0,25 
17 Expansion of the velocity (25) 0,25 
18 Displacement (26) 0,25 
19 Average speed (27) 0.5 
20 Final result (29) 2*0.5 
21 The correct face stated 0.5 
22 Equations of motion (30)-(32) 0.5 
23 Velocity (39) 0.5 
24 Velocity (40) 0.5 
25 The Hall electric field strength (41) 0.5 
26 The Hall electric field strength (42) 0.5 
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Theoretical Question 3 
1 [1 point] The constant C  is found from the condition that the total number of particles is equal to 
N : 

1
n

n
N N

∞

=

=∑ .      (1) 

Substituting the expression for the Boltzmann distribution function and obtaining summation, we 
get 

1 1

exp
exp

1 exp

1 exp
exp

exp

B
n

n n B

B

B
n

B

B

k T
N N C n C

k T
k T

k T
N N n

k T
k T

ε
ε

ε

ε
ε

ε

∞ ∞

= =

 
−    = = − = ⇒     − − 
 

 
− −    = −    − 

 

∑ ∑

   (2) 

 
2 [3 points] The internal energy of the gas is a sum of the kinetic energies of all atoms:  

2
1 1

exp
exp

1 exp

1 exp

B
n n

n n B

B

B

k T
U E N Cn n C

k T

k T

N

k T

ε
εε

ε

ε
ε

∞ ∞

= =

 
−    = = − = = 

    
− −  

  

=
 

− − 
 

∑ ∑
  (3) 

In the classical limit Bk T ε>> , the argument of the exponent is small, it is thus justifiable to use the 

approximate formula exp 1
B Bk T k T
ε ε 

− ≈ − 
 

. In this case, we obtain 

BU N k T= .      (4) 

At low temperatures, the exponent itself is small, exp 1
Bk T
ε 

− << 
 

, hence 

1 exp
1 exp B

B

U N N
k T

k T

ε εε
ε

  
= ≈ + −       − − 

 

.    (5) 

 
3 [3 points] The molar heat capacity at fixed volume is found as  

V
UC
T

∂
=
∂

.      (6) 

In the most general case we derive 
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2

2 22

exp
exp

1 exp 1 exp

BA
V

B Б B

B B

k TNUC R
T k T k T k T

k T k T

ε
ε ε ε ε

ε ε

 
−    ∂  = = − =   ∂          

− − − −      
      

. (7) 

 In order to approximate expressions in two limiting 
cases it is easier to use the expansions deduced in 
Subproblem 2. In the high temperature limit, we get 

B

A B V

k T
U N k T C R

ε>>
= ⇒ =

.   (8) 

i.e. the molar heat capacity is a constant. Here AN  is  the 
Avogadro constant, A BN k R=  stands for the universal 
gas constant. 
At law temperatures,  

 
2

2

1 exp

exp exp

A
B

V A
B B B B

U N
k T

C N R
k T k T k T k T

εε

ε ε ε εε

  
= + − ⇒     

     
= − = −     

     

. 

(9) 
It is seen that the molar heat capacity goes to zero as the temperature vanishes. The schematic plot 
is drawn in figure 1. 
 
4 [3 points] Calculation of the gas pressure can be conducted in different ways. For example, the 
average force exerted on the wall by a single atom is equal to the ratio of the moment transferred to 
the time interval between two consecutive collisions,  

22 2
2

n n n
n

n

mv mv Epf L L Lvτ
∆

= = = =
∆

.    (10) 

To determine the pressure it is necessary to summarize those forces 

1

2 2
n n

n
n n

n

N f
UP N E

S SL V

∞

=

= = =
∑

∑  .   (11) 

Substituting the formula for the internal gas energy (3), we obtain 

2
1 exp

B

NP
V

k T

ε
ε

=
 

− − 
 

.     (12) 

In the two limiting cases the above obtained expressions for the internal energy should be 
used. 

At Bk T ε>>   

2 B
NP k T
V

= ,      (13) 

i.e. the pressure is proportional to the absolute temperature. 
At low temperatures, we have  

Fig.1 
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2 1 exp
B

NP
V k T
ε ε  

= + −     
.  (14) 

At temperatures going to zero, the pressure tends to 
a constant value  

0 2 NP
V
ε

= .    (15) 

The schematic plot of the pressure against the 
temperature is shown in figure 2. 
.  

 
 

 
 

Marking scheme 
 

№ Contents points  
1 Normalizing condition (1) 0,5 1 2 Calculation of the number of particles (2) 0,5 
    
3 General expression for the internal energy U 0,5 

3 4 Calculation of the internal energy U (3) 1,0 
5 Calculation of the classical limit of U (4) 0,5 
6 Calculation of the low temperature limit of U (5) 1,0 
    
7 General expression for the molar heat capacity  С_V (6) 0,5 

3 
8 Calculation of the molar heat capacity С_V (7) 1,0 
9 Calculation of the classical limit of С_V (8) 0,5 
10 Calculation of the low temperature limit of С_V (9) 0,5 
11 Schematic plot for С_V 0,5 
    

12 General expression for average force (10) 0,5  
12 General expression for P (11) 0,5 

3 
13 Calculation of the pressure P (12) 0,5 
14 Calculation of the classical limit of P (13) 0,5 
15 Calculation of the low temperature limit of P (14) 0,5 
16 Schematic plot  P 0,5 

 

Fig.2 


