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A: Paul Trap

A-1. Due to the symmetry, on the z-axis the only non-zero component of electric field is in
the z-direction. So:

dq 1 N z
4‘7'[60 (RZ +Z2) (RZ

E)(OIOI Z) = EZ(O’O' Z) 2 - 2 f s

+ z2)2

The element dgq is equal to ARd¢ where ¢ is the angle with the x-axis. Thus:
ARd¢ z AR z

E(0,0,Z)=2f =25 —3
Mo (2 4 p2yz 260 (52 4 R2)2

For z « R this can be written as:

AR z Az
F000) = 0 B T 2o

Very close to the z-axis, we can write:

O0E J0E
EZ(X, Y, Z) = EZ(O,O, Z) + x_z |(0,0,Z) + y_z |(0,0,Z) + O(xzr Yz' ZZ)
0x dy
Since, there is no difference between x and —x or y and —y, it turns out that % = {;—Iif =0

Thus, to the first order in x, y, and z we have:

Az
Floy 2 =5 ke
0

Consider a Gaussian surface in the shape of a symmetric cylinder around the z-axis whose
bases are parallel with the xy-plane. The cylinder’s radius is p and its height is 2z both of
which are small quantities. By Gauss’s law we have:

Sz
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O=QE=§EJ§=fEd§+fEd§+fﬁd§
€o S Sy S3

Integration over S; and S, gives:

Az
2€9R?’

fﬁd§=f§d§=nﬁx
S S.

1 2

Integration over S5 involves the p-component for which we can write the following expansion:
0E, 5
Ep(Zip; d)) = Ep(O:p: ¢) +ZE|(O,p,¢) + O(Z )

We have 0 = % |(0,0,4) due to symmetry between z and —z, hence, E, (z, p, ¢) = E, (0, p, $)

up to the first order. Axial symmetry also implies C;—IZ’ = 0. Consequently:

f E.dS = E,(0,p,0) X 2z X 2mp
S.

3
So, Gauss’s law implies:

Az
2€yR?

0 = E, X 4mzp + 2mp?

Therefore, E, will be:

In the cylindrical coordinate we will have:

Ap 54 Az
4e,R2P T 2¢,R2”

E(p,¢,2) =

In cartesian coordinates we will have:

E(x, v,z) = (—x,—y,2z)

4€4R?

Since the ring is positively charged, the equilibrium in the x and y directions are stable, while
the equilibrium in the z-direction is unstable. The equations of motion in the x and y directions

read:
. qA
mx = qL, = —Wx
. gl
my = qE, = —
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Therefore, the frequencies of small oscillations are:

A-1 (1.5 pt)

= X -y A Az
(@) E(x,y,2) = 4€9R2 4€9R2 y+ 2€R2 z

— — , Q4
(b) Wy = Wy = 4€gR%2m

A-2.

The force in the z-direction is:

F, =qE, = Qaz __¢ Aoz + Qu Ot
z =45 = 26gR?  2€yR2 0% 2€9R? cosiitz
the equation of motion can thus be written as:
.. Q4o Qu )
= Ot
z (ZeoRzm 26oR?*m €os z
Therefore:
Q4o Qu
k= |7—— , a=—-
2€6gR?*m 2€,R?*mQ?
A-2 (0.4 pt)
_ Q4o _ Qu
ke = 2€9R%2m @ = 2€9RZ2mQ?2
A.3.

z=p() +q(t) - p+q=(k?+ aQ?cosQt)(p + q)
1. We are assuming that p is almost constant, p =~ 0.

2. According to the assumptions k? « aQ? and g < p we can ignore k2 in the first term
on the right-hand side of the equation and g in the second term.

hence, the equation of motion can be simplified as follows:

4 = paQ? cos Qt.
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As we have assumed that p is a constant, the second derivative of q is just proportional to
cos Qt which gives:

q = —pacos Qt + c;t + cy.

Since q is supposed to remain small, c; must vanish. Also ¢, = 0 because the mean value
of q is supposed to remain zero. Therefore:

q = —pacos it

A-3 (1.8 pt)
(@) §(t) = paQ? cos Ot

(b) q(t) = —pacos Qt

A-4. Using the final result for g the equation of motion for p reads:
p + paQ? cos Qt = (k? + aQ? cos Qt)(p — ap cos Qt)
Which gives:

p = k?p — ak?p cos Ot — a?0?p cos? Ot

Averaging over one period, we’ll have:
1
(cosQt) =0 ) (cos? Ot) = >

and:

a’0?
p= <k2 - >p.

In order for the motion to be stable, the expression inside the parentheses should be negative,
i.e.
a’q?
2

k
> k2 - Q>\/_E

A-4 (1.5 pt)

@ () = (kK =55 p

(b) Q> V2%

A.5. With the given data we have:
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Q}{O 5
= _— X
k /ZEORZm 2 x 10°rad/s

a=004 > Qi =7x10%rad/s

which is in the range of radio waves.

A-5 (0.4 pt)
k =2 x10%rad/s

Qin = 7 X 10°rad/s

B: Doppler Cooling

B-1. From the uncertainty principle we know:

AE X At = h

Here At is the time t and AE = hAw. So:

1
ARAw XT=h - sz;=F

B-1 (0.5 pt)

1
r=-=
T

B-2. We denote the forward and backward collision rates by s, and s_ respectively. Let us
2
proceed in the atom’s frame of reference. Ignoring the terms of the order :—2, the Doppler

effect can be written in the following form:
v
W =w (1 + Z)

Taking the atom’s velocity in the positive x-direction, we have:
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[ =a)L(1+§)
w_ =wL(1—§)

So:

v v
Sy =SL+a(wL(1 +E)_wl‘) :SL+“(ULZ

v v
S—=SL+a((‘)L(1_Z)_“)L)=SL_a(‘)LE

The momentum transfer per unit time from the oncoming photons to the atom is equal to:
Ty = sy X (—hky)
For the backward photons we have:

m_ =s_X (+hk_)

Where k, = 22%

Cc

The total momentum transferred to the atom per unit time is equal to:

v S,
n, +n_=—2hk;,— w,a (1 + —)
c awy,

Where with the approximation s;, < awy,, we will arrive at:
v
T, +1m_ = —thLE wLa

Note that as the atom is heavy, its velocity almost doesn’t change after the absorption of the
photon. Therefore, there will be almost no Doppler shifting in the re-emitted photon and hence,
on average there will be no momentum transfer to the atom during the re-emission process.

The above expression is, in fact, the force. Since v > 0, we have:
F = —Qahk})v

The same result holds for v < 0. This is in the atom’s reference frame. However, as we have
kept only up to the first order in v/c, the same result holds in the lab frame:

F = —Qahkd)v
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B-2 (1.7 pt)

v
Sy =5, taw,—
c

v
S_ =S8, —awy—
c

Ty =5y X (—hky)
n_ =s_ X (+hk_.)

F = —Qahk?)v

B-3. The atom’s momentum before the collision is zero. After the collision it will be
(assuming the photon’s momentum is in the x-direction):

Pl = flkL

After re-emitting the photon, we may have two equally likely outcomes for the final
momentum:

1. The photon is emitted in the positive x-direction which causes the atom’s momentum
to become zero

2. The photon is emitted in the negative x-direction which causes the atom’s momentum
to become: P = +2hk;,

Thus, the mean final energy is equal to:

W)—(ﬁ)—1x0+1x4ﬁ%ﬁ—h%f
T m T2 27 2m  m

This process occurs during the time . So, the input power (the power gained by the atom as a
result of this process) is equal to:

_ h%K}

P
in mt

B-3 (1.0 pt)
h2k?
Pin = mt

B.4. The output power (the power lost by the atom through collision with laser photons) can
be written as:
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Poye = F - v = —2ahkiv?

At equilibrium we should have:

22 _ Al
Pyt +Pp=0 - —— 2ahkiv? - v2 = Sam
And the temperature of this system is equal to:
1 — 1 T Al
j— = — e d =
MV T 2akg
B-4 (0.8 pt)
Pyt = —2ahkiv?
pz ="
2am
- Al
B Z(XkB
B-5. Considering the given data:
1055 x 10 3*J.s
=2x107*K

P = X ax1381x10 2J/Kx5x10 °3

B-5 (0.4 pt)

T=2x10"*K




