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T3: Scaling laws (8 pts)

Task A: Spaghetti (2 pts)

This is section 2.2.2 (Statics) of the syllabus.
Consider only the left half of the spaghetti straw.
Torque balance at its right endpoint implies that the

torque applied to its right endpoint must balance out the
torque due to gravity: τ ∝ ml ∝ d2l2. This torque arises
from the gradient in the horizontal stress. If the typical
horizontal stress is σ, then the typical force is F ∝ σd2,
so the torque is τ ∝ Fd ∝ σd3. Hence, we obtain

σd3 ∝ d2l2 =⇒ l ∝
√
d,

so

l′ =

√
d′

d
l =

√
10 · 50 cm = 158 cm.

Marking scheme:

τ ∝ d2l2 0.4 pts
F ∝ σd2 0.5 pts
τ ∝ σd3 0.5 pts
l ∝

√
d 0.4 pts

Answer: 158 cm 0.2 pts

Task B: Sand castle (2 pts)

This is Section 2.2.2 (statics) and 2.2.5 (hydrodynamics) of
the syllabus
Due to wetting of the surfaces of the sand grains and

its large surface tension water acts like a glue for sand.
This means that all the grains need to be bound together
by air-water interface. To achieve this there needs to be
neither too little nor too much water: if there is too lit-
tle water, most of the grains are dry with now surface
tension binding them, and if there is too much water, al-
most all the grains are immersed into water, and again,
there is no surface tension binding the grains. So, the
overall strength of the buildings from wet sand depends
on the water content; we assume that for the both types
of sand, the water content is optimal, and the shape of
the grains is statistically similar. Let us consider two
neighbouring grains connected by a water meniscus —
or “neck”, as we shall be referring to it henceforth. Note
that the “neck” may extend perpendicularly to the fig-
ure plane far away; so, more specifically, what the word
“neck” will refer to is that part of the water-air interface
for which the closest two grains are the ones under con-
sideration.

There are two processes binding the sand grains to-
gether. The first one is the force due to the surface ten-
sion, F1 = γl, where γ denotes the surface tension coef-
ficient, and l — the perimeter of the “neck”; with l ∼ rg ,
where rg denotes the length scale of a single grain, we ob-
tain Fs ∼ γr. The second one is the pressure force caused

by the negative capillary pressure in the neck, Fp = ∆pA,
where A is the cross-sectional area of the “neck”, and
∆p ∼ γ/r. With A ∼ r2 we obtain F2 ∼ γr. Thus, the both
components are of the same order of magnitude and us-
ing either of them will lead to the correct scaling law.
These forces press the grains against each other, hence
the normal force and friction force between the grains is
also on the order of Fs and Fp.
Solution 1:
Based on what has been said above, the typical force

needed to delocate a grain of sand is Fg ∝ rg . The force
needed to delocate an entire layer of sand is then∝ FgNl,
where Nl ∼ A/r2g is the number of grains in a layer. The
force of cylinder destruction F thus satisfies

F ∝ FgNl ∝ rg/r
2
g = r−1

g ∝ V −1/3
g ,

so
Ffg = (1/10)−1/3 · Fcg = 21,5N.

Marking scheme:

a) Either Fs ∝ rg or Fp ∝ rg 0.5 pts
b) Fg ∝ rg 0.5 pts
c) F ∝ FgNl 0.5 pts
d) F ∝ r−1

g 0.3 pts
Answer: 21.5N 0.2 pts

Notes: If the student only qualitatively explains the
mechanism by which the grains of sand are held to-
gether, a maximum of 0.5 pts are given. Points b)-c) are
given only if derived from a).
Solution 2:
We have seen above that grains to one side of a ficti-

tious surface exert force per cross-sectional area on the
order of magnitude as the capillary pressure ∆p ∼ γ/rg .
In order to get the grains moving, a pressure of the same
order of magnitude needs to be applied externally. For
the both cylinders, the surface area where the force is
applied is the same, hence the force scales as the capil-
lary pressure, F ∝ 1/rg ∝ V −1/3.

Marking scheme:

The applied pressure must be ∼ ∆p 0.6 pts
The curvature radius of the interface is ∼ rg 0.6 pts
Capillary pressure ∆p ∼ γ/rg 0.6 pts
Answer: 21.5N 0.2 pts

Solution 3:
The compression force serves to break the surface ten-

sion bonds between sand grains.
Consider the energy E required to push a single layer

of sand into the layer beneath it. E ∝ Frg , where F is the
force required and rg is the typical height of a layer (i.e.,
the typical length scale of a grain).
On the other hand, E = γ∆A, where γ is the surface

tension of water and ∆A is the total amount by which
the surface of the water in the layer stretches before all
the “water bonds” between the sand grains are broken.
Here,∆A is proportional to the areaA of a layer and is

thus a constant between the two cylinders. Hence, E ∝
Frg is a constant between the two cylinders, i.e., F ∝ r−1

g .
Marking scheme:
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E ∝ Frg 0.5 pts
E ∝ γ∆A 0.5 pts
∆A ∝ A 0.5 pts
F ∝ r−1

g 0.3 pts
Answer: 21.5N 0.2 pts

Note: If the student only qualitatively explains themech-
anism by which the grains of sand are held together, a
maximum of 0.5 pts are given.
Solution 4:
First of all, the force F should be proportional to the

cylinder’s base area A. The force required to destroy a
cylinder with base area A = nA0 is equal to the force
required to destroy n cylinders each with base area A0.
As a result, F ∝ n ∝ A.
In addition, F depends on the grain’s length scale rg

and the water’s surface tension γ. Dimensional analysis
thus gives

F ∝ Aγ

rg
∝ r−1

g

for fixed A and γ.
Marking scheme:

F ∝ A 0.6 pts
F = F (A, rg, γ) 0.6 pts
F ∝ Aγ

rg
0.6 pts

Answer: 21.5N 0.2 pts

Note: If the student only qualitatively explains themech-
anism by which the grains of sand are held together, a
maximum of 0.5 pts are given.

Task C: Interstellar travel (2 pts)

This is Section 2.5 (Relativity) of the syllabus
Let T = 50yrs be the astronauts’ total travel time.

For maximal travel distance, the spaceship accelerates
at constant proper acceleration a = g for proper time
T/4, during which a distance of d is traveled. The space-
ship then decelerates at a = −g for proper time T/4 to
come to a rest, during which another distance d is trav-
eled. The spaceship then returns to Earth using the same
procedure.
Solution 0: (incorrect)
If we ignore relativity, then d ∝ 1

2gt
2 ∝ g, which gives

an answer of 1.5.
Marking scheme:

d ∝ gt2 0.2 pts
Answer: 1.5 0.1 pts

Solution 1:
Oneway to approach the problem is to notice that con-

stant acceleration in spaceship’s framemeans a constant
force in the Earth’s frame. This follows directly from the
Lorentz transform for the electromagnetic field, more
specifically from the fact that when going to a frame
moving parallel to the x-axis, the x-directional electric
field Ex remains unchanged. Hence, on the one hand,
the force Fx = eEx exerted on an accelerating particle of
rest mass m0 and carrying a charge e remains constant

in the lab frame. On the other hand, the acceleration of
that particle in an inertial frame moving with velocity v,
where v denotes the particle’s velocity at a certain mo-
ment of time t, is always equal to eEx/m0, regardless of
the value of t, i.e. constant in time.
Those who are not familiar with the Lorenz transform

for electromagnetic field can derive the above described
property from the Lorenz transform formomentum and
coordinates. Weuse again (i) the lab frame, and (ii) an in-
ertial framemoving with velocity v, where v denotes the
spaceship’s velocity at a certain moment of time which
will be used as the origin, t = t′ = 0; let primes denote
quantities in the second frame. Assuming a very short
time period t, we can neglect terms quadratic in time so
that in the frame (ii), themomentum, coordinate and the
relativistic mass can be expressed as p′ = F ′t′, x′ = 0,
m′ = m0, respectively; applying the Lorenz transform
yields t = γt′ and p = γ(F ′t′ +m0v) = tF ′ + γm0v. On the
other hand, in the frame (i), p = γm0v + Ft; comparing
this with the previous result yields F = F ′.
It appears that in either case, the spaceship’s speedwill

reach almost c much faster than the travel time. Hence,
using for convenience the system of units where c = 1,
the travel distance x equals with a very good precision
the travel time t, x = t.
What is left to do is to relate t to the proper time τ ,

dτ =
dt
γ

= dt m0√
m2

0 +m2
0g

2t2
;

upon integration we obtain

τ = asinh(gt)/g ⇒ x ≈ t = sinh(gτ)/g ≈ exp(gτ)/2g.

So we conclude that the ratio of the travel distances is

d2
d1

=
g

1.5g
exp(1.5gτ − gτ) =

2

3
exp(gT/8) ≈ 480.

Note that an exact relationship between x and t could
have been obtained by expressing the energy of the
spaceship as m = m0 + m0gx, and the momentum as
p = m0gt. Then the Lorenz invariant (m0 + m0gx)

2 −
(m0gt)

2 = m2
0 yields x(x+2/g) = t2 = sinh2

(gτ)/g2, hence
x = [cosh(gτ)− 1]/g.

Fx is Lorentz invariant 0.4 pts
x ≈ t 0.4 pts
dτ = dt

γ 0.2 pts
γ−1 = m0/m 0.2 pts
m =

√
m2

0 + p2 0.2 pts
p = m0gt 0.2 pts
t = sinh(gτ)/g 0.2 pts
Answer: 480 0.2 pts

Solution 2:
Let w be the rapidity of the spaceship, defined as w ≡

tanh−1
(β), where β is the spaceship’s velocity. Then β =

tanhw, the Lorentz factor γ = coshw, and itsmomentum
p = m sinhw.
As shown by Solution 1, a spaceship experiencing a

constant proper acceleration g experiences a constant
three-force
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F = mg =
dp
dt = m coshw

dw
dt =⇒ dw

dt =
g

coshw
.

Meanwhile, time dilation relates t to the spaceship’s
proper time τ as

dt
dτ = γ = coshw =⇒ dw

dτ =
dw
dt

dt
dτ = g.

Integrating yields w = gτ . Recalling that dt = γdτ , we get
the following as the total distance traveled over a quar-
ter of the spaceship’s trip:

d =

∫ T/4

0

βγ dτ =

∫ T/4

0

tanhw coshw dτ

=

∫ T/4

0

sinh gτ dτ =
1

g
(cosh(gT/4)− 1).

The answer is thus
g1
g2

cosh(g2T/4c)− 1

cosh(g1T/4c)− 1
=

10

15

cosh(19.72)− 1

cosh(13.15)− 1

≈ 2

3
e19.72−13.15 = 480.

Marking scheme:
d
dt (m sinhw) = mg 0.5 pts
dw
dt = g

coshw 0.1 pts
dt
dτ = coshw 0.4 pts
dw
dτ = g 0.1 pts
w = gτ 0.1 pts
d =

∫ T/4

0
βγ dτ 0.3 pts

d =
∫ T/4

0
tanhw coshw dτ 0.2 pts

d = 1
g (cosh(gT/4)− 1) 0.1 pts

Answer: 480 0.2 pts

Solution 3: The problem can be also solved by using
the century-old trick of depicting things in x−it-diagram.
The benefit of using this diagram is that the relativistic
invariant x2 − t2 transforms into Euclidean squared dis-
tance x2 + θ2 with θ = it. This means that in that dia-
gram, we can use the knowledge of Euclidean geometry.
In particular, the Lorentz transform is now the rotation
of the Euclidean x − it-space by an angle α = arctan v

ic .
Now, consider the trajectory of the space ship; its in-
finitesimal arc length is icdτ , where dτ is the differential
of the proper time, and the infintesimal rotation angle
of its tangent is dα = arctan(dv/ic) = dv/ic = gdτ/ic.
Therefore, the curvature radius R = icdτ/dα = −c2/g is
constant, i.e. the trajectory is a circle of radius R. Now
we can easily relate the travel distance x to the arc length
icτ :

x = R(1− cosα) = R

(
1− cos icτ

R

)
=

c2

g

(
cosh gτ

c
− 1

)
.

Marking scheme:

R = const in x-ict-diag. 0.5 pts
R = −g2/c 0.5 pts
missing ‘−’ -0.2 pts
partial credit for R = icτ

dα 0.2 pts
x = R(1− cosα) 0.5 pts
c2

g

(
cosh gτ

c − 1
)

0.3 pts
Answer: 480 0.2 pts

Solution 4: The problem can be solved by using the ve-
locity addition formula. Let v be the speed of the space-
ship in the lab frame, t be the lab time, and τ — the
proper time. Also, we consider a frame which moves
with constant speed v in which the spaceship accelerates
from rest:

v + dv =
v + gdτ
1 + vgdτ = v + gdτ(1− v2)dτ.

Thus,
dv

1− v2
= gdτ ⇒ v = tanh(gτ).

From relativistic time dilation formula we obtain

dt = dτ√
1− v2

= cosh(gτ)dτ

so that the travel distance

L

2
=

∫
vdt =

∫ T/4

0

sinh(gτ)dτ =
1

g

[
cosh

(
gT

4

)
− 1

]
which leads to the same answer as before.

a) v + dv = v+gdτ
1+vgdτ 0.3 pts

b) dv
1−v2 = gdτ 0.2 pts

c) v = tanh(gτ) 0.2 pts
d) dt = dτ√

1−v2
0.3 pts

e) dt = cosh(gτ)dτ 0.2 pts
f) L

2 =
∫
vdt 0.2 pts

g) L
2 =

∫ T/4

0
sinh(gτ)dτ 0.2 pts

h) L
2 = 1

g

[
cosh

(
gT
4

)
− 1

]
0.2 pts

i) Answer: 480 0.2 pts

Remark: if integration in f) is done over proper time, no
points are given for f).

Task D: That sinking feeling (2 pts)

(This is Sections 2.2.5 (Hydrodynamics) and 2.4.1 (Single
oscillator) of the syllabus
The oscillation of the half sink sphere is driven by the

gravity. The non-damped angular frequency depends
on the gravitational acceleration and a characteristic
length, which is, for a sphere, its radius r, so

ω0 ∝
√
g/r

is the only dimensionally correct possible function.
The drag force Fd depends on the sphere’s speed v

[m/s], its size r [m], and viscosity of the liquid η [Pa·s].
Dimensional analysis thus gives Fd ∝ ηrv. The damping
factor is thus

β =
Fd

2mv
∝ ηr

m
.

Since the mass scales with r3, we have

β ∝ 1

r2
.

Then the relation

β2

ω2
0

= 1− ω2

ω2
0



IPhO 2022 Theoretical problems: solutions. Language: English

scales as
β2

ω2
0

∝ 1

r3

Oscillations only occur if β/ω0 < 1, so solve
r

r0
= 3

√
1− (0.99)2 = 0.271

Notes:

1. To obtain ω0 ∝ 1/
√
r without dimensional analysis,

note that a small displacement y changes the sub-
merged volume of the ball by ∆V ∝ r2y, so the
change in buoyant force F ∝ r2y, which gives ω0 =√
k/m ∝

√
r2/r3 =

√
1/r.

2. To obtain Fd ∝ ηrv without dimensional analysis,
note that the typical length scale l in the variations
in the velocity field of the water is proportional to r.
Thus, the viscous shear σ ∝ ηv/l ∝ ηv/r. The total
drag force is thus Fd ∼ Aσ ∝ ηrv, where A is ball’s
area of contact with the water.

Marking scheme:

ω0 ∝
√
g/r 0.4 pts

no justification -0.2 pts
Fd ∝ ηrv 0.6 pts
no justification -0.3 pts

β ∝ 1/r2 0.3 pts
β2

ω2
0
= 1− ω2

ω2
0

0.4 pts
β2

ω2
0
∝ 1

r3 0.2 pts
Answer: 0.271 0.1 pts


