
IPhO 2022 Theoretical problems: solutions. Language: English

T2: James Webb Space Telescope (10 pts)

Part A: Imaging a Star (1.8 pt)

1. Diameter of image
The ratio of diameter do for an object at a distance
Do ≫ f and an image diameter di is given by

di
do

=
f

Do
, (1)

so the diameter of the image is

di =
(1.7× 1011 m)(130m)

(89 ly)(3× 108 m/s)(365 d/y)(86, 400 s/d) =

= 2.6× 10−5 m = 26µm.

Marking scheme:

correct formula Eq 1 0.2 pts
di = (26± 1)µm 0.2 pts
sum 0.4pts

Must show units for numerical result!

2. Diameter of central maximum
The angular radius of the central maximum is

θmin = 1.22
λ

D

λ is a typical wavelength; here assumed to be the
longest visible, or λ ≈ 700nm.
D is the aperture size, which is the primary mirror,
or π

4D
2 = 25 m2.

The diameter of the central maximum is then

dd = 2θminf = 2.44
λ

D
f = 1.22

λf√
A/π

(2)

The numerical value is

dd = 2(1.22)
(7× 10−7 m)

(5.6 m)
(130 m) =

= 4.0× 10−5 m = 40µm.

Marking scheme:

correct formula Eq 2 0.1 pts
800nm ≥ λ ≥ 600nm 0.1 pts
numerical result 0.2 pts
sum 0.4pts

No penalty for ignoring factor of 1.22, so check their
math. There is a penalty for using a short wave-
length; this is a red giant, not a blue star!

3. Equilibrium temperature of the detector at the loca-
tion of the image?
This is section 2.7.1 and 2.7.3 from the syllabus
The radiant power from the star is

Pg = 4πro
2σTg

4 (3)

The intensity at the location of the scope is

Ig =
Pg

4πDo
2
=

(
ro
Do

)2

σTg
4 (4)

This is collected onto the mirror with area A and fo-
cused on a single spot of radius ri, so that the power
incident is

Pi = A

(
ro
Do

)2

σTg
4 = A

(
ri
f

)2

σTg
4 (5)

But at the image we have an equilibrium tempera-
ture of

Pi = aσTp
4,

where a = πr2i , so

aσTp
4 =

(
ri
f

)2

AσTg
4

or

Tp =

(
A

πf2

) 1
4

Tg (6)

This shows Tp ≈ 530K which seems really impres-
sive for a star 90 light years away.
Perhaps more perplexing is that the answer doesn’t
depend on the size or distance of the star!
Marking scheme:

power of source, Eq 3 0.2 pts
intensity at mirror, Eq 4 0.2 pts
power of image, Eq 5 0.2 pts
simplify, Eq. 6 0.2 pts
numerical result 0.2 pts
sum 1.0 pt

An equation which is dimensionally correct, but
missing a multiplicative factor or having a single
transcription error from a previous equation, will
receive only +0.1 pts instead of +0.2 pts.
An equationwhich is dimensionally incorrect or one
which has more than two transcription errors will
receive no points.
Follow on errors are not transcription errors; the
only penalty will be in the first occurrence of a mis-
take, except in the case of a dimensionally incorrect
equation, which still receives no points, even if a fol-
low on error.
If an equation can be implied to have been used,
then the assumption is that it did exist andwould get
points. For example, writing Eq. 4 without explicitly
writing Eq. 3 would get points for both equations,
subject to error rules above.
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Part B: Counting Photons (1.8 pt)

1. Temperature of source
We are interested in the slope of the graph, which is

|∆Eg

kB
| = − (3)− (−1)

(0.11)− (0.15)
= 100K

Since this is a characteristic temperature, it is at least
a partial answer to the problem.
However, the Eg/6 is the gap between the bottom of
the Fermi level and the top of the impurity conduc-
tion band, since the detection of infrared photons is
more complex, andwhen considering the bias of the
semiconductor, aswell as the unique construction of
the CCD pixel, the cutoff energy in this case will be
higher.
As such, the characteristic temperature of 600 K
is the characteristic temperature of the detectable
source.
Marking scheme:

slope of graph = 0.01 0.2 pts
Tgraph = 100K 0.1 pts
Tsource = 600K 0.1 pts
sum 0.4 pt

Writing either temperature correctly implies they
found the slope of graph, and would get the +0.2 pts.
Justwriting Tsource = 600Kgets fullmarks, as it really
is possible to solve this in one’s head.

2. Write an expression for the total count uncertainty
σt

The three uncertainties are

σr

and
σd =

√
idτ

and
σp =

√
pτ

and then
σt

2 = σr
2 + (id + p) τ

Marking scheme:

correct error for dark current 0.1 pts
correct read photon 0.1 pts
added in quadrature 0.2 pts
sum 0.4 pt

Writing
σt = σr +

√
idτ +

√
pτ

only gets +0.1, instead of the quadrature +0.2
Correct dark current and photon count errors in fi-
nal answer are acceptable evidence for those points;
it is not necessary for the student to explicitly state
what is what.

3. Determine the photon count for S/N = 10.
At a temperature of T = 7.5K, the dark current is id =
5 electrons/second. This gives a total dark current
count of

idτ = 5× 104

Let P be the photon count. Then

P = 10σt

so
P 2 = 100

(
σ2
r + idτ + P

)
with solution P ≈ 2290, and a rate of p = 0.229 pho-
tons per second.

4. What is intensity of source?
The near-infrared photons have an energy of Eg =
6kBT , so

Eλ = (600K)(1.38× 10−23 J/K) = 8.3× 10−21 J

The energy received every second is

E = (0.23)(8.3× 10−21 J) = 1.9× 10−21 J

and the incident intensity on the primary mirror is
then

I =
E/t

A
=

(1.8× 10−21 J/s)
(25m2)

= 7.6× 10−23W

Marking scheme:

energy estimate for photon 0.2 pts
substitute into error equation 0.1 pts
solve for count 0.2 pts
solve for rate 0.1 pts
sum 0.5 pt
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Part C: The Passive Cooling

1. Find expressions for the temperatures of first and
fifth sheet
Start with a statement of net energy flow q01 into the
first sheet from the sun:

q01 = ϵA
(
I0 − σT 4

1

)
(7)

where A is the area of the sheet, ϵ is the emissivity,
σ is the Stefan-Boltzman constant, and T1 is the tem-
perature of the first sheet.
Now consider the space between two sheets i and j.
Each sheet radiates an energy flow

ϵAσT 4

toward the other sheet, but a fraction β is ejected
into space out the gap.
We have defined α as the fraction emitted from one
sheet that is absorbed by the other sheet, so the net
energy flow from sheet i into sheet j is

qij = αϵAσ
(
Ti

4 − Tj
4
)

(8)

There is also a lost fraction emitted into space from
between the sheets, given by

q′ij = βϵAσ
(
Ti

4 − Tj
4
)
=

β

α
qij (9)

Don’t make the mistake of assuming that α + β = 1,
as some of the energy emitted from a sheet could be
reabsorbed by that sheet.
Finally, write an expression for the net thermal ra-
diant energy flow into space, with an ambient tem-
perature of Tspace = 0, from the far side of the fifth
sheet.

q5s = ϵA
(
σT 4

5 − σT 4
s

)
= AϵσT 4

5 (10)

Write each of the Eq. 8, above in the form

1

α
qij = Aϵσ(T 4

i − T 4
j ), (11)

and then sum up the terms from Eq. 7, the four from
Eqs. 11, and Eq. 10:

q01 +
1

α
(q12 + q23 + q34 + q45) + q5s = ϵAI0 (12)

as all of the Ti terms cancel out on the right!
Now consider a schematic of the energy flow below

From energy conservation, the net flow into sheet
one from the sun and the net flow out of sheet one
toward sheet two or ejected from gap is

q01 = q12 + q′12, (13)

where q′12 is the part emitted into space from the gap.
Combine with Eq. 9 and

q01 =

(
1 +

β

α

)
q12 =

α+ β

α
q12 (14)

Similarly, for the remaining pairs of sheets,

q23 =
α

α+ β
q12 =

(
α

α+ β

)2

q01,

and
q34 =

α

α+ β
q23 =

(
α

α+ β

)3

q01,

and
q45 =

α

α+ β
q34 =

(
α

α+ β

)4

q01,

Finally, for the fifth (last) sheet all of the net energy
flow in from the fourth sheet must be completely
ejected into space on the dark side.

q5s = q45 =

(
α

α+ β

)4

q01. (15)

The sumon the left side of Eq. 12 can then bewritten
as

kq01 = ϵAI0 (16)
where

k=1+
1

α+ β
+

α

(α+ β)2
+

α2

(α+ β)3
+

α3

(α+ β)4
+

α4

(α+ β)4

is a convenient constant.
Combining Eq. 7 with Eq. 16,

ϵAI0
k

= ϵA
(
I0 − σT 4

1

)
so

T1 = 4

√
I0
σ

(
1− 1

k

)
=

4

√
I0
kσ

(k − 1) (17)

From above,

q5s =

(
α

α+ β

)4

q01.

so
AϵσT 4

5 =

(
α

α+ β

)4
ϵAI0
k

or
T5 =

α

α+ β
4

√
I0
kσ

(18)

which can also be written elegantly as

T5 =
α

α+ β
4

√
1

k − 1
T1.
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As this part of the question is complex, with multi-
ple ways to go wrong, and many opportunities for
approximations, the marking scheme will be neces-
sarily convoluted.
Marking scheme:

Net flow into sheet 1, Eq 7 0.3 pts
Net flow sheet i → j, Eq 8 0.3 pts
Net flow out of sheet 5, Eq 10 0.3 pts
Sum to eliminate sheet temps, Eq 12 0.3 pts
Energy flow conservation, Eq 13 0.2 pts
Flow ratio, Eq 14 0.3 pts
Special case of sheet 5, Eq 15 0.2 pts
Simplify sum, Eq 16 0.2 pts
Final Expression for T1, Eq 17 0.2 pts
Final Expression for T5, Eq 18 0.1 pts
sum 2.4 pt

Some expected mistakes:

(a) Failing to account for the back flux of energy.
This would be

I0 = 2σT 4
1

and then
ασT 4

1 = 2σT 4
2 ,

and so on, concluding with

I0 = σ

(
2

α

)4

T5

or
T5 =

α

2
T1

(b) Inconsistent treatment of emissivity
The most likely error is of the form

ϵI0 = σT 4
1

(c) Incorrectly resolving β and α.

2. Find α and β

The process that happens is complex: for photons
radiated from a sheet, they will bounce around sev-
eral times before finally getting absorbed or getting
ejected into space. Students will need to make some
simplifying assumptions!
If the sheets were parallel and infinite the heat flux
per area would be given by

qij
A

= σ
T 4
i − T 4

j

2

ϵ
− 1

The expression is exact, but you don’t need to know
it or even derive it to solve the problem.
In our case ϵ ≪ 1, so this becomes

qij ≈
ϵ

2
A
(
T 4
i − T 4

j

)
The factor of two is because only half of the photons
from any sheet are absorbed by the other sheet; the
rest are reabsorbed by the first sheet.

We don’t have infinite sheets, so there will be a net
flux of heat out of the system. There are at least two
ways to approach this
Choice A: Assume absorptive effective areas
given by ϵA

If the sheets are square with an area A, then the
perimeter has length 4

√
A. This means that the

space between the sheets encloses some volume,
and that volume is bounded by a surface with three
parts: the area of one sheet A, the area of the other
sheet A, and the area of the gap at the perimeter,
4h

√
A, where h = 0.25m is the gap size.

The sheets each have an emissivity ϵ = 0.05, while
the perimeter gap has an effective emissivity of 1.
If a photon in the space is absorbed by a bounding
surface, the probability that it will be absorbed by
the perimeter gap instead of the sheets is the ratio
of the effective areas:

β =
Agap

Aeffective
=

4h
√
A

2ϵA+ 4h
√
A

=
1

1 + ϵ
√
A/2h

= 0.414

(19)
A photon can be absorbed by the original sheet, the
transfer sheet, or the gap. Note that α in this case
would then be given by β + 2α = 1, so α = 0.293

Marking Scheme:

Estimating fractional areas 0.4 pts
Weighting areas by emissivity 0.3 pts
Correct estimate of gap area 0.2 pts
Assuming 2α+ β ≈ 1 0.2 pts
Finding α 0.2 pts
0.2 ≤ α ≤ 0.4 0.1 pts
Finding β 0.1 pts
0.2 ≤ β ≤ 0.6 0.1 pts
sum 1.6 pt

Find α and β means that it is consistent with own
work.
Choice B: Estimate the number of bounces be-
fore a photon is ejected
If the sheets are circular, then the radius is about 8
meters, so the angle between two sheets is about

0.2m
8m ≈ 0.025 radians = ϕ

Assuming a photon starts orthogonal to one sheet
close to the center, then it will bounce no more than

π/2

0.025
≈ 60

times before being ejected; a similar photon emit-
ted halfway between the center and the edge will
bounce no more than 40 times.
For a fractional distance r from the center,

cosNϕ = r

gives the numberN of bounces before it escape into
space, assuming it is not absorbed first.
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In any case, the probability of being absorbed by a
sheet after N bounces is

1− (1− ϵ)N

In the case of largeN , half of this probability goes to
each sheet; if N is small, then the receiving sheet is
more likely to collect the photon than the transmit-
ting sheet.
We just need to compute the average number of
bounces:

N̄ ≈ 2π

π

∫ 1

0

N(r)r dr = 2
π

8ϕ
≈ 30

and then
α =

1

2

(
1− (1− ϵ)30

)
≈ 0.4

and
β ≈ 0.2

This is an overestimate of N̄ , as the photon could
be ejected into any initial direction, not necessarily
straight up. Being ejected toward to edge is a lower
N , while being ejected toward the center is a larger
N , but these effects are not equal because there is
a cone shape to the sheets. The result is that N̄ is
closer to 20, so

α =
1

2

(
1− (1− ϵ)20

)
≈ 0.3

and
β ≈ 0.4

which is fairly consistent with the first approach.
Marking Scheme:

Bounces from center 0.3 pts
Bounces from halfway to edge 0.2 pts
Averaging of bounces 0.1 pts
Fractional transfer per bounce 0.2 pts
Transfer after N bounces 0.1 pts
Showing 2α+ β ≈ 1 0.2 pts
Finding α 0.2 pts
0.2 ≤ α ≤ 0.4 0.1 pts
Finding β 0.1 pts
0.2 ≤ β ≤ 0.6 0.1 pts
sum 1.6 pt

Choice C: Estimate the radiant flux from the gap
Assuming that the enclosed volume is a black body
in equilibrium, which it isn’t, at a temperature equal
to a quartic averaging of the two temperatures:
1
2 (T

4
i + T 4

j ). Then the energy is radiated out of the
area according to

qlost = σAg
1

2
(T 4

i + T 4
j )

where Ag is the area of the gap, given by

Ag = 4h
√
A

But energy was entering the region at the rate

qin = ϵσA(T 4
i + T 4

j ),

so the fraction lost is

β =
Ag

2A
=

2h

ϵ
√
A

= 0.7

Finally, this means that α ≈ 0.15.
Marking Scheme:

Estimating flux out of gap 0.2 pts
Exact flux into volume 0.2 pts
Correct estimate of gap area 0.2 pts
Assuming 2α+ β ≈ 1 0.2 pts
Finding α 0.2 pts
0.2 ≤ α ≤ 0.4 0.1 pts
Finding β 0.1 pts
0.2 ≤ β ≤ 0.6 0.1 pts
sum 1.3 pt

Note that this approach has fewer possible points,
as the expression for the flux out of gap makes an
assumption that is based on unchecked physics.
Choice D: Another Approach?
Surely there will be some creative students who
show other approaches. We will try and expand the
marking scheme to recognise these approaches as
soon as they occur. A rough guide for an incomplete
approach is
Tentative Marking Scheme:

Relevant correct physics equation, each 0.2 pts
Reasonable approximation, each 0.1 pts
Assuming 2α+ β ≈ 1 0.2 pts
Finding α 0.2 pts
0.2 ≤ α ≤ 0.4 0.1 pts
Finding β 0.1 pts
0.2 ≤ β ≤ 0.6 0.1 pts

The maximum possible is still 1.6 pts.
An equation is only relevant if it can be argued that
it would lead to an answer to the question within
the bounds of the approach that they are following.
For example, don’t award points for both counting
bounces and effective surfaces, unless each equa-
tion contributes to a unfied approach that would
lead to the answer. Find the most rewarding ap-
proach, and award points for that line of reasoning.
If a student only finds one of α or β, then they get 0.2
pts for the first. The marking scheme assumed they
would look for α first, but they might have looked
for β, and only found that.
Be very careful with mixing and matching ap-
proaches!
A student will not get half the points for approach A
plus half the points for approach B if they attempt,
but don’t succeed, with both approaches. They will
be awarded the higher of the two scores, not the
sum.
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3. Numerically determine the temperature of sheet 1
and the temperature of sheet 5.
The solar intensity is I0 = 1360W/m2, the back-
ground temperature of space is Tb = 20K and is neg-
ligible.
Assuming a student does C.1 correctly, and uses 2α+
β = 1, then

β α T1 (K) T2 (K)
0.3 0.35 383 120
0.4 0.3 380 102
0.5 0.25 376 83
0.6 0.2 373 65
0.7 0.15 369 48

The most common expected mistake is α + β = 1, in
that case:

β α T1 (K) T2 (K)
0.3 0.7 370 189
0.4 0.6 368 165
0.5 0.5 365 140
0.6 0.4 363 114
0.7 0.3 361 87

The numbers agree well with the theoretical perfor-
mance of 320 K and 90 K. Some of the major differ-
ences are explained by different coatings on differ-
ent surfaces, a temperature and wavelength depen-
dence on emissivity that is designed to reflect visible
light from the sun while radiating infrared on the
sunside of sheet 1, and the sheets are not uniform
temperature.
Marking Scheme:

T1 consistent with own formula 0.1 pts
250K ≤ T1 ≤ 400K 0.1 pts
T5 consistent with own formula 0.1 pts
45K ≤ T5 ≤ 200K 0.1 pts
sum 0.4 pt

The grade depends on self consistency with the pre-
vious work, so the numbers must be checked!
Note that here is a casewhere follow on errors could
be penalized twice; students should recognize that
an answer is not reasonable, as T1 should be on the
order of the temperature of the Earth, and that T5

ought to have shown significant, but not incredible,
cooling.

Part D: The Cryo-Cooler

1. What state variables change?

(a) In order to force the gas through the plug,
which offers up considerable viscous friction,
P1 > P2; it is this pressure difference that is the
source of the force.

(b) Viscous friction is dissipative, so the internal
energy of the gas must decrease as it moves
through the plug, and then U1 > U2.

(c) Though no heat is gained or lost, this is not a
constant entropy process; that can be seen be-
cause it is an irreversible process. As such, S1 <
S2

(d) Since the process of moving across a pressure
gradient imparts kinetic energy to an object, it
is expected that the fluid velocity on the right
will be higher than the left. Since mass is con-
served, the volume of a mole of gas on the right
must also be higher than the volume of a mole
on the left, and V1 < V2.

(e) The correct answer is T1?T2. If this were an
ideal gas, T1 > T2 since U ∝ T . But this is not an
ideal gas, and U will be a function of tempera-
ture and density. As such, it is not possible to
know the comparative relation between T1 and
T2. That’s the whole point of this problem, and
the challenge of trying to make liquid helium.

Marking scheme:

For each correct response +0.2 pts
For each incorrect response -0.05 pts
For a blank answer 0 pts
sum 1.0 pt

Explanations by the students are not needed, and
the final score for this task cannot be less than zero.

2. A mole of gas at P1, V1, T1, U1 enters the porous plug
from the left, and that mole of gas exits the porous
plug on the other side at P2, V2, T2, U2.
Consider first a control volume approach
The figure below shows the motion of a mole of gas
through the plug; the mole is shown in pink. Gas to
the left of themole pushes themole through the plug
with a constant force P1A through a volume V1.

Gas Parcel

Porous Plug

The mole of gas moves through the plug to the right
hand side, in the process pushing on the air to the
right of the mole with a constant force P2A, through
a volume V2.
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Porous Plug

Gas Parcel

The work that the surrounding gas in region 1 does
on the gas pushing it into the plug is

W1 = P1V1

because the pressure is constant, and the effective
change of volume is V1. Similarly, when the gas en-
ters region 2 it must displace a volume V2 of gas that
was already there, so

W2 = −P2V2

The net work is then

Wnet = P1V1 − P2V2 (20)

Since there is no heat exchanged,

U2 − U1 = ∆U = Q+Wnet = P1V1 − P2V2 (21)

which implies

∆U = U2 − U1 = P1V1 − P2V2.

Upon rearranging

U2 + P2V2 = U1 + P1V1

and therefore
U + PV

is a conserved quantity.
Marking scheme:

Compute correctW1 0.1 pts
Compute correctW2 0.1 pts
Write energy law, Eq 21 0.2 pts
Show U + PV conserved 0.2 pts
sum 0.6 pt

Consider instead a differential approach
Another way to look at this problem is to focus on
a differential sample of gas as it moves through the
plug.
The figure below illustrates this
The total energy of parcel of molar size δm has two
relevant energy terms: the internal energy δU and
the bulk kinetic energy δK. It has a volume δV .
These four quantities are extrinsic, but to simplify
notation, we will drop the δ. It’s still there, just in-
visible.
For simplicity’s sake, assume a cylindrical shape to
the parcel, with an end cap area δA and a length
dx. Once again, we will drop the δ. There are three
forces that act on the shape, one associated with
pressure on the left end, one associated with pres-
sure on the right end, and frictional force associated
with viscosity against the walls of the container.

Since this is a parcel of differential length dx, the
net force associatedwith the pressure difference be-
tween the ends is

Fends = −V
dP

dx

where V is again the volume of the cylinder.
But this force is (mostly) balanced by the viscous
frictional force Fwalls with the walls of the sponge;
these two forces effectively add to zero. In fact, it is
the viscous forces with the wall that cause the pres-
sure gradient across the sponge.
The bulk kinetic energy of the parcel does not
change significantly as it moves through the sponge.
This is seen in that the bulk speed of the gas doesn’t
change significantly as it moves through the sponge.
The problem with this approach is that the system
is not in thermodynamic equilibrium; the process is
not reversible, so it is not possible to attach well de-
fined state variables. This means that

dU = TdS − PdV (22)

is not a function that can be integrated; in fact, dS ̸=
0 from the previous part of the problem. Arguing
that V dP = −TdS is rather handwavy, and resolving
this actually requires considering a control volume
approach.
Still, the energy conservation ideas still hold true,
even if thermodynamically poorly defined, so

dU = −PdV − V dP

since the part associated with −V dP doesn’t change
the bulk kinetic energy, and instead dissipates into
internal energy of the gas.
The result is that

dU = −d(PV )

or
U + PV

is a constant
Marking scheme:

Traditional δW = −PdV 0.1 pts
Bulk kinetic δK = −V dP 0.1 pts
Explain where δK goes 0.1 pts
Differential Eq 22 0.1 pts
integrate U + PV constant 0.1 pts
sum 0.5/0.6 pt

Because of the many subtle traps, this approach will
not get the same number of points as the control vol-
ume approach.
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3. One can find pressure on this graph by applying

dU = TdS − PdV

and then requiring constant entropy so that dS = 0,
and then

P = −
(
∂U

∂V

)
S

(23)

which are the negative slopes of the constant en-
tropy curves on a U − V graph.
Then

U + PV = U −
(
∂U

∂V

)
S

V

is the conserved quantity.
Now−(∂U/∂V )S ismeasured only at the point V1, U1,
and is the slope of the tangent line to the constant
entropy curve. Following that tangent line back a
distance V takes it to an intercept with the U axis,
and that intercept is then the conserved quantity.
More mathematically, define a function H

H = U + PV

then
U = H2 − P2V

is the equation of a line,

U = H2 +

(
∂U

∂V

)
S

∣∣∣∣
2

V (24)

with the U intercept equal to the conserved H2.
An estimate can bemade visually, but it is difficult to
be accurate. Try constructing a line from the point
V2 = 0.120, T2 = 7.5 that is tangent to the local isen-
trope, and the result will intercept the U axis. This
result is somewhere around 40. This is shown in
green below.

Now to improve the result.
Draw a line out from 39 that is tangent to the near-
est isentrope to V2 = 0.120, T2 = 7.5; draw another
line out from 41 that is also tangent to the nearest
isentrope to V2 = 0.120, T2 = 7.5. These are shown in
purple below.
Measuring the distance with a ruler, find the frac-
tional distance between the two purple lines to the
point V2 = 0.120, T2 = 7.5 along the highlighted green

line. It is about 75% theway from the bottom purple
line. This means that the conserved quantity ought
be 75% the way up on the highlighted blue section
on the graph. A line connecting the two is shown in
green.
This point is about 41kJ/kg. The actual value for the
conserved quantity is U + PV = 40.7kJ/kg.

Marking scheme:

Pressure formula stated, Eq 23 0.2 pts
Tangent intercept concept 0.4 pts
A first estimate for H 0.2 pts
Upper bound for estimate set 0.2 pts
Upper bound for estimate set 0.2 pts
Interpolated estimate set 0.2 pts
40.5 < H < 41.0 0.2/0.2 pts
40.2 < H < 41.2 0.1/0.2 pts
sum 1.4 pt

As the task asks for a graphical construction, and it
is not possible to construct an accurate tangent to
the isentrope at T2 = 7.5K based on a single line, stu-
dents must do something to improve or verify the
result, even if it is correct on the first guess. Hence
the upper and lower bound approach and interpo-
lation, or something equivalent.

4. Draw a series radial lines out from the conserved
point that are tangent to lines of constant entropy.
Mark the tangent point. Connect with a smooth
curve; this curve is the set of points U1 as a function
of V1 that has the conserved quantity. Look for the
maximum temperature intercept.
This happens at about T1 = 11K. If T1 is higher than
this, it would not be possible to cool down to T2 =
7.5K.
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Students don’t need to draw every line, as with a
straight edge one can find the tangent that maxi-
mizes the temperature T1 by shifting it around vi-
sually.

Line starts from student’s H 0.2 pts
Line intercepts an isentrope 0.2 pts
The isentrope matches max T1 0.2 pts
Stated T1 within 0.5K of student’s contruction 0.1 pts
10K ≤ T1 ≤ 12K 0.1 pts
sum 0.8 pt

5. Using the slope of the line from the conserved quan-
tity to the maximum temperature point, compute
the pressure.
Using the results from above,

P1 = − (41)− (10)

(0)− (0.0170)
= 1.8MPa

If they didn’t know to use slope by this point, they
can’t generate an answer. As such, they would al-
ready have received points for the pressure for-
mula, and we only consider the numerical result

P agrees with the slope of the graph 0.1 pts
1.6MPa ≤ P1 ≤ 2.4MPa 0.1 pts
sum 0.2 pt


