

Particles and Waves (10 points)

Part A. Quantum particle in a box (1.4 points)

 $\textbf{A.1} \; (0.4 \; \mathrm{pt})$

 $E_{\min} =$

A.2 (0.6 pt)

 $E_n =$

A.3 (0.4 pt)

 $\lambda_{21} =$

Part B. Optical properties of molecules (2.1 points)

B.1 (0.8 pt)
Expression: $\lambda =$
Numerical value: $\lambda \approx$
B.2 (0.4 pt)Absorption spectrum of Cy3 is shifted to (check): \Box bluer \Box redderspectral region by $\Delta \lambda \approx$
B.3 (0.7 pt)
K =
B.4 (0.2 pt)
Numerical value: $ au_{Cy5} \approx$

Part C. Bose-Einstein condensation (1.5 points)

C.1 (0.4 pt)	
p =	
$\lambda_{\mathrm{dB}} =$	
C.2 (0.5 pt)	
$\ell =$	
$T_c =$	
C.3 (0.6 pt) Expression: $n_c =$	
Numerical value: $n_c \approx$	
Expression: $n_0 =$	

Numerical value: $n_0/n_c \approx$

Part D. Three-beam optical lattices (5 points)

D.1 (1.4 pt) $V(\vec{r}) =$ $\vec{b}_1 =$ $\vec{b}_2 =$ $\vec{b}_3 =$

D.2 (0.5 pt) Argument:

D.3 (1.2 pt)

 $V_{\rm X}(x) =$

 $V_{\mathrm{Y}}(y) =$

Minimum (-a) of $V_X(x)$: at x =

Maximum (-a) of $V_X(x)$: at x =

Minimum (-a) of $V_{Y}(y)$: at y =

Maximum (-a) of $V_{Y}(y)$: at y =

D.4 (0.8 pt) Ratio of the lattice constant to the laser wavelength: $a/\lambda_{\text{las}} =$

Positions of all equivalent minima nearest to the origin:

D.5 (1.1 pt)

Expression: n =

Numerical value: $n \approx$