

Electrostatic lens (10 points)

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 (0.3 pt)				
$\Phi(z) =$				
A.2 (0.4 pt)				
$\Phi(z) \approx$				
A.3 (0.2 pt)				
F(z) =				
Circle the right answer:	<i>q</i> < 0	or	q > 0.	
A.4 (0.1 pt)				

 $\omega =$

Part B. Electrostatic potential in the plane of the ring (1.7 points)

B.1 (1.5 pt) β =

B.2 (0.2 pt)F(r) =Circle the right answer:q < 0 orq > 0.

Part C. The focal length of the idealized electrostatic lens: instantaneous charging (2.3 points)

C.1 (1.3 pt) *f* =

C.2 (0.8 pt)

c =

 $\textbf{C.3}~(0.2~\mathrm{pt})$

Circle the right answer. The equation of the thin optical lens is: valid *or* not valid.

Part D. The ring as a capacitor (3 points)

D.1 (2.0 pt)

C =

Part E. Focal length of a more realistic lens: non-instantaneous charging (2 points)

E.1 (1.7 pt) f =

E.2 (0.3 pt)

 $q_{\rm eff} =$