
The 43rd International Physics Olympiad — Theoretical Competition
Tartu, Estonia — Tuesday, July 17th 2012

• The examination lasts for 5 hours. There are 3 problems
worth a total of 30 points. Please note that the point
values of the three theoretical problems are not equal.

• You must not open the envelope with the prob-
lems before the sound signal indicating the begin-
ning of competition (three short signals).

• You are not allowed to leave your working place
without permission. If you need any assistance
(broken calculator, need to visit a restroom, etc), please
raise the corresponding flag (“help” or “toilet” with a
long handle at your seat) above your seat box walls and
keep it raised until an organizer arrives.

• Your answers must be expressed in terms of those
quantities, which are highlighted in the problem text,
and can contain also fundamental constants, if needed.
So, if it is written that “the box height is a and the
width - b” then a can be used in the answer, and b can-
not be used (unless it is highlighted somewhere else, see
below). Those quantities which are highlighted in the
text of a subquestion can be used only in the answer to
that subquestion; the quantities which are highlighted
in the introductory text of the Problem (or a Part of a
Problem), i.e. outside the scope of any subquestion, can
be used for all the answers of that Problem (or of that
Problem Part).

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets
(see header for the number and pictogramme). Write
your solutions onto the appropriate Solution Sheets. For
each Problem, the Solution Sheets are numbered; use
the sheets according to the enumeration. Always mark
which Problem Part and Question you are deal-
ing with. Copy the final answers into the appropriate
boxes of the Answer Sheets. There are also Draft pa-
pers; use these for writing things which you don’t want
to be graded. If you have written something what you
don’t want to be graded onto the Solution Sheets (such
as initial and incorrect solutions), cross these out.

• If you need more paper for a certain problem, please raise
the flag “help” and tell an organizer the problem num-
ber; you are given two Solution sheets (you can do this
more than once).

• You should use as little text as possible: try to
explain your solution mainly with equations, numbers,
symbols and diagrams.

• The first single sound signal tells you that there are 30
min of solving time left; the second double sound signal
means that 5 min is left; the third triple sound signal
marks the end of solving time. After the third sound
signal you must stop writing immediately. Put all
the papers into the envelope at your desk. You are not
allowed to take any sheet of paper out of the room.
If you have finished solving before the final sound signal,
please raise your flag.

— page 1 of 5 —



Problem T1. Focus on sketches (13 points)
Part A. Ballistics (4.5 points)
A ball, thrown with an initial speed v0, moves in a homogen-
eous gravitational field in the x-z plane, where the x-axis is
horizontal, and the z-axis is vertical and antiparallel to the
free fall acceleration g . Neglect the effect of air drag.

i. (0.8 pts) By adjusting the launching angle for a ball thrown
with a fixed initial speed v0 from the origin, targets can be
hit within the region given by

z ≤ z0 − kx2.

You can use this fact without proving it. Find the constants
z0 and k.

ii. (1.2 pts) The launching point can now be
freely selected on the ground level z = 0, and
the launching angle can be adjusted as needed.
The aim is to hit the topmost point of a spher-
ical building of radius R (see fig.) with the
minimal initial speed v0. Bouncing off the roof prior to hitting
the target is not allowed. Sketch qualitatively the shape of
the optimal trajectory of the ball (use the designated box on
the answer sheet). Note that the marks are given only for the
sketch.

iii. (2.5 pts) What is the minimal launching speed vmin needed
to hit the topmost point of a spherical building of radius R ?

La Geode, Parc de la Villette, Paris. Photo: katchooo/flickr.com

Part B. Air flow around a wing (4 points)
For this part of the problem, the following information may be
useful. For a flow of liquid or gas in a tube along a streamline,

p + ρgh + 1
2 ρv2 = const., assuming that the velocity v is much

less than the speed of sound. Here ρ is the density, h is the
height, g is free fall acceleration and p is hydrostatic pressure.
Streamlines are defined as the trajectories of fluid particles
(assuming that the flow pattern is stationary). Note that the
term 1

2 ρv2 is called the dynamic pressure.

In the fig. shown below, a cross-section of an aircraft wing is
depicted together with streamlines of the air flow around the
wing, as seen in the wing’s reference frame. Assume that (a)
the air flow is purely two-dimensional (i.e. that the velocity
vectors of air lie in the plane of the figure); (b) the stream-
line pattern is independent of the aircraft speed; (c) there is
no wind; (d) the dynamic pressure is much smaller than the
atmospheric pressure, p0 = 1.0 × 105 Pa .

You can use a ruler to take measurements from the fig. on
the answer sheet.

i. (0.8 pts) If the aircraft’s ground speed is v0 = 100 m/s ,
what is the speed of the air, vP , at the point P (marked in the
fig.) with respect to the ground?

ii. (1.2 pts) In the case of high relative humidity, as the
ground speed of the aircraft increases over a critical value vcrit,
a stream of water droplets is created behind the wing. The
droplets emerge at a certain point Q. Mark the point Q in the
fig. on the answer sheet. Explain qualitatively (using formulae
and as little text as possible) how you determined the position
of Q.

iii. (2.0 pts) Estimate the critical speed vcrit using the follow-
ing data: relative humidity of the air is r = 90% , specific heat
capacity of air at constant pressure cp = 1.00 × 103 J/kg · K ,
pressure of saturated water vapour: psa = 2.31 kPa at
the temperature of the unperturbed air Ta = 293 K and
psb = 2.46 kPa at Tb = 294 K . Depending on your approx-

imations, you may also need the specific heat capacity of air at
constant volume cV = 0.717 × 103 J/kg · K . Note that the rel-
ative humidity is defined as the ratio of the vapour pressure to
the saturated vapour pressure at the given temperature. Sat-
urated vapour pressure is defined as the vapour pressure by
which vapour is in equilibrium with the liquid.
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Part C. Magnetic straws (4.5 points)

Consider a cylindrical tube made of a superconducting mater-
ial. The length of the tube is l and the inner radius is r

with l ≫ r. The centre of the tube coincides with the origin,
and its axis coincides with the z-axis.

There is a magnetic flux Φ through the central cross-section
of the tube, z = 0, x2 + y2 < r2. A superconductor is a mater-
ial which expels any magnetic field (the field is zero inside the
material).

i. (0.8 pts) Sketch five such magnetic field lines, which pass
through the five red dots marked on the axial cross-section of
the tube, on the designated diagram on the answer sheet.

ii. (1.2 pts) Find the tension force T along the z-axis in the
middle of the tube (i.e. the force by which two halves of the
tube, z > 0 and z < 0, interact with each other).

iii. (2.5 pts) Consider another tube, identical and parallel to
the first one.

The second tube has the same magnetic field but in the oppos-
ite direction and its centre is placed at y = l , x = z = 0 (so
that the tubes form opposite sides of a square). Determine the
magnetic interaction force F between the two tubes.
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Problem T2. Kelvin water dropper (8 points)

The following facts about the surface tension may turn out
to be useful for this problem. For the molecules of a liquid,
the positions at the liquid-air interface are less favourable as
compared with the positions in the bulk of the liquid. This
interface is described by the so-called surface energy, U = σS,
where S is the surface area of the interface and σ is the surface
tension coefficient of the liquid. Moreover, two fragments of
the liquid surface pull each other with a force F = σl, where l

is the length of a straight line separating the fragments.

A long metallic pipe with internal diameter d is pointing dir-
ectly downwards. Water is slowly dripping from a nozzle at its
lower end, see fig. Water can be considered to be electrically
conducting; its surface tension is σ and its density is ρ . A
droplet of radius r hangs below the nozzle. The radius grows
slowly in time until the droplet separates from the nozzle due
to the free fall acceleration g . Always assume that d ≪ r.

Part A. Single pipe (4 points)
i. (1.2 pts) Find the radius rmax of a drop just before it sep-
arates from the nozzle.

ii. (1.2 pts) Relative to the far-away surroundings, the pipe’s
electrostatic potential is φ . Find the charge Q of a drop when
its radius is r .

iii. (1.6 pts) Consider the situation in which r is kept con-
stant and φ is slowly increased. The droplet becomes unstable
and breaks into pieces if the hydrostatic pressure inside the
droplet becomes smaller than the atmospheric pressure. Find
the critical potential φmax at which this will happen.

Part B. Two pipes (4 points)
An apparatus called the “Kelvin water dropper” consists of
two pipes, each identical to the one described in Part A, con-
nected via a T-junction, see fig. The ends of both pipes are
at the centres of two cylindrical electrodes (with height L and
diameter D with L ≫ D ≫ r). For both tubes, the dripping
rate is n droplets per unit time. Droplets fall from height H

into conductive bowls underneath the nozzles, cross-connected
to the electrodes as shown in the diagram. The electrodes are
connected via a capacitance C . There is no net charge on
the system of bowls and electrodes. Note that the top water
container is earthed as shown. The first droplet to fall will
have some microscopic charge which will cause an imbalance
between the two sides and a small charge separation across the
capacitor.

i. (1.2 pts) Express the absolute value of the charge Q0 of the
drops as they separate from the tubes, and at the instant when
the capacitor’s charge is q . Express Q0 in terms of rmax
(from Part A-i) and neglect the effect described in Part A-iii.

ii. (1.5 pts) Find the dependence of q on time t by approx-
imating it with a continuous function q(t) and assuming that
q(0) = q0 .

iii. (1.3 pts) The dropper’s functioning can be hindered by
the effect shown in Part A-iii. In addition, a limit Umax to
the achievable potential between the electrodes is set by the
electrostatic push between a droplet and the bowl beneath it.
Find Umax.
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Problem T3. Protostar formation (9 points)
Let us model the formation of a star as follows. A spherical
cloud of sparse interstellar gas, initially at rest, starts to col-
lapse due to its own gravity. The initial radius of the ball is
r0 and the mass is m . The temperature of the surroundings

(much sparser than the gas) and the initial temperature of the
gas is uniformly T0 . The gas may be assumed to be ideal.
The average molar mass of the gas is µ and its adiabatic
index is γ > 4

3 . Assume that G mµ
r0

≫ RT0, where R is the
gas constant and G is the gravitational constant.

i. (0.8 pts) During much of the collapse, the gas is so transpar-
ent that any heat generated is immediately radiated away, i.e.
the ball stays in thermodynamic equilibrium with its surround-
ings. What is the number of times, n, by which the pressure
increases when the radius is halved to r1 = 0.5r0 ? Assume
that the gas density remains uniform.

ii. (1 pt) Estimate the time t2 needed for the radius to shrink
from r0 to r2 = 0.95r0 . Neglect the change of the gravity field
at the position of a falling gas particle.

iii. (2.5 pts) Assuming that the pressure remains negligible,
find the time tr→0 needed for the ball to collapse from r0 down
to a much smaller radius, using Kepler’s Laws.

iv. (1.7 pts) At some radius r3 ≪ r0, the gas becomes dense
enough to be opaque to the heat radiation. Calculate the
amount of heat Q radiated away during the collapse from the
radius r0 down to r3.

v. (1 pt) For radii smaller than r3 you may neglect heat loss
due to radiation. Determine how the temperature T of the ball
depends on its radius for r < r3.

vi. (2 pts) Eventually we cannot neglect the effect of the pres-
sure on the dynamics of the gas and the collapse stops at r = r4
(with r4 ≪ r3 ). However, the radiation loss can still be neg-
lected and the temperature is not yet high enough to ignite
nuclear fusion. The pressure of such a protostar is not uniform
anymore, but rough estimates with inaccurate numerical pre-
factors can still be done. Estimate the final radius r4 and the
respective temperature T4.
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