Solution to Theoretical Question 1

A Swing with a Falling Weight

Part A

(a)

(b)

(©)

(d)

(e)

Since the length of the string L =s+ RO is constant, its rate of change must be zero.

Hence we have
S+RO=0 (A1)

Relative to O, O moves on a circle of radius R with angular velocity 8, so
v, =ROi=—5i (A2)

Refer to Fig. Al. Relative to @, the displacement of P in a time interval Atf
is AF' =(sAO)(— )+ (As)i =[(sO)(—F)+57]At. Tt follows

V' =—sOF+517 (A3)

Figure Al

The velocity of the particle relative to O is the sum of the two relative velocities given in
Egs. (A2) and (A3) so that
V=94V, =(-s0F+3{)+ROi =—sOF (A4)

Refer to Fig. A2. The ( —f )-component of the velocity change AV is given
by (=) AV = vAO = vOAt. Therefore, the -component of the acceleration @ = Av /At
is given by 7-a=-v6 . Since the speed v of the particle is s according to Eq. (A4),

we see that the 7 -component of the particle’s acceleration at P is given by

a-i=-v0=—(s0)0=—-s6" (A5)

Figure A2
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Note that, from Fig. A2, the radial component of the acceleration may also be obtained as
a-F=—dv/dt=-d(s0)/dr.

Refer to Fig. A3. The gravitational potential energy of the particle is given byU = —mgh .

It may be expressed in terms of s and & as
U(0)=-mg[R(1—cosB)+ssinf] (A6)

Figure A3

P

At the lowest point of its trajectory, the particle’s gravitational potential energy U must
assume its minimum value U,,. By differentiating Eq. (A6) with respect to € and using

Eq. (Al), the angle 6, corresponding to the minimum gravitational energy can be

obtained.
v =-—mg| Rsind +£sin9 +scosd
do do
= —mg[Rsin@ + (—R)sin + scos 0]
= —mgscosf
dUu V4 . C . .
At =0, 70 =0. We haved, = 7 The lowest point of the particle’s trajectory is
6

m

shown in Fig. A4 where the length of the string segment of QP is s = L— 7R /2.

Figure A4

From Fig. A4 or Eq. (A6), the minimum potential energy is then
U,=U(z/2)=-mg[R+L—(aR/2)] (A7)
Initially, the total mechanical energy E is 0. Since E is conserved, the speed v,, of the

particle at the lowest point of its trajectory must satisfy
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E:O:%mv;+Um (A8)

From Egs. (A7) and (A8), we obtain

Vyy =/~ 2U,, /m =2g[R+ (L - 7R/2)] (A9)

Part B
(h) From Eq. (A6), the total mechanical energy of the particle may be written as
E=O=%mv2+U(9)=%mv2—mg[R(l—cos@)+ssin9] (B1)
From Eq. (A4), the speed v is equal to s . Therefore, Eq. (B1) implies
v? =(s0)%* =2g[R(1—cos0) + s sin O] (B2)

Let T be the tension in the string. Then, as Fig. B1 shows, the7 -component of the net
force on the particle is =7+ mg sin €. From Eq. (AS), the tangential acceleration of the

particle is (—s 92) . Thus, by Newton’s second law, we have

m(-s6%) = -T + mgsin 0 (B3)

4
Yy

Figure B1

According to the last two equations, the tension may be expressed as
T =m(s0 2+ gsin@) = "E[2R(1 - cos ) + 3s5in 4]
S

_ 2mgR

0 3 L, .
[tanz - 5(49 —E)](sm 0) (B4)

_ 2mgR

01 - 12)(sin0)

The functions y; =tan(@/2) and y, =3(60—-L/R)/2 are plotted in Fig B2.
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] Figure B2

From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at
which .y, =y is called 0,(7r <6 <2x ) and is given by

3 L 0

5(95 ——R):tan—; (BS)
or, equivalently, by

L 2.6

-0 —Ztan= B

R 0, 3 tan > (B6)

Since the ratio L/R is known to be given by

L 97 2 T T, 2 1 T
_— = — —_ _— _) - — J— —_ B
R g +3cot16 (7r+8) 3tan2(7r+8) (B7)

one can readily see from the last two equations that 8, =97/8.

Table B1
(1 —»2) sin@ tension 7
0<l<rm positive positive positive
O=rx + o0 0 positive
T <0<0, negative negative positive
0 =20, Zero negative Zero
0, <0<2r positive negative negative

Table B1 shows that the tension 7' must be positive (or the string must be taut and straight)
in the angular range 0<@ < 6. Once @ reaches 6, the tension 7 becomes zero and the
part of the string not in contact with the rod will not be straight afterwards. The shortest
possible value s, for the length s of the line segment QP therefore occurs at € = 6, and

is given by
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Or 2 o 2R T
=L-R —R— = — ) ="—cot—=3.352R B
Smin 0, ( 3ct16 8) 3c:ot16 3.35 (BS)

When@ = 6, we have T= 0 and Eqs. (B2) and (B3) then leads to v ’=—gs,_. sin6,.

Hence the speed v is

T 4gR T
Vg =4/— &Smin SIN O —\/—cot16 gz\/TcosR (B9)

=1.133,/gR

(1) When @ = 6, the particle moves like a projectile under gravity. As shown in Fig. B3, it is
projected with an initial speed v, from the position P =(x,,y,) in a direction making
an angle ¢ = (37 /2 —0,) with the y-axis.

The speed v, of the particle at the highest point of its parabolic trajectory is equal to the

y-component of its initial velocity when projected Thus,

vy =vsin(@, —r) = 1/ cos—sm——04334 gR (B10)

The horizontal distance H traveled by the particle from point P to the point of maximum

height is
2 . 2
2(6, -
g o Yssin200, =) vy L 97 4535k (B11)
2g 2g 4

= (X3, ¥s)
Figure B3
The coordinates of the particle when 6 = 6, are given by
X, =RcosO — 5, sSind; =—R cos% + S min sin% =0.358R (B12)
y, =Rsinf, +s,;. cosf, =—R sin% — S cos% =-3.478R (B13)

Evidently, we have | y,| > (R + H) . Therefore the particle can indeed reach its maximum

height without striking the surface of the rod.
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Part C

(j) Assume the weight is initially lower than O by 4 as shown in Fig. C1.

Figure C1

When the weight has fallen a distance D and stopped, the law of conservation of total
mechanical energy as applied to the particle-weight pair as a system leads to
—Mgh=E'—Mg(h+ D) (C1)
where E' is the total mechanical energy of the particle when the weight has stopped. It
follows
E'=MgD (C2)
Let A be the total length of the string. Then, its value at = 0 must be the same as at any

other angular displacement 6. Thus we must have

A=L+%R+h=s+R(6’+%)+(k+D) (C3)
Noting that D = « L and introducing £ = L—D, we may write
(=L-D=(-a)L (C4)
From the last two equations, we obtain
s=L-D-RO=(-RO (C3)

After the weight has stopped, the total mechanical energy of the particle must be
conserved. According to Eq. (C2), we now have, instead of Eq. (Bl), the following

equation:
E'=MgD =%mv2 —mg[R(1-cos @) + s sin 6] (C6)
The square of the particle’s speed is accordingly given by
V= (s6)? = 2M8D | 2gR[(1 —cosf) + % sin 9} (C7)

Since Eq. (B3) stills applies, the tension 7 of the string is given by
—T +mgsin@ = m(-s6?) (C8)

From the last two equations, it follows
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T =m(s0+ gsinf)

_ E{% D +2R(1 - cos 0) + 3ssin 9} (C9)
S m
- 2mgR [@+ (1-cos®) +§(£— ﬁjsinﬁ}
K mR 2\ R

where Eq. (C5) has been used to obtain the last equality.
We now introduce the function

f(0)=1—cost9+§(%—t9)sin0 (C10)
From the fact/ = (L — D) >> R, we may write
f(t9)zl+%%sin9—cos€:1+Asin(0—¢) (C11)

where we have introduced

NS — tan”[ 2R
A=\1+G )7 . ¢=tan (%J (C12)

From Eq. (C11), the minimum value of f{6) is seen to be given by

Join =1-A4=1- 1+G£) (C13)

Since the tension 7 remains nonnegative as the particle swings around the rod, we have
from Eq. (C9) the inequality

2
@+fmm=M+1— 1435 »0 (C14)
mR mR 2R
or
2
ﬂ+12ﬂ+1+% zﬂ_kﬁ (CIS)
mR mR 2R mR 2R
From Eq. (C4), Eq. (C15) may be written as
ML +1 > %+£ (I-a) (Cle)
mR mR 2R

Neglecting terms of the order (R/L) or higher, the last inequality leads to

)

mR 2R 3L 1
> — = = ~
@ =17y 3" ML 3L aM M (€17)
— | =t —+1 1+
mR 2R mR 2R 3m 3m
The critical value for the ratio D/L is therefore
1
@ = (C18)
l+—
3m
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Marking Scheme

Theoretical Question 1
A Swing with a Falling Weight

Sz(z:ralels Sf(l)lrzs Marking Scheme for Answers to the Problem
Part A (@)  |Relation between Qand §. (§=—RO)
> 0.2for focs.
4.3 pts. 0.5 » 0.3 for proportionality constant (-R).
(®)  |Velocity of O relative to O. (v, =RO1)
0.5 » 0.2 for magnitudeA RO.
» 0.3 for direction 7 .
(c) Particle’s velocity at P relative to Q. (V' =—sO7 + 51 )
0.7 » 0.2+0.1 for magnitude and direction of 7 -component.
> 0.3+0.1 for magnitude and direction of 7 -component.
(d) Particle’s velocity at Prelativeto 0. (V=V'+V, = —sOF )
07 > 0.3 for vector addition of v’ and v, .
» 0.2+0.2 for magnitude and direction of V.
©) f -component of particle’s acceleration at P.
> 0.3 forrelating @ or a-f to the velocity in a way that implies
07 G-f|=v?/s.
> 04for a-i=—s6> (0.1 for minus sign.)
) Potential energy U.
» 0.2 for formula U =-mgh.
0.5 » 0.3 for h=R(1-cosB)+ssin@ or U as a function of &, s, and R.
(2) Speed at lowest point v,,.
» 0.2 for lowest pointat € =7z/2 or U equals minimum U,
0.7 » 0.2 for total mechanical energy E = mv,zn /12+U,, =0.
> 03 for v, =4-2U, /m=2g[R+(L-7R/2)].
Part B (h) Particle’s speed v, when OP is shortest.
43 pts. 2.4 0.4 for tension 7' becomes zero when Q_Pis shortest.

0.3 for equation of motion —7 +mgsind = m(—séz) .

03for E=0= m(st9')2 /2—mg[R(1—cos@)+ s sinf].
3 L 0

0.4 for E(GS —E) = tanTS.

0.5 for 8, =97/8.

0.3+0.2 for vy =,/4gR/3cosnm /16 =1.133,/gR

vV V V VY V V
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(1)

1.9

The speed vy of the particle at its highest point.

VV VYV V VY

0.4 for particle undergoes projectile motion when 6 > 6, .
0.3 for angle of projection ¢ =(37/2-6,).
0.3 for vy is the y-component of its velocity at 8 =6, .

0.4 for noting particle does not strike the surface of the rod.
0.3+0.2 for

vy =+J4gR/3 cos(x /16)sin(rr/8) = 0.4334,/gR .

Part C

3.4 pts

W)

3.4

The critical value «, of the ratio D/L.

VVVVYV V VYV

0.4 for particle’s energy E'= MgD when the weight has stopped.
0.3 for s=L-D-R6.

0.3 for E'=MgD =mv*/2-mg[R(1—cos0)+s sinf].

0.3 for —T +mgsin® = m(—-s6?).

0.3 for concluding 7" must not be negative.

0.6 for an inequality leading to the determination of the range of D/L.

0.6 for solving the inequality to give the range of o= D/L.
0.6 for a, =(1+2M /3m).
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