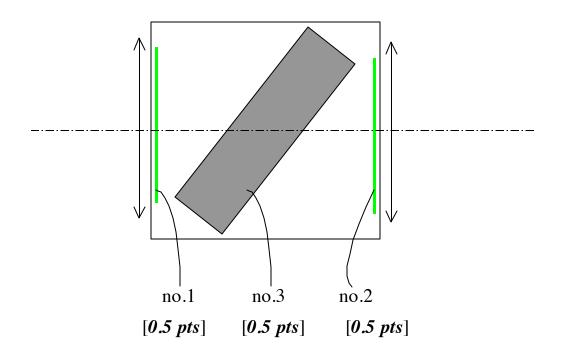
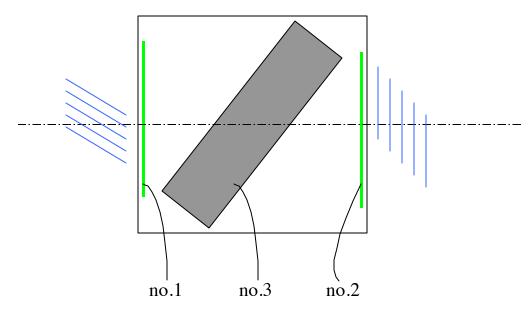
SOLUTION OF EXPERIMENT PROBLEM 2


1. The optical components are [total 1.5 pts]:

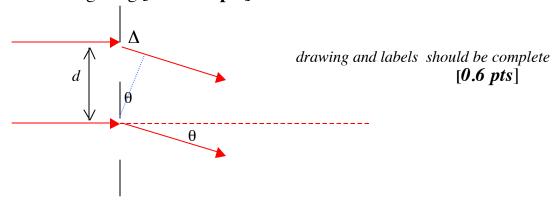
no.1 Diffraction grating	[0.5 pts]
--------------------------	-----------


no.2 Diffraction grating [0.5 pts]

no.3 Plan-parallel plate [0.5 pts]

2. Cross section of the box [total 1.5 pts]:

3. Additional information [total 1.0 pts]:


Distance of the grating (no.1) to the left wall is practically zero [0.2 pts]

Lines of grating no.1 is at right angle to the slit [0.3 pts]

Distance of the grating (no.2) to the right wall is practically zero [0.2 pts]

Lines of grating no. 2 is parallel to the slit [0.3 pts]

4. Diffraction grating [total 2.0 pts]:

Path length difference:

$$\Delta = d \sin \theta$$
, $d = \text{spacing of the grating}$

Diffraction order:

$$\Delta = m \lambda$$
, $m = \text{order number}$

Hence, for the first order (m = 1):

$$\sin \theta = \lambda / d \qquad [0.4 \text{ pts}]$$

Observation data:

	$\sin \theta$	θ	tan θ
	0.3219	18.78^{0}	0.34
number of data ≥ 3	0.3048	17.74^{0}	0.32
[0.5 pts]	0.3048	17.74^{0}	0.32

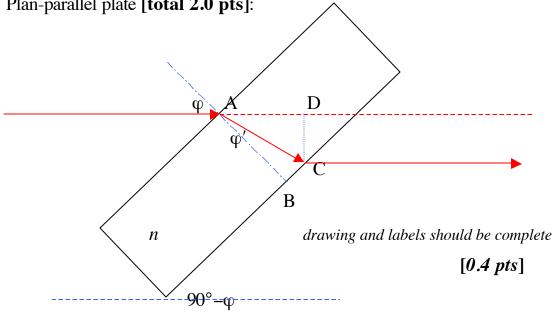
Name of component no.1	Specification	
Diffraction grating	Spacing = 2.16 μm	[0.4 pts]
	Lines at right angle to the slit	[0.1 pts]

Note: true value of grating spacing is 2.0 μm , deviation of the result $\leq 10\%$

5. Diffraction grating [total 2.0 pts]:

For the derivation of the formula, see nr.4 above.

[1.0 pts]


Observation data:

	$\sin\! \theta$	θ	$tan\theta$
	0.7208	46.12^{0}	1.04
number of data ≥3	0.6925	43.83^{0}	0.96
[0.5 pts]	0.7330	47.20^{0}	1.08

Name of component no.2	Specification	
Diffraction grating	Spacing = 0.936 μm	[0.4 pts]
	Lines parallel to the slit	[0.1 pts]

Note: true value of grating spacing is 1.0 μm , deviation of the result $\leq 10\%$

6. Plan-parallel plate [total 2.0 pts]:

Snell's law:

$$\sin \varphi = n \sin \varphi'$$
, $\varphi' = \angle BAC$

Path length inside the plate:

$$AC = AB / \cos \varphi'$$
, $AB = h = plate thickness$

Beam displacement:

$$\overline{\text{CD}} = t = AC \sin \angle CAD$$
, $\angle CAD = \varphi - \varphi'$

Hence:

$$t = h \sin \varphi \left[1 - \cos \varphi / (n^2 - \sin^2 \varphi)^{1/2} \right]$$
 [0.6 pts]

Observation data:

t φ 0 (angle between beam and axis 49°) 0 49^{0} 7.3 arbitrary scale [0.5 pts]

Name of component no.3	Specification	
Plane-parallel plate	Thickness = 17.9 mm	[0.2 pts]
	Angle to the axis of the box 49°	[0.3 pts]

Note: - true value of plate thickness is 20 mm

- true value of angle to the axis of the box is 52°
- deviation of the results $\leq 20\%$.