
Solution to Experimental Question 2

Section 1

- i. A typical geometric layout is as shown below.
 - (a) Maximum distance from ruler to screen is advised to increase the spread of the diffraction pattern.
 - (b) Note that the grating (ruler) lines are horizontal, so that diffraction is in the vertical direction.

ii. Vis a vis the diffraction phenomenon, $\beta = \left(\frac{y}{1400 \text{ mm}}\right)$

The angle β is measured using either a protractor (not recommended) or by measuring the value of the fringe separation on the screen, y, for a given order N.

If the separation between 20 orders is measured, then $N = \pm 10$ (N = 0 is central zero order).

The values of y should be tabulated for N = 10. If students choose other orders, this is also acceptable.

N	± 10									
2y mm	39.0	38.5	39.5	41.0	37.5	38.0	39.0	38.0	37.0	37.5
y mm	19.5	19.25	19.75	20.5	18.75	19.0	19.5	19.0	18.5	18.75

Mean Value = (19.25 ± 1.25) mm

i.e. Mean "spot" distance = 19.25 mm for order N = 10. From observation of the ruler itself, the grating period, $h = (0.50 \pm 0.02)$ mm. Thus in the relation

$$N\lambda = \pm h \sin \beta$$

$$N = 10$$

$$h = 0.5 \text{ mm}$$

$$\sin \beta \simeq \beta = \frac{y}{1400 \text{ mm}} = 0.01375$$

$$10\lambda = 0.006875 \text{ mm}$$

$$\lambda = 0.0006875 \text{ mm}$$

Since β is small, $\frac{\delta\lambda}{\lambda} \simeq \frac{\delta h}{h} + \frac{\delta y}{y} \simeq 10\%$ i.e. measured $\lambda = (690 \pm 70)$ nm

The accepted value is 680 nm so that the departure from accepted value equals 1.5%.

Section 2

This section tests the student's ability to make semi-quantitative measurements and the use of judgement in making observations.

i. Using the T = 50% transmission disc, students should note that the transmission through the tank is greater than this value. Using a linear approximation, 75% could well be estimated. Using the hint about the eye's logarithmic response, the transmission through the tank could be estimated to be as high as 85%.

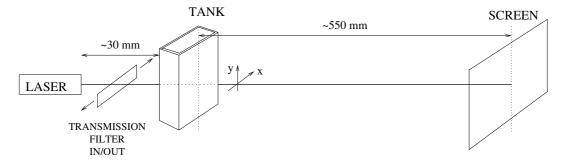
Any figure for transmission between 75% and 85% is acceptable.

ii. Calculation of the transmission through the tank, using

$$T = 1 - R = 1 - \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

for each of the four surfaces of the tank, and assuming n = 1.59 for the perspex, results in a total transmission

 $T_{\rm total} = 80.80\%$

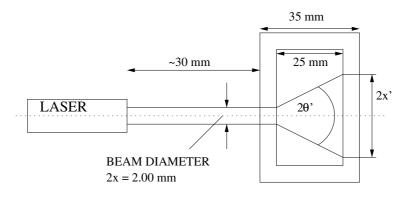

Section 3

With water in the tank, surfaces 2 and 3 become perspex/water interfaces instead of perspex/air interfaces, as in (ii).

The resultant value is

$$T_{\text{total}} = 88.5\%$$

Section 4



Possible configuration for section 4 (and sections 2 and 3)

With pure water in the tank only, we see from Section 3 that the transmission T is

 $T_{\rm Water}\simeq 88\%$

The aim here is to determine the beam divergence (scatter) and transmission as a function of milk concentration. Looking down on the tank, one sees

i. The entrance beam diameter is 2.00 mm. The following is an example of the calculations expected: With 0.5 mL milk added to the 50 mL water, we find

Scatterer concentration
$$=\frac{0.5}{50}=1\%=0.01$$

Scattering angle

$$2x' = 2.2 \text{ mm}$$
; $2\theta' = \frac{2x'}{30} = 0.073$

Transmission estimated with the assistance of the neutral density filters

$$T_{\rm total} = 0.7$$

Hence

$$T_{\rm milk} = \frac{0.7}{0.88} = 0.79$$

Note that

$$T_{\text{milk}} = \frac{T_{\text{total}}}{T_{\text{water}}} \quad \text{and} \quad T_{\text{water}} = 0.88$$
 (1)

If students miss the relationship (1), deduct one mark.

ii. & iii. One thus obtains the following table of results. $2\theta'$ can be determined as shown above, OR by looking down onto the tank and using the protractor to measure the value of $2\theta'$. It is important to note that even in the presence of scattering, there is still a direct beam being transmitted. It is much stronger than the scattered radiation intensity, and some skill will be required in measuring the scattering angle $2\theta'$ using either method. Making the correct observations requires observational judgement on the part of the student.

Milk volume (mL)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
% Concentration	0	1	2	3	4	5	6	7	8
2x'	2.00	2.2	6.2	9.4	12	Protractor			
$2\theta'$ (Degrees)	~ 0	4	12	18	23	28	36	41	48
$T_{ m milk}$	1.0	0.79	0.45	0.22	0.15	0.12	0.08	0.06	0.05

Typical results are as follows:

iii. From the graphed results in Figure 1, one obtains an approximately linear relationship between milk concentration, C, and scattering angle, $2\theta' (= \phi)$ of the form

$$\phi = 6C$$

iv. Assuming the given relation

$$I = I_0 e^{-\mu z} = T_{\text{milk}} I_0$$

where z is the distance into the tank containing milk/water. We have

$$T_{\text{milk}} = e^{-\mu z}$$

Thus

$$\ln T_{\text{milk}} = -\mu z$$
, and $\mu = \text{constant} \times C$

Hence $\ln T_{\text{milk}} = -\alpha z C$.

Since z is a constant in this experiment, a plot of $\ln T_{\text{milk}}$ as a function of C should yield a straight line. Typical data for such a plot are as follows:

% Concentration	0	1	2	3	4	5	6	7	8
$T_{\rm milk}$	1.0	0.79	0.45	0.22	0.15	0.12	0.08	0.06	0.05
$\ln T_{\rm milk}$	0	-0.24	-0.8	-1.51	-1.90	-2.12	-2.53	-2.81	-3.00

An approximately linear relationship is obtained, as shown in Figure 2, between $\ln T_{\text{milk}}$ and C, the concentration viz. $\ln T_{\text{milk}} \simeq -0.4C = -\mu z$

Thus we can write

$$T_{\text{milk}} = e^{-0.4C} = e^{-\mu z}$$

For the tank used, z = 25 mm and thus

$$0.4C = 25\mu$$
 or $\mu = 0.016C$ whence $\alpha = 0.016 \text{ mm}^{-1}\%^{-1}$

By extrapolation of the graph of $\ln T_{\rm milk}$ versus concentration C, one finds that for a scatterer concentration of 10%

$$\mu = 0.160 \text{ mm}^{-1}$$

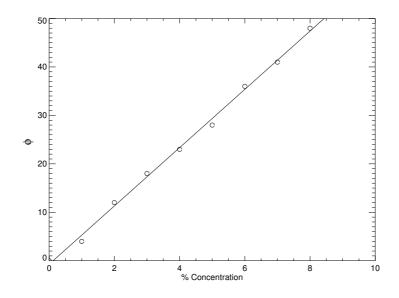


Figure 1: Sample plot

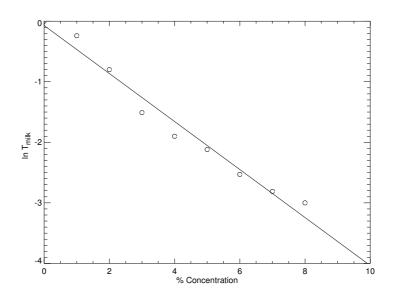


Figure 2: Sample plot

Detailed Mark Allocation

Section 1	
A clear diagram illustrating geometry used with appropriate allocations	[1]
Optimal geometry used - as per model solution (laser close to ruler)	[1]
Multiple measurements made to ascertain errors involved	[1]
Correctly tabulated results	[1]
Sources of error including suggestion of ruler variation	
(suggested by non-ideal diffraction pattern)	[1]
Calculation of uncertainty	[1]
Final result	[2]
Allocated as per:	
$\pm 10\%$ (612, 748 nm)	[2]
$\pm 20\%$ (544, 816 nm)	[1]
\pm anything worse	[0]
Section 2	
For evidence of practical determination of transmission rather than	
simply "back calculating". Practical range $70 - 90\%$	[1]
For correct calculation of transmission	
(no more than 3 significant figures stated)	[1]
Section 3	
Correct calculation with no more than 3 significant figures stated	
and an indication that the measurement was performed	[1]
Section 4	
Illustrative diagram including viewing geometry used, i.e. horizontal/vertical	[1]
For recognizing the difference between scattered light and the straight-through beam	[1]
For taking the T_{water} into account when calculating T_{milk}	[1]
Correctly calculated and tabulated results of T_{milk} with results within 20% of model solution	[1]
Using a graphical technique for determining the relationship between	
scatter angle and milk concentration	[1]
Using a graphical technique to extrapolate T_{milk} to 10% concentration	[1]
Final result for μ	[2]
Allocated as $\pm 40\%$ [2], $\pm 60\%$ [1], anything worse [0]	[4]
A reasonable attempt to consider uncertainties	[1]
TOTAL	20