		Total
Part	MARKING SCHEME - THE THEORETICAL QUESTION IV-COMPTON SCATTERING	Scores
IV.	For: the situation before the first scattering of photon M^{y}	7.0 points
	$(i) \xrightarrow{\lambda_i, f_i} M$ initial photon	
	first electron P_{0e} α $\vec{P}_{i} = \frac{h}{h} = \frac{h \cdot f_{i}}{h}$	
	the momentum \vec{p}_i and the energy E_i of the initial photon $\begin{cases} F_i & \lambda_i & C \\ E_i = h \cdot f_i \end{cases}$ 0.3p	
	the frequency of initial photon $f_i = \frac{c}{\lambda_i}$ 0.1p	
	the momentum \vec{p}_{oe} and the energy \vec{E}_{oe} of initial, free electron in motion	
	$\begin{cases} P_{oe} = m \cdot v_{1e} = \frac{\sigma}{\sqrt{1 - \beta^2}} \\ E_{oe} = m \cdot c^2 = \frac{m_0 \cdot c^2}{\sqrt{1 - \beta^2}} \end{cases} $ $0.3p$	
	De Broglie wavelength of the first electron $\lambda_{oe} = \frac{h}{p_o} = \frac{h \cdot \sqrt{1 - \beta^2}}{m_o \cdot v_o} \sqrt{1 - \beta^2}$ 0.2p	
	the situation after the scattering of photon	
	scattered λ_0, f_0 photon M θ electron in rest	
	$M \xrightarrow{y} M$	
	the momentum \vec{p}_0 and the energy E_0 of the scattered photon $\begin{cases} \vec{P}_o = \frac{h}{\lambda_o} = \frac{h \cdot f_o}{c} \\ E_o = h \cdot f_o \end{cases}$ 0.3p	
	the frequency of scattered photon $f_o = \frac{c}{\lambda_0}$ 0.1p	

MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION IV

The conservation principle for moment in the scattering process		
$\begin{pmatrix} h & h \end{pmatrix}$		
$\frac{1}{\lambda_{\rm p}} = \frac{1}{\lambda_{\rm r}} \cos \theta + m \cdot v_{\rm 2e} \cdot \cos \beta$		
0.3p		
$\frac{m}{2}\sin\theta - m \cdot v_{2e} \cdot \sin\beta = 0$		
$\left(\begin{array}{c}h\\h\end{array}\right)^{2}+\left(\begin{array}{c}h\\h\end{array}\right)^{2} 2 \cdot h^{2} \cos \theta = (m, v_{-})^{2} 0.3n$		
$\left(\frac{\lambda_f}{\lambda_f}\right) + \left(\frac{\lambda_0}{\lambda_0}\right) - \frac{1}{\lambda_0 \cdot \lambda_f} \cos \theta = (m \cdot v_{2e})$		
$\begin{pmatrix} h \\ (1 \cos \theta) - 2 \end{pmatrix} = 2$		
$\begin{cases} \frac{1}{m_0 \cdot c} \cdot (1 - \cos \theta) = \lambda_f - \lambda_0 \\ 0.5p \end{cases}$		
$\lambda_{f} - \lambda_{0} = \Lambda \cdot (1 - \cos \theta)$		
$\lambda_f > \lambda_0$		
$\begin{cases} E_f < E_0 \end{cases} $ 0.1p		
$\int \lambda_f = 1,25 \times 10^{-10} m$		
$\begin{cases} 6.6 \times 10^{-34} \\ 0.2p \end{cases}$		
$\left[\Lambda = \frac{1}{9,1 \times 10^{-31} \cdot 3 \times 10^8} m = 2,41 \times 10^{-12} m = 0,02 \times 10^{-10} m\right]$		
the value of wavelength of photon before the second scattering $\lambda_0 = 1,23 \times 10^{-10} m$ 0.1p		
$\lambda_i = \lambda_f$ 0.3p		
$\int \vec{p}_{1e} = \vec{p}_{2e} $		
$\int E_{1e} = E_{2e}$		
the moment of final electron		
1 1 $2 \cdot \cos \theta$		
$p_{2e} = n \sqrt{\frac{\lambda_f^2}{\lambda_f^2} + \frac{\lambda_f - \Lambda(1 - \cos\theta)}{(\lambda_f - \Lambda(1 - \cos\theta))^2}} - \frac{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos\theta))}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos\theta))} $		
The de Broglie wavelength of second electron after scattering (and of first electron before scattering)		
$1 = 1 = 1/(1 = 1 = 2 \cdot \cos\theta)$ 0.2n		
$\sum_{\lambda_{1e} \to \lambda_{2e}} \frac{1}{2} \left(\sqrt{\lambda_f^2} + \frac{1}{(\lambda_f - \Lambda(1 - \cos\theta))^2} - \frac{1}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos\theta))} \right) = 0.5p$		
final result: $\lambda_{1e} = \lambda_{2e} = 1,24 \times 10^{-10} m$ 0.2p		
Total score theoretical question IV		

Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and Research- Bucharest, Romania Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania