

Optics – Problem III (7points)

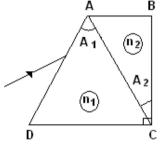
Prisms

Two dispersive prisms having apex angles $\hat{A}_1 = 60^\circ$ and $\hat{A}_2 = 30^\circ$ are glued as in the figure ($\hat{C} = 90^\circ$). The dependences of refraction indexes of the prisms on the wavelength are given by the relations

$$n_{1}(\lambda) = a_{1} + \frac{b_{1}}{\lambda^{2}};$$
$$n_{2}(\lambda) = a_{2} + \frac{b_{2}}{\lambda^{2}}$$

were

 $a_1 = 1,1$, $b_1 = 1.10^5 nm^2$, $a_2 = 1,3$, $b_2 = 5.10^4 nm^2$.



- **a.** Determine the wavelength λ_0 of the incident radiation that pass through the prisms without refraction on *AC* face at any incident angle; determine the corresponding refraction indexes of the prisms.
- **b.** Draw the ray path in the system of prisms for three different radiations λ_{red} , λ_0 , λ_{violet} incident on the system at the same angle.
- c. Determine the minimum deviation angle in the system for a ray having the wavelength λ_0 .
- *d.* Calculate the wavelength of the ray that penetrates and exits the system along directions parallel to DC.

Problem III - Solution

a. The ray with the wavelength λ_0 pass trough the prisms system without refraction on *AC* face at any angle of incidence if :

 $n_1(\lambda_0) = n_2(\lambda_0)$

Because the dependence of refraction indexes of prisms on wavelength has the form :

$$n_{1}(\lambda) = a_{1} + \frac{b_{1}}{\lambda^{2}}$$
(3.1)

$$n_{2}(\lambda) = a_{2} + \frac{b_{2}}{\lambda^{2}}$$
(3.2)

The relation (3.1) becomes:

$$a_1 + \frac{b_1}{\lambda_0^2} = a_2 + \frac{b_2}{\lambda_0^2}$$
(3.3)

The wavelength λ_0 has correspondingly the form:

$$\lambda_0 = \sqrt{\frac{b_1 - b_2}{a_2 - a_1}} \tag{3.4}$$

Substituting the furnished numerical values $\lambda_0 = 500 nm$

(3.5)

XIV-

The corresponding common value of indexes of refraction of prisms for the radiation with the wavelength λ_0 is:

 $n_1(\lambda_0) = n_2(\lambda_0) = 1,5$ (3.6) The relations (3.6) and (3.7) represent the answers of question **a**.

b. For the rays with different wavelength (λ_{red} , λ_0 , λ_{violet}) having the same incidence angle on first prism, the paths are illustrated in the figure 1.1.

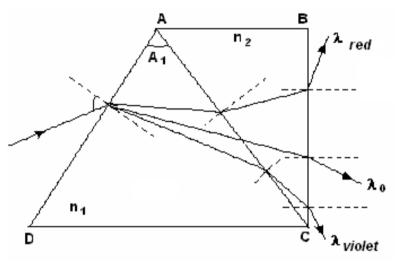


Figure 3.1 The draw illustrated in the figure 1.1 represents the answer of question **b**.

c. In the figure 1.2 is presented the path of ray with wavelength λ_0 at minimum deviation (the angle between the direction of incidence of ray and the direction of emerging ray is minimal).

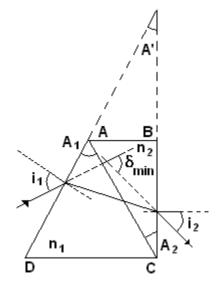
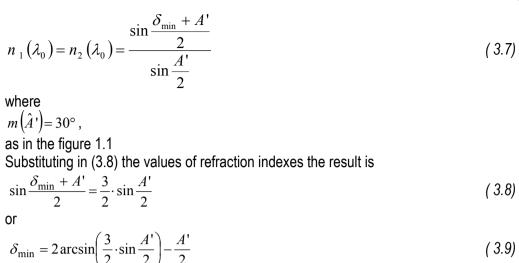


Figure 3.2

In this situation

XIV-



Numerically

$$\delta_{\min} \cong 30,7^{\circ}$$
 (3.10)
The relation (3.11) represents the answer of question **c**.

d. Using the figure 1.3 the refraction law on the <i>AD</i> face is	
$\sin i_1 = n_1 \cdot \sin r_1$	(3.11)
The refraction law on the AC face is	
$n_1 \cdot \sin r_1 = n_2 \cdot \sin r_2$	(3.12)

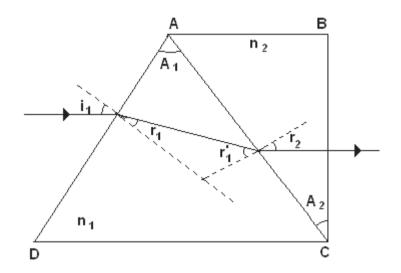


Figure 3.3

As it can be seen in the figure 1.3	
$r_2 = A_2$	(3.13)
and	
$i_1 = 30^{\circ}$	(3.14)
Also,	
$r_1 + r_1' = A_1$	(3.15)
Substituting (3.16) and (3.14) in (3.13) it results	

IPhO 1983	Theoretical Question III
$n_1 \cdot \sin(A_1 - r_1) = n_2 \cdot \sin A_2$	(3.16)
or $n_1 \sin(n_1 + n_2 + n_2)$	(0.10)
$n_1 \cdot (\sin A_1 \cdot \cos r_1 - \sin r_1 \cdot \cos A_1) = n_2 \cdot \sin A_2$	(3.17)
Because of (3.12) and (3.15) it results that	(3.1.)
1	(2.10)
$\sin r_1 = \frac{1}{2n_1}$	(3.18)
and	
$\cos r_1 = \frac{1}{2 n_1} \sqrt{4 {n_1}^2 - 1}$	(3.19)
Putting together the last three relations it results	
$\sqrt{4n_1^2 - 1} = \frac{2n_2 \cdot \sin A_2 + \cos A_1}{\sin A_1}$	(3.20)
Because	
$\hat{A}_1 = 60^{\circ}$	
and	
$\hat{A}_2 = 30^{\circ}$	
relation (3.21) can be written as	
$\sqrt{4n_1^2 - 1} = \frac{2n_2 + 1}{\sqrt{3}}$	(3.21)
or	
$3 \cdot n_1^2 = 1 + n_2 + n_2^2$	(3.22)
Considering the relations (3.1), (3.2) and (3.23) and opera	ting all calculus it results:
$\lambda^{4} \cdot (3a_{1}^{2} - a_{2}^{2} - a_{2} - 1) + (6a_{1}b_{1} - b_{2} - 2a_{2}b_{2}) \cdot \lambda^{2} + 3b_{1}$	(3.23)
Solving the equation (3.24) one determine the wavelengt	h λ of the ray that enter the prisms system
having the direction parallel with DC and emerges the pr with DC . That is	ism system having the direction again parallel
$\lambda = 1194 nm$	(3.24)
or	
$\lambda \cong 1,2 \mu m$	(3.25)
The relation (3.26) represents the answer of question d .	

The relation (3.26) represents the answer of question **d**.

Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and Research- Bucharest, Romania Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania