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Problems of the 13th International Physics Olympiad

(Malente, 1982)

Gunter Lind & Gunnar Friege 1

Leibniz-Institute for Science Education (IPN) at the University of Kiel, Germany

Abstract

The 13th International Physics Olympiad took place in 1982 in the Federal Republic of

Germany. This article contains the competition problems, their solutions and a grading

scheme.

Introduction

In 1982 the Federal Republic of Germany was the first host of the Physics Olympiad

outside the so-called Eastern bloc. The 13th International Physics Olympiad took place in

Malente, Schleswig-Holstein. The competition was funded by the German Federal

Ministry of Science and Education. The organisational guidelines were laid down by the

work group “Olympiads for pupils” of the conference of ministers of education of the

German federal states. The Institute for Science Education (IPN) at the University of Kiel

was responsible for the realisation of the event. A commission of professors, whose

chairman was appointed by the German Physical Society, were concerned with the

formulation of the competition problems. All other members of the commission came from

physics department of the university of Kiel or from the college of education at Kiel.

The problems as usual covered different fields of  classical physics. In 1982 the pupils had

to deal with three theoretical and two experimental problems, whereas at the previous

Olympiads only one experimental task was given. However, it seemed to be reasonable to

put more stress on experimental work. The degree of difficulty was well balanced. One of

the theoretical problems could be considered as quite simple (problem 3: “hot-air

balloon”). Another theoretical problem (problem 1: “fluorescent lamp”) had a mean degree

of difficulty and the distribution of the points was a normal distribution with only a few
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excellent and only a few unsatisfying solutions. The third problem (problem 2: “oscillation

coat hanger”) turned out to be the most difficult problem. This problem was generally

considered as quite interesting because different ways of solving were possible. About one

third of the pupils did not find an adequate start to the problem, but nearly one third of the

pupils was able to solve the substantial part of the problem. That means, this problem

polarized between the pupils. The two experimental tasks were quite different in respect of

the input for the experimental setup and the time required for dealing with the problems,

whereas they were quite similar in the degree of difficulty. Both required demandingly

theoretical considerations and experimental skills. Both experimental problems turned out

to be rather difficult. The tasks were composed in a way that on the one hand almost every

pupil had the possibility to come to certain partial results and that there were some

difficulties on the other hand which could only be solved by very few pupils. The

difficulty in the second experimental problem (problem5: “motion of a rolling cylinder”)

was the explanation of the experimental results, which were initially quite surprising. The

difficulty in the other task (problem 4: “lens experiment") was the revealing of an

observation method with a high accuracy (parallax). The five hours provided for solving

the two experimental problems were slightly too short. According to that,  in both

experiments only a few pupils came up with excellent solutions. In problem 5 nobody got

the full points.

The problems presented here are based on the original German and English versions of the

competition problems. The solutions are complete but in some parts condensed to the

essentials. Almost all of the original hand-made figures are published here.

Theoretical Problems

Problem 1: Fluorescent lamp

An alternating voltage of 50 Hz frequency is applied to the fluorescent lamp shown in the

accompanying circuit diagram.
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The following quantities are measured:

overall voltage (main voltage) U  = 228.5 V

electric current I   = 0.6 A

partial voltage across the fluorescent lamp U’ = 84 V

ohmic resistance of the series reactor dR 26.3= Ω

The fluorescent lamp itself may be considered as an ohmic resistor in the calculations.

a) What is the inductance L of the series reactor?

b) What is the phase shift ϕ   between voltage and current?

c) What is the active power Pw transformed by the apparatus?

d) Apart from limiting the current the series reactor has another important function. Name

and explain this function!

Hint: The starter  includes a contact which closes shortly after

switching on the lamp, opens up again and stays open.

e) In a diagram with a quantitative time scale sketch the time sequence of the luminous

flux emitted by the lamp.

f) Why has the lamp to be ignited only once although the applied alternating voltage goes

through zero in regular intervals?

g) According to the statement of the manufacturer, for a fluorescent lamp of the described

type a capacitor of about 4.7 µF can be switched in series with the series reactor. How

does this affect the operation of the lamp and to what intent is this possibility provided

for?

h) Examine both halves of the displayed demonstrator lamp with the added spectroscope.

Explain the differences between the two spectra. You may walk up to the lamp and you

may keep the spectroscope as a souvenir.

S
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Solution of problem 1:

a) The total resistance of the apparatus is 228.5VZ 380.8
0.6A

= = Ω  ,

the ohmic resistance of the tube is R
84 VR 140
0.6 A

= = Ω .

Hence the total ohmic resistance is R 140 26.3 166.3= Ω + Ω = Ω .

Therefore the inductance of the series reactor is: 2 2L Z R 342.6ω⋅ = − = Ω .

This yields 1

342.6L 1.09 H
100 s−

Ω
= =

π
.

b) The impedance angle is obtained from L 342.6tan 2.06
R 166.3
ω⋅ Ω

ϕ = = =
Ω

.

Thus o64.1ϕ = .

c) The active power can be calculated in different ways:

1) o
wP U I cos 228.5V 0.6 A cos 64.1 59.88 W= ⋅ ⋅ ϕ = ⋅ ⋅ =

2) 2 2
wP R I 166.3 (0.6 A) 59.87 W= ⋅ = Ω ⋅ =

d) By opening the contact in the starter a high induction voltage is produced across the

series reactor (provided the contact does not open exactly the same moment, when the

current goes through zero). This voltage is sufficient to ignite the lamp. The main

voltage itself, however, is smaller than the ignition voltage of the fluorescent tube.

e)

f) The recombination time of the ions and electrons in the gaseous discharge is

sufficiently large.
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g) The capacitive resistance of a capacitor of 4.7 µF is

6 11 (100 4.7 10 ) 677.3
C

− −= ⋅π ⋅ ⋅ Ω = Ω
ω⋅

.

The two reactances subtract and there remains a reactance of 334.7 Ω acting as a

capacitor.

The total resistance of the arrangement is now

2 2Z ' (334.7) (166.3) 373.7= + Ω = Ω ,

which is very close to the total resistance without capacitor, if you assume the capacitor

to be loss-free (cf. a) ). Thus the lamp has the same operating qualities, ignites the same

way, and a difference is found only in the impedance angle ϕ’, which is opposite to the

angle ϕ calculated in b):

( ) 1L C 334.7tan ' 2.01
R 166.3

−ω⋅ − ω⋅
ϕ = = − = −

o' 63.6ϕ = − .

Such additional capacitors are used for compensation of reactive currents in buildings

with a high number of fluorescent lamps, frequently they are prescribed by the

electricity supply companies. That is, a high portion of reactive current is unwelcome,

because the power generators have to be layed out much bigger than would be really

necessary and transport losses also have to be added which are not payed for by the

customer, if pure active current meters are used.

h) The uncoated part of the demonstrator lamp reveals the line spectrum of mercury, the

coated part shows the same line spectrum over a continuous background. The

continuous spectrum results from the ultraviolet part of the mercury light, which is

absorbed by the fluorescence and re-emitted with smaller frequency (energy loss of the

photons) or larger wavelength respectively.

Problem 2: Oscillating coat hanger

A (suitably made) wire coat hanger can perform small amplitude oscillations in the plane

of the figure around the equilibrium positions shown. In positions a) and b) the long side is
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horizontal. The other two sides have equal length. The period of oscillation is the same in

all cases.

What is the location of the center of mass, and how long is the period?

  a) b) c)

The figure does not contain any information beyond the dimensions given. Nothing is

known, e.g., concerning the detailed distribution of mass.

Solution of problem 2

First method:

The motions of a rigid body in a plane correspond to the motion of two equal point masses

connected by a rigid massless rod. The moment of inertia then determines their distance.

Because of the equilibrium position a) the center of mass

is on the perpendicular bipartition of the long side of the

coat hanger. If one imagines the equivalent masses and

the supporting point P being arranged in a straight line in

each case, only two positions of P yield the same period

of oscillation (see sketch). One can understand this by

considering the limiting cases: 1. both supporting points

in the upper mass and 2. one point in the center of mass and the other infinitely high

above. Between these extremes the period of oscillation grows continuously. The

supporting point placed in the corner of the long side c) has the largest distance from the

center of mass, and therefore this point lies outside the two point masses. The two other

supporting points a), b) then have to be placed symmetrically to the center of mass

between the two point masses, i.e., the center of mass bisects the perpendicular bipartition.

One knows of the reversible pendulum that for every supporting point of the physical

pendulum it generally has a second supporting point of the pendulum rotated by 180o, with

the same period of oscillation but at a different distance from the center of mass. The
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section between the two supporting points equals the length of the corresponding

mathematical pendulum. Therefore the period of oscillation is obtained through the

corresponding length of the pendulum sb + sc , where sb = 5 cm and 2 2
cs 5 21= + cm, to

be  T  =  1.03 s .

Second method:

Let  s  denote the distance between the supporting point and the center of mass,  m  the

mass itself and  θ  the moment of inertia referring to the supporting point. Then we have

the period of oscillation  T :

T 2
m g s
θ

= π
⋅ ⋅

  , (1)

where  g  is the acceleration of gravity,  g  = 9.81 m/s2. Here θ can be obtained from the

moment of inertia  θo related to the center of mass:

2
0 m sθ = θ + ⋅ (2)

Because of the symmetrical position in

case a) the center of mass is to be found on

the perpendicular bisection above the

long side. Now (1) and (2) yield

2
2

0
Tm s m g s for

2
⎛ ⎞θ + ⋅ = ⋅ ⋅ ⋅⎜ ⎟⋅π⎝ ⎠

  s  =  sa,  sb  and sc. (3)

because all periods of oscillation are the same. This quadratic equation has only two

different solutions at most. Therefore at least two of the three distances are equal. Because

of  sc > 21 cm > sa + sb, only sa and sb can equal each other. Thus we have

sa = 5 cm (4)

The moment of inertia θ0 is eliminated through (3):

( )
2

2 2
c a c a

Tm (s s ) m g s s
2

⎛ ⎞⋅ − = ⋅ ⋅ ⋅ −⎜ ⎟⋅π⎝ ⎠

and we have c as sT 2
g
+

= ⋅π (5)
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with the numerical value T 1.03 s= ,

which has been rounded off after two decimals because of the accuracy of  g.

Third method:

This solution is identical to the previous one up to equation (2).

From (1) and (2) we generally have for equal periods of oscillation T1 = T2:

2
0 1

1

m s
m g s

θ + ⋅
⋅ ⋅

  =  
2

0 2

2

m s
m g s

θ + ⋅
⋅ ⋅

and therefore ( ) ( )2 2
2 0 1 1 0 2s m s s m s⋅ θ + ⋅ = ⋅ θ + ⋅

or ( ) ( )2 1 0 1 2s s m s s 0− ⋅ θ − ⋅ = (6)

The solution of (6) includes two possibilities: 0
1 2 1 2s s or s s

m
θ

= ⋅ =

Let  2⋅a  be the length of the long side and  b the height of the coat hanger. Because of

Tb  =  Tc  we then have 0
b c b ceither s s or s s

m
θ

= ⋅ = , where 2 2
c bs s a= + ,

which excludes the first possibility. Thus 0
b cs s

m
θ

⋅ = . (7)

For  Ta  =  Tb  the case  sa ⋅ sb = 0

m
θ  is excluded because of eq. (7), for we have

a bs s⋅ < 0
c bs s

m
θ

⋅ = .

Hence 2 2
a b c

1 1s s b, s b a
2 4

= = = +

and

20 2b
b c b

b b

s s s smT 2 2
g s g s

θ
+ ⋅ +

= ⋅π = π
⋅ ⋅

The numerical calculation yields the value T 1.03 s= .
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Problem 3: Hot-air-balloon

Consider a hot-air balloon with fixed volume VB = 1.1 m3. The mass of the balloon-

envelope, whose volume is to be neglected in comparison to VB,  is mH  =  0.187 kg.

The balloon shall be started, where the external air temperature is  1ϑ  = 20 oC and the

normal external air pressure is po = 1.013 ⋅ 105 Pa. Under these conditions the density of

air is ρ1 = 1.2 kg/m3.

a) What temperature 2ϑ  must the warmed air inside the balloon have to make the balloon

just float?

b) First the balloon is held fast to the ground and the internal air is heated to a steady-state

temperature of 3ϑ  = 110 oC. The balloon is fastened with a rope.

Calculate the force on the rope.

c) Consider the balloon being tied up at the bottom (the density of the internal air stays

constant). With a steady-state temperature 3ϑ  = 110 oC of the internal air the balloon

rises in an isothermal atmosphere of 20 oC and a ground pressure of

p0 = 1.013 ⋅ 105 Pa. Which height  h  can be gained by the balloon under these

conditions?

d) At the height  h  the balloon (question c)) is pulled out of its equilibrium position by

10 m and then is released again.

Find out by qualitative reasoning what kind of motion it is going to perform!

Solution of problem 3:

a) Floating condition:

The total mass of the balloon, consisting of the mass of the envelope  mH  and the mass

of the air quantity of temperature 2ϑ  must equal the mass of the displaced air quantity

with temperature 1ϑ  = 20 oC.

VB ⋅ ρ2  +  mH  =  VB ⋅ ρ1

H
2 1

B

m
V

ρ = ρ −  (1)
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Then the temperature may by obtained from

1 2

2 1

T
T

ρ
=

ρ
,

1
2 1

2

T Tρ
= ⋅
ρ

= 341.53 K = 68.38 °C (2)

b) The force  FB  acting on the rope is the difference between the buoyant force FA  and

the weight force  FG:

FB = VB ⋅ ρ1 ⋅ g  -  (VB ⋅ ρ3  + mH) ⋅ g (3)

It follows with ρ3 ⋅ T3  =  ρ1 ⋅ T1

FB = VB ⋅ ρ1 ⋅ g ⋅ 1

3

T1
T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 - mH ⋅ g = 1,21 N (4)

c) The balloon rises to the height  h , where the density of the external air ρh has the same

value as the effective density ρeff, which is evaluated from the mass of the air of

temperature ϑ3  = 110 oC (inside the balloon) and the mass of the envelope  mH:

1

0

g h

3 B H2
eff h 1

B B

V mm e
V V

ρ ⋅ ⋅
−

ρρ ⋅ +
ρ = = = ρ = ρ ⋅   (5)

Resolving eq. (5) for  h  gives: o 1

1 eff

ph 1n 843m
g

ρ
= ⋅ =

ρ ⋅ ρ
(6).

d) For small height differences (10 m in comparison to 843 m) the exponential pressure

drop (or density drop respectively) with height can be approximated by a linear

function of height. Therefore the driving force is proportional to the elongation out of

the equilibrium position.

This is the condition in which harmonic oscillations result, which of course are damped

by the air resistance.
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Experimental Problems

Problem 4: Lens experiment

The apparatus consists of a symmetric biconvex lens, a plane mirror, water, a meter stick,

an optical object (pencil), a supporting base and a right angle clamp. Only these parts may

be used in the experiment.

a) Determine the focal length of the lens with a maximum error of  ±  1 %.

b) Determine the index of refraction of the glass from which the lens is made.

The index of refraction of water is  nw  =  1.33. The focal length of a thin lens is given by

( )
1 2

1 1 1n 1
f r r

⎛ ⎞
= − ⋅ −⎜ ⎟

⎝ ⎠
,

where  n  is the index of refraction of the lens material and  r1  and  r2  are the curvature

radii of the refracting surfaces. For a symmetric biconvex lens we have r1 = - r2 = r, for a

symmetric biconcave lens  r1  =  - r2  =  - r .

Solution of problem 4:

a) For the determination of  fL , place the lens on the mirror

and with the clamp fix the pencil to the supporting base.

Lens and mirror are then moved around until the

vertically downward looking eye sees the pencil and its

image side by side.

In order to have object and image in focus at the same

time, they must be placed at an equal distance to the eye.

In this case object distance and image distance are the

same and the magnification factor is  1 .

It may be proved quite accurately, whether magnification 1 has in fact been obtained, if

one concentrates on parallatical shifts between object and image when moving the eye:

only when the distances are equal do the pencil-tips point at each other all the time.

The light rays pass the lens twice because they are reflected by the mirror. Therefore

the optical mapping under consideration corresponds to a mapping with two lenses

placed directly one after another:
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L L

1 1 1 1 1 1, where
g b f f f f
+ = = +

i.e. the effective focal length  f  is just half the focal length of the lens. Thus we find for

magnification 1:

L
L

2 2g b and i.e. f g.
g f

= = =

A different derivation of fL = g = b: For  a

mapping of magnification  1  the light rays

emerging from a point on the optical axis

are reflected into themselves. Therefore

these rays have to hit the mirror at right

angle and so the object distance  g  equals

the focal length  fL  of the lens in this case.

The distance between pencil point and mirror has to be determined with an accuracy,

which enables one to state  fL  with a maximum error of  ± 1 % . This is accomplished

either by averaging several measurements or by stating an uncertainty interval, which

is found through the appearance of parallaxe.

Half the thickness of the lens has to be subtracted from the distance between pencil-

point and mirror.

'
L L

1f f d , d 3.0 0.5 mm
2

= − = ±

The nominal value of the focal length of the lens is Lf  = 30 cm. However, the actual

focal length of the single lenses spread considerably. Each lens was measured

separately, so the individual result of the student can be compared with the exact value.

b) The refractive index  n  of the lens material can be evaluated from the equation

( )
L

1 2n 1
f r

= − ⋅

if the focal length  fL  and the curvature radius  r  of the symmetric biconvex lens are

known. fL  was determined in part a) of this problem.
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The still unknown curvature radius  r  of the

symmetric biconvex lens is found in the

following way: If one pours some water onto

the mirror and places the lens in the water,

one gets a plane-concave water lens, which

has one curvature radius equalling the glass lens’ radius and the other radius is  ∞ .

Because the refractive index of water is known in this case, one can evaluate the

curvature radius through the formula above, where  r1  =  -r   and  r2  =  ∞  :

( )w
w

1 1n 1 .
f r

− = − ⋅

Only the focal length  f '  of the combination of lenses is directly measured, for which

we have

L w

1 1 1
f ' f f

= + .

This focal length is to be determined by a mapping of magnification  1  as above.

Then the focal length of the water lens is '
w L

1 1 1
f f f

= −

and one has the curvature radius ( )w wr n 1 f= − − ⋅ .

Now the refractive index of the lens is determined by 
L

rn 1
2 f

= +
⋅

with the known values of  fL  and  r, or, if one wants to express  n  explicitly through

the measured quantities: ( )
( )

w

L

f ' n 1
n

2 f ' f
⋅ −

=
⋅ −

+ 1.

The nominal values are: f ' =  43.9 cm, fw = -94.5 cm, r =  31.2 cm, n = 1.52.

Problem 5: Motion of a rolling cylinder

The rolling motion of a cylinder may be decomposed into rotation about its axis and

horizontal translation of the center of gravity. In the present experiment only the

translatory acceleration and the forces causing it are determined directly.
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Given a cylinder of mass Μ , radius R , which is placed on a horizontal plane board. At a

distance ri  (i  =  1 … 6) from the cylinder axis a force acts on it (see sketch). After letting

the cylinder go, it rolls with constant acceleration.

a) Determine the linear accelerations ai (i  =  1 … 6) of the cylinder axis experimentally

for several distances ri (i = 1 … 6).

b) From the accelerations  ai  and given quantities, compute the forces Fi   which act in

horizontal direction between cylinder and plane board.

c) Plot the experimental values Fi as functions of ri. Discuss the results.

Before starting the measurements, adjust the plane board horizontally. For present

purposes it suffices to realize the horizontal position with an uncertainty of ± 1 mm of

height difference on 1 m of length; this corresponds to the distance between adjacent

markings on the level. What would be the result of a not horizontal position of the plane

board?

Describe the determination of auxiliary quantities and possible further adjustments;

indicate the extent to which misadjustments would influence the results.

The following quantities are given:

R = 5 cm r1 = 0.75 cm

M = 3.275 kg r2 = 1.50 cm

m = 2 x 50 g r3 = 2.25 cm

D = 1.50 cm r4 = 3.00 cm

d = 0.1 mm r5 = 3.75 cm

r6 = 4.50 cm

Mass and friction of the pulleys c may be neglected in the evaluation of the data.

By means of knots, the strings are put into slots at the cylinder. They should be inserted as

deeply as possible. You may use the attached paper clip to help in this job.
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The stop watch should be connected, as shown in the sketch, with electrical contacts at A

and B via an electronic circuit box. The stop watch starts running as soon as the contact at

A is opened, and it stops when the contact at B is closed.

The purpose of the transistor circuit is to keep the relay position after closing of the contact

at B, even if this contact is opened afterwards for a few milliseconds by a jump or chatter

of the cylinder.

Solution of problem 5:

Theoretical considerations:

a) The acceleration of the center of mass of the cylinder is 2

2 sa
t
⋅

= (1)

b) Let  am  be the acceleration of the masses  m  and  T  the sum of the tensions in the two

strings, then

T  =  m ⋅ g - m ⋅ am (2)

The acceleration  a  of the center of mass of the cylinder is determined by the resultant

force of the string-tension  T  and the force of interaction  F  between cylinder and the

horizontal plane.

M⋅a  = T  -  F (3)

If the cylinder rotates through an angle  θ  the mass  m  moves a distance xm.

It holds

xm = (R + r) ⋅ θ

( )m
aa R r
R

= + ⋅ (4)
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From  (2),  (3) and  (4)  follows rF mg M m 1 a
R

⎡ ⎤⎛ ⎞= − + ⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (5)

c) From the experimental data we see that for small  ri  the forces M ⋅ a  and T are in

opposite direction and that they are in the same direction for large ri .

For small values of  r  the torque produced by the string-tensions is not large enough to

provide the angular acceleration required to prevent slipping. The interaction force

between cylinder and plane acts into the direction opposite to the motion of the center

of mass and thereby delivers an additional torque.

For large values of  r  the torque produced by string-tension is too large and the

interaction force has such a direction that an opposed torque is produced.

From the rotary-impulse theorem we find

aT r F R
R

⋅ + ⋅ = Ι ⋅θ = Ι ⋅�� ,

where  Ι  is the moment of inertia of the cylinder.

With (3)  and  (5) you may eliminate  T  and  a  from this equation. If the moment of

inertia of the cylinder is taken as 21 R
2

Ι = ⋅Μ ⋅ (neglecting the step-up cones) we find

after some arithmetical transformations

2

r1 2
RF mg

m r3 2 1
M R

− ⋅
= ⋅

⎛ ⎞+ ⋅ ⋅ +⎜ ⎟
⎝ ⎠

.

For  r  =  0 m gF m3 2
M

⋅
→ =

+ ⋅
 >  0.

For  r  =  R m gF m3 8
M

− ⋅
⇒ =

+ ⋅
<  0.

Because  m 1
M
� it is approximately 1 2 rF m g

3 3 R
= ⋅ − ⋅ .
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That means:  the dependence of  F  from  r  is approximately linear.  F  will be zero if

r m g
R 2

⋅
= .

Experimental results:

s  =  L  −  (2 ⋅  R ⋅D  +  D2)
1
2   −  (2 ⋅  R ⋅d  −  d2) 

1
2

s  =  L  −  4.5 cm  =  39.2 cm  −  4.5 cm  =  34.7 cm

r
[cm]

t
[s]

t

[s]

a

[m/s2]

F
[N]

0.75 1.81 1.82 1.82 1.816 0.211 0.266

1.50 1.71 1.72 1.73 1.720 0.235 0.181

2.25 1.63 1.63 1.64 1.633 0.261 0.090

3.00 1.56 1.56 1.57 1.563 0.284 0.004

3.75 1.51 1.51 1.52 1.513 0.304 - 0.066

4.50 1.46 1.46 1.46 1.456 0.328 - 0.154
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Grading schemes

Theoretical problems

Problem 1: Fluorescent lamp pts.
Part a 2
Part b 1
Part c 1
Part d 1
Part e 1
Part f 1
Part g 2
Part h 1

10

Problem 2: Oscillating coat hanger pts.
equation (1) 1,5
equation (2) 1,5
equation (4) 3
equation (5) 2
numerical value for T 1

10

Problem 3: Hot-air-balloon pts.
Part a 3
Part b 2
Part c 3
Part d 2

10

Experimental problems

Problem 4: Lens experiment pts.
correct description of experimental prodedure 1
selection of magnification one 0.5
parallaxe for verifying his magnification 1
fL = g = b with derivation 1
several measurements with suitable averaging or other

determination of error interval 1
taking into account the lens thickness and computing fL,

including the error 0.5
idea of water lens 0.5
theory of lens combination 1
measurements of f ′ 0.5
calculation of n and correct result 1

8
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Problem 5: Motion of a rolling cylinder pts.
Adjustment mentioned of strings a) horizontally and b) in

direction of motion 0.5
Indication that angle offset of strings enters the formula for

the acting force only quadratically, i.e. by its cosine 0.5
Explanation that with non-horizontal position, the force

m⋅g is to be replaced by  m⋅g  ±  M⋅g ⋅ sin α 1.0
Determination of the running length according for formula

( ) ( )1 / 2 1 / 22 2s L 2 R D D 2 R d d= − ⋅ ⋅ + − ⋅ ⋅ +

including correct numerical result 1.0
Reliable data for rolling time 1.0
accompanied by reasonable error estimate 0.5
Numerical evaluation of the  Fi 0.5
Correct plot of  Fi (vi) 0.5
Qualitative interpretation of the result by intuitive

consideration of the limiting cases  r = 0  and  r = R 1.0
Indication of a quantitative, theoretical interpretation using

the concept of moment of inertia 1.0
Knowledge and application of the formula  a = 2 s / t2 0.5
Force equation for small mass and tension of the string

m⋅(g - am)  =  T 1.0
Connection of tension, acceleration of cylinder and

reaction force  T – F = M⋅a 1.0
Connection between rotary and translatory motion

( )mx R r= + ⋅ θ 0.5
( )ma 1 r / R a= + ⋅ 0.5

Final formula for the reaction force
( )( )F m g M m 1 r / R a= ⋅ − + ⋅ + ⋅ 1.0

If final formulae are given correctly, the knowledge for
preceding equations must be assumed and is graded
accordingly.
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