В задаче требуется оценка погрешностей!

Задание

1. Соберите установку, изображенную на рис. 1. Закрепите мерную ленту скотчем. Снимите зависимость показаний динамометра от координаты конца резинового шнура.

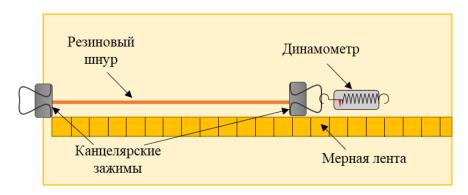


Рис. 1. Установка для измерения растяжения резинового шнура

- 2. Рассчитайте на основе полученных данных зависимость силы упругости, возникающей в шнуре, от его относительного удлинения. Постройте график этой зависимости. Почему зависимость не является линейной функцией? Определите ее угловой коэффициент α на участке малых относительных удлинений.
- 3. С помощью стеклянной колбы, воды и весов определите объем всего шнура в не растянутом состоянии. На основе полученного значения рассчитайте площадь поперечного сечения шнура. Определите модуль Юнга E резины, из которой изготовлен шнур, разделив угловой коэффициент графика α , полученный в пункте 2, на площадь поперечного сечения шнура.

Найденный Вами модуль Юнга E является коэффициентом пропорциональности между силой упругости, приходящейся на единицу площади поперечного сечения, и относительным изменением продольных размеров упругого тела:

$$\frac{F}{S} = E \frac{\Delta l}{l_0} \tag{1}$$

4. Поместите шнур в залитую водой до краев колбу (см. рис. 2 на стр. 2). Заткните колбу пробкой, проткнутой иглой от шприца. Наберите в шприц воду таким образом, чтобы нижняя половина шприца была заполнена водой, а верхняя половина - воздухом. Вставьте шприц в штуцер иглы. Собирая установку, стремитесь к тому, чтобы в колбе, игле, штуцере и нижней половине шприца отсутствовали пузырьки воздуха. Снимите зависимость уровня воды $V_{\rm B}$, отсчитываемого по шкале шприца, от суммарного объема $V_{\rm C}$ воды и воздуха в шприце.

Если Вам не удается вытащить пробку из колбы, обратитесь к организаторам.

5. По полученным данным рассчитайте зависимость модуля относительного изменения объема шнура от дополнительного (по отношению к атмосферному) давления. Общий объем всей воды в установке можно считать неизменным. Постройте график полученной зависимости. Определите угловой коэффициент β графика и вычислите обратную к нему величину K. Она является модулем всестороннего сжатия резины и фигурирует в формуле, описывающей аналог закона Гука для случая сжатия одинаковым давлением по всем направлениям:

$$\Delta P = K \frac{\Delta V}{V_0} \tag{2}$$

6. Коэффициентом Пуассона μ называется взятое со знаком минус отношение относительных изменений поперечных и продольных размеров упругого объекта при деформации растяжения/сжатия (см. рис. 3):

 $\mu = -\frac{\Delta d/d_0}{\Delta l/l_0}$

$$V_{\rm C}$$
 $V_{\rm B}$
Пробка

Колба

Игла

Резиновый инур

Рис. 2. Установка для измерения модуля всестороннего сжатия резины

Теоретически выведите формулу относительного изменения объема упругого тела при сжатии его силами только в одном направлении (с учетом того, что поперечные размеры тоже меняются).

(3)

Каково относительное изменение объема при всестороннем сжатии? Получите теоретическую связь модуля Юнга E, модуля всестороннего сжатия K и коэффициента Пуассона μ .

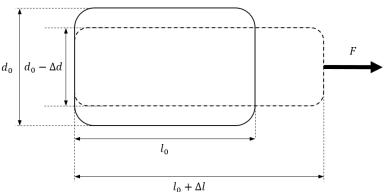


Рис. 3. Изменение продольных и поперечных размеров при растяжении

7. На основе полученных в предыдущих пунктах результатов определите модуль Пуассона резины.

Obopydobahue. Шприц 1 мл, проткнутая зеленой иглой пробка, резиновый шнур, плоскодонная колба 100 мл, емкость с водой, пинцет, электронные весы 0.01 г, мерная лента, скотч, динамометр 5 H, 2 канцелярских зажима, поднос, салфетки для поддержания рабочего места в чистоте.