

Первый тур Решение Страница 1 из 5

11 класс Радиоактивность

Решение.

Часть 1. Измерение естественного радиационного фона.

Подсчитаем количество срабатываний счётчика за 1 минуту. Время будем измерять с помощью секундомера. Измерения повторим несколько раз. Результаты представлены в таблице ниже.

$N_{\overline{0}}$	I, имп/м	$N_{\overline{0}}$	I, имп/м
1	17	11	24
2	23	12	20
3	30	13	17
4	20	14	21
5	16	15	19
6	24	16	28
7	32	17	25
8	31	18	15
9	23	19	23
10	27	20	25

Вычислим среднее значение и стандартное отклонение от среднего значения:

$$I_{
m doh} = (23.0 \pm 5.0) \; {
m имп/мин}$$

Часть 2. Изучение поглощения β -излучения веществом.

Получим теоретическую зависимость потока частиц от толщины слоя поглотителя.

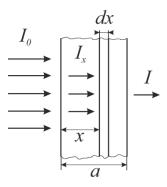


Рис. 1.

Первый тур Решение Страница 2 из 5

По аналогии со световыми пучками, можно сказать, что пучок электронов, двигающихся от плоского протяженного источника, является плоским. Тогда на поверхность слоя вещества по нормали падает параллельный пучок частиц. На расстоянии x от поверхности вещества мысленно выделим бесконечно тонкий слой dx. Так как вероятность поглощения электрона этим тонким слоем одинакова для всех электронов, изменение потока частиц dI_x , поглощённых слоем вещества dx пропорционально плотности потока I_x , падающего непосредственно на слой dx:

$$-dI_x = kI_x dx$$

Знак минус указывает на снижение плотности потока, k — коэффициент поглощения. Перепишем уравнение:

$$\frac{dI_x}{I_x} = -kdx$$

Проинтегрируем обе части уравнения:

$$\int_{I_0}^{I} \frac{dI_x}{I_x} = -\int_0^a k dx,$$

где I_0 – плотность исходного пока частиц, падающего на слой вещества—поглотителя, a – толщина слоя. Отсюда получаемм, что:

$$\ln\left(\frac{I}{I_0}\right) = -ka,$$

откуда:

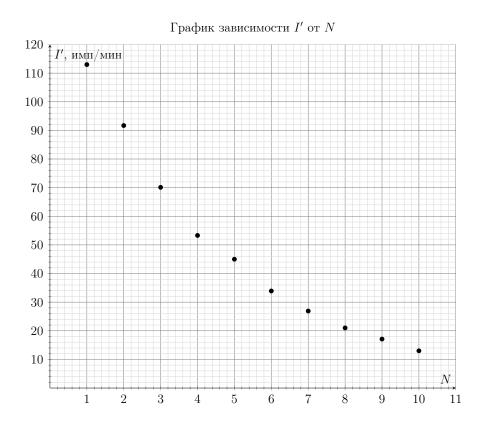
$$I = I_0 e^{-ka}$$

Для каждого фиксированного количества листов картона N, поглощающих частицы, будем проводить несколько замеров количества срабатываний счётчика в минуту (имп/мин). Результаты приведены ниже.

Первый тур Решение Страница 3 из 5

N	I_1 ,имп $/$ м	I_2 ,имп $/$ м	I_3 ,имп $/$ м	I_4 ,имп $/$ м	I_5 ,имп $/$ м	I_6 ,имп $/$ м	I_7 ,имп $/$ м
1	131	133	127	132	160	125	144
2	110	132	107	123	112	101	118
3	90	99	89	107	84	98	85
4	89	67	77	68	74	78	81
5	66	63	70	66	84	63	64
6	53	49	65	65	57	54	55
7	59	41	53	52	45	54	45
8	46	37	36	47	43	49	50
9	39	45	31	49	37	39	41
10	33	32	37	45	30	41	34

Далее для каждого значения N вычислим среднее значение I потока частиц. Вспомним, что, помимо бета-частиц от источника, наш счётчик регистрирует естественный фон. Вычтем его из наших показаний и таким образом вычислим величину I'. Оценим стандартное отклонение от среднего с учётом погрешности измерения фона. Результаты расчётов представлены ниже.


N	I,имп $/$ миин	σ_I ,имп $/$ мин	I',имп $/$ мин	$\sigma_{I'}$,имп $/$ мин
1	136	12.2	113	13.2
2	114.7	10.5	91.7	10.5
3	93.1	8.4	70.1	8.4
4	76.3	7.6	53.3	7.6
5	68	7.5	45	7.5
6	56.9	6.1	33.9	6.1
7	49.9	6.3	26.9	6.3
8	44	5.6	21	5.6
9	40.1	5.8	17.1	5.8
10	36	5.4	13	5.4

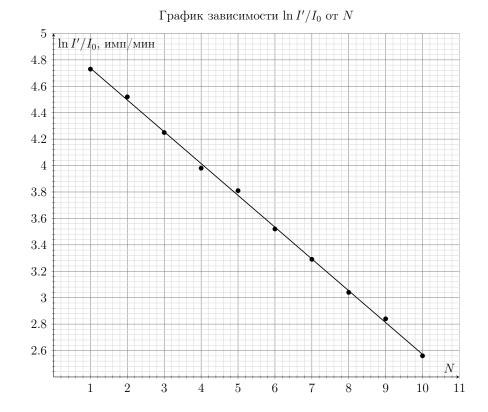
Построим график зависимости I'(N). Форма кривой напоминает график экспоненциальной функции с отрицательным показателем:

$$I' = I_0 e^{-kN}$$

Первый тур Решение Страница 4 из 5

Проверим применимость данного закона к исследуемой зависимости. Для этого выполним опе-рацию линеаризации:

$$\ln I' = \ln I_0 - kN$$


В том случае, если данный закон с достаточной точностью описывает исследуемую зависимость, график зависимости $\ln I'$ от N должен с достаточной точностью аппроксимироваться прямой. Проведём линеаризацию.

N	$\ln I'/I_0$
1	4.73
2	4.52
3	4.25
4	3.98
5	3.81
6	3.52
7	3.29
8	3.04
9	2.84
10	2.56

Построим график зависимости $\ln I'/I_0$ от N:

Первый тур Решение Страница 5 из 5

Построенный график с достаточной точностью аппроксимируется прямой, что подтверждает экспоненциальный характер зависимости.

Определим из линеаризованного графика угловой коэффициент $\alpha=-0.24$. Заметим, что $\alpha=-k$.

Величина k имеет смысл вероятности поглощения электрона одним слоем картона.

Замечание: Из теории известно, что бета-излучение, в отличие от гамма-излучения, обладает конечной максимальной длиной пробега частиц в среде. Поэтому, экспоненциальных характер зависимости I'(N) лишь приближен к реальному.