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E1: Hidden wire

Theoretical background

As shown in Fig. 1, the horizontal projection B⃗h of the
magnetic induction B⃗w of the wire has the same direc-
tion and is perpendicular to the wire in all points of the
xy plane. It is clear that B⃗h makes with North (y) direc-
tion an angle ψ = 180◦ − θ, where θ is the angle between
the direction of the current and the positive x-direction.
Themagnetic needle points along the vector B⃗ = B⃗h+B⃗E
of the total magnetic induction. As evident from the vec-
tor triangle on Fig. 1(a), the deflection angle φ can be ob-
tained through the sine-theorem:

Bh
BE

=
sinφ

sin(ψ − φ)
=

sinφ
sin(θ + φ)

(1)

Consider a point on the surface at a distance d from the
wire projection onto xy plane, and at a distance r =√
d2 + h2 from the wire, as shown in Fig. 1(b). It follows

from the Ampère’s law that the magnitude of magnetic
induction of the wire at that point is

Bw =
µ0I

2πr
(2)

and the magnitude of its horizontal projection is

Bh = Bw cosα =
µ0Ih

2π(d2 + h2)
. (3)

Equations (1) and (3) are sufficient to complete all tasks
of the problem.

Figure 1: Notations used in the derivation of the basic
equations.

Task (a): Determination of the horizontal position
of the wire

As evident from the vector triangle (Fig. 1), the maxi-
mum absolute value of the deflection angle at a given
current is met at d = 0 where Bh is maximal, i.e. verti-
cally above the wire. Therefore, the wire can be tracked
by finding two or more points on the surface where |φ|
reaches a maximum. First, a coarse scan of the border
with a step of, say, 10 mm, can be performed in order to
locate intervals, where |φ| goes through a maximum. In
thiswaywe establish that thewire projection crosses the
West side (x = 0mm) at y ∈ [60mm, 90mm] and the East
side (x = 100 mm) at y ∈ [10 mm, 30 mm]. A finer scan of

Table 1: Points, where |φ| reaches a maximum of 143◦ at
a current I = +5 A.

x (mm) y (mm)
0 75
20 64
40 52
60 41
80 29
100 17

these intervals with a step of 1 mm allows to determine
the approximate coordinates of the two crosspoints as
P1 = (0.0±0.5, 75±1)mmand P2 = (100.0±0.5, 17±1)mm.
The uncertainty of the y coordinate is 1 mm since near
the maximum |φ| changes slowly and takes the same
rounded value at three consecutive points. Additional
scans along vertical (horizontal) lines of intermediate x
(y) values could be done in order to find more points
along thewire projection, and to determine the equation
of the wire more precisely by means of a least-squares
fit. A typical set of values is given in Table 1. The fitted
equation of the wire is, respectively

y = ax+ b = −0.58x+ 75.3mm (4)

with estimated parameter uncertainties of δa ≈ 0.01 and
δb ≈ 0.4mm. Theparameter uncertainties scale as 1/

√
N ,

where N is the number of experimental points. A graph
of the wire projection in the xy-plane is shown in Fig. 2.
Since φ < 0 at I > 0, the positive I direction is from the
West to the East border, as shown in the graph.

Figure 2: xy-projection of the wire with indicated posi-
tive I direction.
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Task (b): Determination of h and BE

As follows from equations (1) and (3), the deflection an-
gle φ at a distance d from the horizontal projection of the
wire satisfies the equation

sinφ
sin(θ + φ)

=
µ0Ih

2πBE(d2 + h2)
. (5)

where the angle θ can be calculated from the slope coef-
ficient a of the wire:

θ = arctan(a) = −30.1◦ ± 0.4◦ (6)
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Table 2: Experimental data for the deflection angle φ vs.
current I at two different distances d.

(0 mm,75 mm); (20 mm,75 mm);
d1 = 0mm d2 = 10mm

I (A) φ (deg) U I (A) φ (deg) U
-5.0 25 -4.85 -5.0 15 -1.00
-4.0 24 -3.89 -4.0 13 -0.77
-3.0 23 -3.21 -3.0 11 -0.59
-2.0 20 -1.97 -2.0 8 -0.37
-1.0 15 -1.00 -1.0 5 -0.21
1.0 -75 1.00 1.0 -7 0.20
2.0 -126 1.99 2.0 -17 0.40
3.0 -137 3.03 3.0 -32 0.60
4.0 -141 4.02 4.0 -52 0.80
5.0 -143 4.94 5.0 -75 1.00
k1 = 1.01± 0.01 A k2 = 5.04± 0.03 A

The distance d between a point with coordinates (x, y)
and the wire projection can either be measured directly
on the graph in Fig. 2, or calculated as:

d = |(ax+ b− y) cos θ| ≈ 0.865|ax+ b− y| (7)

It follows from equations (5)–(7) that the unknown h and
BE could be determined if the deflection angle φ is mea-
sured in at least twopoints situated at different distances
from the wire. However, due to the random error, asso-
ciated with compass positioning and the rounding error
of the angle reading, such aminimalist approach is quite
inaccurate. Therefore, systematic measurements at sev-
eral distances d and/or different currents I , are neces-
sary to obtain sufficiently precise estimate for h and BE.
Two generic approaches could be followed, as well as a
combination between them.

Method I. Varying the current at fixed dis-
tances. By defining a new dimensionless variable
U = sinφ/sin(φ− 30.1◦), equation (5) is linearized as:

I = kU (8)

where the slope coefficient is:

k =
2πBE(d

2 + h2)

µ0h
(9)

Therefore, the unknown BE and h can be estimated af-
ter obtaining k for at least two different distances d from
the wire. Table 2 summarizes the results of measure-
ments at d1 = 0 mm (vertically above the wire) and at
d2 = 10 mm in a point with coordinates x = 20 mm and
y = 75mm. Figure 3 shows the correspondingU-I graphs,
and the estimated values of the slope coefficients are also
listed in the table 2.
It follows from equation (8) that:

BE
h

=
µ0(k2 − k1)

2π(d22 − d21)
= 8.06× 10−6 T/mm (10)

and

BEh =
µ0(d

2
2k1 − d21k2)

2π(d22 − d21)
= 1.98× 10−4 T ·mm (11)

Figure 3: U-I graphs for two different distances d from
the wire, and the corresponding linear fits.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

d
2
 = 10 mm

d
1
 = 0 mm

 

 

I

U

Alternatively, one can also use

h =

√
d22k1 − d21k2
k2 − k1

= 5.0mm. (12)

Finally, we obtain for the horizontal component of the
Earth’s magnetic induction:

BE = 4.0× 10−5 T (13)

and for the depth of the wire:

h = 5.0mm (14)

These estimates of h and BE coincide with accuracy of
two significant digits with the values preset in the simu-
lation program.

Method II. Fixed current, varying the distance.
Equation (5) can be rewritten in the form:

sin(θ + φ)

sinφ =
2πBE
µ0Ih

d2 +
2πBEh

µ0I
(15)

which can be linearized by setting new auxiliary vari-
ables: U = d2 and V = sin(φ− 30.1◦)/ sinφ. A typical
data set for this method is given in table 3, while the lin-
earized U-V plot is shown in Fig. 4.

Table 3: Experimental data for the deflection angle φ vs.
distance d at a fixed current I = 5.0 A.
x (mm) y (mm) d (mm) φ (deg) U (mm2) V

0 75 0 -143 0 0.203
2 75 1 -142 1 0.226
4 75 2 -142 4 0.226
6 75 3 -139 9 0.291
8 75 4 -138 16 0.311
10 75 5 -132 25 0.416
12 75 6 -128 36 0.475
14 75 7 -123 49 0.541
16 75 8 -111 64 0.674
18 75 9 -98 81 0.796
20 75 10 -79 100 0.963
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Figure 4: U-V graph obtained at a fixed current I = 5.0 A.
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From the fitting line we obtain:

V = 7.37× 10−3mm−2U + 0.208 (16)

which means 2πBEh/(µ0I) = 0.208 and 2πBE/(µ0Ih) =
7.37× 10−3mm−2. Thus, we obtain:

BE = 3.9× 10−5 T (17)

for the horizontal component of Earth’s magnetic induc-
tion, and

h = 5.3mm (18)

for the depth of the wire. These estimates are close to,
but less accurate than the values obtained by Method I.
The reason is that at small d, there is a large relative error
associated with wire positioning, i.e. with variable U . At
large d, however, the deflection angle is small, and there
is significant relative error, associated with the compass
reading, i.e. with V parameter.

Marking scheme

The basic equations could be stated in a separate section
of the solution, or spread over different parts of the so-
lution.

Theoretical background Points
T1 States explicitly or shows on a clear

graph that the magnetic needle
points along the total magnetic
induction.

0.1

T2 Derives eq. (1) or equivalent. 0.3
T3 Writes down the Ampere’s law (2). 0.2
T4 Derives eq. (3) or equivalent. 0.4
Total on Theory 1.0

In tasks A and B points for obtaining final results are
given on an additive basis. If a given quantity, say a-
parameter of the line, falls into the widest interval, a
minimum number of points is given. If the value, how-
ever, belongs to the subsequent narrower interval, an-
notated points are added to the points for the previous
interval, and so on, down to the narrowest interval.

Task A: Horizontal position of the
wire

Points

A1 State or use that the wire is located
where |φ| is maximal.

0.2

(state alternative method which al-
lows to find only a);

(0.1)

A2 Find points on the wire at most 2mm
away fromboth cross pointswith the
border.

0.2

A3 Find n points along the wire projec-
tion:
n = 3 or 4; 0.3
n ≥ 5. 0.5

A4 Draw wire projection on the graph:
plot all measured points or at least

5;
0.2

if a point drawn incorrectly; -0.1
line through the points; 0.2
axes labels and units; 0.1
axes tick marks with values; 0.1
correctly indicated positive I di-

rection.
0.3

A5 Equation of the line:
a within [-0.61;-0.55]; 0.1
a within [-0.60;-0.56]; +0.1
a within [-0.59;-0.57]; +0.3
b within [73.6;77.0] mm; 0.1
b within [74.6;76.0] mm; +0.1
b within [74.9;75.7] mm . +0.3

Correctly estimated uncertainties of
a and b.

0.2

Total on Task A 3.0

Since there are several approaches to the solution of
Task B, the subsequent marking scheme is unified in or-
der to fit all methods of solution. The data point is de-
fined as a single measurement of φ at given I , x, and y.
The data pointweightW is defined as a mark related to
the way, in which the measured data are presented and
treated numerically:

I , x, y, and the corresponding φ are
documented in a table with appropri-
ate number of digits.

0.1

The value of the distance d to the wire,
and the values of the auxiliary lineariz-
ing variables (if required by the solu-
tion) are calculated correctly and doc-
umented in the table.

0.1

MaximumW 0.2

The total mark for data recording and treatment (B2,
see the table below) scales linearly with the number of
data points N for up to N = 8. All data points after 8-th
do not contribute to the total mark on B2. Data points
measured in part A only count towards the mark of B2 if
it is stated in part B that they can be used for this part as
well, or if they are used implicitly.
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Task B: Finding BE and h Points
B1 Makes appropriate choice of auxil-

iary variables, which linearize eq.
(3) OR derives explicit expressions
for BE and h in terms of two mea-
sured angles φ at two different dis-
tances d (minimalist approach).

0.6

B2 Data recording and treatment:
min(N, 8)×W 1.6

B3 Organization of data in table(s):
Column titles 0.2
Units 0.2

B4 Extracting parameters
Graphical method:

For plotting n pointsm = min(n, 8) 0.1m
Coverage of at least 75% of the

graph window
0.2

Titles on axes 0.2
Units on axes 0.2
Tick marks with annotated values 0.2
Fitting line(s) is (are) drawnon the

graph(s)
0.5

Fitting line parameters are ex-
tracted and explicitly stated

0.5

Linear regression without graph:
using n pointsm = min(n, 8) 0.1m
correct fit 1.8

Averaging over n two-point mea-
surements: m = min(n, 13)

0.2m

B5 Final values of BE and h are calcu-
lated from the line parameters or
calculated from the results of a two-
point measurement (minimalist ap-
proach):
BE ∈ [3.7; 4.3]× 10−5 T 0.1
BE ∈ [3.8; 4.2]× 10−5 T +0.1
BE ∈ [3.9; 4.1]× 10−5 T +0.2
h ∈ [4.5; 5.5]mm 0.1
h ∈ [4.7; 5.3]mm +0.1
h ∈ [4.9; 5.1]mm +0.2

Total on Task B 6.0

e

E2: Hot Cylinder

Start the experimentwith the heater on full for 300Watts
and the thermostats located evenly across the length of
the rod and display the results every 100 seconds. Then
plan out the remainder of the experiment while wait-
ing, or do the other experiment. The rod reaches steady
state at about 600 seconds. Find the average tempera-
ture at the five thermostats by considering the last five
measurements; you will use this later.
The most accessible approach is then to study the

steady state behavior, the uniform temperature behav-
ior, the low temperature behavior, and the high temper-
ature behavior. Separating the low and high temper-
ature behaviors is useful because blackbody radiation
dominates at higher temperatures while convective loss
is most significant at near room temperature.
Finding the heat capacity is done by heating the rod at

a low enough rate for a short enough time so that heat
loss is as small as possible.
One possibility is to give a total of 1500 J of heat, but at

various power settings and various times, while keeping
the temperature as low as possible.
The average temperature of the rod is computed from

the five equally spaced points by applying Simpson’s
rule,

Tavg =
T1 + 4T2 + 2T3 + 4T4 + T5

12

Computing instead a direct average yields a +5% error.
It is found that the average temperature for heating

times less than 50 seconds is 55.4±0.5 °C, yielding specific
heat capacity of c = 114± 1 J/kgK.
Heat the rod full power for 600 seconds, and then al-

low to cool.
The rod temperature becomes uniform at about 700

seconds. Average the five points to obtain an average
rod temperature.
Linear cooling predicts a straight line graph for

ln(T − T0) versus t
The convective heat loss rate is then given by Aα(T −

T0), where A is the surface area of the rod. Do not forget
the end caps!
The radiative heat loss rate is βσ(T 4 − T 4

0 ) where σ =
5.67× 10−8W/(m2 K4). The radiative heat loss rate is
then given by Aβσ(T 4 − T 4

0 ).
Note that at temperatures close to T0 the radiative ex-

pression can be written as

Aβσ(T 4 − T 4
0 ) ≈ Aβσ4(T − T0)T

3
0

This means that the linear heat loss rate at tempera-
tures close to T0 is

A
(
α+ βσ4T 3

0

)
(T − T0)

For the uniform, low temperature cooling rod,

mc
dT
dt = −A

(
α+ βσ4T 3

0

)
(T − T0)
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The solution is of the form

T − T0 = Ce−Bt

where
B = A

α+ βσ4T 3
0

mc

On a log plot of ln(T − T0) as a function of time t, the
plot should be linear, with a slope given by

−Aα+ βσ4T 3
0

mc

It is also possible to plot dT/dt as a function of T − T0,
and the plot will be linear, with a slope also given by

−Aα+ βσ4T 3
0

mc

The slope in either case is found to be −1.78× 10−3 /s.

Note that only the last points (in red) were used to determine the linear cooling line. It is clearly a good fit
from t = 2000 s on, which corresponds to rod temperatures of T < 45 C.

To find the blackbody behavior we want to heat the
rod as much as possible such that the blackbody heating
becomes the dominant form of heat loss. Since the hot
rod is in steady state, the heat radiated must be equal to
300W. Use the results from the beginning.
The average temperature of the rod is computed from

the five equally spaced points by

Tavg =
T1 + 4T2 + 2T3 + 4T4 + T5

12
= 662 °C.

Computing a direct average yields a +1.5% error.
The average of T 4 is found from

T 4
avg =

T1
4 + 4T2

4 + 2T3
4 + 4T4

4 + T5
4

12
= 7.95× 1011 K4

Computing a direct average yields a +6.3% error.
The rate of linear temperature heat loss is found from

above to be

(−1.78× 10−3 /s)mc∆T = 59 W

The blackbody remainder term is then

300− 59 = 241 W,

and necessarily equals

Aβσ(T 4 − T 4
0 )−Aβσ4T 3

0 (T − T0),

where the second term reflects the fact that we had con-
sidered part of the blackbody behavior as being linear.
Solving, β = 0.304± 0.004.
Failing to subtract the second term would yield β =

0.28.
We are now in a position to find α, from

−Aα+ βσ4T 3
0

mc
= −1.78× 10−3 /s

which yields α = 2.93

Alternatively, for the uniform, high temperature cool-
ing rod,

mc
dT
dt ≈ −Aβσ

(
T 4 − T 4

0

)
as the radiative cooling effect will dominate.
On a plot of dT/dt as a function of T 4 − T 4

0 , the plot
should be linear, with a slope given by

−Aβσ
mc

The slope is found to be −7.8× 10−12 K3/s
Thismeans β/c = 3.25×10−3 kg K/J; this gives β = 0.36,

which is too high; ignoring the linear loss effects was sig-
nificant; as was previously seen, almost 20% of the heat
loss is from convection in this temperature range.
We can use the high temperature behavior to find the

heat flux through the center of the rod. The average of
T and T 4 on the non-heated half of the rod is 599 C and
5.8× 104 K4, yielding a heat loss at 112 W. That heat nec-
essarily came from the other side of the rod.
The temperature gradient is −898 K/m, so k =

397 W/mK. Don’t forget that the formula provided gave
the rate of heat flux, whichmeans thatwe needed to con-
sider the cross sectional area of the wire.

Marking scheme

Finding c, 2.5 pt total
Task Pts

2.1 Idea of heating the rod by a fixed Q. 0.6
2.2 Obtaining an equation relating the inserted

heat with the temperature change and c.
0.4

2.2 Heating the rod for a short duration for miti-
gating the effects of heat loss:
heating for less than 60 seconds. 0.2

2.3 Averaging the temperature of the rod:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.2

2.4 Checking more than one time value 0.2
2.5 Numerical value of c:

c within [103;123] J/(K kg); 0.3
c within [108;118] J/(K kg). 0.2
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Finding the linear heat loss, 2.0 pt total
Task Pts

3.1 Idea of looking at how the rod cools down at
the low temperature limit (with no heating).

0.2

3.2 Obtaining an equation for T as a function of
t in terms of α, β, and c:
linearize radiative loss around T0; 0.3
obtaining a differential equation for T (t); 0.1
solving the differential equation to get T (t). 0.2

3.3 Finding the average temperature at t:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

3.4 Graphically finding the slope (which is a
function of α, β, and c):
Plot 2 to 4 points in range T < 50C; 0.1
Plotting 5 or more points in range T < 50C; 0.1
axes labels and units; 0.1
axes tickmarks with values. 0.1

3.5 Numerical value of the slope:
slope within [−1.58× 10−3,−1.98× 10−3]; 0.2
slope within [−1.68× 10−3,−1.88× 10−3]; 0.1

Finding β, 2.5 pt total
Task Pts

4.1 Idea of looking at the steady state at the high
temperature limit.

0.2

4.2 Writing down the heat balance:
accounting for the area of the end caps; 0.1
accounting for the linear contribution to the
heat loss by removing theα dependence from
the previously found slope;

0.2

final expression for β in terms of mean value
of T and T 4 of the steady state. Making amis-
take in the previous parts shouldn’t be pe-
nalised here.

0.2

4.3 Measurements:
Heating power sufficiently big such that
the steady state temperature is bigger than
500 °C;

0.1

Waiting for at least 300s to reach the steady
state

0.1

Waiting for at least 600s to reach the steady
state

0.1

4.4 Finding the average temperature:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

4.5 Finding the average T 4 (for calculating aver-
age radiative loss):
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

4.6 Numerical value of β:
β within [0.25;0.35]; 0.3
β within [0.28;0.32]. 0.2

Finding α, 0.5 pt total
Task Pts

5.1 Obtaining an expression for α in terms of the
slope γ.

0.1

5.2 Numerical value of α:
α within [2.33;3.23]W/(m2 K); 0.2
α within [2.53;3.03]W/(m2 K). 0.2

Finding k, 2.5 pt total
Task Pts

6.1 Idea of looking at the flux frompart of the rod
to the other

0.4

6.2 Theory:
Expressing heat flux in terms of k and the
temperature gradient;

0.2

Expressing heat flux in terms of the average
T , T 4, and the heating power of one of the
halves of the rod;

0.4

accounting for the area of the end caps. 0.1
6.3 Finding the average temperature of one of

the halves:
averaging over one to three points; 0.1
averaging over four or more points. No
marks if points not equally spaced and aver-
age doesn’t account for the unevenness;

0.1

6.4 Finding the average T 4 (for calculating aver-
age radiative loss):
averaging over one to three points; 0.1
averaging over four or more points; 0.1

6.5 Finding the temperature gradient:
Using at least two points for the gradient cal-
culation;

0.1

Using (f(x + h) − f(x − h))/2h for numerical
derivative;

0.2

Having the range of points used for gradient
calculations not farther apart than 5 cm;

0.1

Having the range of points used for gradient
calculations not closer than 1 cm;

0.1

6.5 Numerical value of k:
k within [328;488]W/(mK); 0.3
k within [378;438]W/(mK). 0.2

Some grading notes:
• Failure to record and report the location of the sensors
will result in a penalty of -1.0 pt for each occurrence!.
It is acceptable to clearly state the location of the sen-
sors in one part of the report, and thenmentioning that
they are not moved during the experiment.

• When computing spatial averages, if the spacing be-
tween thermometers is not uniform, the averaging
techniques must use appropriate weighting, or there
is a penalty of -0.1 pt for each occurrence!

• When computing spatial averages, if the rod is not
mostly uniform in temperature, a Simpson’s Rule tech-
nique or equivalent must be used to obtain the 0.3 pts.
If instead all of the temperatures are within two error
limits, then Simpson is not required to obtain the 0.3
pt.

• Any numerical derivatives must use the symmetric
form

f ′(x) ≈ (f(x+ h)− f(x− h))/2h

or some equivalent, or better, method.


