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1 Hidden Charge

1.1 Finding xQ and yQ

The first step is to locate the x and y coordinates of the
test charge. Two approaches are illustrated here.

1.1.1 Method 1

Select any initial launchpoint, and keep it fixed. (xi, yi) =
(0, 0) is a good choice. Vary the accelerating voltage in or-
der to obtain several screen hits; plot these on a graph.
Draw a line through the points, extended in both direc-
tions. The target charge must lie on this line.
Repeat with a different launch point. (xi, yi) = (0, 10)

is a good choice. The two lines will intersect, this is likely
the location of the target charge.
Select a third launch point, one that would be located

approximately perpendicular to either of the first two
lines. (xi, yi) = (0,−10) is a good choice. All three lines
should intersect at a single point; that’s the location of
the target charge, (xQ, yQ)

1.1.2 Method 2

This method is much less accurate. Select a fixed value
for xi, and vary yi. Observe yf . There will be a value of
yi such that yf is almost the same, while on either side of
it, yf will shift away from yi. This special value such that
yi ≈ yf is the location yQ. Repeat the process with a fixed
yi and a varying xi. Not that this technique won’t work
if the target charge is outside the bounds of the screen!
A student using this method cannot get full marks for

the problem.

1.2 Determining Q and zQ

Focus on the Rutherford equation. It is convenient to
write it in the form

tan θ

2
=

kqQ

2Eb

One choice is to try and keep θ fixed, and vary E and
b. The other choice is to keep b fixed and small, and vary
E. Each approach has benefits and drawbacks.
The Rutherford scattering equation diagram can also

be drawn as below

Q
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b

b
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dδ
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1.2.1 Method 1: keep θ fixed

The screen distance d is given by the relation

d cos θ = z sin θ + b

This is only strictly true if the electron has reached the
scattered asymptote, otherwise, the measured value of d
will be larger than the true value.
For a fixed value of θ, which will happen if the product

bE is kept constant, graph b vertically against d horizon-
tally. The slope of the graph will yield the value of cos θ,
the intercept will yield z sin θ. The sign of z is unimpor-
tant, as it was implied that it is behind the screen. Return
to Rutherford’s equation to find Q.
One can improve the results by selecting values of b

that are small, as this forces the electron to be closer to
the scattered asymptote.

Method 1A: focus on δ

One might think that it is easier to focus on the quantity
δ, as it is directly measurable. The problem is that the
intercept between the two asymptotes of the trajectory
is not a distance z from the screen, it is farther by an
amount b/ tan(θ/2). Neglecting this correction will lead
to δ = z tan θ from which the student can only find the
product zQ.
Including the correction yields a really ugly looking

expression
δ

tan θ
= z +

b

tan(θ/2)
Most efforts to reduce this expressionwill return the stu-
dent to some equivalent of the previous paragraph, with
only a value of zQ obtainable.

1.2.2 Method 2: keep b fixed and small

A second approach is to use the twice angle formula for
the tangent:

tan 2α =
2 tanα

1− tan2 α

Let 2α = θ, and then combining with the Rutherford
equation,

tan θ =
2γE

γ2E2 − 1

where γ = 2b/kqQ. If b is small compared to d, then
tan θ ≈ d/z. Combining, one gets the linear equation

2E

d
=

γ

z
E2 − 1

zγ

Plotting 2E/d vertically against E2 horizontally ought
yield a straight line with a slope γ/z and an intercept
1/zγ. The challenge here is the Gaussian error in the ini-
tial beam location; as b gets smaller that relative error
becomes more significant. If there were no initial beam
spread, then this approach would be exact in the limit
b → 0.
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Method 2A: focus on δ

As before, this approach has the disadvantage that the
intercept point of the trajectory asymptotes is a func-
tion of b and θ. Neglecting this error, a student could
graph 2E/δ vertically against E2 horizontally. The stu-
dent has gained some in that the error of b/ cos θ has
been removed from the expression for d, but an error
of b/ tan(θ/2) has been added to the expression for z. In
this case, small angles are bad.
Still, if there were no initial beam spread, this ap-

proach would be exact in the limit b → 0.

1.2.3 Method 3: finding only the product zQ

It is tempting to start with the approximation tan(θ/2) =
δ/2z. Doing so reduces Rutherford’s formula to

δ =
kqQz

Eb

A student could keep δ fixed (though that’s hard!), E
fixed, or b fixed, and plot the appropriate combinations
of the remaining two variables to get a straight line.
From this they can deduce the product Qz.
A student would also arrive at this point by neglecting

the intercept of method 2. In fact, since that intercept is
extrapolated and sensitive to error, it is likely to have the
wrong sign, and in that case the student has effectively
ended up here.

1.3 Grading Schemes

1.3.1 Part 1 (1 p)

Attempting to locate xQ and yQ

Finding x and y: Method 1
At least 3 lines (0.5p), only 2 lines (0.3p),
only 1 line (0.1p)

0.5 p

At least 4 data points on each line (0.3p);
at least 3 points each line (0.2p); at least 2
points on each line (0.1p). The initial point
can be one the data points.

0.3 p

Points spread to fill ≈1/3 the plot on each
line (0.2p); fill ≈1/5 on each line (0.1p)

0.2 p

Total possible for part 1: 1.0 p
If a student elects to solve the intersection of two (or

more) lines, when each line has only two data points,
then they get (0.4p) for two lines, (0.6p) for three, (0.7p)
for four, and (0.8p) for five or more. Then assess the
spread condition.

Finding x and y: Method 2
Using method 2 0.4 p
Total possible for part 1: 0.4 p

1.3.2 Part 2 (3 p)

Accuracy of result for XQ and yQ

Finding x and y: Both Methods
x in range 5.3 → 5.5 cm (1.0p); in range
5.2 → 5.6 cm (0.7p); in range 5.1 → 5.7 cm
(0.4p); in range 5.0 → 5.8 cm (0.1p)

1.0 p

y in range −2.5 → −2.7 cm (1.0p); in range
−2.4 → −2.8 cm (0.7p); in range −2.3 →
−2.9 cm (0.4p); in range −2.2 → −3.0 cm
(0.1p)

1.0 p

x and y values each within one student
stated error of (5.4,−2.6) (0.5p); within one
stated error for one value, and within two
stated errors for the other (0.3p); within
two stated errors for both values (0.2p);
within two stated errors for one value
(0.1p)

0.5 p

Statement of error for both x and y clearly
reflected and consistent in graphical pic-
ture or math (0.5p); statement of error
only concerned with 1mm screen resolu-
tion or 1 mm beam resolution (0.1 p) for
each

0.5 p

Total possible for part 2: 3.0 p

1.3.3 Part 3 (1 p)

Collection of data and preliminary computations for
variables

Finding z and Q: Both Methods
student has collected a dataset that could
be used to find b and d

0.1 p

data set shows E 0.1 p
data set shows initial and final x and y 0.2 p
data set correctly computes b 0.1 p
data set correctly computes d or δ 0.1 p
data set has at least 8 measurements
(0.4p); data set has at least 4 measure-
ments (0.3p)

0.4 p

Total possible for part 3: 1.0 p
Notes: E can be measured in Joules or eV; if a student

only records voltage and uses it throughout the problem
in place ifE, there is no penalty. If a student fails to prop-
erly record both the initial and final values for x and y in
each measurement, then they do not get the 0.2 p above.
If they do a set of measurements where x or y initial is
held constant, they only need to record it once, but they
must make it clear where it applies. Results of “miss”
should be recorded, but do not count toward the mea-
surement count of 8 or 4. There is no penalty for failing
to record “miss”.

1.3.4 Part 4 (2.5 p)

Selection of an approach to solve, deriving the math and
physics; and developing a plot. This section is not con-
cerned with the accuracy of the zQ and Q results; that
will be assessed in part 5.
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Finding z and Q: Method 1 or 1a
derive correct relationship between d (or
δ) and b (1.0p); if there is exactly one
math/geometry error (0.6p); if there are
exactly two such errors (0.2p); if there
are no such errors but exactly one physics
error (0.4p); neglecting the correction in
method 1a is a (-0.5p) deduction

1.0 p

recognise that bE must be constant 0.3 p
a plot exists of b versus d (or δ) 0.6 p
Use slope of plot to find cos θ. Don’t worry
about accuracy here; only that they try.

0.3 p

Use intercept of plot to find z. Don’t worry
about accuracy here; only that they try.

0.3 p

Total for part 4: 2.5 p

Finding z and Q: Method 2 or 2a
derive correct relationship betweenE and
d or δ (1.3p); if there is exactly one
math/geometry error (1.0p); if there are
exactly two such errors (0.4p); if there are
no such errors but exactly one physics er-
ror (0.7p)

1.3 p

a plot exists of 2E/d (or 2E/δ) versus E2 0.6 p
Use slope and intercept of plot to find γ (or
equivalent). Don’t worry about accuracy
here; only that they try.

0.3 p

Use slope and intercept of plot to find z (or
equivalent). Don’t worry about accuracy
here; only that they try.

0.3 p

Total for part 4: 2.5 p

Finding only the product zQ: Method 3
derive correct relationship between E
and δ (1.3p); if there is exactly one
math/geometry error (1.0p); if there are
exactly two such errors (0.4p); if there are
no such errors but exactly one physics er-
ror (0.7p)

1.3 p

a plot exists of δ versus 1/E, or δ versus 1/b,
orE versus 1/b; the remaining variable be-
ing held constant.

0.6 p

Use slope of plot to find Qz (or equiva-
lent). Don’t worry about accuracy here;
only that they try.

0.3 p

Total for part 4: 2.2 p
For the plots, worth up to 0.6p, deduct -0.1p for each

axis without a label, -0.1p for each axis without a scale
or scale done incorrectly, -0.1p for each incorrectly plot-
ted point, -0.1p for best fit line not being straight, but the
total plot score cannot go negative.
For students who solve the linear equation alge-

braically and don’t show a plot: there needs to be a clear
indication that they used linear regression (0.2p); a com-
puted correlation coefficient or equivalent to assess the
goodness/accuracy of fit (0.2p); a clear assessment that a
linear fit (as opposed to a quadratic, or exponential, or
other) was indeed merited (0.2p).
A student attempting only method 3 cannot get full

marks for this part.

Student who attempt more than one method will ordi-
narily only receive the marks for the method that yields
them the higher score.

1.3.5 Part 5 (2.5 p)

Assessing the accuracy of the result for zQ and Q

Finding z and Q: Methods 1 or 2
|z| in range 11 → 12 cm (1.0p); in range
10 → 13 cm (0.7p); in range 8 → 14 cm
(0.4p); in range 6 → 20 cm (0.1p)

1.0 p

Q is negative! 0.1 p
|Q| in range 70 → 100 pC (0.9p); in range
50 → 150 pC (0.7p); in range 10 → 500 pC
(0.4p); in range 1 → 1000 pC (0.1p)

0.9 p

z and Q values each within two student
stated error of |z| = 11.5 cm and |Q| =
86 pC (0.3p); within two stated errors for
one value (0.2p); error stated, but out of
bounds for both (0.1p)

0.3 p

Statement of error for both z andQ clearly
reflected and consistent in graphical pic-
ture or math, addresses or comments on
both random error and systematic error
of approxmation (0.2p); statement of er-
ror only concerned with random or sys-
tematic, but not both (0.1p)

0.2 p

Total possible for part 5: 2.5 p

Finding only zQ: any method
Q is negative! 0.1 p
|zQ| in range 9.7 → 10.1 pCm (0.9p); in
range 9.5 → 10.3 pCm (0.7p); in range 9 →
11 pCm (0.4p); in range 5 → 20 pCm (0.1p)

0.9 p

zQ values within one student stated er-
ror of |zQ| = 9.9 pCm (0.3p); within two
stated errors (0.2p); error stated, but out
of bounds more than twice (0.1p)

0.3 p

Statement of error for zQ clearly reflected
and consistent in graphical picture or
math, addresses or comments on both ran-
dom error and systematic error of approx-
imation (0.2p); statement of error only
concernedwith randomor systematic, but
not both (0.1p)

0.2 p

Total possible for part 5: 1.5 p
The sources for error are (1) beamspread of 0.5mm, (2)

pixel resolution of 1mm, (3) approximations for defin-
ing the tangent, (4) approximations for final trajectory
approaching the asymptote, (5) approximations for in-
tersections of the asymptote. The first two are random
error; the last three are systematic.
A student that computes z, Q, and zQ should be as-

sessed for each of the three (1.0p each) for accuracy
against expected value, but will only receive the highest
two results.
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2 Black box

Let the tension forces in the two springs be F1 and F2,
respectively. Let the height of the ceiling of the box be
y1 and let the heights of the masses be y2 and y3 (we will
assume for simplicity that the masses have zero height).
Let a1, a2, a3 be the respective accelerations. We get the
following equations of motion (ignoring all drag forces):

m1a1 = F − F1 −m1g

m2a2 = F1 − F2 −m2g

m3a3 = F2 −m3g

Since the springs are nonlinear, F1 ̸= k1(y1 − y2) and
F2 ̸= k2(y2 − y3) in general, but we know that for small
displacements near equilibrium k1 = ∆F1

∆(y1−y2)
and k2 =

∆F2

∆(y2−y3)
.

2.1 Finding m1 +m2 +m3

When the system is at rest and at equilibrium, then the
force needed to hold the box is the total gravitational
force F0 = (m1+m2+m3)g (we can get the same result if
we plug in a1 = a2 = a3 = 0 to the equations of motion).
To measure F0, we find the value of F when the box is

at rest (a1 = 0). Wenotice that the force is constantwhich
means that the system is initially already in equilibrium.
After averaging 10 first values we get F0 ≈ 14.774N

and

m1 +m2 +m3 =
F0

g
=

14.774N
9.81N/kg ≈ 1.506kg.

Exact answer: 1.506kg.
Findingm1 +m2 +m3

1a Notice that F = g
∑

mi when a1 = 0 0.5
1b Measurement for F0 (14.77± 0.10N)

0 points for only having a measurement
without an idea how to use it

0.3

1c
∑

mi in range 1.51± 0.01kg 0.2
Total: 1.0

Note: Measurement for F0 is needed for full points, even
if

∑
mi is correct. Solutions with raw data missing get

0.7 points. Solutions using F0

g implicitly as the sum of
masses get 0.2 points from 1c.

2.2 Finding m1

We get from the first equation of motion that F = m1a1+
m1g + F1. The spring force F1 depends only on the posi-
tions (and is the same at the beginning of every experi-
ment), so the force F at the beginning of the experiment
depends only on the acceleration.
Therefore, we canmeasure howmuch the initial force

changes with acceleration to get m1. We will use maxi-
mum acceleration (30m/s2) for highest accuracy. The
average of three values is F30 ≈ 40.487N, so

m1 =
F30 − F0

a
=

(40.487− 14.774)N
30m/s2

≈ 0.857kg.

We also conclude thatm2 +m3 = 0.649kg.
(To even increase accuracy, one could compareF30 and

F−30 and find their difference.)
Exact answer: 0.857kg.

Findingm1

2a F = m1a1 + m1g + F1 or any equivalent
equation of motion (max points even if
F1 has been incorrectly substituted with
k1(y1 − y2))

0.5

2b Idea thatm1 = ∆F
∆a1

0.5
2c Using ∆a1 ≥ 10m/s2 0.2
2d m1 in range 0.857± 0.002kg 0.8

m1 in range 0.857± 0.010kg 0.6
m1 in range 0.857± 0.050kg 0.3
Total: 2.0

Note: Using free-fall (a1 = −g) without repeated mea-
surements gets 0 points from 2c. Full points are given if
∆a1 < 10m/s2 but several measurements are used that
give at least as good accuracy overall.

2.3 Finding k1

2.3.1 Method 1: Change of force after a fast move-
ment of the box

We will quickly accelerate and then decelerate the box
(to avoid drag forces). Whenwe change the height of the
box quickly and the time is short enough, we can assume
that the second mass stays approximately at rest.
(Formally, if ∆y1 = a1

2 t2, then m2a2 = k1∆y1 − k1∆y2 −
∆F2 ≤ k1∆y1, therefore a2 ≤ k1

2m2
t2 · a1. The assumption

holds if k1

2m2
t2 ≪ 1.)

Therefore, if we accelerate the box with acceleration
a1 for time t and then with −a1 for time t, then ∆F ≈
k1∆y1 = k1a1t

2.
To have the best accuracy we will do two experiments

with a1 = 30m/s2 and a1 = −30m/s2, respectively. We
will use t = 0.01 s (smallest time possible). We will also
repeat each experiment 5 times. After averaging the re-
sults, we get the forces at 2t = 0.02 s to be Fu ≈ 14.890N
and Fd ≈ 14.652N. Therefore

k1 ≈ Fu − Fd
2a1t2

=
(14.890− 14.652)N
2 · 30m/s2 · (0.01 s)2

≈ 39.7N/m

Exact answer: 39.2N/m.
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Finding k1, Method 1
3.1a Idea to use method 0.5
3.1b Notice that if t is small, then∆y1 ≫ ∆y2 0.5
3.1c Correct formula for k1 0.5
3.1d At least 3 measurements 0.1
3.1e ∆a1 ≥ 30m/s2 0.2
3.1f 2t ≤ 0.08 s 0.2
3.1g k1 in range 39.2± 1.0N/m 1.0

k1 in range 39± 4N/m 0.7
k1 in range 39± 8N/m 0.4
k1 in range 39± 15N/m 0.2
Total: 3.0

2.3.2 Method 2: Change of force while accelerating
the box

We will accelerate the box with constant acceleration a1
and similarly as in the previous method conclude that
∆F ≈ k1a1

2 t2 when t is small. This method is, however,
less accurate than the previous method because drag
force is nonnegligible for large values of a1 but the reso-
lution of ∆F is small for small values of a1.
Choosing, for example, a1 = 30m/s2, t = 0.02 s and

averaging 5 values gives Ft=0 ≈ 40.482N and Ft=0.02 ≈
40.792N and

k1 ≈ 2∆F

a1t2
=

2 · (40.792− 40.482)N
30m/s2 · (0.02 s)2

≈ 51.7N/m

The answer is∼30% larger than the correct answer be-
cause the drag force of the box at t = 0.02 s is approxi-
mately 0.08N.
A better choice would be a1 = 5m/s2 and t = 0.02 s.

Averaging 5 values gives Ft=0 ≈ 19.058N and Ft=0.02 ≈
19.100N and

k1 ≈ 2∆F

a1t2
=

2 · (19.100− 19.058)N
5m/s2 · (0.02 s)2

≈ 42.0N/m

The drag force has a much smaller effect (approxi-
mately 0.002N).

Finding k1, Method 2
3.2a Idea to use method 0.5
3.2b Notice that if t is small, then∆y1 ≫ ∆y2 0.5
3.2c Correct formula for k1 0.5
3.2d At least 3 measurements 0.1
3.2e 2m/s2 ≤ a1 ≤ 10m/s2 0.2
3.2f t ≤ 0.08 s 0.2
3.1g k1 in range 39.2± 1.0N/m 1.0

k1 in range 39± 4N/m 0.7
k1 in range 39± 8N/m 0.4
k1 in range 39± 15N/m 0.2
Total: 3.0

Note: A correct answer without any justification or
obtained with a physically nonsensible method gives 0
points.

2.3.3 Method 3: Estimating y1 − y2 at equilibrium
and using F1 ≈ k1(y1 − y2)

Although the springs are nonlinear, we can estimate k1
by k1 ≈ F1

y1−y2
which would be true if the springs were

perfectly linear.
At equilibrium

F1 = F0 −m1g ≈ 14.774N− 0.857 · 9.81N ≈ 6.367N

If we accelerate the box quickly downwards, then by
measuring the time t for the box to collide with mass 2,
we can estimate the initial value of y1− y2 by∆y1 = a1

2 t2.
Using binary search we can find that t ≤ 0.13 s if |a1| ≥

26.7m/s2 and t ≥ 0.13 s if |a2| ≤ 26.6m/s2.
Therefore

y1 − y2 ≈ 26.7m/s2
2

· (0.13 s)2 ≈ 0.226m

and
k1 ≈ F1

y1 − y2
=

6.367N
0.226m ≈ 28.2N/m

This method underestimates the value both due to
nonlinearity of springs and because it overestimates y1−
y2 (the actual value is 0.179m).

Finding k1, Method 3
3.3a Idea to use method 0.5
3.3b Correctly estimate y1 − y2 0.5
3.3c Correct formula for k1 0.5

Total: 1.5
Note: This method is worth 1.5 points since it is very

inaccurate. Estimating the distance y1 − y2 without an
idea how to use it gives 0 points.

Method for eye-balling k1 from slow normal mode
frequency assuming a rigid connection betweenm2 and
m3 was rewarded with 0.5+0.5 points for idea and for-
mula if significant progress was made (a reasonable
value for the normal mode period and k1 or k1

m2+m3
was

found). Simply stating T = 2π
√

m2+m3

k1
gave 0 points.

2.4 Finding m2, m3 and k2

2.4.1 Method 1: Finding natural frequencies

This method is very accurate, but needs a lot algebraic
manipulation to solve for two parameters. This method
could also be used to find one parameter if the other has
been already found using alternative methods.
At first we will find the natural frequencies of the sys-

tem when the box is at rest. Let x2 = ∆y2 and x3 = ∆y3
be small displacements near equilibrium. Then

m2ẍ2 = −k1x2 − k2(x2 − x3)

m3ẍ3 = k2(x2 − x3)

The equations can be solved by taking x2 = A cos(ωt)
and x3 = B cos(ωt), where A and B are constants.
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(Alternatively, one can use complex numbers: x̃2 =
Aeiωt and x̃3 = Beiωt.)
We see that ẍ2 = −ω2A cos(ωt) and ẍ3 = −ω2B cos(ωt),

hence

−m2ω
2A cos(ωt) = −k1A cos(ωt)− k2(A−B) cos(ωt)

−m3ω
2B cos(ωt) = k2(A−B) cos(ωt)

We see that the time dependence cancels out

−m2ω
2A = −k1A− k2A+ k2B

−m3ω
2B = k2A− k2B

We get from the second equation that B = k2A
k2−m3ω2 , so

after substituting to the first equation we get

−m2ω
2A = −k1A− k2A+

k22
k2 −m3ω2

A

As expected,A cancels out (because natural frequency
does not dependon the amplitude of the oscillations) and
we get

−m2ω
2(k2 −m3ω

2) + (k1 + k2)(k2 −m3ω
2)− k22 = 0

m2m3ω
4 − k2m2ω

2 − (k1 + k2)m3ω
2 + k1k2 = 0

ω4 −
(

k2
m3

+
k1 + k2
m2

)
ω2 +

k1k2
m2m3

= 0

The solutions to this biquadratic equation are the nat-
ural angular frequencies. If we know the solutions ω1

and ω2, we know from the Vieta’s formulas that

k2
m3

+
k1 + k2
m2

= c1

k1k2
m2m3

= c2,

where c1 = ω2
1 + ω2

2 and c2 = ω2
1ω

2
2 .

We find that
m2

k1
+

m3

k2
+

m3

k1
=

c1
c2

m3

k2
=

c1
c2

− m2 +m3

k1

k1
m2c2

=
c1
c2

− m2 +m3

k1

m2 =
k21

c1k1 − c2(m2 +m3)

This equation allows us to findm2. After this, it is easy
to also findm3 and k2.
To find the natural frequencies, one can oscillate the

box with different frequencies, stop oscillating and look
at how force changes in time. Using trial and error we
can get two estimates T1 ≈ 1 s and T2 ≈ 0.4 s.
To find the smaller frequency, we can, for example,

give the box a pulse with 1 s duration.
We want to be sure that the amplitude of the oscilla-

tions is small enough when we measure the period (to
avoid nonlinearity of springs). We find

T1 =
(34.70− 20.27) s

13
≈ 1.11 s.
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Similarly, we can amplify the larger natural frequency
by oscillating the box or giving a shorter pulse.
We find

T2 =
(20.00− 9.94) s

27
≈ 0.373 s.

Therefore

ω2
1 =

(
2π

T1

)2

≈ 32.04Hz2

ω2
2 =

(
2π

T1

)2

≈ 283.8Hz2

We can then findm2 by calculating c1 and c2:

c1 = ω2
1 + ω2

2 ≈ 315.8Hz2

c2 = ω2
1ω

2
2 ≈ 9093Hz4

m2 =
k21

c1k1 − c2(m2 +m3)
≈ 0.238kg

m3 = 0.649kg− 0.238kg = 0.411kg

k2 =
c2m2m3

k1
≈ 22.4N/m

Exact answers: m2 = 0.236kg, m3 = 0.413kg, k2 =
22.6N/m.
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2.4.2 Method 2: Fast pulse

Similarly as in method 1 for finding k1, we quickly ac-
celerate the box with acceleration a1 for time t and then
decelerate with acceleration −a1 for time t. If t is small,
then y2 does not change much while moving the box, so
∆F1 = ∆F ≈ k1∆y1.
We also know that after the pulse when mass 2 starts

to move, for a short time y3 does not change much.
Therefore, m2a2 = ∆F1 − ∆F2 ≈ ∆F1 before mass 2

starts to significantly move, andm2a2 ≈ k1∆y1 − k1∆y2 −
k2∆y2 = k1∆y1 − (k1 + k2)∆y2 before mass 3 starts to sig-
nificantly move.
Therefore, if t is small, then right after time t:

F −F0 = ∆F1 ≈ m2a2 = m2
d2y2
dt2

= −m2

k1

d2F1

dt2
= −m2

k1

d2F

dt2
.

Thismethod is less accurate than the previousmethod,
it does many approximations, ignores drag forces and
resolution of F is small. It might be possible to make this
method more accurate by taking the initial estimate for
m2 and then estimating ∆y2 while the box is accelerated
to get a better estimate.
Theoretically it is also possible to find k2, although it

is even less accurate. When d2F
dt2 = 0, then a2 = 0, which

means that k1∆y1 ≈ (k1 + k2)∆y2.
We will use a1 = 30m/s2 for highest accuracy. A good

trade-off between resolution of F and small t seems to

be t = 0.05 s. Since we need to find the second derivative
and need a lot of accuracy, we will average the values of
10 measurements. The results are shown in the table.

Time (s) F (N ) dF
dt (N/s)

0.10 12.572
0.11 12.781 20.9
0.12 13.013 23.2
0.13 13.268 25.5
0.14 13.533 26.5
0.15 13.811 27.8
0.16 14.078 26.7
0.17 14.351 27.3
0.18 14.599 24.8

We estimate that d2F
dt2 ≈ 230N/s2 at t = 0.11 s. There-

fore

m2 ≈ − (F − F0)k1
d2F
dt2

= − (12.781− 14.774)N · 39.7N/m
230N/s2

.

m2 ≈ 0.344kg.

We also estimate that d2F
dt2 = 0 at t ≈ 0.15 s when

F = 13.811N. We know that ∆y1 = a1t
2 = −30m/s2 ·

(0.05 s)2 = −0.075m.
At F = 13.811N,

∆(y1 − y2) ≈
(13.811− 14.774)N

39.7N/m ≈ −0.024m,

where we get ∆y2 ≈ 0.051m.
Since k1∆y1 ≈ (k1 + k2)∆y2,

k2 ≈ k1

(
∆y1
∆y2

− 1

)
≈ 18.4N/m

Findingm2,m3, k2, Any method
4a Correct method 0.5
4b Correct equations allowing to solve for

the valuesm2,m3, k2
0.5

Correct equations allowing to solve only
form2 andm3

0.3

4c Necessary measurements 1.0
If only natural frequencies (periods) are
foundwithout a plan on how to use them:
T1 in range 1.11± 0.02 s 0.3
T1 in range 1.11± 0.10 s 0.1
T2 in range 0.373± 0.005 s 0.3
T2 in range 0.373± 0.050 s 0.1

4d k2 in range 22.6± 0.5N/m 1.0
k2 in range 22.6± 1.0N/m 0.8
k2 in range 23± 3N/m 0.6
k2 in range 23± 6N/m 0.4

4e m2 in range 0.236± 0.010kg or
m3 in range 0.413± 0.010kg 0.9

m2 in range 0.236± 0.020kg or
m3 in range 0.413± 0.020kg 0.6

m2 in range 0.236± 0.050kg or
m3 in range 0.413± 0.050kg 0.3

4f Correctly calculate m3 using m2 or vice
versa given any points received in 4e

0.1

Total: 4.0
Note: Equations of motion for mass 2 and 3 give 0

points. Getting a correct biquadratic equation for ω2
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gives 0.5 points from 4a, points are given for 4b only if
k2,m2, orm3 is correctly expressed from the biquadratic
equation taking k1,m2+m3, ω1 and ω2 as the only known
parameters. Partial points can be given for getting an
equation for ω2 (0.4 p for slightly wrong result, 0.2 p
for setting up the determinant). Finding T1 and T2 give
0.3/0.1 points even with a plan to use them to solve a sys-
tem of equations but without an idea how. Having a bi-
quadratic equation for ω2 counts as “a plan” and in this
case, finding T1 and T2 will each give 0.5/0.2 points with
the same error tolerances. A correct answerwithout any
justification or obtained with a physically nonsensible
method gives 0 points.

2.4.3 Method 3: Estimating k2

m3
by estimating y2 − y3

at equilibrium and using F2 ≈ k2(y2 − y3)

After finding y1 − y2 using method 3 to find k1, we can
similarly estimate y3 − (y1 − a), where a = 0.6m, by
quickly accelerating the box upwards. This method as-
sumes that the masses have negligible height (which is
true).
Again, using binary search, we find that the time for

collision is t = 0.13 s at a1 = 25.6m/s2. Thus

y3 − (y1 − a) ≈ a1
2
t2 ≈ 0.216m

y2 − y3 = a− (y1 − y2)− (y3 − y1 + a)

y2 − y3 ≈ 0.6m− 0.226m− 0.216m ≈ 0.158m
k2
m3

≈ g

y2 − y3
≈ 62.1N/(kgm)

The actual values are y2 − y3 = 0.208m and k2

m3
=

54.7N/(kgm).
Estimating k2/m3

4.1a Idea to use method 0.5
4.1b Correctly estimate y3 − y1 + a 0.5
4.1c Correct formula for k2/m3 0.2
4.1d k2/m3 in range 55± 10N/(kgm) 0.3

Total: 1.5
Note: Estimating the distance y3 − y1 + awithout an idea
how to use it gives 0 points.


