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A Mechanical Model for Phase Transitions1
A ring of radius 𝑅 has a bead of negligible size and mass 𝑚 threaded on it. The ring is set rotating
about its vertical diameter with angular velocity 𝜔 as shown in Fig. 1. Alongside this, there is an
opposing force on the bead, 𝐹𝑓 , which is proportional to the normal reaction 𝑁 , and is given by
𝐹𝑓 = 𝑓𝑘𝑁 where 𝑓 is 1 or −1. You are advised to employ polar coordinates {𝑟, 𝜃}. As far as possible
express your answers in terms of 𝜔𝑐 = √𝑔/𝑅 where 𝑔 is themagnitude of the acceleration due to gravity.

In a phase transition the free energy, 𝑉 (ℳ) [mechanical equivalent is potential energy] depends on the
magnetization ℳ as follows

𝑉 (ℳ) = 𝑎(𝑇 )ℳ2 + 𝑏(𝑇 )ℳ4

where 𝑇 → temperature, 𝑏(𝑇 ) > 0 and 𝑎(𝑇 ) changes sign with temperature. We attempt to understand
the phenomenon of phase transition using the above mentioned model.

Note 1: For circular motion of radius 𝑅, the velocity in polar coordinates is ̇⃗𝑟 = 𝑅 ̇𝜃 ̂𝜃 and the acceleration
is ̈ ⃗𝑟 = −𝑅 ̇𝜃2 ̂𝑟 + 𝑅 ̈𝜃 ̂𝜃. Here ̂𝑟 and ̂𝜃 are unit vectors in the radial and the tangential directions respectively.

Note 2: The direction of the opposing force say ⃗𝐹𝑓 will be denotedby 𝑓 . Here 𝑓 = +1 if the bead ismoving in
the counter-clockwise direction (of increasing) 𝜃 and 𝑓 = -1 if the bead ismoving in the clockwise direction
𝜃, e.g. 𝑓 = 𝑠𝑔𝑛( ̇𝜃) where 𝑠𝑔𝑛 is +1 or -1 depending on whether its argument is positive or negative.

Note 3: You may find the expansions

sin(𝜃) = 𝜃 − 𝜃3/6 + ..
cos(𝜃) = 1 − 𝜃2/2 + 𝜃4/24 + ..

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 + 𝑛(𝑛 − 1)𝑥2/2 + 𝑛(𝑛 − 1)(𝑛 − 2)𝑥3/6 + ..

(where 𝜃 is in radians and |𝑥| << 1 ) useful for some parts of the problem.
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Fig. 1: The bead on a rotating ring.

In what follows we shall understand the dynamics of the bead in the frame of the rotating ring and for
angles in the range −𝜋/2 < 𝜃 < 𝜋/2. The free body diagram of the bead is shown in Fig.2. Neglect all
forces other than the ones shown in the free body diagram.

Fig. 2: The free body diagram.

A.1 Write down the equations ofmotion for the radial 𝐹𝑟 and the tangential 𝐹𝜃 com-
ponents of the force on the bead. Assume 𝜃 increasing in the counter-clockwise
direction.

0.5pt

For the following parts B.1 to B.9 assume 𝑘 = 0.
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B.1 State the relation between the equilibrium angle(s) 𝜃0 in terms of { 𝜔, 𝜔𝑐}. 1.0pt

B.2 Qualitatively sketch 𝜃0 (𝑦-axis) as a function of 𝜔/𝜔𝑐 (𝑥-axis). 0.5pt

B.3 Qualitatively sketch the magnitude of the normal reaction force on the bead as
a function of 𝜔/𝜔𝑐 at stable equilibrium.

0.5pt

B.4 We define the potential energy corresponding to the tangential force 𝐹𝜃,
namely

𝐹𝜃 = − 1
𝑅

𝑑
𝑑𝜃𝑉 (𝜃)

with the zero of potential energy at 𝜃 = 0. If 𝑉 (𝜃) is expressed as 𝑃 + 𝑄 cos(𝜃) +
𝑆 sin2(𝜃), obtain 𝑃 , 𝑄, 𝑆.

1.0pt

B.5 One can expand 𝑉 (𝜃) for small 𝜃 and express it as 𝑉 (𝜃) = 𝑎(𝜔) 𝜃2+𝑏(𝜔) 𝜃4. Obtain
the coefficients 𝑎(𝜔) and 𝑏(𝜔).

1.0pt

B.6 Make representative plots of 𝑉 (𝜃) versus 𝜃 for values of 𝜔/𝜔𝑐 just less than 1.0
(e.g. say 0.9) and 𝜔/𝜔𝑐 large, say 5.0. Note that only qualitative sketches and no
detailed calculations for the plots are required.

1.0pt

B.7 Landau theory of second order phase transitions can be used to demarcate
simple magnetic systems into two phases. For temperatures 𝑇 greater than
the critical temperature 𝑇𝑐 the system is paramagnetic. For 𝑇 < 𝑇𝑐 the system
is ferromagnetic and the magnetization ℳ is given by

ℳ(𝑇 ) = ℳ0(1 − 𝑇 /𝑇𝑐)1/2 𝑇 < 𝑇𝑐

Let us denote the exponent 1/2 by 𝛽. Compare this behaviour with the bead
problem discussed above. What are the analougues of ℳ, 𝑇𝑐, 𝑇 /𝑇𝑐 in our case?
What is the equivalent value of 𝛽 in our case?

1.0pt

B.8 Determine the angular frequency of oscillation Ω0 of the bead when it is dis-
turbed from its “equilibrium” position 𝜃0. Note that for small oscillations

Ω0 = 1
𝑅

√𝑉 ″(𝜃0)
𝑚

1.0pt

B.9 Qualitatively sketch Ω0 as a function of 𝜔. 1.0pt

For the following parts C.1 to C.2 𝑘 ≠ 0.
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C.1 Take 𝑓 = 1 and express 𝑘 = tan𝛼. We may express the condition for the equilib-
rium angle(s) 𝜃0 as

( 𝜔
𝜔𝑐

)
2

= tan(𝑥)
sin(𝑦)

Obtain 𝑥 and 𝑦.

1.0pt

C.2 It is given that 𝑓 =1 and 𝑘 = 0.05. Obtain the equilibrium angles 𝜃0, if any, for
the following cases:

1. 𝜔/𝜔𝑐 = 0.50
2. 𝜔/𝜔𝑐 = 0.70

0.5pt


