

EQ1: Official Solution¹

A.1 (1.0 pt)

Move the magnet along each of the axes and notice the change in the magnet field. For example, if the magnet is aligned along the length of the phone, and you are moving the magnet along the same direction (length of the phone), magnetic field will show the change in sign when the magnet crosses the Magnetometer.

¹Chandan Relekar (IISc, Bangalore), Siddhant Mukherjee (The University of Cambridge, UK), Siddharth Tiwary (IIT Powai, Mumbai), Charudutt Kadolkar (IIT Guwahati), Praveen Pathak (HBCSE-TIFR, Mumbai), were the principal authors of this problem. The contributions of the Academic Committee and the International Board are gratefully acknowledged.

A.2 (2.3 pt) The set up to find Dipole moment $I = \int_{\mathbb{R}} \frac{d_0}{2\pi} \frac{M}{x^3}$ The magnetic field B_w of a point dipole at the distance x (x >> d) from the dipole's center can be approximated by $B_w = \frac{\mu_0}{2\pi} \frac{M}{x^3}$ (1) Rearranging above equation, we get

$$B_w = \frac{\mu_0 M}{2\pi} \times \frac{1}{x^3} \tag{2}$$

From equation (2), a plot of B_w vs $\frac{1}{x^3}$ is a straight line passing through origin. Solving the slope will give dipole moment of the magnet.

A.2 (cont.) Dipole moment of the Magnet: Fill the appropriate quantities.

		FF -F -						
	Sr.No	<i>x</i> (cm)	$B_w(\mu {\rm T})$	$\tfrac{1}{x^3}(\mathrm{m}^{-3})$	B_w (T)			
	1	5	3177.63	8000	0.00317763			
	2	6	1841.06	4629.63	0.00184106			
	3	7	1170.34	2915.45	0.00117034			
	4	8	783.69	1953.13	0.00078369			
	5	9	550.22	1371.74	0.00055022			
	6	10	403.42	1000	0.00040342			
	7	11	301.21	751.31	0.00030121			
	8	12	231.96	578.7	0.00023197			
	9	13	181.58	455.17	0.00018158			
	10	14	146.03	364.43	0.00014603			
	11	15	118.72	296.3	0.00011872			
	12	16	98.18	244.14	0.000099			

From equation (2), a plot of B_w vs $\frac{1}{x^3}$ is a straight line passing through the origin. The magnitude of the dipole moment can be calculated from the slope.

B.1 (0.3 pt)

Rotate the smartphone and align the magnet and the pipe along the width of the phone as shown below.

Consider the case when the magnet is at rest at a distance x_0 from the magnetometer origin. The magnet is released along the axis of the pipe. It will start descending through the pipe. In the conducting sections of the pipe, after a brief period of accelerated motion, the magnet will attain a terminal velocity v, due to the presence of eddy current damping. In this case, the magnetic field B_w measured by the magnetometer changes with time t as

$$B_w(t) = \frac{\mu_0}{2\pi} \frac{M}{(x_0 + vt)^3}$$
(3)

Equation (3) is rearranged as

$$\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3} = vt + x_0$$
 (4)

B.1 (cont.)

Obtained profile of magnetic field vs time clearly suggests three distinct phases (AB, BC, and CD) of the magnet's motion (see Fig. 4 below).

We collect the data of (B_w vs t) for all three phases and plot them according to Eq. (4). For the acceleration phase of the pipe (wooden section), the graph will be non-linear and for the conducting pipe sections (Al and Cu) where the magnet moves with the terminal velocities, the graph will be linear. Duration of accelerated motion before attaining terminal velocity in the conducting sections of the pipe may be neglected.

It can be clearly seen from the graphs in the next sub parts that:

Section	Section number		
Aluminium	1		
Copper	3		
wood	2		

Since the copper has higher conductivity than aluminium, the terminal velocity in Cu section will be lower than Al section.

terminal velocity.

B.2 (2.6 pt) Terminal velocity of Magnet in aluminium section: Fill the appropriate quantities.						
Sr.No	$B_w (\mu T)$	t (s)	$\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3} \ (\mathrm{m})$	v (m/s)		
1	6462.28	0.534	0.0396	0		
2	6462.28	0.536	0.0396	0.01		
3	5954.24	0.558	0.0407	0.06		
4	4850.05	0.606	0.0435	0.06		
5	4002.02	0.654	0.0464	0.06		
6	3651.48	0.678	0.0478	0.06		
7	2817.43	0.75	0.0522	0.06		
8	2397.97	0.798	0.055	0.06		
9	1911.68	0.87	0.0594	0.06		
10	1548.47	0.942	0.0637	0.06		
11	1448.01	0.966	0.0651	0.06		
12	1356.06	0.99	0.0666	0.06		
13	1194.26	1.038	0.0694	0.06		
14	1188.09	1.04	0.0696	0.14		
15	1142.95	1.05	0.071			
The velocity (v) column is obtained using the forward difference $rac{x_{n+1}-x_n}{t_{n+1}-t_n}$.						
From equation (4), a plot of $\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3}$ vs t will be a straight line. The slope of the line will give						

Length of the Al section = $(1.040-0.536)\times 6~\mathrm{cm}=3.024~\mathrm{cm}.$

Sr.No	$B_w \; (\mu {\rm T})$	t (s)	$\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3} \left(\mathbf{m}\right)$	v (m/s)
1	338.23	1.122	0.106	0.85
2	322.39	1.124	0.1075	0.87
3	271.32	1.244	0.1138	0.02
4	254.86	1.364	0.1162	0.02
5	239.70	1.484	0.1186	0.02
6	189.79	1.964	0.1282	0.02
7	169.97	2.204	0.1330	0.02
8	137.91	2.684	0.1426	0.02
9	131.17	2.804	0.1450	0.02
10	118.96	3.044	0.1498	0.02
11	108.22	3.284	0.1546	0.02
12	103.34	3.404	0.1570	0.02
13	98.52	3.53	0.1595	0.02
14	98.44	3.532	0.1596	0.02
15	98.37	3.534	0.1596	0.02
		1		
16	98.30	3.536	0.1597	0.05

The velocity (v) column is obtained using the forward difference $rac{x_{n+1}-x_n}{t_{n+1}-t_n}.$

From equation (4), a plot of $\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3}$ vs t will be a straight line. The slope of the line will give the terminal velocity.

B.4 (1.6 pt) Length of wooden section: Fill the appropriate quantities.

Sr.No	$B_w \; (\mu {\rm T})$	<i>t</i> (s)	$\left(\frac{\mu_0 M}{2\pi B_w(t)}\right)^{1/3}~({\rm m})$	v (m/s)	$a (m/s^2)$
1	1194.26	1.038	0.0694	0.06	4
2	1188.09	1.04	0.070	0.14	5.66
3	1142.95	1.05	0.071	0.15	9.8
4	1056.94	1.06	0.072	0.25	9.8
5	941.55	1.07	0.075	0.34	9.8
6	811.40	1.08	0.079	0.44	9.8
7	679.75	1.09	0.084	0.54	9.8
8	556.44	1.1	0.090	0.64	9.8
9	447.31	1.11	0.096	0.74	9.8
10	354.74	1.12	0.104	0.83	9.8
11	338.23	1.122	0.106	0.85	-334.92
12	322.39	1.124	0.108	0.18	0.31
13	271.32	1.244	0.114		

The velocity (v) and acceleration (a) columns are obtained using the forward difference $rac{x_{n+1}-x_n}{t_{n+1}-t_n}$ and $\displaystyle \frac{v_{n+1}-v_n}{t_{n+1}-t_n}$ respectively.

Wooden section is the middle section of the pipe. We have already established in Al section that the magnet exits the Al section at 1.040 s. We tabulate the data of velocity vs time for this section. Notice that the velocity of the magnet suddenly drops at 1.124 s. At this moment, the magnet enters in the copper section of the pipe and comes under the influence of damping due to the eddy current. Length of the pipe can be calculated by $\left(v_{A}t_{m} + \frac{gt_{m}^{2}}{2}\right)$, where v_{A} is terminal velocity of magnet in the

Length of the pipe can be calculated by $\left(v_{AI}t_w + \frac{gt_w^2}{2}\right)$, where v_{AI} is terminal velocity of magnet in the aluminium section of the pipe and t_w is the time spent by the magnet in the wooden section of the pipe.

Total time spent by the magnet in the wooden pipe $(t_w) = (1.124 - 1.040)$ s = 0.084 s Length of the wooden section of pipe = 3.96 cm