



#### 17<sup>th</sup> Asian Physics Olympiad

1-9 May 2016

Experimental Problem– E2

#### Reflection Phase Shift of Metal

Wing Yim Tam (譚永炎)



#### E2: Reflection Phase Shift of Metal

- Introduction
- Theory
- Supporting Experiment
- Experimental Setup
- Results
- Acknowledgements

#### Introduction

- Natural materials have refractive indexes (n) larger than that of vacuum, i.e. n > 1
- Maxwell's Equations do not exclude n to be other values, e.g. negative or zero
- Meta-materials, fabricated in the nano-scales, can have exotic refractive indexes,
  - e.g. negative or complex values
- Phenomena such as negative refraction or cloaking (invisibility) are possible

## **Negative Refraction**







rod in air rod in water rod in NR water n=1.3 n=-1.3

- (a) Positive vs. negative refraction. Photo taken from T. Tac and X. Zhang, Nature 480, 42-43, (2011).
- (b-d) Taken from "Photorealistic images of objects in effective negative-index materials", Optics Express 14, 1842-1849 (2006).
- (e) Taken from "Visible-frequency hyperbolic meta-surface", Nature 522, 192-196 (2015).

#### Introduction

- Measuring the refractive indexes of meta-materials is important for possible applications of the materials<sup>(1)</sup>
- Metals have complex refractive indexes due to absorptions

$$\hat{n} = n + ik$$

• Measurement of reflection phase shift ( $\phi$ ) can give information of the refractive index, i.e. at normal incidence<sup>(2)</sup>

$$\phi = \arctan(\frac{2k}{1 - (n^2 + k^2)})$$

- For glass, reflection phase shift  $\phi$  is 180° (or  $\pi$  radians) at normal incidence
- For metals, the reflection phase shift can take different values, depending on the absorptions

#### References:

- 1) V. M. Shalaev, "PHYSICS: Transforming Light", Science **322** (5900): 384–386 (2008).
- 2) A. Dubois, "Effects of phase change on reflection in phase-measuring interference microscopy", App. Opt. **43**, 1503-1507 (2004).

#### Introduction

Phase measurement in the optical wavelengths is challenging

Needs high precision

e. g. a 10% measurement requires accurate optical path of 0.1 x wavelength ~ 65 nm for visible light!

Interference is a good method
e.g. Fabry-Perot laser interferometry

# Theory

Consider an ideal air-gap Fabry-Perot etalon as shown in the figure below:



Path difference of beams 1 and 2 for reflection interference

= AB+BC-AE

=  $2L/\cos(\theta) - 2L\tan(\theta)\sin(\theta)$ 

=  $2L[1-\sin^2(\theta)]/\cos(\theta)$ 

 $= 2L\cos(\theta)$ 

(Distances from E and C to the detector are assumed to be the same.)

For a two-beam approximation, the reflection interference intensity  $I(\theta)$  can be written as below:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(2kL\cos\theta + \phi_s), \quad k = 2\pi / \lambda$$

For constructive interference (corresponding to reflection peak intensity):

$$2kL\cos\theta_m + \phi_s = 2m\pi \Rightarrow m = \frac{2L\cos\theta_m}{\lambda} + \frac{\phi_s}{2\pi}$$

# **Theory**

$$2kL\cos\theta_m + \phi_s = 2m\pi \Rightarrow m = \frac{2L\cos\theta_m}{\lambda} + \frac{\phi_s}{2\pi}$$

- Choose the integer part of  $\frac{2L\cos\theta_m}{\lambda}$  (Trunc( $\frac{2L\cos\theta_m}{\lambda}$ )) as the interference order m
- Thus a plot of

*m* vs. 
$$1/\lambda$$
 for fixed incident angle

or

*m* vs.  $\cos \theta_m$  for fixed wavelength

will give a straight line.

The slope of the line will give the air-gap spacing L, and the y-intercept will give the average phase  $\phi_s/2\pi$ .

• The normalized reflection phase  $\phi_S = \phi_S/2\pi$  is thus defined within (-1, 0)

## **Supporting Experiment**



Schematic of Titanium- (Ti ~ 200 nm thick) coated air-gap etalon.

Normal incidence ( $\theta = 0^{\circ}$ ) and measure reflectance for wavelengths between 450 to 850 nm.



## **Supporting Experiment**



After corrections for numerical aperture effects



This technique is now published<sup>(1)</sup> and has been applied to the measurement of 1D Berry phase (Z-phase) in photonic crystals<sup>(2)</sup>.

- 1) "Measurement of reflection phase using thick-gap Fabry–Perot etalon," T. K. Yung,. W. Gao, H. M. Leung, Q. Zhao, X. Wang, and W. Y. Tam, App. Opt. **55**, 7301-7306 (2016).
- 2) "Determination of Zak phase by reflection phase in 1D photonic crystals", Wensheng Gao, Ming Xiao, C. T. Chan and Wing Yim Tam\*, Optics Letters **40**, 5259-5262 (2015).

- It would be difficult to require students to achieve the same precision as in our experiment using the simple setup for this reflection phase shift experiment
- Here we fix the wavelength and vary the incident angle
- Due to the difficulties in this experiment, e. g. mis-alignment, non-uniform air-gap, nonparallelism of the top and bottom plates, we only look for qualitative results



Ti-coated Fabry Perot etalon:

a Ti-coated bottom glass plate with on top a glass plate sandwiching an air-gap of ~ 5 micron in between







Measure the reflection interference intensity for both sides of the angular scale to reduce errors due to mis-alignment of the sample normal with respect to the angular scale and the laser beam.

Ti etalon #5



Ti etalon #5



Ti etalon #5

| Peak # LHS | $\theta_{LHS}$ (degree) | Peak # RHS | $\theta_{RHS}$ (degree) | $\Theta_{average}$ (degree) | $\cos 	heta_{	ext{average}}$ | Interference<br>Order<br>m |
|------------|-------------------------|------------|-------------------------|-----------------------------|------------------------------|----------------------------|
| 7          | 19.5                    | 8          | 17.25                   | 18.5                        | 0.948                        | 14                         |
| 6          | 29                      | 7          | 26.75                   | 28                          | 0.883                        | 13                         |
| 5          | 36.25                   | 6          | 34                      | 35.38                       | 0.815                        | 12                         |
| 4          | 42                      | 5          | 40                      | 41.25                       | 0.752                        | 11                         |
| 3          | 47.75                   | 4          | 45.5                    | 46.88                       | 0.684                        | 10                         |
| 2          | 52.75                   | 3          | 50.25                   | 51.63                       | 0.621                        | 9                          |
| 1          | 57.5                    | 2          | 55                      | 56.5                        | 0.552                        | 8                          |
|            |                         | 1          | 59.25                   |                             |                              |                            |

Ti etalon #5



| Peak # LHS | Peak # RHS | $\cos	heta_{	ext{average}}$ | Interference<br>Order<br>m |
|------------|------------|-----------------------------|----------------------------|
| 7          | 8          | 0.948                       | 14                         |
| 6          | 7          | 0.883                       | 13                         |
| 5          | 6          | 0.815                       | 12                         |
| 4          | 5          | 0.752                       | 11                         |
| 3          | 4          | 0.684                       | 10                         |
| 2          | 3          | 0.621                       | 9                          |
| 1          | 2          | 0.552                       | 8                          |
|            | 1          |                             |                            |

Air-gap spacing L=0.65 x 15.17/2=4.93 +/-  $0.06 \, \mu \text{m}$ Normalized reflection phase  $\overline{\phi_s}=-0.39$  +/- 0.05Error of reflection phase due to  $\alpha=1^\circ$  mis-alignment =  $2L \sin\theta \sin\alpha/\lambda \simeq 0.13$ 



#### **Normalized Reflection Phase from Ti**



#### Possible errors:

- 1. mis-alignment of the laser beam with respect to the angular scale
- 2. non-coaxial rotation of the Ti-coated surface of the etalon with the rotary disk
- 3. non-perfect parallelism between the two surfaces of the etalon
- 4. not the same spot is detected for different incident angles

### Acknowledgements

- All experimental technical staffs
  - Mr. LEUNG Ka Lun
  - Dr. **FUNG** Ho Ting (Tony)
  - Dr. SU Yumian
  - Mr. TAM Chi Ming (Eric)
  - Mr. HO C. M (Walter)
  - Dr. GAO Wensheng (Vincent) (sample fabrication for E2)
- Electrical and Mechanical Fabrication Unit of HKUST
  - Mr. CHEUNG S. K. (Kelvin)
  - Mr. WONG C. C. (William)
- All APhO 2016 academic Committee (PHYSICS, HKUST)

Profs: S. DU, Y. HAN, G. B. JO, K. T. LAW, I. K. SOU, Y. WANG, Michael WONG, and also Dr. S. K. CHEUNG (Secretary)

## **Thanks**