Page 1 of 14

## (Full Mark = 12 points)

## Part A: Alignment of the setup

| Tasks |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            | Mark                                                                                                                                                                                            |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A1    | origin of the x-a Determine the and h. Write do                                                                                                                                                                                                                                                          | eight of the "zero-order spot" $h$ , from the exist. incident angle $\theta$ of the laser beam from $D$ own the values of $h$ in cm and $\theta$ in degrees to t figures in the corresponding table in the | TOTAL = 0.6 points  A1.1 0.2 points for measuring the correct height (between 5.40 cm to 5.60 cm)                                                                                               |  |  |
|       | Solution:  The height of the "zero-order spot" is measured to be $h = 5.50$ cm. Using trigonometry, $h = D \tan \theta$ $\theta = \tan^{-1} \left(\frac{h}{D}\right)$ As $h = 5.5$ cm and $D = 15$ cm, one can then fill in the table as follows: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                                                                                                                                                            | A1.2 0.2 points for using the correct equation for determining $\theta$ A1.3 0.2 points for the correct value of $\theta$ (0.2 points: $\theta$ is between 19.7° to 20.5°) (Otherwise, 0 point) |  |  |
|       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                                                                 |  |  |



Page 2 of 14

Part B: Diffraction patterns from Sample 2

| Tasks |                                                                                                                                                                                                                                                                                  | Mark                                                                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| B1    | Record the diffraction patterns onto the graph paper for $\phi = 0^{\circ}$ , $30^{\circ}$ , $60^{\circ}$ and $90^{\circ}$ of the rotary disk and write down their corresponding angle of rotation $\phi$ next to each pattern. Write down "# 2" at the top of this graph paper. | 1 TOTAL = 0.8 points                                                                             |
|       | #2 \\ \phi = 90° \\ \phi = 60°                                                                                                                                                                                                                                                   | <b>B1.2</b> 0.2 points for the correct sketch of the diffraction pattern for $\phi = 30^{\circ}$ |
|       |                                                                                                                                                                                                                                                                                  | <b>B1.3</b> 0.2 points for the correct sketch of the diffraction pattern for $\phi = 60^{\circ}$ |
|       |                                                                                                                                                                                                                                                                                  | <b>B1.4</b> 0.2 points for the correct sketch of the diffraction pattern for $\phi = 90^{\circ}$ |
|       | φ=30°                                                                                                                                                                                                                                                                            |                                                                                                  |
|       | φ: 0°                                                                                                                                                                                                                                                                            |                                                                                                  |
|       |                                                                                                                                                                                                                                                                                  |                                                                                                  |



Page **3** of **14** 

Part C: Diffraction patterns from Sample 3





Page 4 of 14

Part D: Theory behind the reflected diffraction patterns from Sample  ${\bf 3}$ 

| Tasks |                   |                                                                                         |                                                  | Mark                                                                                  |  |
|-------|-------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|--|
| D1    | _                 | on (3) can be rearranged                                                                | TOTAL = 0.9 points                               |                                                                                       |  |
|       | equano            | n for the grating constant $a$                                                          | or Sample 3, as                                  | D1.1                                                                                  |  |
|       |                   | $Aa^2 + Ba + C = 0$                                                                     | (4)                                              | 0.3 points for getting the solution of Task (D1) by correct rearrangement             |  |
|       |                   | the expressions for A, B and responding table in the answer                             | D1.2 0.2 points for the correct form of A        |                                                                                       |  |
|       | Solution The solu | n: ution of D1 can be rearranged:                                                       | <b>D1.3</b> 0.2 points for the correct form of B |                                                                                       |  |
|       |                   | $\cos^2 \theta + D^2 \cos^2 \theta - D^2 d^2 + [-\frac{1}{2}m^2 \lambda^2 (y^2 + D^2)]$ | <b>D1.4</b> 0.2 points for the correct form of C |                                                                                       |  |
|       | Thus, w           |                                                                                         | , , , , , , , , , , , , , , , , , , ,            | If <i>A</i> , <i>B</i> and <i>C</i> are all correct, then 0.9 points are still given. |  |
|       | A                 | $y^2 \cos^2 \theta + D^2 \cos^2 \theta - D^2$                                           |                                                  |                                                                                       |  |
|       | В                 | $-2m\lambda\cos\theta\;(y^2+D^2)$                                                       |                                                  |                                                                                       |  |
|       | C                 | $m^2\lambda^2(y^2+D^2)$                                                                 |                                                  |                                                                                       |  |
|       | Other ed          | quivalent forms are also accept                                                         | table, such as:                                  |                                                                                       |  |
|       | A                 | $\cos^2\theta - \frac{D^2}{y^2 + D^2}$                                                  |                                                  |                                                                                       |  |
|       | В                 | $-2m\lambda\cos\theta$                                                                  |                                                  |                                                                                       |  |
|       | C                 | $m^2 \lambda^2$                                                                         |                                                  |                                                                                       |  |
|       | A                 | $\frac{D^2}{y^2 + D^2} - \cos^2 \theta$                                                 |                                                  |                                                                                       |  |
|       | В                 | $2m\lambda\cos\theta$                                                                   |                                                  |                                                                                       |  |
|       | C                 | $-m^2\lambda^2$                                                                         |                                                  |                                                                                       |  |
|       |                   |                                                                                         |                                                  |                                                                                       |  |

**D2** 

## **Marking Scheme of E1**

Page **5** of **14** 

By solving this quadratic equation and using the measured y values of the diffraction spots for Sample 3 at  $\phi = 90^{\circ}$  (See Task C1), together with the known values of D,  $\theta$  and  $\lambda$ , determine the grating constant a of Sample 3 in meters to three significant figures for each diffraction order from the 1st order (m = 1) up to the 6th order (m = 6) [Hints: These orders correspond to the six spots above the zero-order spot]. Enter your results in the corresponding table in the answer sheet.

### **Solution:**

For each order m, we can construct the following table for the coefficients of A, B and C by using the measured value of y, the known values of D,  $\cos\theta$  and  $\lambda$  (i.e.  $D=15~{\rm cm}$ ,  $\cos\theta=\cos20.1^\circ=0.939$  and  $\lambda=650~{\rm nm}$ ):

| Order m | Measured value of y (meters) | A                      | В                       | С                       |  |
|---------|------------------------------|------------------------|-------------------------|-------------------------|--|
| 1       | 0.0835                       | $3.481 \times 10^{-3}$ | $-3.567 \times 10^{-8}$ | $1.245 \times 10^{-14}$ |  |
| 2       | 0.1075                       | $7.522 \times 10^{-3}$ | $-8.314 \times 10^{-8}$ | $5.756 \times 10^{-14}$ |  |
| 3       | 0.1315                       | $1.258 \times 10^{-2}$ | $-1.457 \times 10^{-7}$ | $1.513 \times 10^{-13}$ |  |
| 4       | 0.1580                       | $1.934 \times 10^{-2}$ | $-2.317 \times 10^{-7}$ | $3.209 \times 10^{-13}$ |  |
| 5       | 0.1875                       | $2.833 \times 10^{-2}$ | $-3.519 \times 10^{-7}$ | $6.090 \times 10^{-13}$ |  |
| 6       | 0.2180                       | $3.923 \times 10^{-2}$ | $-5.128 \times 10^{-7}$ | $1.065 \times 10^{-12}$ |  |

The standard solution for the quadratic equation of a is

$$a = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

which leads to two possible solutions, which are

$$a_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

$$a_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

Using the values of A, B and C from the table above, the values

### TOTAL = 1.8 points

### **D2.1**

0.4 points for calculating the values of *A*, *B* and *C* for all six orders

### **D2.2**

0.4 points for presenting the correct solution of the quadratic equation

### D2.3

0.4 points for providing  $a_1$  and  $a_2$  for all six orders

### **D2.4**

0.4 points for pointing out that only  $a_1$  is the correct solution with explanation

### D2.5

0.2 points for the correct values of *a* for all six orders

(0.2 points: a is within the uncertainty of  $\pm 10\%$ )

(0.1 points: a is within the uncertainty of  $\pm 20\%$ )

(Otherwise, 0 point)

Page 6 of 14

of  $a_1$  and  $a_2$  can be calculated for each order m as shown in the following table:

| Order m | a <sub>1</sub> (meters) | a <sub>2</sub> (meters) |
|---------|-------------------------|-------------------------|
| 1       | $9.945 \times 10^{-6}$  | $3.578 \times 10^{-7}$  |
| 2       | $1.029 \times 10^{-5}$  | $7.415 \times 10^{-7}$  |
| 3       | $1.042 \times 10^{-5}$  | $1.154 \times 10^{-6}$  |
| 4       | $1.038 \times 10^{-5}$  | $1.565 \times 10^{-6}$  |
| 5       | $1.033 \times 10^{-5}$  | $2.072 \times 10^{-6}$  |
| 6       | $1.048 \times 10^{-5}$  | $2.587 \times 10^{-6}$  |

As shown above, all the values of  $a_1$  are similar to each other. However, this is not the case for the values of  $a_2$ . Thus  $a_2$  is not a valid solution for the grating constant and should be discarded.

| Order m | Grating constant a (meters) |
|---------|-----------------------------|
| 1       | $9.95 \times 10^{-6}$       |
| 2       | $1.03 \times 10^{-5}$       |
| 3       | $1.04 \times 10^{-5}$       |
| 4       | $1.04 \times 10^{-5}$       |
| 5       | $1.03 \times 10^{-5}$       |
| 6       | $1.05 \times 10^{-5}$       |

Alternatively, one can also rearrange Equation (3) to the following form:

$$a = \frac{m\lambda}{\left(\cos\theta - \sqrt{\frac{D^2}{y^2 + D^2}}\right)}$$

and then solve for the grating constant a accordingly.



Page 7 of 14

Calculate the mean for the grating constant *a* in meters to three significant figures and the standard error of the mean. Enter your results in the corresponding table in the answer sheet.

### **Solution:**

As we have six values of  $a_1$  (i.e. n = 6), the mean of the grating constant  $\bar{a}$  can be calculated by

$$\bar{a} = \frac{\sum a_1}{n}$$

For the standard error of the mean for the grating constant, we can use

$$\sigma_{\bar{a}} = \sqrt{\frac{\sum_{m} (a_{1,m} - \bar{a})^2}{n - 1}} / \sqrt{n}$$

| Mean of grating constant $\bar{a}$                 | $1.03 \times 10^{-5} \text{ m}$ |
|----------------------------------------------------|---------------------------------|
| Standard error of the mean $\sigma_{\overline{a}}$ | $8 \times 10^{-8} \text{ m}$    |

### TOTAL = 0.8 points

### **D3.1**

0.2 points for the correct formula in determining the mean

### D3.2

0.2 points for the correct formula in determining the standard error of the mean

### D3.3

0.2 points for the correct value of the mean

(0.2 points:  $\overline{a}$  is within the uncertainty of  $\pm 10\%$ ,

0.1 points:  $\overline{a}$  is within the uncertainty of  $\pm 20\%$ ,

otherwise, 0 point)

### D3.4

0.2 points for the correct value of the standard error of the mean

(0.2 points:  $\sigma_{\bar{a}}$  is within the uncertainty of  $\pm 10\%$ ,

0.1 points:  $\sigma_{\overline{a}}$  is within the uncertainty of +20%,

otherwise, 0 point)

Part E: Determination of the unknown angle  $\phi^*$  for Sample 4

| Tasks      |                                                                                                                                                                                         | Mark                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>E</b> 1 | Along the continuous diffracted curve of Sample 4 projected on the graph paper, measure the y-coordinates in cm for ten points starting from $x = -1.0$ cm to 3.5 cm with a step of 0.5 | TOTAL = 0.6 points                           |
|            | cm. Enter your results in the corresponding table in the                                                                                                                                | <b>E1</b>                                    |
|            | answer sheet.                                                                                                                                                                           | 0.6 points for filling in the correct values |
|            |                                                                                                                                                                                         | of <i>y</i> -coordinate in the table.        |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |
|            |                                                                                                                                                                                         |                                              |



Page **8** of **14** 

Detailed marking allocation of Task E1 is as follows:

| x /cm | y/cm   |    |     |        | y /cı | n   | y/cm   |    |     |
|-------|--------|----|-----|--------|-------|-----|--------|----|-----|
|       | ±0.4cm |    | 0.6 | ±0.8cm |       | 0.4 | ±1.2cm |    | 0.2 |
|       |        |    | pts |        |       | pts |        |    | pts |
| -1.0  | 3.1    | to | 3.9 | 2.7    | to    | 4.3 | 2.3    | to | 4.7 |
| -0.5  | 4.1    | to | 4.9 | 3.7    | to    | 5.3 | 3.3    | to | 5.7 |
| 0.0   | 4.8    | to | 5.6 | 4.4    | to    | 6.0 | 4.0    | to | 6.4 |
| 0.5   | 5.6    | to | 6.4 | 5.2    | to    | 6.8 | 4.8    | to | 7.2 |
| 1.0   | 6.1    | to | 6.9 | 5.7    | to    | 7.3 | 5.3    | to | 7.7 |
| 1.5   | 6.6    | to | 7.4 | 6.2    | to    | 7.8 | 5.8    | to | 8.2 |
| 2.0   | 6.9    | to | 7.7 | 6.5    | to    | 8.1 | 6.1    | to | 8.5 |
| 2.5   | 7.3    | to | 8.1 | 6.9    | to    | 8.5 | 6.5    | to | 8.9 |
| 3.0   | 7.6    | to | 8.4 | 7.2    | to    | 8.8 | 6.8    | to | 9.2 |
| 3.5   | 7.9    | to | 8.7 | 7.5    | to    | 9.1 | 7.1    | to | 9.5 |

## **Solution:**

| x co-ordinate (cm) | y co-ordinate<br>(cm) |
|--------------------|-----------------------|
| -1.0               | 3.5                   |
| -0.5               | 4.5                   |
| 0.0                | 5.2                   |
| 0.5                | 6.0                   |
| 1.0                | 6.5                   |
| 1.5                | 7.0                   |
| 2.0                | 7.3                   |
| 2.5                | 7.7                   |
| 3.0                | 8.0                   |
| 3.5                | 8.3                   |

Page 9 of 14

# E2 Based on Eq. (1) given in Task (D), construct a linear equation in the form of

$$M(y, x, D, \theta) = I(D) + S(\phi^*)x.$$
 (4)

Determine the functional forms for  $M(y,x,D,\theta)$ , I(D) and  $S(\phi^*)$ . Plot M against x, using the data recorded in the table of Task (E1). Determine the unknown angle  $\phi^*$  in degrees from this graph. Write down all the functional forms and the value of  $\phi^*$  in the corresponding table in the answer sheet.

### **Solution:**

Eq. (1) can be rearranged to get

$$\frac{(D\cos\phi^* + x\sin\phi^*)^2}{(\cos\theta\cos\phi^*)^2} = y^2 + x^2 + D^2$$

Take the square root for both sides and then multiply the right hand side by  $\cos \theta$  to get

$$\cos\theta\sqrt{y^2 + x^2 + D^2} = D + (\tan\phi^*)x$$

Thus, the above equation can be rewritten as

$$M(y, x, D, \theta) = I(D) + S(\phi^*)x$$

| $M(y,x,D,\theta)$ | $\cos\theta\sqrt{y^2+x^2+D^2}$ |
|-------------------|--------------------------------|
| I                 | D                              |
| S                 | $	an oldsymbol{\phi}^*$        |

If one plots  $\cos\theta\sqrt{y^2+x^2+D^2}$  versus x, the slope of the resulting straight line will be  $\tan\phi^*$ . From the slope, one can find the unknown angle  $\phi^*$ . Using the data from the table below,

| x<br>(cm) | y<br>(cm) | D<br>(cm) | $\cos \theta$ | $M=\cos\theta\sqrt{y^2+x^2+D^2}$ |
|-----------|-----------|-----------|---------------|----------------------------------|
| -1.0      | 3.5       | 15        | 0.939         | 14.494                           |
| -0.5      | 4.5       | 15        | 0.939         | 14.713                           |
| 0.0       | 5.2       | 15        | 0.939         | 14.907                           |
| 0.5       | 6.0       | 15        | 0.939         | 15.177                           |
| 1.0       | 6.5       | 15        | 0.939         | 15.379                           |
| 1.5       | 7.0       | 15        | 0.939         | 15.607                           |
| 2.0       | 7.3       | 15        | 0.939         | 15.777                           |
| 2.5       | 7.7       | 15        | 0.939         | 16.005                           |
| 3.0       | 8.0       | 15        | 0.939         | 16.210                           |
| 3.5       | 8.3       | 15        | 0.939         | 16.430                           |

### TOTAL = 1.6 points

### **E2.1**

0.3 points for the correct form of  $M(y, x, D, \theta)$ 

### E2.2

0.3 points for the correct form of I

### E2.3

0.3 points for the correct form of S

### E2.4

0.4 points for plotting the linear relationship between M and x

### E2.5

0.3 points for the correct value of  $\phi^*$  (0.3 points within the uncertainty of  $\pm 5^{\circ}$ , 0.2 points within the uncertainty of  $\pm 8^{\circ}$ , otherwise, 0 point)

Page 10 of 14





From the plot, we can estimate the slope to get  $\phi^* = 23.2^{\circ}$ . (Remark: one can also find out the y-intercept to be D = 14.9 cm, which is in good agreement with the value assigned in this experiment.)

Therefore,

 $\phi^*$  23.2°

Part F: Diffraction patterns from Sample 5

| Tasks |                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark                                                                                                                                                                                                                                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1    | Record the diffraction patterns you observed for $\phi = 0^{\circ}$ , $30^{\circ}$ , $60^{\circ}$ and $90^{\circ}$ on separate graph papers for each value of $\phi$ . At the top of each graph paper, put down '#5' and the corresponding $\phi$ value. It is expected that you could observe more than 10 diffraction orders. However, you are required to record only three relatively brighter orders on each graph paper. | <b>TOTAL</b> = <b>0.8 points F1.1</b> 0.2 points for the correct sketch of the diffraction pattern for $\phi = 0^{\circ}$ <b>F1.2</b> 0.2 points for the correct sketch of the diffraction pattern $\phi = 30^{\circ}$ <b>F1.3</b> 0.2 points for the correct sketch of $\phi = 60^{\circ}$ <b>F1.4</b> 0.2 points for the correct sketch of |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                | $\phi = 90^{\circ}$                                                                                                                                                                                                                                                                                                                          |

Page **11** of **14** 



Page 12 of 14

F2 With this understanding, estimate the spacing b in meters of the uniformly spaced pre-made grooves of Sample 5 using the recorded diffraction pattern for  $\phi = 0^{\circ}$  from Task (F1). Enter the value of b in the answer sheet.

[Note that in estimating the value of b, you are only required to take the measured data of the first diffraction order and the estimated b should be rounded up to three significant figures.]

### **Solution:**

The formation of the observed diffraction pattern from Sample 5 at  $\phi = 0^{\circ}$  can be considered in the following way: the periodic pre-made grooves (perpendicular to the z-direction) form a set of discrete diffraction spots lying along the y-axis. However, each of these spots is extended to form an arc due to the background straight scratched grooves with non-uniform spacing and thus forming a multi-arc pattern as observed. With this understanding, one can take the peak of the brightest arc as the zero-order (which should be located at  $D \tan 20.1^{\circ} = 5.5$  cm), and then measure the  $y_1$  value of the peak of the  $1^{\text{st}}$  order diffraction pattern. This should satisfy Equation (3) as below:

$$y_1 = D\sqrt{\frac{b^2}{(b\cos\theta - \lambda)^2} - 1}$$

where b is the spacing of the pre-made grooves. From the recorded diffraction at  $\phi = 0^{\circ}$  for Sample 5, the value of  $y_1$  is measured to be 0.0695 m. Similar to what has been done in Task (D1), one can rearrange the equation for  $y_1$  to form a quadratic equation as

$$Ah^2 + Bh + C = 0$$

Where

| A | $y_1^2 \cos^2 \theta + D^2 \cos^2 \theta - D^2 = 1.481 \times 10^{-3}$ |
|---|------------------------------------------------------------------------|
| В | $-2\lambda\cos\theta(y_1^2 + D^2) = -3.320 \times 10^{-8}$             |
| С | $\lambda^2 (y_1^2 + D^2) = 1.149 \times 10^{-14}$                      |

Again, we take the only valid solution of b (See the solution of Task (D3) for detailed explanations) as

### TOTAL = 1.6 points

### F2.1

0.3 points for providing the correct value of  $y_1$ 

(0.3 points:  $y_1$  is within the uncertainty of  $\pm 10\%$ ,

(0.2 points:  $y_1$  is within the uncertainty of +20%

Otherwise: 0 marks)

### F2.2

0.3 points for quoting Equation (3)

### F2.3

0.2 points for quoting the expressions of *A* derived in Task (D2)

### F2.4

0.2 points for quoting the expressions of *B* derived in Task (D2)

### F2.5

0.2 points for quoting the expressions of *C* derived in Task (D2)

### F2.6

0.4 points for providing the correct value of *b* 

(0.4 points: b is within the uncertainty of  $\pm 10\%$ ,

0.2 points: b is within the uncertainty of  $\pm 20\%$ ,

otherwise, 0 point)



Page **13** of **14** 

$$b = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

$$\therefore b \approx 2.21 \times 10^{-5} \text{ m}$$

**b**  $2.21 \times 10^{-5} \text{ m}$ 

Alternatively, one can also rearrange Equation (3) to the following form:

$$b = \frac{m\lambda}{\left(\cos\theta - \sqrt{\frac{D^2}{y^2 + D^2}}\right)}$$

and then solve for the spacing b accordingly.

Part G: Determination of the plane spacing for ZnSe

| Tasks |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | For the ZnSe sample, based on Figure 16 and the experimental conditions given above, determine the lattice-plane spacing $a^*$ of the periodic atomic lattice planes that are perpendicular to the nano-grooves with non-uniform spacing, in meters. Enter your result in the corresponding table in the answer sheet.  Solution:  Recalling Eq. (2) given in Task (D), $x = \frac{Dm\lambda\cos\phi}{a^*\cos\theta - m\lambda\sin\phi}$ For the periodic atomic lattice planes, one has $\theta \approx 0^\circ$ and $\phi = 0^\circ$ and so Eq. (2) becomes $x = \frac{Dm\lambda}{a^*}$ | <b>TOTAL</b> = <b>1.7 points G1.1</b> 0.4 points for quoting Eq. (2) in Task (D) <b>G1.2</b> 0.5 points for providing the expression for $a^*$ (from $\Delta x = \frac{D\lambda}{a^*}$ ) <b>G1.3</b> 0.2 points for measuring the correct value of $\Delta x$ (i.e. 0.7 cm) from the diffraction streaks as shown in Figure 10. <b>G1.4</b> 0.3 points for the correct value of $\lambda$ (i.e. 0.1067 × 10 <sup>-10</sup> m) <b>G1.5</b> |



Page 14 of 14

where  $a^*$  is the lattice plane spacing of the periodic atomic lattice planes that are perpendicular to nano-grooves with non-uniform spacing. Thus the average spacing of the RHEED streaks can be written as

$$\Delta x = \frac{D\lambda}{a^*}$$

which can be measured from the given RHEED pattern to be 0.7 cm. Given that D = 0.26 m and  $\lambda$  can be calculated to be  $0.1067 \times 10^{-10}$  m using Equation (6). Thus, the required lattice plane spacing of ZnSe can be calculated as

$$a^* = \frac{0.26 \text{ m} \times (0.1067 \times 10^{-10} \text{ m})}{0.007 \text{ m}}$$

$$\therefore a^* = 3.96 \times 10^{-10} \text{ m}$$

 $a^*$  3.96 × 10<sup>-10</sup> m

Remark: For ZnSe, the actual plane spacing for the corresponding lattice plane is  $a^* = 4 \times 10^{-10} m$ .

Alternatively, you can also consider the corresponding lattice planes of ZnSe as a regular grating, and then using the standard formula for diffraction gratings to obtain the same value of  $a^*$ .

0.3 points for the correct value of  $a^*$ 

(0.3 points:  $a^*$  is within the uncertainty of  $\pm 0.31 \times 10^{-10}$  m, otherwise, 0 point)

Note: The main source of error in determining  $a^*$  is the uncertainty in measuring the spacing of the streaks using a ruler (i.e.  $\pm 0.005$ m).