

17th Asian Physics Olympiad 1-9 May 2016

Experimental Problem – E1

Reflected Optical Diffraction Patterns from One-Dimensional Structures

Our Discovery: self-assembled ZnSe nanograting G.Wang,.....I.K SOU, Nanotechnology, 20, 215607 (2009)

Sample: Fe/ZnSe bilayer

The RHEED pattern taken right after the growth of an Fe layer on top of a ZnSe layer.

Cross-sectional HRTEM image

RHEED observation of an annealed Fe/ZnSe bilayer

Fe (2nm)/ZnSe(30nm) bilayer annealed at 460°C for 10min

RHEED Movie of the annealed Fe/ZnSe bilayer

Ex-situ AFM imaging

Its *ex-situ* AFM image clearly shows a 1D nanostructure aligned along the [110] direction though the resolution is poor due to air contamination.

HRTEM-cross-sectional image of an annealed Fe/ZnSe bilayer with a Au cap

Au film used to protect the surface

The wavy boundary between the gold layer and ZnSe layer is the cross section view of one-D structure array.

Apparently, the spacing of the 1D structures is 7 to 10 nm, while the height is about 1 to 2nm.

Ewald sphere and Reciprocal lattice

2017/3/6

Optical Analogy

Onsite Demo!

APhO Experimental Problem E1 Reflected optical diffraction patterns from one-dimensional structures

The setup used in Problem E1

Sample 1: a plane mirror (Si wafer)

Students are asked to measure the height h (5.5 cm) and then find out the angle θ(~ 20.1°)

Part B: Reflected Diffraction from Sample 2

Sample 2: a steel plate with non-uniformly spaced scratch grooves

Task B1: Students are asked to record diffraction patterns for four ϕ values

Part C: Reflected Diffraction from a regular grating

Sample 3: a regular grating with equal-spacing grooves (a Si wafer with periodic 1D photoresist pattern)

Task C 1: Students are asked to record diffraction patterns for four ϕ values

Part D: Theory behind the reflected diffraction patterns from Sample 3 (regular grating)

Using wave optics, (**credits go to Prof. Michael KY Wong**), one can derive the following two equations for the x and y coordinates of the diffraction spots:

where "a" is the grating constant of Sample 3

Tasks D1 (cancelled during the board meeting)

Fasks		Marks
D1	Based on Eqs. (1) and (2), the diffraction spots for $\phi = 90^{\circ}$ should lie along the y-axis at x	
	= 0. Derive an equation for the y values of the diffraction spots for $\phi = 90^{\circ}$ as a function of	14
	a, θ, λ, m and D. Write down your result in the answer sheet.	

Solution of D1 :

For $\phi = 90^{\circ}$, Eq. (2) gives the value of *x* equals to 0. To obtain the required equation, substitute Eq. (2) into the first term of Eq. (1). We have

$$y^{2} = \frac{\left(D\cos\phi + \frac{Dm\lambda\cos\phi}{(a\cos\theta - m\lambda)}\right)^{2}}{\cos^{2}\theta\cos^{2}\phi} - D^{2}$$
$$y^{2} = \frac{\left(Da\cos\phi\cos\theta - Dm\lambda\cos\phi + Dm\lambda\cos\phi\right)^{2}}{\cos^{2}\theta\cos^{2}\phi(a\cos\theta - m\lambda)^{2}} - D^{2}$$

Cancellation of some terms leads to

2

$$y^2 = \frac{D^2 a^2}{(a\cos\theta - m\lambda)^2} - D^2$$

$$y = D \sqrt{\frac{a^2}{(a\cos\theta - m\lambda)^2} - 1}$$

φ = 90°

Tasks D2 - D4 (changed to D1 – D3 during the board meeting)

D2	The solution for Task D1 can be rearranged to obtain a quadratic equation for the grating constant <i>a</i> of Sample 3, as $Aa^{2} + Ba + C = 0.$ (3) Derive the expressions for <i>A</i> , <i>B</i> and <i>C</i> . Enter your results in the corresponding table in the answer sheet.	0.9
D3	By solving this quadratic equation and using the measured y values of the diffraction spots for Sample 3 at $\phi = 90^{\circ}$ (See Task C1), together with the known values of D , θ and λ , determine the grating constant a of Sample 3 in meters to three significant figures for each diffraction order from the 1st order ($m = 1$) up to the 6th order ($m = 6$) [<i>Hints: These</i> orders correspond to the six spots above the zero-order spot]. Enter your results in the corresponding table in the answer sheet.	1.8
D4	Calculate the mean and the standard error of the mean for the grating constant \underline{a} in meters to three significant figures. Enter your results in the corresponding table in the answer sheet.	0.8

<u>Solutions of D2-D4</u> involve solving a quadratic equation of "a" and getting the its mean value and standard error of the mean \rightarrow straightforward!

Sample 4: a steel piece with unknown angle ϕ^*

Observed reflected diffraction on the observation board

Tasks E1-E2

Tasks		Marks
E1	Along the continuous diffracted curve of Sample 4 projected on the graph paper, measure the <i>y</i> -coordinates in cm for ten points starting from $x = -1.0$ cm to 3.5 cm with a step of 0.5 cm. Enter your results in the corresponding table in the answer sheet.	0.3
E2	Based on Eq. (1) given in Task D, construct a linear equation in the form of $M(y, x, D, \theta) = I(D) + S(\phi^*)x$. (4) Determine the functional forms for $M(y, x, D, \theta)$, $I(D)$ and $S(\phi^*)$. Plot M against x, using the data recorded in E1. Determine the unknown angle ϕ^* in degrees from this graph. Write down all the functional forms and the value of ϕ^* in the corresponding table in the answer sheet.	1.3

x co-ordinate (cm)	y co-ordinate (cm) 3.5	$M(y, x, D, \theta)$	$\cos\theta\sqrt{y^2 + x^2 + D^2}$	
-0.5	4.5	Ι	D	
0.0	5.2	S	$ an \phi^*$	
0.5	6.0			15.5
1.0	6.5			θ
1.5	7.0		* _ 	OS 15.0 -
2.0	7.3		$p = 23.2^{\circ}$	14.5
2.5	7.7			
3.0	8.0			-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
3.5	8.3			X(cm)

Part F: Diffraction patterns from Sample 5

Sample 5: a steel plate with non-uniformly spaced scratch grooves + uniformly spaced grooves perpendicular to the scratch grooves (photoresist pattern)

Schematic drawing of Sample 5

Sample 5 viewed under microscope

Sample 5 is the optical analogy of the nano-grating ZnSe surface !

Tasks F1

Tasks		Marks
	Record the diffraction patterns you observed for $\phi = 0^{\circ}$, 30° , 60° and 90° on separate	
	graph papers for each value of ϕ . At the top of each graph paper, put down '#5' and the	
E1	corresponding ϕ value. It is expected that you could observe more than 10 diffraction	0.8
	orders. However, you are required to record only three relatively brighter orders on each	
	graph paper.	

Tasks Marks With this understanding, estimate the spacing b in meters of the uniformly spaced premade grooves of Sample 5 using the recorded diffraction pattern for $\phi = 0^{\circ}$ from Task (F1). Enter the value of b in the answer sheet. F2 1.2

[Note that in estimating the value of b, you are only required to take the measured data of the first diffraction order and the estimated b should be rounded up to three significant figures.]

 $\phi = 0^0$ for non-uniformly spaced grooves;

 $\phi = 90^{\circ}$ for uniformly spaced grooves;

The y₁ value of the peak of the first order diffraction arc should satisfy the same relation as the solution of Task D:

$$y_1 = D \sqrt{\frac{b^2}{(b\cos\theta - \lambda)^2} - 1}$$

where b is the spacing of the pre-made grooves. From the recorded diffraction at $\phi = 0^{\circ}$ for Sample 5, the value of y_1 is measured to be 0.0695 m. Similar to what has been done in Task (D1), one can rearrange the equation for y_1 to form a quadratic equation as

$$Ab^2 + Bb + C = 0$$

Where

A	$y_1^2 \cos^2\theta + D^2 \cos^2\theta - D^2 = 1.481 \times 10^{-3}$
B	$-2\lambda\cos\theta(y_1^2 + D^2) = -3.320 \times 10^{-8}$
С	$\lambda^2(y_1^2 + D^2) = 1.149 \times 10^{-14}$

1st order diffraction arc

Again, we take the only valid solution of b (See the solution of Task (D3) for detailed explanations) as

$$b = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$
$$\therefore b \approx 2.21 \times 10^{-5} \text{ m}$$

Part G: Determination of the lattice-plane spacing for ZnSe

Schematic diagram of the RHEED diffraction geometry

Figure 16: The reflection high energy electron diffraction (RHEED) pattern from a nano-structured surface of ZnSe, when the electron-beam is perpendicular to the nano-grooves with non-uniform spacing.

Given
$$\lambda = \frac{12.247 \times 10^{-10}}{\sqrt{V(1+10^{-6}V)}} [m]$$

V=13,000 volts, $\theta \approx 0^0$ and D = 26 cm

where λ is the wavelength of the incident electrons and V is the accelerating voltage.

Tasks G1

Tasks		Marks
G1	For the ZnSe sample, based on Figure 16 and the experimental conditions given above, determine the lattice-plane spacing a^* of the periodic atomic lattice planes that are perpendicular to the nano-grooves with non-uniform spacing, in meters. Enter your result in the corresponding table in the answer sheet.	1.3

Solution:

Recalling Eq. (2) given in Task (D),

 $x = \frac{Dm\lambda\cos\phi}{a^*\cos\theta - m\lambda\sin\phi}$

For the periodic atomic lattice planes, one has $\theta \approx 0^{\circ}$ and $\phi = 0^{\circ}$ and so Eq. (2) becomes

$$x = \frac{Dm\lambda}{a^*}$$

where a^* is the lattice plane spacing of the periodic atomic lattice planes that are perpendicular to nanogrooves with non-uniform spacing. Thus the average spacing of the RHEED streaks can be written as

$$\Delta x = \frac{D\lambda}{a^*}$$

Task G1 continue

 Δx can be measured from the given RHEED pattern to be 0.7 cm. Given that D = 0.26 m and λ can be calculated using the given formula to be 0.1067×10^{-10} m. Thus, the required lattice plane spacing of ZnSe can be calculated as

$$a^* = \frac{0.26 \text{ m} \times (0.1067 \times 10^{-10} \text{ m})}{0.007 \text{ m}}$$
$$\therefore a^* = 3.96 \times 10^{-10} \text{ m}$$

Remark: For ZnSe, the actual plane spacing for the corresponding lattice plane is $a^* = 4 \times 10^{-10} m$.