

Theoretical Question 3: Birthday Balloon

MARKING SCHEME

a) 1.8	Relation between $P - P_0$ and σ_t	0.8	
	Relation between $P - P_0$ and σ_L	0.6	
	Final answer	0.4	No credit for internal propagating error
b) 1.0	Finding $P(V)$	0.4	Relation between $P - P_0$ and σ_t - 0.1
			Relation between r and $V - 0.1$
			Final answer for $P(V) - 0.2$
	Graph	0.4	Starts at $V > 0 - 0.1$
			Starts at $P - P_0 = 0 - 0.1$
			Monotonously rising – 0.1
			Convex – 0.1
	Finding <i>P_{max}</i>	0.2	
c) 1.3	Graph	1.1	Starts at $V > 0 - 0.1$
			Starts at $P - P_0 = 0 - 0.1$
			Rising at the end -0.1
			Decreasing in the middle -0.2
			Maximum marked – 0.1
			Minimum marked – 0.1
			r = 0.5cm marked after the maximum – 0.2
			r = 2.5cm marked after $r = 0.5$ cm and before the
			minimum – 0.2
			Penalty for negative $P - P_0 - 0.3$
	$P - P_0$ value at $r = 0.5$ cm	0.1	
	$P - P_0$ value at $r = 2.5$ cm	0.1	
d) 2.3	Result for P_c	1.2	Partial credit for writing the equal-areas law -0.6
			Writing the equal-areas law with misplaced P_0 - 0.3
	Equation for $V_{1,2}$	0.5	
	Result for V_1	0.3	
	Result for V_2	0.3	
e) 1.0	Starts at $V > 0$	0.1	
	Starts at $P - P_0 = 0$	0.1	
	Rising at the end	0.1	
	Horizontal in the middle	0.3	
	Slope discontinuity at the ends of the	0.1	
	horizontal segment		
	$P_c - P_0$ coincides with the horizontal	0.1	
	segment		
	V_1 coincides with the beginning of the	0.1	
	horizontal segment		
1	V_2 coincides with the end of the horizontal	0.1	

Theoretical Competition

3 May 2011

	segment		
	Penalty for negative $P - P_0$	-0.3	
f) 1.4	Finding V _{thin}	1.0	Partial credit for correct equations for $V_{thin} - 0.6$ Partial credit if there are less equations than unknowns -0.2 Partial credit for linear relation between V_{thin} and V without correct equations -0.3
	Relation between V_{thin} and L_{thin}	0.2	
	Final answer	0.2	No credit for internal propagating error
g) 1.2	Writing $\Delta W = P_c \Delta V$	0.3	
	Relation between ΔV and ΔV_{thin}	0.5	Partial credit for understanding that ΔV is not equal but proportional to $\Delta V_{thin} - 0.2$
	Relation between ΔV_{thin} and ΔL_{thin}	0.2	
	Final answer	0.2	No credit for internal propagating error