| l | | | |---|--|--| | | | | | Question | Number | | |----------|--------|--| | Question | number | | | 25 April 2010 | | |---------------|--------| | Student Code | 2010 A | | Page No. | Total No. | | |----------|-----------|--| | | | | ### **ANSWER SHEET** ## Theoretical Question 1 **Particles and Waves** Do not write in any box marked with a solidus (oblique stroke, /). Part A. Inelastic scattering and compositeness of particles (a)(i) Q in terms of m, M, p_1 , p_{2x} , and p_{2y} | Expression | on of $Q =$ | | | | | | | |------------|-------------|---|---|---|---|---|---| | 0.2 pt | / | / | / | / | / | / | / | (ii) Plot of a condition relating p_1 , p_{2x} , and p_{2y} for an elementary target as a curve with p_{2x} -intercepts specified. Label regions with Q < 0, Q = 0, Q > 0. Region(s) of Q allowed by a stationary composite target in its ground state before scattering. | Allowed | Q region(| s): | | | | | | |---------|-----------|-----|---|---|---|---|---| | 0.2 pt | / | / | / | / | / | / | / | | Theoretical Competition | |--------------------------------| | 25 April 2010 | # Question Number 1 | Page No. | Total No. | |----------|-----------| | | | # Student Code _____ ### ANSWER SHEET | | | | ANSWE | SHEET | | | | |--------------------|-----------------|--------------------------|---------------------|--------------|--------------------|--------------|----------| | (i) The equ | ation relati | $\log x$ to Q , | θ, d_0, m, k | M, p_1 and | p_2 . | | | | | | | | | | | | | 0.7 pt | / | / | / | / | / | / | | | (ii) Thresho | · · | , | , | , | , | , | , | | | oid value p | $\frac{c}{c}$ or p_2 . | | | | | | | $p_c =$ | | | | | | | | | 1.1 pt | / | / | / | / | / | / | / | | Plot of σ v | versus p_2 fo | r given p_1 | and $M = 3$ | m with ran | ige of σ an | p_2 specif | fied. | | | | | | | | | | | | | | σ | | | | | | | | | Ī | → | | | | | | | | | p_2 | | | | | | | | | | | 1.1 pt | / | / | / | / | / | / | / | Theoretical Competition | |-------------------------| | 25 April 2010 | Student Code | _ | | | - | |-----|--------|--------|---| | ()u | estion | Number | • | | | _ | | |----------|-----------|--------------------| | Page No. | Total No. | | | | Page No. | Page No. Total No. | ### ANSWER SHEET | (c) | Period of v | vibration <i>T</i> | | t B. Wave | es on a st | ring | | | | |-----|-------------|--------------------|-------------|--------------|--------------|-------------|--------|---|---| | | T = | | | | | | | | | | | 0.5 pt | / | / | / | / | / | / | / | | | Š | Shape of th | e string at | t = T/8 | specify imp | portant leng | gths and an | gles). | 1.7 pt | / | / | / | / | / | / | / | | | , | | | _ | | | | | | J | | (d) | The total n | nechanical | energy of t | the vibratin | ng string. | | | | 1 | | | | | | | | | | | | | | 0.8 pt | / | / | / | / | / | / | / | Theoretical Competition | |--------------------------------| | 25 April 2010 | Student Code | _A | |----------------------------| | | | | | 2010 APhO
TAIPEI TAIWAN | | | | _ | |----------|--------|---| | Question | Number | | | Question | Number | - | | 2 | | | | |-----|----------|-----------|--| | hO. | Page No. | Total No. | | #### ANSWER SHEET | Distance (ir | n units of l | | The expo | | niverse | | | |------------------|--------------|-------------|-------------------|-------|---------|---|---| | $L(t_{\rm e}) =$ | | | | | | | | | 2.2 pt | / | / | / | / | / | / | / | | The recedin | g velocity | (in units o | of c) of the s | star. | | | | | $v(t_0) =$ | | | | | | | | | 0.8 pt | / | / | / | / | / | / | / |