| Experimental Competition | |---------------------------------| | 27 April 2010 | | _ A | |---------------| | a □ □ | | \mathcal{H} | | 2010 APhO | | Question | Number | | |----------|----------|---| | Question | Mullipel | i | | 2010 APhO | Page No. | Total No. | | |-----------|----------|-----------|--| | | | the oscillating la
Record the measure | | | |---|---|--|---|--| | f | A | f | A | Experimental Competition | |---------------------------------| | 27 April 2010 | | ()11 | estion | Numb | er | |----------|--------|-------|-----| | \sim u | | TIGHT | VI. | | Page No. | Total No. | | |----------|-----------|--| | | AIN | SWER SHEET | | | |--|-----|------------|--|--| | (2) Plot a proper data in the graph paper to determine the resonance frequency f_{RO} and the quality factor Q . Record f_{RO} and Q in the following blank. | | | | | | $f_{RO} =$ | | ; Q= | Experimental Competition | |---------------------------------| | 27 April 2010 | ## Question Number 1 | Page No. | Total No. | | |----------|-----------|--| | | | | | THIS WEST STILL I | | | | | | |-------------------|-----------------|--------------|-------------------|------------------|--| | _ | | | ersus the exte | | 11 | | (1) Mea | sure and rec | ord the meas | sured data z_0 | in the data to | able. | | $z_0 =$ | | | | | | | | | | | | I-pole of M_C . Calculate the and d in the data table. | | (3) Dete | rmine the re | esonance fre | quency f_R for | the distance a | d by tuning the frequency of | | | | | | | ude is reached. Record the | | | | | ency f_R in the | _ | | | | | _ | | | eat the steps (2) and (3) for a | | | | | | C | the corresponding resonance | | | equency f_R . | | | | | | Z | d | f_R | Δf_R | $ln(\Delta f_R)$ | | | | | | | | | | | | | | | - | | | | | | | 1 | | | | | | | - | | 2 | и | JR | Δj_R | $III(\Delta j_R)$ | |---|---|----|--------------|-------------------| - (5) Plot a graph of f_R as a function of distance d using a graph paper. - (6) Define $\Delta f_R = f_R f_{RO}$, and plot $\ln(\Delta f_R)$ as a function of d using another graph paper. | Experimental Competition | |---------------------------------| | 27 April 2010 | # Question Number 1 | Page No Total No | Page No. | Total No. | | |------------------|----------|-----------|--| |------------------|----------|-----------|--| | $z_0 =$ | | | | | | |----------|-------|----------------|---------------|----------------------|-------------------| | J | | | ; $z_{box} =$ | | | | | | | | | | | | | | | | rariation in reso | | | | | | | measured dista | | and the | | ding resonance | | f_R in the data ta | ble. | | <u>y</u> | f_R | <u>y</u> | f_R | Experimental Competition | |---------------------------------| | 27 April 2010 | # Question Number 1 | Page No. | Total No | | |----------|----------|--| | | | | | | ons of magnets M_A and M_B on the y-axis of of \overline{AB} on the answer sheet. | your graph, and | |-----------------------------------|---|-------------------------------| | | | | | | | | | $\overline{AB} =$ | | | | | | | | | epths d_A and d_B of the magnets M_A and M_B f | | | the black box using answer sheet. | ng the results in Exp. I-B. Write down the value | a ues of d_A and d_B of | | | | | | | | | | $d_A =$ | ; $d_B =$ |