Experimental Competition
27 April 2010

_ A
a □ □
\mathcal{H}
2010 APhO

Question	Number	
Question	Mullipel	i

2010 APhO	Page No.	Total No.	

		the oscillating la Record the measure		
f	A	f	A	

Experimental Competition
27 April 2010

()11	estion	Numb	er
\sim u		TIGHT	VI.

Page No.	Total No.	

	AIN	SWER SHEET		
(2) Plot a proper data in the graph paper to determine the resonance frequency f_{RO} and the quality factor Q . Record f_{RO} and Q in the following blank.				
$f_{RO} =$; Q=		

Experimental Competition
27 April 2010

Question Number 1

Page No.	Total No.	

THIS WEST STILL I					
_			ersus the exte		11
(1) Mea	sure and rec	ord the meas	sured data z_0	in the data to	able.
$z_0 =$					
					I-pole of M_C . Calculate the and d in the data table.
(3) Dete	rmine the re	esonance fre	quency f_R for	the distance a	d by tuning the frequency of
					ude is reached. Record the
			ency f_R in the	_	
		_			eat the steps (2) and (3) for a
				C	the corresponding resonance
	equency f_R .				
Z	d	f_R	Δf_R	$ln(\Delta f_R)$	
					-
					1
					-

2	и	JR	Δj_R	$III(\Delta j_R)$

- (5) Plot a graph of f_R as a function of distance d using a graph paper.
- (6) Define $\Delta f_R = f_R f_{RO}$, and plot $\ln(\Delta f_R)$ as a function of d using another graph paper.

Experimental Competition
27 April 2010

Question Number 1

Page No Total No	Page No.	Total No.	
------------------	----------	-----------	--

$z_0 =$					
J			; $z_{box} =$		
					rariation in reso
					measured dista
and the		ding resonance		f_R in the data ta	ble.
<u>y</u>	f_R	<u>y</u>	f_R		

Experimental Competition
27 April 2010

Question Number 1

Page No.	Total No	

	ons of magnets M_A and M_B on the y-axis of of \overline{AB} on the answer sheet.	your graph, and
$\overline{AB} =$		
	epths d_A and d_B of the magnets M_A and M_B f	
the black box using answer sheet.	ng the results in Exp. I-B. Write down the value	a ues of d_A and d_B of
$d_A =$; $d_B =$	