
Solution of the theoretical problem 1 

Back-and-Forth Rolling of a Liquid-Filled Sphere 

1.�1� Let  and  denote the rotational inertia of the spherical shell and W in 

solid state respectively, while I be the sum of and  . The surface mass density of 

the spherical shell is . Cut a narrow zone from the spherical shell 

perpendicular to its diameter, which spans a small angle  with respect to the 

center of the sphere C, while the spherical zone makes an angle  with the diameter 

of the spherical shell, which is called C axes hereafter, as shown in Fig. 1. The 

rotational inertia of the narrow zone about the C axis is , 

therefore integral over the whole spherical shell gives  

                     (1A.1) 

 

 

 

                                                         Figure 1 

The volume density of W is . By using above result for the spherical 

zone it can be seen that the rotational inertia of the solid W about the C axis is                                                                                    

                        (1A.2) 

Then,                                 (1A.3) 

�2�According to the Newton’s second law we can derive the translational motion 

equation of the center of mass for the sphere along the tangent of the bowl, 

                         (1A.4) 
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                                                   Figure 2 

where denotes the angular position of the center of mass of the sphere as 

shown in Fig.2, and f is the frictional force acting on the sphere by the inside wall of 

the bowl. From the rotational dynamics, we have, 

                             (1A.5) 

where ϕ is the angular position of the reference radius CE with respect to the starting   

position. Assumed constraint of pure rolling on the motion of the sphere reads, 

                                          (1A.6) 

Equations (1A.4)-(1A.6) lead to                                  

                       

This is a motion equation of the type of simple harmonic oscillator. Therefore, we 

obtain the angular frequency and period of the sphere rolling right and left: 

�                              (1A.7) 

.                            (1A.8) 

2. This case can be treated similarly, except taking that the ideal liquid does not rotate 

into consideration. Therefore Eqs. (1A.4) and (1A.6) are still applicable, while Eq. 

(1A.5) needs to be modified as 

                                      (1A.9) 

Equations (1A.4), (1A.6), and (1A.9) result in 
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Then, the angular frequency and period of the sphere rolling back-and-forth are 

obtained respectively. 

                                (1A.10) 

                              (1A.11) 

3. The time taken by the sphere from position A0 to equilibrium position O is , 

 from O to , and  from  to O,  from O to . Although the 

angular amplitude decreases step by step (see below) during the rolling process of the 

sphere right and left, the period keeps unchanged. This means 

    (1A.12) 

Next, we calculate the change of the angular amplitude. When the sphere passes 

through the equilibrium position O after it rolled down from the initial position , 

the velocity of its center is 

               (1A.13) 

Now the angular velocity of the spherical shell rotating about the C axis is  

                                (1A.14)  

where C axis is the axis of rotation through the center of the sphere and perpendicular 

to the paper plane of Fig.2. When W behaves as liquid (before it changes into solid 

state), the angular momentum of the sphere relative to point O is  

                                (1A.15) 

When W changes suddenly into solid state, due to the fact that both gravitational and 

frictional force pass through point O, the angular momentum of the sphere relative to 

O is conserved, we have  

               (1A.16) 



where  and represent the angular velocity of the sphere immediately before 

and after passing through point O. Therefore 

                (1A.17) 

while after passing through point O the velocity of the center of the sphere becomes 

                             (1A.18) 

Once the sphere reaches the left highest position  corresponding to the left 

angular amplitude  we have  

 

However,           

From above two expressions we obtain 

                  (1A.19) 

Similarly we can treat the process that the sphere rolls from position  back to A1 , 

the second highest position on the right, corresponding to the second right angular 

amplitude θ1, and obtain  

 

Then,         

Following the similar procedure repeatedly we finally obtain:       

                          (1A.20) 

 

 

 


