Solution and Marking Scheme Experiment

II. Cylindrical Bore

a) Derivation of moment of inertia *I* Configuration Fig. 1.2(a) (0.5 points)

$$I_{1} = \frac{1}{6}Ma^{2} - \frac{1}{2}mb^{2} = \frac{1}{6}(\rho a^{3})a^{2} - \frac{1}{2}(\rho \pi b^{2}a)b^{2}$$
$$= \frac{1}{6}\rho a^{5} - \frac{1}{2}\rho \pi a b^{4}$$

Configuration Fig. 1.2(b)

$$I_{2} = \frac{1}{6}Ma^{2} - \frac{1}{12}ma^{2} - \frac{1}{4}mb^{2} = \frac{1}{6}(\rho a^{3})a^{2} - \frac{1}{12}(\rho \pi b^{2}a)a^{2} - \frac{1}{4}(\rho \pi b^{2}a)b^{2}$$
$$= \frac{1}{6}\rho a^{5} - \frac{1}{12}\rho \pi a^{3}b^{2} - \frac{1}{4}\rho \pi ab^{4}$$

Derivation of period of oscillation T

For both configurations: the restoring torque $\tau = Fd$ where $F = \frac{1}{2}m_0g\frac{\delta s}{\ell}$ and $\frac{\delta s}{d/2} \approx \theta$ $F \approx \frac{1}{2}m_0g\frac{d}{2\ell}\theta$ (0.5 points) net mass $m_0 = \rho a^3 \left(1 - \pi \frac{b^2}{a^2}\right) = \rho a^3 (1 - \pi x^2)$ where $x \equiv \frac{b}{a}$ since $\tau = I\alpha$, $\alpha = \frac{\frac{1}{4}m_0g\frac{d^2}{\ell}\theta}{I}$ (0.5 points)

$$\omega^{2} = \frac{4\pi^{2}}{T^{2}} = \frac{\frac{1}{4}m_{0}g\frac{\pi}{\ell}}{I}$$
$$T^{2} = \frac{4\pi^{2}I\ell}{\frac{1}{4}m_{0}gd^{2}} = \left(\frac{16\pi^{2}I}{m_{0}gd^{2}}\right)\ell$$

For configuration in Fig. 2.2(a),

$$T_{1}^{2} = \left(\frac{16\pi^{2}}{gd^{2}} \frac{\frac{1}{6}\rho a^{5} - \frac{1}{2}\rho\pi ab^{4}}{\rho a^{3}(1 - \pi x^{2})}\right)\ell$$

$$= \frac{8\pi^2}{3g} \left(\frac{a}{d}\right)^2 \left(\frac{1-3\pi x^4}{1-\pi x^2}\right) \ell \qquad (0.5 \text{ points})$$

For configuration in Fig. 2.2(b), $T_2^2 = \left(\frac{16\pi^2 \frac{1}{6}\rho a^5 \left(1-\frac{\pi}{2}\frac{b^2}{a^2}-\frac{3\pi}{2}\frac{b^4}{a^4}\right)}{\rho a^3 (1-\pi x^2)g d^2}\right) \ell$
$$= \frac{8\pi^2}{3g} \left(\frac{a}{d}\right)^2 \left(\frac{1-\frac{\pi x^2}{2}-\frac{3\pi}{2}x^4}{1-\pi x^2}\right) \ell$$

b) For configuration in Fig. 2.2(a), d = 7.0 cm

ℓ (cm)	T_1 fo	or 40 oscillatio	$T_{l}(\mathbf{s})$	$(T_l)^2 (s^2)$	
16.5	20.60	20.50	20.70	0.515	0.265
17.9	21.35	21.35	21.30	0.533	0.284
22.6	24.05	24.00	24.00	0.601	0.362
27.4	26.55	26.45	26.55	0.663	0.440
29.0	27.40	27.40	27.40	0.685	0.469
34.2	29.75	29.70	29.65	0.743	0.551
36.1	30.60	30.60	30.50	0.764	0.584
43.0	33.40	33.35	33.50	0.835	0.698

(3 points):

3 sets of n oscillations(1 point)[2 sets -0.3, 1 set -0.7] $n \ge 20$ (1 point) $[\ge 15, -0.3, \ge 10, -0.7, <10, -1.0]$ number of lengths, ℓ , ≥ 5 (1 point)[4, -0.3, 3, -0.5, 1 or 2, -1.0]

ℓ (cm)	T_2 for 40 oscillations (s)			T_2 (s)	$(T_2)^2$ (s ²)			
43.8	46.95	46.90	46.80	1.172	1.374			
36.0	42.70	42.45	42.50	1.064	1.132			
30.9	39.60	39.40	39.35	0.986	0.973			
26.5	36.40	36.30	36.45	0.909	0.827			
19.5	30.80	30.85	30.75	0.776	0.593			

For configuration in Fig. 2.2(b), d = 4.9 cm

