Solution 1

@ mX =S(X,, -X,)-S(X,-X,.).

0.7

(b) Let X, = A sin nka cos (o ¢t + a), which has a harmonic time dependence.

By analogy with the spring, the acceleration is X, = - °X,.

Substitute into (a): -mAw” sin nka = AS {sin (n + 1)ka — 2 sin nka + sin (n — 1)ka)}

= - 454 sin nka sin® _ka.
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Hence o’ = (45/m) sin’ _ka.

0.2

To determine the allowed values of %, use the boundary condition sin (N + 1) ka = sin kL = 0.

0.7

The allowed wave numbers are given by kL = m, 27, 3m,..., Nit (N in all),

0.3

and their corresponding frequencies can be computed from w = w¢ sin _ka,

in which Wmax = wo = 2(S/m)- is the maximum allowed frequency.
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First method:
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The sum is a geometric series and is {1 — g~ "*/%sT }
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ho

- ehw/kBT _1 :

We find (E(w))

. . . . . _ -1
Alternatively: denominator is a geometric series = {1 — g7 /4T }

(0.5)

Numerator is k3T %(d/dT) (denominator) = /%7 {1 — g~ /kT } and result follows.

(1.5)




A non-calculus method:
LetD=1+e"+ ™+ ¢ +..., where x = hw/ksT. This is a geometric series and equals D =

1/(1-¢¥). Let N= e* +2 ™ + 3¢ +.... The result we want is N/D. Observe

D-1=e¢"+e+e™+e™+e™ +........
(D-1)e" = e +e e+ e+
(D-1)e* = e +e M He™ 4.l

Hence N= (D - 1)D01rN/D=D—1=1 =

(2.0)

(d) From part (b), the allowed k values are /L, 2n/L, ..., Nr/L.

Hence the spacing between allowed k values is 7/L, so there are (L/m)Ak allowed modes in the

1.0

wave-number interval Ak (assuming Ak >> m/L).

(e) Since the allowed k are /L, ..., N/L, there are N modes.

0.5

Follow the problem:
dw/dk = _awg cos _ka from part (a) & (b)

2 2 . . . . .
= %a\/ O max— @ 7, Wmax = 0. This second form is more convenient for integration.

The number of modes dn in the interval dw is

dn = (L/m)Ak= (L/m) (dk/dw) dw
=(L /m){_ awycos ka}" dw

L2 1

T [ 2 2
T a wmax_w

_ 2N+ 1

dw

“m (N +1) dw

Total number of modes = f dn = bf p \/m

= N +1= N for large N.

Total crystal energy from (c) and dn of part (e) is given by

2N ™ ho dw
ET = f how!kgT 1 2 2 :
T oe o —o

(f) Observe first from the last formula that £7 increases monotonically with temperature since
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Erbelow,
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modes
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{e™* _ 13" is increasing with T.

When 7' — 0, the term — 1 in the last result may be neglected in the denominator so

JT

2 2
w w
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R 1 01— (k,Tx/ R,

which is quadratic in 7 (denominator in integral is effectively unity) hence Cy is linear in 7
near absolute zero.

dx

Alternatively, if the summation is retained, we have
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When 7— x, use €' = 1 + x in the denominator,

E, ~. 2N hiw 1 do» = 2N kBTﬂ

~on {ha}/kBT w2 o 7 2’

which is linear; hence Cy — Nkg = R, the universal gas constant. This is the Dulong-Petit rule.

Alternatively, if the summation is retained, write denominator ase"”'" —1=hw/k 31 and

E, =, 2%1@]2%
@ max _a)

Sketch of Cy versus T:

which is linear in 7, so Cy is constant.
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Answer sheet: Question 1
(a) Equation of motion of the n™ mass is:
mX = S(X,; = X,)=S(X, - X,,).
(b) Angular frequencies w of the chain’s vibration modes are given by the equation:
w” = (4S/m) sin® _ka.
Maximum value of ® is:  Wmax = Wo = 2(S/m)-
The allowed values of the wave number k are given by:
n/L, 2n/L, ..., Nm/L.

How many such values of & are there? N



(f) The average energy per frequency mode w of the crystal is given by:

hw
<E(w)> = oo ksl _ |

(g) There are how many allowed modes in a wave number interval Ak?
(L/m)Ak.

(e) The total number of modes in the lattice is: N

Total energy Et of crystal is given by the formula:

- 2N ™ hw dw

r f how!lkgT 2 2.
JT 0 € | -

max

(h) A sketch (graph) of Cy versus absolute temperature 7 is shown below.
Cy

inearin T
c T

For T'<< 1, Cy displays the following behaviour: Cy is linear in T.

As T — o, Cydisplays the following behaviour: Cy — Nkg = R, the universal gas
constant.



Solution to Question 2: The Rail Gun

Proper Solution (taking induced emf into consideration):

(a)

Let I be the current supplied by the battery in the absence of back emf.
Let i be the induced current by back emf ¢, .

Sincee, =d¢/dt =d(BLx)/dt = BLv, ..i = Blv/R.

Net current, /,, =1 -i=1-BLv/R.

Forces parallel to rail are:

Force on rod due to current is F, = BLI,, = BL(I - BLv/R) = BLI - B> L’v/R..
Net force on rod and young man combined is F, = F, —mgsin0 . (1)
Newton’s law: F, =ma=mdv/dt. (2)

Equating (1) and (2), & substituting for /., & dividing by m, we obtain the acceleration

dv/dt=o-v/t, where a = BIL/m - gsinf and v = mR/B’L’.
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(b)(1)
Since initial velocity of rod = 0, and let velocity of rod at time # be v(?),
we have

v(t) =v, [ —e'"), 3)
where v_(0)=art = ﬂ(l - Esinﬂ) )

Let #, be the total time he spent moving along the rail, and v; be his velocity when he leaves
the rail, i.e.

v, =v(t,)=v, (1 —e T ) 4)

ot =-tln(l- v, /v, ) (5)
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(b) (i)
Let # be the time in flight:
2v sine
t,=— (6)
g

He must travel a horizontal distance w during .

w=(v,cose)t, (7)
P A— 2v, sinf (8) (from (6) & (7))
v, cosf

From (8), vy is fixed by the angle 0 and the width of the strait w
aw
v, = . 9
* \sin20 ©)

1 ow
St,=-T ln(l -— ] , (Substitute (9) in (5))
VOO

sin 260

And () = 25““9\/ gw__ |2wianb (Substitute (9) in (8))
‘ g sin 20 g
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(c)

Therefore, total time is: T=t +t,=-7ln|1- L\/ ‘gw +
S v, \sin260

2wtanf
8

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00 m, R=1.0 Q,
g=10 m/s>, m=80 kg, and w=1000 m.

mR___BO1LO) _ oo

Then T = = =
B’L* (10.0)*(2.00)°

2424 1
v, (0) = 1- (30)10) sin@
(10.0)(2.00) (10.0)(2.00)(2424)
=121(1-0.0165sin6)
So,
T=t +t,=-020In 1—@ 1 +14.14+/tanf
V, +/sin 20

By plotting 7 as a function of 6, we obtain the following graph:

T(=

theta frad

Note that the lower bound for the range of 6 to plot may be determined by the
condition v,/ v,, <1 (or the argument of In is positive), and since mg/BLI is small

(0.0165), v,= IR/BL (=121 m/s), we have the condition sin(26) > 0.68, i.e.
6 >0.37. So one may start plotting from 6= 0.38.

From the graph, for 8 within the range (~0.38, 0.505 ) radian the time 7 is within

11s.

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in

0:

0.3 lower limit
(more than 0.37,
less than 0.5),

0.2 upper limit
(more than 0.5

and less than 0.6)

Proper shape of
curve: 0.2

Accurate
Intersection at
6=0.5:04

1.5




(d
However, there is another constraint, i.e. the length of rail D. Let D; be the
distance travelled during the time interval ¢

D, =£v v(t)dt =va;S (1 —e'T )Jt =V, (t +Te l =y, Es —17(1 —e” )]= v t, - v(ts )L'

1.€.

D, =-71

vw(G)ln(l— ! \/gw J+\/gw ‘
v.(0) Vsin 20 sin 26

The graph below shows D; as a function of 6.

theta frad
0.5 0.6 0.7 0.& 0.4 1.1

It is necessary that Dy < D, which means 6 must range between .5 and1.06
radians.

In order to satisfy both conditions, 6 must range between 0.5 & 0.505 radians.

(Remarks: Using the formula for #, ¢, & D, we get

At 6=0.507, #=10.540, t,=0.466, giving T=11.01s,& D=343m
At 6=0.506, #=10.527,t,=0.467, giving T=10.99s, & D=34.4m
At 0=0.502, #=10.478, t,=0.472, giving T=10.95s, & D =34.96 m
At 6=0.50, #=10.453,1,=0.474, giving T=10.93s, & D=352m,

So the more precise angle range is between 0.502 to 0.507, but students are not
expected to give such answers.
To 2 sig fig T =11 s. Range is 0.50 to 0.51 (in degree: 28.6° to 29.2° or 29°)

0.5

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in

0:

0.3 lower limit
(more than 0.4,
less than 0.49),

0.2 upper limit
(more than 0.51

and less than 1.1)

Proper shape of
curve: 0.2

Accurate

intersection at
6=0.5:04

0.5

2.5
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Alternate Solution (Not taking induced emf into consideration):

If induced emf is not taken into account, there is no induced current, so
the net force acting on the combined mass of the young man and rod is

F, = BIL —-mgsin0 . 0.2 BIL
And we have instead 0.2 mg sin6
dvl/dt =a,
where o =BIL/m-gsinf .
() = at 0.1
and sy =v(t) =at, 0.2

2v sine 2ot sine
f = =

g g
Therefore,
. a’t’sin2é
w=(v,cose)f, =———,
' g
giving
t = ! &w
* a\sin2é 0.5
and
B 2wtanf
! g 0.5
Hence,
a
1+ 2( ) sinH]
e +\/2Wtan6 - V8 £ .

f

8 a \/sin 2¢é

o \sin2e

where ¢ = BIL/m - gsin6 -

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00m,
R=1.0 Q, g=10 m/s*, m=80 kg, and w=1000 m. Then,

100 [1+0.20asin0 ]

a Vsin2e 0.3

where o = 606 -10sin6 .

T
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theta frad
/u.l 0 0.t 0.4 0.5 0.6

For 6 within the range (~0, 0.52 ) radian the time 7 is within 11 s.

However, there is another constraint, i.e. the length of rail D.
Let D, be the distance travelled during the time interval ¢

_gw 5000
' 2asin20 oasin260

which is plotted below

D= fm

theta frad
n.g 0.4 0.6 0. 1 1.8 1.4

It is necessary that Dy < D, which means 6 must range between 0.11 and

1.43 radians.

In order to satisfy both conditions, 8 must range between 0.11 & 0.52

radians.

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in

0:

0.1 lower limit
(more than 0,
less than 0.5),

0.2 upper limit
(more than 0.52

and less than 0.8)

Proper shape of
curve: 0.2

Accurate
Intersection at
60=0.52:04

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in

0:

0.1 lower limit
(more than 0.08,
less than 0.11),

0.1 upper limit
(more than 0.52

and less than 1.5)

Proper shape of
curve: 0.2

Accurate
intersection at
6=0.11: 04

1.3

1.2

0.5
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Question 3 - Marking Scheme

3/2

M ) 2 —-Mv?/(2RT)
v e

9

(a) Since W (v) = 4n (2][ T

‘7:

v W(v)dv =

of— 8

3/2

= j‘v A1 M V2 e—Mvz/(ZRT) dv
2a RT

0

3/2

= }4;1 M V3 e MYICRD) g,
) 2w RT

3/2 o

T ( M ) fvs e—Mvz/(ZRT) dv

2a RT 5
M\ AR
= 41 5
2x RT 2M
_ |8RT
T M
Marking Scheme:
Performing the integration correctly: 1 mark
Simplifying 0.5 marks
Subtotal for the section 1.5
marks
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(b) Assuming an ideal gas, PV = N k T, so that the concentration of the gas

molecules, 7, is given by

N P
n=-——= —-
4 kT
the impingement rate is given by
J=ln\7
4
1 P 8RT
4 kT \n M
B 8RT
16 k> T*n M
_ N,k
2k Tn M
_p |
2k Tm m
B P

N 2 mkT
M

where we have note that R = N, k and m = N (N, being Avogadro number).
A

Marking Scheme:

Using ideal gas formula to estimate concentration of gas molecules: 0.7
marks
Simplifying expression: 0.4
marks
Using R = N k, and the formula for m, (0.2 mark each) 0.4
marks
Subtotal for the section 1.5
marks
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(c)  Assuming close packing, there are approximately 4 molecules in an area of 16 r
m’. Thus, the number of molecules in 1 m” is given by

4

= 1.9 x 10" m™
16 3.6 x 107 )’

n, =

However at (273 + 300) K and 133 Pa, the impingement rate for oxygen is

P

N 2m mkT

J

133

3
\/m (32"10](1.38 x 10723)573

6.02 x 105

26 x 10%* m~2s7!

Therefore, the time needed for the deposition is '.l]—l = 0.7 us

The calculated time is too short compared with the actual processing.

Marking Scheme:

2

Estimation of number of molecules in 1 m” : 0.4 marks
Calculation the impingement rate: 0.6 marks
Taking note of temperature in Kelvin 0.3 marks
Calculating the time 0.4 marks
Subtotal for the section 1.7
marks
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(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at
this energy is v;, we have
1

—mv?® =16x107° ]
2
= v, = 245357 ms”
At a temperature of 573 K, the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than 2454 ms™
using the trapezium rule (or any numerical techniques) with ordinates at 2453,
2453 + 500, 2453 +1000. The values are as follows:

Velocity, v Probability,
W)

2453 1.373x 10717

2953 2.256x 10

3453 6.518x 107"

Using trapezium rule, the fraction of molecules with speed greater than 2453 ms™'
is given by

fraction of molecules = ?[6.37%( 10710 )+Q x 2.256 x107'4 )+ 6.518 X 10_19)_

f =343x1078

Thus the time needed for the deposition is given by 0.7 us/(3.43 x 10°®) that is

204 s
Marking Scheme
Computing the value of the cut-off energy or velocity: 0.6
marks
Estimating the fraction of molecules 1.2 marks
Correct method of final time 0.4 marks
Correct value of final time 0.6 marks

Subtotal for the section 2.8
marks
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(e) For destructive interference, optical path difference = 2 d = % where
v i . :
A" = —is the wavelength in the coating.
n
< 4
l p n =14
d | Coating +
T Silicon
The relation is given by:
d = )”air
4 n
Plugging in the given values, one gets d = 105 or 105.2 nm.
Derive equation:
Finding the optical path length 0.2
marks
Knowing that there is a phase change at the reflection 0.5
marks
Putting everything together to get the final expression 0.6
marks
Subtotal: 1.3 marks
Computation of d: 0.6 marks
Getting the correct number of significant figures: 0.6 marks
Subtotal: 1.2 marks
Subtotal for Section 2.5 marks
TOTAL 10 marks
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