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Solution 1

(a)  ).()( 11 −+ −−−= nnnnn XXSXXSXm && 0.7

(b) Let Xn = A sin nka cos (ω t + α), which has a harmonic time dependence.

By analogy with the spring, the acceleration is nX&& = - ω2Xn.

Substitute into (a):        -mAω2 sin nka = AS {sin (n + 1)ka – 2 sin nka + sin (n – 1)ka}

= - 4SA sin nka sin2 _ka. 0.6
Hence ω2 = (4S/m) sin2 _ka. 0.2

To determine the allowed values of k, use the boundary condition sin (N + 1) ka = sin kL = 0. 0.7
The allowed wave numbers are given by kL = π, 2π, 3π,…, Nπ (N in all), 0.3
and their corresponding frequencies can be computed from ω = ω0 sin _ka,

in which ωmax = ω0 = 2(S/m)_ is the maximum allowed frequency. 0.4
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The sum is a geometric series and is {1 – TkBe /ωh− }-1 0.5
We find  
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Alternatively: denominator is a geometric series = {1 – TkBe /ωh− }-1 (0.5)

Numerator is kBT 2(d/dT) (denominator) = TkBe /ωh− {1 – TkBe /ωh− }-2 and result follows. (1.5)
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A non-calculus method:
Let D = 1 + e-x + e-2x + e-3x +…, where x = hω/kBT.  This is a geometric series and equals D =
1/(1 – e-x).  Let N =  e-x +2 e-2x + 3e-3x +….  The result we want is N/D. Observe

                                 D – 1=  e-x + e-2x + e-3x + e-4x + e-5x  +….….
                          (D - 1)e-x =         e-2x  + e-3x + e-4x +  e-5x +….….
                         (D - 1)e-2x =                  e-3x  + e-4x + e-5x  +….

Hence N = (D -  1)D or N/D = D – 1 = 
1
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(d)  From part (b), the allowed k values are π/L, 2π/L, …, Nπ/L.

Hence the spacing between allowed k values is π/L, so there are (L/π)∆k allowed modes in the 1.0
wave-number interval ∆k (assuming ∆k >> π/L).

(e) Since the allowed k are π/L,…, Nπ/L, there are N modes. 0.5

Follow the problem:
dω/dk = _aω0 cos _ka from part (a) & (b)

           = 22
max2

1 ωω −a , ωmax = ω0.  This second form is more convenient for integration.

0.5

The number of modes dn in the interval dω is

dn    = (L/π)∆k = (L/π) (dk/dω) dω

 = (L /π){_ aω0 cos _ ka}-1 dω

0.5 for eith
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≈ N for large N. (0.5)

Total crystal energy from (c) and dn of part (e) is given by
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(f)  Observe first from the last formula that ET increases monotonically with temperature since
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{e hω/kT
  - 1}-1  is increasing with T. 0.2

When T  → 0, the term – 1 in the last result may be neglected in the denominator so 0.2
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which is quadratic in T (denominator in integral is effectively unity) hence CV  is linear in T
near absolute zero.

0.2

Alternatively, if the summation is retained, we have
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When T→ ∞, use ex ≈ 1 + x in the denominator, 0.2
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which is linear; hence CV → NkB = R, the universal gas constant.  This is the Dulong-Petit rule.

0.1

Alternatively, if the summation is retained, write denominator as Tke B
TkB /1/ ωω hh ≈− and

∑
−

→ ∞→
ω ωω

ω
π 22

max

2 ∆∆∆∆
Tk

N
E BTT which is linear in T, so CV is constant.

(0.2)

Sketch of CV versus T: 0.5

R

linear in T T

CV

approaches constant
value
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Answer sheet:  Question 1

(a) Equation of motion of the nth mass is:

).()( 11 −+ −−−= nnnnn XXSXXSXm &&

(b) Angular frequencies ω of the chain’s vibration modes are given by the equation:

ω2 = (4S/m) sin2 _ka.

Maximum value of ω is:   ωmax = ω0 = 2(S/m)_

The allowed values of the wave number k are given by: 

π/L, 2π/L, …, Nπ/L.

How many such values of k are there?  N
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(f)  The average energy per frequency mode ω of the crystal is given by:

1
)(

/ −
=

TkBe
E

ω

ω
ω

h

h

(g)  There are how many allowed modes in a wave number interval ∆k?

(L/π)∆k.

(e)  The total number of modes in the lattice is:   N

Total energy ET of crystal is given by the formula:
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(h) A sketch (graph) of  CV versus absolute temperature  T is shown below.

For T << 1, CV displays the following behaviour: CV is linear in T.

As T → ∞,  CV displays the following behaviour: CV → NkB = R, the universal gas
constant.

R

Linear in T T

CV
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Solution to Question 2: The Rail Gun

Proper Solution (taking induced emf into consideration):
(a)
Let I be the current supplied by the battery in the absence of back emf.
Let i be the induced current by back emf bε .

Since BLvd(BLx)/dtdtdb === /φε , ∴ ./ RBlvi =

Net current, ./ RBLvIiII N −=−=

Forces parallel to rail are:
Force on rod due to current is RvLBBLIRBLvIBLBLIF Nc /)/( 22−=−== .

Net force on rod and young man combined is θsinmgFF cN −= .           (1)

Newton’s law:            dtmdvmaFN /== .                                                 (2)

Equating (1) and (2), & substituting for cF  & dividing by m, we obtain the  acceleration

,// τα vdtdv −=           where θα sin/ gmBIL −=  and 22/ LBmR=τ .

1

0.5

0.5

0.5

0.5
3
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(b)(i)
Since initial velocity of rod = 0, and let velocity of rod at time t be v(t),
we have

( )τ/1)( tevtv −
∞ −= ,                              (3)

                            where    






 −==∞ θατθ sin1)(
BLI
mg

BL
IR

v .

Let ts be the total time he spent moving along the rail, and vs be his velocity when he leaves
the rail, i.e.

( )τ/1)( st
ss evtvv −

∞ −== .                    (4)

( )∞−−=∴ vvt ss /1lnτ                          (5)

0.5

0.5

0.5 1.5
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(b) (ii)
Let tf  be the time in flight:

            
g

èv
t s

f

sin2
=                           (6)

He must travel a horizontal distance w during tf .

              fs tèvw )cos(=                          (7)

                                   
g

v
v

w
t s

s
f

θ

θ

sin2
cos

==               (8)  (from (6) & (7))

From (8), vs is fixed by the angle θ and the width of the strait w

θ2sin
gw

vs = .                     (9)

                               









−−=∴

∞ θ
τ

2sin
1

1ln
gw

v
ts ,               (Substitute (9) in (5))

And                                
g

wgw
g

t f

θ
θ

θ tan2
2sin

sin2
==           (Substitute (9) in (8))

0.5
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(c)

Therefore, total time is:       
g

wgw
v

ttT fs

θ
θ

τ
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1ln +
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The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00 m, R=1.0 Ω,
g=10 m/s2, m=80 kg, and w=1000 m.

Then 2222 )00.2()0.10(
)0.1)(80(

==
LB

mR
τ = 0.20 s.
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)10)(80(
1

)00.2)(0.10(
2424

)(

θ

θθ

−=









−=∞v

So,

θ
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1100
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∞v
ttT fs

By plotting T as a function of θ, we obtain the following graph:

Note that the lower bound for the range of θ  to plot may be determined by the
condition vs / v∞ <1 (or the argument of ln is positive), and since mg/BLI is small
(0.0165), v∞ ≈ IR/BL  (= 121 m/s), we have the condition sin(2θ) > 0.68, i.e.

θ  > 0.37. So one may start plotting from θ = 0.38.

From the graph, for θ  within the range (~0.38, 0.505 ) radian the time T is within
11 s.

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in
θ:
0.3 lower limit
  (more than 0.37,
  less than 0.5),
0.2 upper limit
  (more than 0.5
 and less than 0.6)

Proper shape of
curve: 0.2

Accurate
intersection at
θ = 0.5: 0.4 1.5
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(d)
However, there is another constraint, i.e. the length of rail D. Let Ds be the
distance travelled during the time interval ts

( ) ( ) ( )[ ] ( )τττ ββτ
ss

t
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ttt tt

s tvtvetvetvdtevdttvD sss
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v
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The graph below shows Ds as a function of θ.

It is necessary that Ds ≤ D, which means θ must range between .5 and1.06
radians.

In order to satisfy both conditions, θ must range between   0.5  & 0.505   radians.

(Remarks: Using the formula for tf , ts & D, we get

At θ = 0.507,  tf =10.540, ts = 0.466,  giving T = 11.01 s, & D = 34.3 m

At θ = 0.506,  tf =10.527, ts = 0.467,  giving T = 10.99 s, & D = 34.4 m

At θ = 0.502,  tf =10.478, ts = 0.472,  giving T = 10.95 s, & D =34.96 m

At θ = 0.50,    tf =10.453, ts = 0.474,  giving T = 10.93 s, & D =35.2 m,
So the more precise angle range is between 0.502 to 0.507, but students are not
expected to give such answers.
To 2 sig fig T = 11 s. Range is 0.50 to 0.51 (in degree: 28.60 to 29.20 or 290)

0.5

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in
θ:
0.3 lower limit
  (more than 0.4,
  less than 0.49),
0.2 upper limit
  (more than 0.51
 and less than 1.1)

Proper shape of
curve: 0.2

Accurate
intersection at
θ = 0.5: 0.4

0.5
2.5
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Alternate Solution (Not taking induced emf into consideration):

If induced emf is not taken into account, there is no induced current, so
the net force acting on the combined mass of the young man and rod is

θsinmgBILFN −= .
And we have instead

,/ α=dtdv
where                               θα sin/ gmBIL −= .

ttv α=∴ )(

and                                      sss ttvv α==∴ )(
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== .
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== ,
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α
.

where θα sin/ gmBIL −= .

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00m,
R=1.0 Ω, g=10 m/s2, m=80 kg, and w=1000 m. Then,

[ ]
è

T
2sin

sin20.01100 θα
α

+
=

where θα sin10606 −= .

0.2 BIL
0.2 mg sinθ

0.1

0.2

0.5

0.5

0.3 2
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For θ  within the range (~0, 0.52 ) radian the time T is within 11 s.

However, there is another constraint, i.e. the length of rail D.
Let Ds be the distance travelled during the time interval ts

θαθα 2sin
5000

2sin2
==

gw
Ds

which is plotted below

It is necessary that Ds ≤ D, which means θ must range between 0.11 and
1.43 radians.

In order to satisfy both conditions, θ must range between   0.11  & 0.52
radians.

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in
θ:
0.1 lower limit
  (more than 0,
  less than 0.5),
0.2 upper limit
  (more than 0.52
 and less than 0.8)

Proper shape of
curve: 0.2

Accurate
intersection at
θ = 0.52: 0.4

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in
θ:
0.1 lower limit
  (more than 0.08,
  less than 0.11),
0.1 upper limit
  (more than 0.52
 and less than 1.5)

Proper shape of
curve: 0.2

Accurate
intersection at
θ = 0.11: 0.4

1.3

1.2

0.5
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Question 3 - Marking Scheme

(a) Since ,
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Marking Scheme:

Performing the integration correctly: 1 mark
Simplifying 0.5 marks

Subtotal for the section                                                           1.5
marks
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(b) Assuming an ideal gas,  TkNVP = , so that the concentration of the gas
molecules, n, is given by

Tk
P

V
N

n ==

the impingement rate is given by

Tmk

P

mTk
P

MTk

kN
P

MTk
TR

P

M
TR

Tk
P

vnJ

A

π

π

π

π

π

2

2
1

2

16
8

8
4
1

4
1

2

22

=

=

=

=

=

=

where we have note that kNR A=  and 
AN

M
m =  ( AN  being Avogadro number).

Marking Scheme:

Using ideal gas formula to estimate concentration of gas molecules: 0.7
marks
Simplifying expression: 0.4
marks
Using  R = N k, and the formula for m; (0.2 mark each) 0.4
marks

Subtotal for the section                                                           1.5
marks
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(c )   Assuming close packing, there are approximately 4 molecules in an area of 16 2r
m2.  Thus, the number of molecules in 1 m2 is given by

( )
18

2101 109.1
106.316

4
×=

×
=

−
n  m-2

However at (273 + 300) K and 133 Pa, the impingement rate for oxygen is

1224

23
23

3

sm106.2

573)1038.1(
1002.6

1032
2

133

2

−−

−
−

×=

×










×

×
=

=

π

π Tmk

P
J

Therefore, the time needed for the deposition is 7.01 =
J
n

ms

The calculated time is too short compared with the actual processing.

Marking Scheme:

Estimation of number of molecules in 1 m2 : 0.4 marks
Calculation the impingement rate: 0.6 marks
Taking note of temperature in Kelvin 0.3 marks
Calculating the time 0.4 marks

Subtotal for the section                                                           1.7
marks
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(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at
this energy is v1, we have

1
1

192
1

ms57.2453

J106.1
2
1

−

−

=⇒

×=

v

vm

At a temperature of 573 K, the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than 2454 ms-1

using the trapezium rule (or any numerical techniques) with ordinates at 2453,
2453 + 500, 2453 +1000.  The values are as follows:

Velocity, v Probability,
W(v)

2453 1.373 x 10-10

2953 2.256 x 10-14

3453 6.518 x 10-19

Using trapezium rule, the fraction of molecules with speed greater than 2453 ms-1

is given by

( ) ( ) ( )[ ]
8

191410-

1043.3

10518.610256.2210 1.373
2

500
moleculesoffraction

−

−−

×=

×+××+×=

f
Thus the time needed for the deposition is given by 0.7 µs/(3.43 x 10-8) that is
20.4 s

Marking Scheme

Computing the value of the cut-off energy or velocity: 0.6
marks
Estimating the fraction of molecules 1.2 marks
Correct method of final time 0.4 marks
Correct value of final time 0.6 marks

Subtotal for the section                                                           2.8
marks
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(e) For destructive interference, optical path difference = 2 d  = 
2
λ′

  where

n
airλ

λ =′ is the wavelength in the coating.

Silicon
Coatingd

n  = 1.4

The relation is given by:

n
d

4
airλ

=

Plugging in the given values, one gets d = 105 or 105.2 nm.

Derive equation: 

Finding the optical path length 0.2
marks
Knowing that there is a phase change at the reflection 0.5
marks
Putting everything together to get the final expression 0.6
marks
Subtotal: 1.3 marks

Computation of d: 0.6 marks
Getting the correct number of significant figures: 0.6 marks
Subtotal: 1.2 marks

Subtotal for Section 2.5 marks

TOTAL 10 marks


