W. G. Rees

Physics by Example

200 problems and solutions




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1994

First published 1994
Reprinted 1995, 1996

A catalogue record for this book is available from the British Library

Library of Congress cataloguing in publication data

Rees, W. G.

Physics by example: 200 problems and solutions / W. G. Rees.
p. cm,

Includes index.

ISBN 0 521 44514 0. — ISBN 0 521 44975 8 (pbk.)

1. Physics = Problems, exercises etc. 1. Title.

QC32.R383 1994

530°.076-dc20 93-34300 CIP

ISBN 0 521 44514 0 hardback
ISBN 0 521 44975 8 paperback

Transferred to digital printing 2003



Contents

Preface xi
Acknowledgements xiii

Physical constants and other data 1
Mathematical notes 3

Hints for solving physics problems 13
A note about significant figures 14

Problems and solutions
Dimensions, errors and statistical analysis

17

Gravitation and orbits 96
Special relativity 110
Quantum, atomic and nuclear physics

Oscillations and waves 166
Optics 204
Electromagnetism 222
Electric circuits 273
Thermodynamics 313

Index 368



Preface

This is a book about physics, consisting of two hundred problems with
solutions worked out in detail. My experience in teaching physics at
university level has led me to believe that many first-year undergraduates
find physics interesting but hard. With perhaps one or two exceptions the
concepts are straightforward enough to be grasped, and students often
enjoy learning these concepts, many of which are beautiful or at least
intellectually satisfying. However, students often find that translating
their understanding of the ideas of physics into problem-solving can be
difficult. I believe the best way to learn how to solve problems is by
example, hence this book. The level of difficulty of the problems (in some
cases it would be more accurate to say the level of sophistication of the
solutions) is intended to be roughly that of the first year of a physics
course at a British university, and the range of topics treated is
correspondingly intended to reflect typical first-year syllabuses. In order
to ensure that this is so, I have drawn most of these problems from recent
first-year examination papers at several British universities. However, 1
hope that it will find some use both below and above this level. Its
intention is to help students to make the transition from school physics to
university physics, so it assumes a background in physics and mathematics
appropriate to such a level.

This is not a textbook in the normal sense of the word. Although I
hope you will learn some physics from it, a book of this kind will
inevitably have a number of defects. The first is that it is far too short to
contain all the physics you are likely to meet even in a single year at
university. 1 have deliberately kept it short to encourage you to work your
way through all of it. However, even a much larger book of this kind,
containing many more problems, would not be an adequate substitute for
a textbook or a course of lectures. Lectures and textbooks communicate
ideas, but this book is intended to develop skill in manipulating those
ideas. [ hope it will thus supplement, rather than duplicate, the function
of a textbook. For these reasons I have largely avoided including
problems that require little more than duplicating standard derivations,
except where the results are of direct relevance to other problems or
where I believe them to illustrate important ideas.

The arrangement of the text is roughly by subject area - dimensions,



xii Preface

errors and statistical analysis; classical mechanics and dynamics;
gravitation and orbits; special relativity; quantum, atomic and nuclear
physics; oscillations and waves; optics; electromagnetism, electric circuits;
thermodynamics - but some spillage from one area to another is
inevitable. Perhaps it is also desirable, in that it might encourage students
to realise that in ‘real life’ problems cannot always be neatly categorised.
Within each section I have tried to group problems by topics, and also to
try to put easier ones before more difficult ones and to try to introduce
results in carlier problems for use in later problems. It has not always
been possible to meet all these criteria simultaneously, and I have
therefore cross-referenced the problems, and also provided an index.
Generally speaking, the index does not contain entries for items whose
location should be obvious from the structure of the book, nor does it
contain entries for familiar and widely applicable topics such as the
conservation of energy. There is also a section listing physical constants
and other useful data, which also contains a compendium of mathematical
results, This is not intended to be comprehensive, but to serve as a ready
reference for the techniques necessary in solving the problems.
Supplementary material, not strictly required in the solution of the
problems, is enclosed by brackets [ ]. Marginal arrowheads P show the
positions of the answers.

The coverage of the book is not intended to be comprehensive. It does
not purport to provide model solutions to every problem the student will
meet, nor to cover every topic. However, 1 would be grateful to learn of
any glaring omissions that readers may feel I have made.

Although I have tried to eliminate errors from the book, since I know
they will be embarrassing, I expect that a few will remain. I should be
very grateful if readers would inform me of any errors that they may
discover.

W.G.R.
Cambridge
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Physical constants and other data

Speed of light in vacuo
Permeability of vacuum
Permittivity of vacuum

Planck constant

Avogadro constant

Molar gas constant

Boltzmann constant
Stefan-Boltzmann constant
Gravitational constant

Charge on proton
Charge-to-mass ratio of electron
Mass of electron

Mass of proton

Mass of neutron

Unified atomic mass constant
Compton wavelength of electron

Acceleration due to gravity
Standard atmospheric pressure
Earth’s equatorial radius
Earth's mass

Mean Earth-Sun distance
Sun’s mass

1 light year

Mean solar day

Sidereal day

Mean calendar year

si1 prefixes
atto
femto
pico
nano
micro
milli

=270 =

33

A

g

Ian Q = b o

2.998 x 10°ms™!

8.854 x 10" Fm™!

4r x 107" Hm™!

6.626 x 107 Js

6.022 x 10 mol™!
8.314 JK ' mol™!

1.381 x 10"2 JK!

5.671 x 107 Wm K™
6.673 x 107" Nm?kg?
1.602 x 107 C

1.759 x 10" Ckg™

9.109 x 107 kg (511.0keV)
1.673 x 1077 kg (938.3 MeV)

1.675 x 1077 kg (939.6 MeV)
1.661 x 107 kg
2,426 x 1072 m
9,807 ms?
1.013 x 10° Pa
6.378 x 10° m
5.978 x 10*' kg
1.496 x 10" m
1.989 x 10° kg
9.461 x 10%m
8.640 x 10 s
8.616 x 10*s
3.156 x 107 s

10-18

10—15

10-12

1077

10-¢

103



2 Physical constants and other data

kilo k 10°
mega M 10°
giga G 10°
tera T 10"



Mathematical notes

1 Solution of quadratic equations
Ax? + Bx + C = 0 has two solutions, which either are both real or are
complex conjugates:
~B * {/(B® - 4AC)
24 '

=

2 Numerical solution of equations

There are many numerical techniques for finding the root of f(x) =0, i.e.
the value of x for which the equation is true. One of the most widely
applied is the Newton-Raphson (or Newton) method, according to
which, if x, is an approximation to the root, x,, is usually a better
approximation, where

Xns) = Xp — _f{-tn)

['(xn)
and f'(x) = df/dx.

3 Trigonometric formulae

sin(x + y) = sinxcosy + cosxsiny

sin(x — y) =sinxcosy — cosxsiny

cos(x + y) =cosxcosy —sinxsiny

cos(x — y) =cosxcosy + sinxsiny

sin (2x) = 2sinx cosx

cos (2x) = cos’x — sin’x = 2cos’x — 1 = 1 — 2sin’x
cos’x + sin’x = 1

sinx = %{cxp[ix] —exp[—ix]) where i = ~1
i

cosx = %(exp{ix] + exp[—ix]) wherei? = —1



4 Mathematical notes
4 Hyperbolic functions
sinhx = %(expx - exp[-x])

coshx = -;-(expx + exp[—x])

sinh x

coshx

cosh? x — sinh?x = 1

sinh (2x) = 2sinh x cosh x

cosh (2x) = cosh®x + sinh®x = 2cosh®x — 1 = 2sinh®x + 1

tanhx =

In general, relationships between hyperbolic functions can be derived
from the relationship between the corresponding trigonometric functions
using

sin(ix) = isinhx,

cos (ix) = coshx.

5 Power series

The Binomial expansion often provides a simplification of more
complicated expressions:

Qta)y=1+n+ M-V nn=D=2)5,
2! 3
If n is a positive integer the series contains n + 1 terms (up to x") and is
valid for all values of x. If n is not a positive integer, the series is infinite,
and converges if [x| < 1. Examples:
(1+x)* =1+ dx + 6x% + 4x* + x*,
2 3
Q+x)y =X 3 5%,
2 8 16

The following power series are also useful:

x* X .
expx =1+x +?+ ?+ (valid for all x);
: 14
In(l+.t)=x—x—+x——x—+...(validfor—l¢xsl):
2 3 4
_ xr oxt «x® . .
cosx=1—"—+"—="+.,. (valid for all x);

2! 4 6!
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3 5 7
sinx=x—';—l+';—'—;—l+... (valid for all x);
s !
tanx = x + T + 2:—5 + . (validfor—m/2<x<n/2);
2 4 6
wshx=l+%+:—'+-i;-+... (valid for all x);
. JrS x; .1:‘Ir .
smhx=x+3I—+?+7+... (valid for all x);
28 1’ .
tanhx = x — T + ETH - 218 . (valid for all x).

The Taylor series describes the behaviour of the function f(x) near x as
a power series in Ax, where Ax = x — xg:

& (“i-r)2 d’f (Ax) +

dx? 2 dx’ 3!

The differential coefficients are all evaluated at x = x,. The Maclaurin
series is a Taylor series with xy = 0.

) = fxg) + & L ax +

6 Random errors and statistics

6.1 Single variable

Given n independent measurements x,, x3, . . ., X, of some quantity, the
sample mean is defined as

I n
(x) = —>x
and the sample variance is defined as

st = —E(r: —-{x))?= -—Er. - (x)?,

Mi=1 ni=1

s is the standard deviation of the sample. The best estimate of the
standard deviation in the mean is
O~ ——
Vin-1)

and the result of n measurements is quoted as {x) + o,
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Given n measurements of a quantity x, vy 2 o, xa* 0y, ..., X, £ 0,,
the results can be combined to give a mean value

n xf

7

i=1 0

(x) = ——.
1
P~

The standard deviation in the mean value is

- ()

If f is a function of a, b, c, . . . , each of which has an associated
uncertainty o,, 0y, O, . . . , the uncertainty in f is given by

o= (i'[)zai + (—ai)zaf. + (EL)ZUE oo
da ab dc

6.2 Probability distributions

If an event can occur with probability p at a single trial, the probability
P(n) of n such events in N independent trials is given by the binomial
distribution:

N!

P(n) = ————p"(1 - p)¥ ™.
)= PP
The expectation value of n is Np and the standard deviation is
[Np(1 = p)]'2.

The limit of the binomial distribution as N tends to infinity and p tends
to zero such that the expectation value of n is constant at y is the Poisson
distribution:

P(n) = £—exp (—p).
n!

The standard deviation of n is equal to the expectation value p.

The limit of the binomial distribution as N tends to infinity is the
normal distribution, which is expressed as a probability distribution
function p(x) dx such that the probability of x lying between x and
x + dx is p(x) dx:

x - ,u]z)

1 ._[
aV/(2nm) exp( 207

plx) =
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Related to the normal distribution is the error function, defined as
2
Vrlo

so that erf (0) = 0 and erf (=) = 1. The probability of observing a
departure (positive or negative) of at least k standard deviations away

from the mean is

erf(x) = exp(—z%)dz,

k
1-erf—.
e V2

Table 1 gives some values of this function:

Table 1
k 1-erf(k/V2) & 1 — erf(k/V2)
0 1 2.5 0.0124

0.5 0.617 3.0 0.00270

1.0 0317 3.5 4.7 %104
15 0.134 40  63x10°%
2.0 0.0455 4.5 6.8 x 10-6

Thus the probability that a measurement taken from a normal
distribution will be within %2 standard deviations of the mean value is
95% , and it is conventional to regard deviations larger than this as
significant.

6.3 Linear regression
If we have n pairs of measurements (x;, y;) and we wish to use them to
find a linear relationship of the form

y=mx +c,

the standard procedure is to choose m and ¢ such that the sum of the
squares of the residuals

di =y —mx—c
is minimum. This is achieved by taking
2 = (x))y;
mo

J_él(x, ()
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and
c=(y) - m(x),
where {x) is the mean value of the x values, defined as
l n
(x) =— Xy
and similarly
l "
(v} ==2¥-
ni=]

It is assumed that all the error in the data is in the values of y, and that
all the data points have equal weight. The uncertainty in the slope, Am,
is given by
n
Sdi
i=1
Am) = ——m —,
(amy D(n-2)

and the uncertainty in the intercept, Ac, is given by

2 2
(Ac)? = (L + (x_)z)i'
n D [n=-2
where
D= iEll(lr.- - {x))%
7 Differentiation
d n—1

—x" = nx (for n constant)

j—upx =expx
dx

d 1
—Inx = —
dx x

d .
—sinx = cosx

d .
—0Cosx = —sinx
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d

—tanx =
cos’ x

d .

—sinhx = coshx

dx

i::4::shx = sinh x
dx

itanhx = 1

dx c:t':ish2

—d‘—i—[af x)] = a— (for a constant)

Tj;f(ax} = af'(ax) (for a constant and f’ = dffdx)

d - )% af
[f(x)s(x}] f(x) » + g(x) .
f(r) 1 df _ f dg

sl g g ax
“1(s(x))] =

(where z = g(x))

8 Integration
The constants of integration have been omitted from the indefinite
integrals.

n+l
jx"dx =% (for n constant; n # —1)
n+1

Jexpxdx =expx
J% =Inx

Ilnxdx =xlnx —x
fsinxdx = —cosx
Icosxdx =sinx

flanxdx = —Incosx
=2 1

cos x sin x dx =—2~
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j P cost xsinx dx = 1
J’ exp(—ax?)dx = \(- (for a constant)
Lx exp(—ax?) dx = Z (for a constant)
= jox"exp(—axz)dx = "2;1
freorgter ds = s ey ax - [ focor (L)

If(ax)dx = -l--[f(z)dz (for a constant; z = ax)

1,-2 (for n,aconstant; n =2)

9 Vector algebra
If
A= (A, A, A)
and
B = (B,, B,, By)
are vectors described by their Cartesian components, their scalar product
is
A-B=AB, + AB, + AB, = |A||B|cos 6,
where
Al = (A7 + 45 + AD"7
is the modulus of A (and similarly for [B|), and 8 is the angle between the
two vectors. The vector product is
A X B =(A,B, - AB,, A,B, -~ AB,, A B, — A,B,).

The modulus of A X B is |A] |B|sin 8 and the direction of A X B is normal
to the plane containing A and B.

The differential operators grad, div and curl are defined as follows in
Cartesian coordinates.

af of aof
rad f = Vf = | —, =, =],
gndf =¥/ (ax dy az
where f is a scalar. Thus grad operates on a scalar to produce a vector.
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3A,  3A, . BA,
X Yy R
ax ay 8z

where A is the vector (A,, Ay, A;). Thus div operates on a vector to
produce a scalar.

divA=V-A=

3A, 0A, 3A, 34, 34, aA,)
3y 3z 3z ox ax a3y
Thus curl operates on a vector to produce another vector.

cur]A=VxA=(

10 Differential equations

10.1 Undamped simple harmonic motion

where k is a positive constant, has the general solution
x = Acos(t\Vk) + Bsin(t\k),

where A and B are constants.

10.2 Damped simple harmonic motion

2
K Y —
dr? dt
where ¢ and k are constants. The type of solution depends on the value of
D=k -2/

(a) D > 0 (under-damped). The general solution is
x = (Acos[ty D] + Bsin[ty D])exp(—ct/2),

where A and B are constants.
(b) D = 0 (critically damped). The general solution is

x = (A + Bt)exp(—ct/2),

where A and B are constants.
(c)’ D <0 (over-damped). The general solution is

x = Aexpl(=c/2 + V[~ D)i] + Bexp[(~c/2 ~ V[~ D],

where A and B are constants,
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10.3 Exponential growth or decay

iJ':-=mr-|-b.

dt
where a and b are constants, has the general solution

x = Aexp(at) - i,
a

where A is a constant.



Hints for solving physics problems

As I have written in the preface, I believe that the best way of learning
how to solve physics (or any other) problems is by practice and from
example. However, there are a few basic hints, all of which are really just
common sense and therefore fairly obvious.
® Try to understand the physics of the problem before launching into
a mathematical analysis. It will sometimes be possible to obtain a
rough preliminary numerical answer, perhaps using simplifying
assumptions.
e Lay your work out neatly on the page, without being obsessive
about it, and explain what you are doing and why you are doing it.
® Draw a diagram if it helps (it nearly always does).
® Try to keep expressions algebraic rather than numerical. This may
mean that you have to invent symbols for quantities that are
specified numerically. But it has the advantage that the dimensions
of your answer can be checked at the end of the calculation. It is
also much less likely that you will make mistakes if you are
manipulating a few symbols rather than strings of digits. Finally, if
you can express your answer algebraically you may be able to check
that the variables affect the answer in the way you expect.
® Check the dimensions of your answer if this is possible and
appropriate.
® Check the magnitude of your answer against common sense or other
knowledge, if possible.
¢ Calculate the error (uncertainty) in your answer, perhaps just as a
rough estimate, if you have the information to do it.
® If your numerical answer to a problem does not agree with a value
which you are reasonably sure is correct, and all other attempts at
identifying the error have failed, look at the ratio of your answer to
the ‘correct’ one. You may find that your answer is wrong by a
simple factor such as 2, , In2 etc. If so, go back to your working
and try to find where you introduced the error, but remember that
the error could be in the ‘correct’ answer, and not in your solution.
(Some teachers may dislike this suggestion, but 1 have found it
useful as a last resort!)

13



A note about significant figures

There is a well established convention that, if no other indication of the
uncertainty in an experimental value is given, the least significant figure is
assumed to be correct to within £0.5 digit. Thus, for example, 1.47 is
taken to mean 1.47 % 0.005. This leads to a convenient rule of thumb that
if a set of experimental data are specified to N significant figures, a result
obtained by combining the data will also be valid to N significant figures.
However, this simple rule must be used with caution since it is not as
accurate as a rigorous error calculation. Some examples will make this
clear.

(i) If data are subtracted, the number of significant figures can be
reduced. For example, 10.9 — 3.07 (both specified to three significant
figures) can not properly be evaluated as 7.83 but only as 7.8.

(ii) The fractional error of a value specified to N significant figures
depends not only on N but also on the value itself. For example, 1.03 is
accurate to +0.005/1.03 = 0.5% whereas 9.87 is accurate to
+0.005/9.87 = 0.05%. This can lead to apparent inconsistencies if the
rule of not specifying results to more significant figures than are justified
by the data is followed rigorously. For example, if X = 3.7 (two
significant figures), X /2 would be written as 1.9 to the same number of
significant figures, obscuring the fact that the latter quantity is exactly half
the former.

(iii) Intermediate results should be calculated to one or two more
significant figures than are justified by the data, otherwise rounding
errors can build up. For example, the reciprocal of 9.57, calculated to the
same number of significant figures (three), is 0.104, but the reciprocal of
0.104 calculated to three significant figures is 9.62. However, if we had
written 1/9.57 = 0.1045 and then taken the reciprocal to three significant
figures, we would have retrieved the original value of 9.57.

14



Problems and solutions



Dimensions, errors and statistical
analysis

The viscosity n of a gas depends on the mass, the effective diameter and
the mean speed of the molecules. Use dimensional analysis to find nas a
function of these variables. Hence estimate the diameter of the methane
(CH,) molecule given that n has values of 2.0 x 105 kgm™"s™! for
helium and 1.1 x 10~ kgm™'s~! for methane at room temperature, and
that the diameter of the helium atom is 2.1 x 10~'” m. [Relative atomic
masses for C and He are 12 and 4 respectively.]

Solution
Assume that

n= km°dPv?,
where k, a, § and y are dimensionless constants, m is the mass, d the
diameter and v the mean speed of a molecule. The dimensions of the
mass m are M, those of the diameter d are L and those of speed v are

LT"'. From the units given in the problem (or from our own knowledge)
the dimensions of viscosity are ML™'T~!. Thus

ML™IT-! = MoLALYT™Y,
so, by inspection,

a=1,
ﬁ=_2l
?-l!

and hence

Now for a gas we expect mu® to be proportional to the absolute
temperature T (the root mean square speed c is given by mc? = 3kg T,
where kjp is Boltzmann’s constant, and v is proportional to ¢), so at a
fixed temperature T the velocity v should be proportional to m~2,

17



18 Dimensions, errors and statistical analysis

Hence we expect
nd*m=1"

to be constant at fixed temperature, and thus

ta= ] Tt

=2.1x 10-10(2 oﬂ l)‘ﬁ(lﬁf4)""" metres
=4.0 x 10710

This seems a reasonable answer. We expect the methane molecule to be
bigger than the helium atom, although not by much.

Use the method of dimensions to obtain the form of the dependence of
the lift force per unit wingspan on an aircraft wing of width (in the
direction of motion) L, moving with velocity v through air of density p,
on the parameters L, v and p.

Solution

Figure 1 shows the width of the wing and the wingspan.

Figure 1
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Let us call the lift per unit wingspan @, and write
@ = kL*Pp",

where k, @, B and y are dimensionless constants. Since the dimensions of
force are MLT "2, the dimensions of ® are MT~2, Thus

MT-? = LeLAT-AMYL-YY,

So by equating the terms in M, y = 1.

By equating the termsin T, —f = —2s0 f = 2.

By equating the termsin L, & +  — 3y = 0, therefore a = 1.
Thus we may write

@ = kLov’p.

[This analysis suggests that we can define a dimensionless lift coefficient
as

S

bpv?Lw’
where w is the wingspan. The factor of 1/2 is conventional. As an
example, a Boeing 707 has a maximum mass of about 148 x 10° kg and a
wing area of about 280 m®. At 35000 feet altitude (10700 m), where the
air density p is about 0.37 kgm ™3, the cruising speed is about 250 ms™!,
The lift coefficient under these conditions is thus about

2% 148 X 10° x 9.8 _
0.37 x 250% x 280

0.45.

Most aircraft wings have lift coefficients in the range 0.2 to 0.6,
depending on the design of the wing and its orientation with respect to
the aircraft’s motion. ]

The drag force per unit length, F, acting on a cylinder of diameter D
moving at velocity v perpendicularly to its axis through a fluid of density
p and viscosity 1 depends only on D, p, i and v. Use the data in Table 2
to estimate the force per unit length acting on a cylinder of diameter

0.1 m moving at 61 ms™! through air.
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Table 2

fluid density p viscosity cylinder velocity v drag force per
kgm~* Nsm—? diameter m ms~! unit length F

) Nm-!

water 998 1.00 x 10-* 0.01 30 4500

mercury 13546 1.55 x 10-* 0.01 5.5 700

air 1.30 1.83 x 10-% 0.10 61 ?

Solution

If we write down the dimensions of the various quantities involved,

[F] =MT™2,
[D]=L,

[p) = ML,
[n] = ML™IT™1,
[v]=LT™,

we can see that we will be unable to find a simple expression for F in
terms of D, v, p and 7, since we will obtain three equations (one each
from mass, length and time) for four unknowns. We thus need to look for
two dimensionless groups.

It is clear from these dimensions that

F

A= —-0o
po*D
has no dimensions, nor has

- 22D
]
We assume that there is a unique relationship (which may not be a simple
one) between the dimensionless variables A and B.

For the cylinder in water, combination A has a value of 0.501 and
combination B is 2.99 x 10°.

For the cylinder in mercury, A is 0.171 and B is 4.81 x 10°.

For the cylinder in air, B has a value of 4.33 x 10° which is about 74%
of the way from the value for water to the value for mercury. We might
reasonably assume that A will have a value close to
0.26 x 0.501 + 0.74 x 0.171 == 0.26 (see figure 2). [We know that there is
a unique relationship between A and B, but we are only guessing that the
relationship is approximately linear in the range 0.171 < 4 < 0.501.]
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AA
06 —
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Thus we expect that F will be approximately

0.26 x 1.30 x (61)* x 0.10Nm™!
=13x10*Nm™".

[The constant A is in fact half the drag coefficient, and B is the Reynolds
number. We do not need to know this to solve the problem, and the
choice of dimensionless groups is not unique. For example, 1/4 and 1/B
would have been equally valid, as would AB and A/B. However, we do
know that there can only be two independent groups of variables because
the total number of variables (5) exceeds the total number of dimensions
(3) by two.]

Problem 4

A recent high-precision determination of g has a quoted error of 6 parts
in 10°. Estimate the increase in height at the Earth’s surface which gives a
change in g equal to this error. If the dependence of g on geographical
latitude at sea level is given by

g = go(1 + Bsin’ ),
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where ¢ is the latitude and g is a dimensionless constant with a value of
0.0053, estimate the northward displacement near latitude 45° which gives
a change in g equal to the quoted error.

Solution

We need to know how the acceleration due to gravity, g, varies with
height above the Earth’s surface. Taking the Earth to be a spherically
symmetric mass M, we can write

g = M
r’

where r is the distance from the centre, assuming that r is greater than

the Earth’s radius. Differentiating both sides gives

-2GM

r

dg = dr.

Dividing by g (and substituting from our previous expression for g) gives
dg _ _2dr
g r
(which, apart from the — sign, we recognise as the familiar result from
error analysis). Thus the fractional change in r is half the fractional
change in g (ignoring the minus sign), so the change in r required to
achicve a fractional change of 6 X 1077 in g must be

Ix6x107° x 6.4 x10°m
(we have taken the Earth’s radius as 6400 km)

= 0.019 m.
Le. ag change in height of 19 mm would cause a change in g of 6 parts
in 10°.

To consider the effect of a change of latitude, we differentiate the
expression g = go(1 + Bsin® ¢) with respect to the latitude ¢ to obtain
dg/d¢ = 2gyBsin ¢pcos ¢. Thus

A
2goPsin ¢pcos ¢
Taking Ag/g = 6 x 107, 8 =0.0053 and ¢ = 7/4 radians gives

A¢ = 1.13 x 107 radians. Multiplying this by the Earth’s radius of
6.4 x 10° m gives a distance on the Earth’s surface of about 7 m.
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Problem 5

The experimental values in Table 3 were obtained for the Young modulus
E and the shear modulus G of steel:

Table 3

Ef10" Nm-2 21.1 21.0 209 20.6
G/10% Nm-? 8.12 8.15 8.13 8.08

The formula ( Ef2G) — 1 = v was then used to calculate the Poisson ratio
v. Find v and estimate its error,

Solution

If the errors in E and G are uncorrelated, we should be able to obtain
equally valid results by calculating

v= (E) -1
2({G)

and

where {x) is the mean value of x. As a check, we will try both methods,

Method 1
Working in units of 10 Nm~2, calculate

{(E) = (21.1 +21.0 + 20.9 + 20.6)/4
=20.9

and

(E?) = (21.12 + 21.0° + 20.9% + 20.6%)/4
= 436.845.

So the square root of the sample variance is

(436.845 — 20.90%)'2
=0.19.
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The error in the mean value { E) is thus
0.19/y/3 = 0.11,

so the fractional error in (E) is
0.11/20.9 = 0.5%.

Similarly, {(G) = 8.12 and the fractional error in {G) is 0.2%.
Combining these,

(E)/2(G) = 1.287 + 0.5%

= 1.287 * 0.006,
so

v = 0.287 + 0.006 (no units).
Method 2

Calculate E/2G — 1 for each set of values (Table 4).

Table 4

Ef10" Nm-? 211 210 20.9 20.6
G/10"® Nm-2 8.12 8.15 8.13 8.08
ERG -1 0299 0288 0.285 0.275

Evaluating the mean value of the quantity and of its square as before,
and obtaining the error in the mean, gives

v = 0.287 % 0.005.

This value is not significantly different from the result of method 1, so we
are justified in assuming that the errors in E and G are uncorrelated.

Problem 6

The thickness t of an aluminium foil is to be determined using an
experiment involving the absorption of S-particles. The sample of
aluminium is placed between a ff-source and a B-detector and the
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measured count rate varies according to the thickness of the aluminium
foil as follows:

n = ngexp(—ut).
Given that the number ny of counts recorded in an interval of time in the
absence of the foil is 572 and the number n of counts in the presence of
the foil is 417, calculate the thickness of the foil and the error in this
quantity. u is a constant with a value of (1.38 + 0.05) x 10° m™".

In a second experiment using a different technique the thickness,
determined from five repeated measurements, is found to be 0.29 mm
with a standard deviation of 0.1 mm. Comment upon whether the results
of the two experiments are consistent.

For a material with a given value of u, what thickness can be
determined, using this radiation-counting technique, with the smallest
percentage error?

Solution
Rearrange the equation to make t the subject:

t= l In ﬂ’
U n
Now we know that in counting a large number N of discrete random
events, the standard deviation is {/ N, so the fractional error in ng is

ﬂ =4.2%.
572

Similarly the fractional error in n is
m = 4.9%
417
Thus the fractional error in ng/n is (4.22 + 4.9%)'2% = 6.5%, so

M0 2372 _ 1372 4 6.5%.
n 417
Now if y = Inx, dy = dx/x so the absolute error in In(ng/n) is equal to

the fractional error in ng/n. Thus

0% = 1n1.372 + 0.065

n
= 0.316 + 0.065
=0.32 £ 21%.
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The fractional error in p is 0.05/1.38 = 3.6%, so the fractional error in  is
(212 + 3.6)'2% = 21%.

Thus

!—-—qéz-—m=0.23mm:t21%

138 x 10°
=0.23 £ 0.05 mm.

The second experiment determined ¢ to be 0.29 + 0.10 mm. To see
whether these two results are consistent we calculate the difference
between them, which is 0.06 mm, and the standard deviation of this
difference, which is (0.052 + 0.10%)"2 mm = 0.11 mm.

In order to reject the hypothesis that a variable has a value of zero, we
usually require that the modulus of the ratio of the value to its standard
deviation should be at least 2. In this case it is only 0.06/0.11 = 0.5, so we
cannot reject the hypothesis. The two measurements of thickness are thus
consistent. [This is actually obvious without the calculation, since the
range 0.29 £ 0.10 includes the value 0.23.]

[Since we have two independent measurements of the same quantity,
we can combine them to obtain an improved estimate. The technique for
doing this is to form a weighted average, the weights being the inverse
squares of the errors. Thus

_0.23%x0.052 +0.29 x 0.102

(1) = mm
0.05"2 + 0.102

= 0.24 mm.

The error in {¢) is the inverse square of the sum of the weights, i.e.
(0.057% + 0.10°2)~12 = 0,05 mm, so the best value for 1 becomes
0.24 £0.05mm.]

Returning to the radiation technique for measuring thickness, and
writing An for the error in n, and similarly for other quantities, we may
put

bﬂo - l
My Vﬂo
and
An 1
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as before, so the fractional error in ng/n, which is also the absolute error
in In{ng/n), must be

(1/ng + 1/n)'2,
The fractional error in In (ny/n) is thus

(1/ng + 1/m)'?

In (ﬁ)
n
Now since the value of u is known, its fractional error is constant, so the
fractional error in ¢ will be smallest when the fractional error in In (ng/n)
is smallest. If we call this F, and assume that n, is a constant (determined
by the radiation source and the time for which the detector is operated),
the smallest fractional error in 1 is found at the value of n for which

aF/on is zero,
Differentiating our expression for F, and setting it equal to zero, gives

un(%) - 2(1 + 1)

This must be solved graphically or numerically. We will try the
Newton-Raphson method. Putting x = (ng/n), we need to find the root
of

fx)=lnx-2/x-2=0.
In general, if x, is an approximation to the root,
f(xa)
I'(xa)

is a better approximation. Since f'(x) = 1/x + 2/x?, this can be written

X+l = Xy —

_Inx, -2/x, -2 _ 3x2 + 4x, — x2Inx,
1x, + 2/x2 2+ x, '

Let us take xo = 1 as our initial approximation. Applying the
Newton-Raphson method gives

Xn+1 = Xp

xy = 2.33,
X3 = 4.86‘
Xy = 7.72,
X4 = 904.
Xg = 9.18,
xg = 9.19,

X7 = 9.19.
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The solution is thus
(no/n) = 9.19,

so the thickness t which can be determined with the smallest fractional
error is

(In9.19)/u
= 2.22/p.

[This has been rather a lengthy calculation, so perhaps we should check
that the answer is correct. We were looking for the solution of

f(x)=Ilnx -2/x -2=0,

and have obtained a value of x = 9.19. Let us check by evaluating

£(9.19):
£(9.19) = 0.0005.

This is close to zero, but to be sure that our answer is to be correct to
three significant figures we should check that neither f(9.18) nor f(9.20)
is closer to zero. Evaluating these, we find

£(9.18) = —0.0008,
£(9.20) = 0.0018.

Thus we can be sure that x = 9.19 is the solution, correct to three
significant figures.]

Problem 7

The density of a uniform cylinder is determined by measuring its mass m,
length ! and diameter d. Calculate the density (in kgm™?) and its error
from the following values:

m=4736+001g;
I =15.28 + 0.05 mm;
d = 21.37 £ 0.04 mm.

Solution

Clearly the formula for the density p in terms of the measured quantities
is
4m

wld?
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Straightforward substitution of the measured values gives
p=8642kgm™.
The fractional error in m is 0.01/47.36 = 0.02%.

The fractional error in [ is 0.05/15.28 = 0.33%.
The fractional error in @2 is 2(0.04/21.37) = 0.37%.

So the fractional error in pis (0,022 + 0.33% + 0.37%)'2% = 0.50%.
Thus p = (8.64 £ 0.04) x 10° kgm™>.

Problem 8

In an experiment to determine the charge-to-mass ratio e/m of the
electron using a cylindrical diode, the following equation is derived:

e 8

m g
where V is the potential difference across the diode of radius r at the
critical magnetic field B. The latter is supplied by passing a current [/
through a solenoid of diameter D and length L, and is given by

_ pgnl
(1 + DYL)”’
where n is the number of turns per unit length (see problem 138). The
appropriate experimental quantities are determined as follows:

n=23920m;

D =0.035 £ 0.001 m;

L =0.120 £ 0.001 m;

r=(3.4£01) x 103 m;
=192+ 0.02A;

V=201V,

(i) Determine the magnitude of the field B and the error in this
quantity.
(ii) Determine the value of e¢/m and the error in this quantity.

Solution

(i) The fractional error in D? is 2(0.001/0.035) = 5.7%.
The fractional error in L? is 2(0.001/0.120) = 1.7%.
So the fractional error in D¥/L2is (5.72 + 1.7%)2% = 6.0%.
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Calculating the value of D?/L? gives 0.0851, so the absolute error in
this quantity is 0.005. Thus

1+ D*/L? =1.085 £ 0.005
= 1.085 £ 0.5%,

(1 + D¥/L) = 1.042 £ 0.25%.

The fractional error in [ is 1.0%, and we may assume that there is no
error in the values of y or of n, so the fractional error in B must be
(0.25* + 1.0%)'2 = 1.0%. Thus (taking po = 47 X 10~ Hm™") we obtain

B =9.08mT % 1.0%
= 9.08 £ 0.09 mT.

(ii) Fractional errorin V is 1/20 = 5.0%.

Fractional error in r? is 2(0.1/3.4) = 5.9%.

Fractional error in B2 is 2 X 1.0% = 2.0%.

So fractional error in e/m is (5.0 + 5.9% + 2.0%)"2% = 8.0%.
Thus

efm = 1.68 x 10" Ckg™' % 8.0%
= (1.7 0.1) x 10" Ckg"".

We can compare this with the currently accepted value for the
charge-to-mass ratio of the electron, which is 1.759 x 10" Ckg~". Itis
clear that the experimental value is consistent with this value to within the
experimental error.

Problem 9

A pendulum consists of a copper sphere of radius R and density p
suspended from a string. The motion of the sphere experiences a viscous
drag from the air such that the amplitude of oscillation, A, decays with
time, ¢, as follows:

A = Agexp(~y1),
where

9
-
4R*p
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Ay is the amplitude at time ¢ = 0 and 7 is the viscosity of the air. The
measurement of the amplitudes is accurate to 1% other measurements
are recorded below. Evaluate the time taken for the amplitude to fall to
85% of Ay and the error in this quantity. Which experimental parameter
contributes the largest error to the final result?

n=(1.78 £0.02) x 10" kgm™'s".
R=52%02mm.
p = (8.92 £ 0.05) x 10° kgm™,

Solution

We want to determine ¢, so we rearrange the equations to make ¢ the
subject:

2
[=“lnig=.4_8_p[nﬂ
y A 9n A

A and A, are each determined to a fractional accuracy of 1.0%, so the
ratio Ag/A is determined to a fractional accuracy of (12 + 1%)'2%
=1.4%.

If y =Inx, dy = dx/x, so the absolute accuracy in Inx is equal to the
fractional accuracy in x. Thus In (A/A) is subject to an absolute accuracy
of + 0,014, and since Ag/A = 100/85, In(Ap/4) =0.163 £ 0.014, i.e. a
fractional accuracy of 8.6%.

The fractional error in R? is 2(0.2/5.2) = 7.7%.

The fractional error in p is 0.05/8.92 = 0.6%.

The fractional error in 7 is 0.02/1.78 = 1.1%.

Thus the fractional error in 1 is (8.6 + 7.7% + 0.6* + 1.1%)'2% = 11.6%.
The value of 1 is

4(5.2 x 107%)%(8.92 x 10%) In 100
9(1.78 x 107%) 85
=079s,

1 =979s + 11.6%
= (1.0 £ 0.1) x 10°s.

The largest contribution to the error in 7 clearly comes from the error in
determining the amplitudes Ag and A.
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A flat circular ring has mass M, outer radius a and inner radius b (see
figure 3).

Figure 3

The measured values of these quantities are

M = 0.191 + 0.003 kg,
a =110 £ 1 mm,
b=15+ 1 mm.

Find the moment of inertia of the ring about an axis through the centre,
and normal to the plane of the ring, and estimate its error.

Solution

First we need to find the formula for /, the moment of inertia, in terms of
the given quantities. If we consider a disc whose mass per unit area is 0
and whose radius is r, its mass is 7or? and its moment of inertia about an
axis through the centre and normal to the plane of the disc is 7or*/2 (see
problem 23). We can thus write the moment of inertia of the ring as

na

I= 2 (a* - b*).

But we can also write the mass per unit area as

o= M
n(a® - b¥)

so our expression for / becomes

I= %(az + bY).
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Inserting the values given, we obtain
I =0.191(0.110% + 0.015%)/2 = 1.177 x 10~ kgm?.

Now if the absolute error in a is Aa, its fractional error is Aa/a and the
fractional error in a® is 2Aa/a. Thus the absolute error in a? is 2aAa, and
similarly the absolute error in b is 26Ab, so the absolute error in a? + b?
must be (4a’[Aa]® + 4b*[Ab]*)"2. Evaluating this gives an absolute error
of 2.2 x 107* m?, and since a® + b? = 1.23 x 1072 m? this corresponds to
a fractional error of 1.8%.

The fractional error in M is (0.003/0.191) = 1.6%, so the fractional
error in I is (1.82 + 1.6%)"2% = 2.4%, thus

I=1177 x 107 kgm? + 2.4%
= (1.18 £ 0.03) x 10"*kgm?.

Write down in terms of the absolute errors Al and Ab in / and b
respectively expressions for the absolute errors in the following
quantities:
Q)

(ii) b%

(iii) 1 + b%;

(vi) V(I* + b

) ((2 + b?]/12)2.
The moment of inertia of a bar, length [ and breadth b, about an axis
through the centre of mass (see figure 4), is mk?2, where

2 2
k= \/u
12

and m is the mass of the bar.

Figure 4
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A particular bar has a length of about 1 m and a breadth of about
25 mm. It is required to find k to a precision of 1 part in 10°. How
accurately would you need to measure { and b?

Solution

() If f = 12, dffdl = 21 so (Af)* = (2IAI)? and A(1?) = 2IAl.
(ii) Similarly,

A(b%) = 2bAb.

(iii) The absolute error in [? + b? is obtained by adding these two terms
in quadrature, i.e.

A1 + bY) = VAP[AI? + 4b[AB)P).

(iv) To find the absolute error in (I* + b%)'2, we can proceed by noting
that the fractional error in (12 + b)Y is half the fractional error in
(P +bY),ie.

A(V(P + bY) _ VAP(AL? + 4b*(Ab))
V(2 + b?) 207 + b '
Multiplying both sides by (12 + b%)"/? gives

AV(E + BD)) = \/F(Al)’ + b¥(Ab)
(VU + 67 = ([ ===
[Alternatively, we could have derived this result by writing f =
(2 + b*)'” and using the general result (Af)? = (3f/31)}(Al)* +
(3f/3b)}(Ab).]
We can see that this is reasonable by noting that if (say) / >> b, it tends
to Al as expected.

(v) The absolute error in ((1* + b?)/12)"? is clearly equal to the
expression derived in (iv), divided by V12.

If we require to determine k to an accuracy of 1 part in 10°, we need to
arrange that \f(lz +bY)is determined to the same (fractional) accuracy.
Since / = 1 m and b = 0.025 m, \/(I* + b*) will be very close to 1 m, so by
our result in part (iv), we require that (2(A1)? + b3(Ab)H)Y? should be
107% m. If we assume that the errors in / and in b contribute equally to
the overall error, this implies that (/Al)? and (bAb)® are each equal to
0.5 x 107 m?, which would imply Al = 7 um and Ab = 0.3 mm. Even if
all the error is contributed by Al, it will still be necessary to determine [
to 10 pm.
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Thus our conclusion is that ! must be determined to an accuracy of
about 7 um, and b to about 0.3 mm.

Calculate the moment of inertia I of a rectangular bar of density p, length
a, width b and thickness ¢, about an axis through the centre of gravity,
and estimate the error, given
2, 52
[= pabt(a® + b*) (1)
12
and
p=8.12+003Mgm™3,
a=0.2320 £ 0.002m,

b=20+1mm,
t=5%03mm.

Solution

Straightforward substitution of the numerical values gives [ =

2.226 x 1073 kgm?. The error calculation is not so simple, however,
because the error in ab is not independent of the error in (a® + b?). It is
probably easiest to use the standard result from error analysis:

@17 = (3L @o2 + (22) caar + (22) oy
ap da ab
+ (ﬂ)zmrﬁ
at
where Ax is the error in x. Differentiating (1) with respect to p gives
31 _ abi(a® + b?)

ap 12

and substituting the values gives a numerical value of 2.74 x 1077, The
contribution to (AI)? from the error in pis thus (2.74 x 10~7 x 30)2 =
6.76 x 1071, Repeating the analysis for the effect of Aa, we have

3l _ pbu(@ +b%) _ pa’bt
3a 12 6 '
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which has a numerical value of 2.08 x 102, The contribution to (A7)?
from the error in a is thus (2.08 x 1072 x 0.002)% = 1.73 x 10~°. Similarly
for Ab we have

al _ pat(a® + b?) + pab®t

ab 12 6

=1.12 x 107", giving a contribution to (A7)? of (1.12 x 107! x 0.001) =
1.26 x 1078, Finally, we have

3l _ pab(a® + b%)
ar 12

=4.45 x 107!, giving a contribution to (A1)? of
(4.45 % 107! x 0.0003)2 = 1.78 x 107%. Thus

(AI? =676 x 107" + 1.73 x 10~ + 1.26 x 10~® + 1.78 x 10~%
=322 x 1078,

s0AI=18x10"% and [ = (2.2%£0.2) x 10} kgm?.

In an experiment to count decays from a radioactive sample 10 counts are
registered on average in a 100 second interval. Use the Poisson
distribution to estimate the probability of detecting

(a) 8 counts in a 100 second interval, and

(b) 2 counts in a 10 second interval.
‘When the experiment was run for one day, 8000 counts were detected.
Explain why this is an unlikely result if the above average is correct and
Poisson statistics are applicable.

Solution

The Poisson distribution can be written as
p(n) = K230 (0H)
n! ’

where p(n) is the probability of observing n events when the expectation
value of n is u.
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(a) We know that for a 100 second interval p = 10, so

p(8) = lO"exp(—IO)‘
8!

which is evaluated as 0.113.

(b) For a 10 second interval we expect yt = 1, so

]
p(2) = 1 exZE!(—l)
which is evaluated as 0,184,

Since one day contains 86 400 seconds, we expect u = 8640, so the
observed number of 8000 events is lower than expected. In order to assess
whether such a deviation is surprising, we recall that for large values of u
the Poisson distribution is very close to a Gaussian (normal) distribution
with mean u and standard deviation \/u. The observed deviation from the
expected value is thus 640/1/8640 = 6.9 standard deviations, and we know
that the probability of observing such a large deviation is extremely low.

[One possible explanation might be that the sample has decayed
significantly during the course of the day. Let us estimate the decay
constant which would be necessary in this case:

The count rate dN/dt will vary with time as

AN _ Niexp(~At),
dt

where N is the count rate at time zero and A is the decay constant. The
total number of counts detected between time zero and time T is found
by integrating dN:

T '
N= Naj' exp(=Aryde = NO(1 = exp[-AT)).
0 A
If we put x = AT, where T = 1 day = 864005, and Nj=0.1s"!, we
obtain the expression

1 - exp(—x) = 0.92593x.

To obtain an approximate solution of this equation, we can expand
exp(—x) as a power series in x to give

x—x2+x%6—...=09259%nr,
hence
0.07407x — x}2 + x%6... = 0.
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Eliminating the possibility that x = 0 leaves us with a quadratic equation
inx:

x2/6 — xf2 + 0.07407 = 0,
which can be solved to give x = 0.1563. (The other solution, x =~ 2.84,
can be rejected by substitution into the equation 1 — exp(—x) =

0.92593x.) Thus we estimate the decay constant A as 0.1563/(86400s) =
1.81 x 107557}, corresponding to a half life of In2/4 = 4.4 days.]
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Problem 14

Show that the maximum range of a projectile of fixed initial speed is
obtained when it is launched at an angle of 45° to the horizontal. Ignore
the effects of air resistance.

The initial speed of a bullet fired from a rifle is 630 ms™!. The rifle is
fired at the centre of a target 700 m away at the same level as the target.
In order to hit the target the rifle must be aimed at a point above the
target. How far above the centre of the target must the rifle be aimed?
‘What will be the maximum height reached by the bullet along its
trajectory?

Solution

Figure 5 shows the trajectory of the projectile described in a Cartesian
coordinate system. If the projectile is launched at time ¢ = () with speed v
and at an angle @ to the horizontal, its x-coordinate (in the horizontal
direction) at time 1 is

x =uvtcosB
¥
[}
D > x
Figure 5

and its y-coordinate (in the vertical direction) is

y = vtsin8 — %gfz.
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When the projectile strikes the ground, y = 0 so t = (2vsin 8)/g. The
range D is thus given by
2vsin@ _ 2v’sin Bcos O - v’ sin (26)
g g g
Since sin x takes its maximum value when x = 90°, the maximum range is

achieved when 28 = 90° so 8 = 45° as required.
Figure 6 shows the trajectory of the rifle bullet.

D =vcost

y _-Dwnb
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- 1

,” 1

- i

P [
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_-' l
P =t = Ymax

= I

() i
oot

Figure 6

For the bullet, we require that D = 700 m when v = 630 ms™'. Taking
g =9.81 ms™? gives 8 = 0.496°. [There is another solution in the range
0° < @ < 90°. It is 89.504°, and although it is valid physically, common
sense suggests that one would not aim a rifle almost vertically in order to
hit a target 700 m away in a horizontal direction!] The rifle must therefore
be aimed at a point D tan # = 6.1 m above the centre of the target. The
bullet attains its maximum height when dy/dt = 0, and since

dy/dt = vsin 8 — gt,
this happens at time t = (vsin 8)/g. Substituting this value of t into the
expression for y gives
v?sin? @
Ymax = ——/——»
2g
and substitution of our values for v and @ gives yy,, = 1.52m.

Problem 15

A projectile is fired uphill over ground which slopes at an angle a to the
horizontal. Find the direction in which it should be aimed to achieve the
maximum range.
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Solution

As in problem 14, we will set up a coordinate system in which the x-axis
is horizontal, the y-axis is vertical, and the origin is located at the point
from which the projectile is launched (see figure 7).

Figure 7

The coordinates of the projectile are again given by
x = vtcos @,
y = ptsinf — gr%/2,

where @ is the angle the projectile makes with the horizontal at the
instant of launch. However, when the projectile strikes the ground its
coordinates must satisfy the equation

y =xtanea,
rather than y = 0 as in problem 14. Making the substitution, we obtain

vtsin@ — %g::l = ptcos ftan a,
which can be rearranged to give

t = 2—"‘(sirl 8 - cos ftan o).
g

Substituting this into our expression for x gives

202 . 2
x = —(cos f#sin @ — cos* ftan a).
4
Now the range will be a maximum when x is maximum, so we can
differentiate this expression with respect to € and set dx/d6é = 0 to find
the condition for the maximum range:

2
% = zi(cosz 6 — sin® 8 + 2cos Osin Btan a).
4
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Setting this equal to zero and recalling that cos’ @ — sin? 8 = cos (26) and
that 2cos @sin & = sin (20) gives
-1
tana’

tan (20) =

We have done what we were asked, since we have produced an
expression relating 8 to a such that the range will be maximum, but the
expression can be simplified further. Since

~lftana = tan{a — #/2 + nn),
where n is an integer, we obtain the expression
0= af2 - /4 + nnf2.

n must be 1 otherwise 8 would not lie within the range 0 to /2, so we can
finally write our solution as # = &2 + w/4. [This is in fact the direction
that bisects the angle between the slope and the vertical.

Rockets are propelled by the ejection of the products of the combustion
of fuel. Consider a rocket of total mass m, to be travelling at speed v, in
a region of space where gravitational forces are negligible. Suppose that
the combustion products are ejected at a constant speed v, relative to the
rocket. Show that a fuel ‘burn’ which reduces the total mass of the rocket
to m results in an increase in the speed of the rocket to v,, such that
v -y = v,lnﬂl.
my
Suppose that 2.1 x 10° kg of fuel are consumed during a ‘burn’ lasting
1.5 X 10? 5. Given that there is a constant force on the rocket of
34x10'N during this ‘burn’, calculate v,. Hence calculate the incrcase
in speed resulting from the ‘burn’ if s, is 2.8 x 10° kg.
What is the initial vertical acceleration that can be imparted to this
rocket when it is launched from Earth, if the initial mass is 2.8 x 10° kg?

Solution

It is probably easiest to consider the acceleration of the rocket in its
instantaneous rest frame, in which the rocket begins from rest at time 1.
At time ¢ + dt the rocket has acquired a velocity dv in the forward
direction, and its mass has changed from m to m + dm. Since the mass



Problem 16 43

has in fact decreased, dm is negative. The mass of combustion products
emitted in this time is thus —dm (a positive quantity), and this mass is
travelling backwards at velocity v,, as shown in figure 8.

dv

velocity zero v,

o —_—
mass m )] m—&nU mass m +dm >
time ¢ time £+ dr

Figure 8

In this frame, the total momentum at time 7 is zero, so the momentum
at time ¢ + dt must also be zero since no external forces act upon the
system. Thus

=vdm = (m + dm)dv.
Ignoring the second-order term dmdv, we obtain the expression

dv = —u,d—m
m
for the increase in the rocket’s velocity when its mass changes by dm. We

can now integrate this expression to obtain

Midm my
> v—- =-v| —=vdn—
m, m m;

as required.

The acceleration of the rocket is dv/dt, and our expression for dv
shows that this can be written as —v, (dm/dt)/m. Thus the force F acting
on the rocket is given by

F=—-p—.
dt
If we take dm/dt = —(2.1 x 10° kg)/(1.5 x 10%s) = —1.4 x 10* kgs™! and
» F=3.4x10"N, we find that v, = 2.43 x 10* ms~". The increase in speed
resulting from the ‘burn’ is

Av = v In(my/m3)
=2.4 % 10°In(2.8/0.7) ms™!
> =34x10°ms™".

Assuming that the thrust on the rocket is 3.4 x 10’ N during launch, and

that the initial mass is 2.8 X 10° kg, the accelerating force is equal to the

thrust minus the weight, or (3.4 x 10’ — 9.8 x 2.8 x 10°) N = 6.6 X 10°N,
> The vertical acceleration is thus (6.6 x 10%)/(2.8 x 10°) ms™2 = 2.3ms"2.



44 Classical mechanics and dynamics

Problem 17

A chlorine molecule with an initial velocity of 600 ms™! absorbs a photon
of wavelength 350 nm and is then dissociated into two chlorine atoms.
One of the atoms is detected moving perpendicular to the initial direction
of the molecule and having a velocity of 1600 ms™!. Calculate the binding
energy of the molecule. [Neglect the momentum of the absorbed photon.
The relative atomic mass of chlorine is 35.)

Solution

Let us put v for the initial speed and u for the speed of the atom which
moves perpendicularly (as shown in figure 9), and resolve the motion of
the non-perpendicularly moving atom into components parallel and
perpendicular to the initial direction. Since the molecule initially has no
momentum in the perpendicular direction, the perpendicular components
of the velocities of the two atoms must be equal and opposite, with
magnitude u. Conservation of the parallel component of momentum
shows that the non-perpendicularly moving atom must have a component
of velocity 2v in the parallel direction (see figure 10).

before after

u
MR
—&>
M
mz\.\
Figure 9

before

after

M v
Mz
u

Figure 10

The final kinetic energy is
1M,

+ 1M o oP) = v + Mot
220 22 2
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The initial kinetic energy was Mv?/2, to which was added the photon
energy hc/A (where h is Planck’s constant, c is the speed of light and A is
the wavelength of the photon). The binding energy E\, was required to
break the CI-Cl bond, so conservation of energy gives

Yo+ 2 gy = a2 + M2,
2 A 2

Rearranging:
Ep = he 1 - Dy,
A2 2
Substituting A = 350 nm, M = 70 x 1.66 x 10" kg, v = 600 ms™" and
u = 1600ms~! gives E, = 4.0 x 107° J, [A physicist would probably
check that this is reasonable by converting it to 2.5 electron volts, and a
chemist would probably prefer to express it as 240 kI mol™.]

[We ought to check that it is reasonable to ignore the momentum of the
photon. Clearly for this to be so, the ratio of the photon’s momentum to
the momentum of the chlorine molecule should be much less than unity.
The ratio is #/AMv, which has a value of 3 x 107%, so the assumption is a
safe one.]

Problem 18

A body of mass m, collides elastically with a stationary mass m; and after
collision the bodies move making angles 8, and 8, with the original
direction of m,. By considering events in the centre of mass frame, or
otherwise, show that

(a) if my=my, 6,=0/2-06,,

(b) if m; > m,, the maximum value of @, is given by

§in Opay = ml‘fmh
(c) if my << my, 0, =m—26,.

Solution

Before the collision, the appearance of the system in the original
(laboratory) frame is as shown in figure 11.

v
& @
m my

Figure 11
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The total momentum of the system is mv and the total mass is
my + my, so the velocity of the centre of mass frame (the zero
momentum frame) is

mp
my + m;
to the right. The velocities of the two masses in the centre of mass frame
are found by subtracting this velocity from their velocities in the
laboratory frame. Thus the initial velocity of mass m in the centre of
mass frame is m,v/(my + m,), and the initial velocity of mass m, is

—myuf(m; + m,). We can draw a diagram in the centre of mass frame, as
shown in figure 12.

myv myy
™+ my mydmy
my "y
Figure 12

Since the collision is elastic, kinetic energy is conserved, and since no
external forces act on the system, momentum is conserved. In the centre
of mass frame the total momentum is, by definition, zero, so the only way
in which these two conditions can be satisfied is for the two bodies to
retain their speeds in the centre of mass frame. Their directions may
change, but the velocities in the centre of mass frame must be in opposite
directions to conserve momentum. Thus the situation after the collision,
as seen in the centre of mass frame, is as shown in figure 13.

myv
™ ¢y

my

myv
my+my

Figure 13

We can now convert back to the laboratory frame by adding a velocity
myu/(my + m;y) to the right, as shown in figure 14,

(a) If m; = m,, the lines OD, DA, AP, PB, BC, CO and OP are all
of equal length. Triangles ODA and OPA are congruent so that angle
DOA = 8, and triangles OCB and OPB are congruent so that angle
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COB = 6,. Thus 20, + 26, = m, and 6, = 1/2 — 6,. (L.e. the two masses
move at right angles to each other after the collision.)

(b) To find the maximum value of 6,, it is helpful to extract part of
figure 14, shown in figure 15.

Figure 15

The maximum value of 8, occurs when OA is perpendicular to AP, so
8iN Oy = ﬁ.
my
(c) Triangles OCB and OPB are congruent so angle COB = 6. If
my << nty, angle DOA is very small (because DA << DO). Thus
== 0, +20,, and hence 8, =7 - 26,.

A body of mass m is moving in one dimension under the influence of a
conservative force with a potential energy given by U(x). Show that the
body, when displaced slightly from a point of stable equilibrium at
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x = xp, will experience a restoring force proportional to its displacement,
the force constant being

d*U
IZ- :I-Xa‘

Suppose the potential energy has the form

-cx
U(x) = ,
( x4 a’

where ¢ and a are positive constants. Sketch this potential and the force
resulting from it. Find the position of stable equilibrium and calculate the
angular frequency of small oscillations about this position.

Solution

The force F is given by —dU/dx, and if x is a position of equilibrium the
force must be zero at this position. To find the force at a nearby position
x we can use a Taylor expansion:

F(x) = F(xg) + %A: + terms in higher powers of Ax,

where Ax = x — x and the differential is evaluated at x = x. Since
F(xg) is zero, the force in the direction of increasing x is proportional to
the displacement Ax. The restoring force (in the direction of decreasing
x) is —F, so the force constant is —dF/dx = +d*U/dx? as required.

We can differentiate the potential

—cx
v = x4+ a?

to obtain
v _ _ _c - 2’
dx 2+at (x4 a?)? '

so the force is given by the negative of this:

¢ 2cx?

F(x) = — .
x2+a? (x'+a?)?

Sketches of these two functions are shown in figure 16.

Although the graph of F(x) is symmetric, the position x = —xg is not a
stable equilibrium because if the body is moved towards x =0 it
experiences a positive force (i.e. in the direction of motion). To find the
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Utx) Fix)

________/ 10'\'--____

Figure 16

position x, of stable equilibrium we set F(x;) = 0, which gives
¢ _  2cx %
xﬁ + a? - (x% + a?)? '
Hence

2l =xt+ d,

so that x; = +a. By inspecting our sketch, we see that the equilibrium
position must be given by xo = a.

To find the angular frequency of small oscillations we need to know the
restoring force constant, which is given by d*U/dx? at x = x,.
Differentiating dU/dx gives

d*U 6cx 8cx?

d? (P +a)? (P4 a)
and putting x = xo = a gives d*U/dx? = c/2a°. We know that a body of
mass m subject to a restoring force kAx will oscillate with an angular
frequency w given by o? = k/m, so the angular frequency of small
oscillations is

\/ ¢

w= N

2a’m
Problem 20

A ball of mass 0.5 kg attached to a light inextensible string rotates in a
vertical circle of radius 0.75 m, such that it has a speed of Sms™! when
the string is horizontal. Calculate the speed of the ball and the tension in
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the string at the highest and lowest points on its circular path. Evaluate
the work done by the Earth’s gravitational force and by the tension in the
string as the ball moves from its highest to its lowest point.

Solution

Let us put v for the speed of the ball when the string is horizontal, w for
its speed at the top of the circle, and u for its speed at the bottom of the
circle, as shown in figure 17.

Figure 17

The problem reminds us that the two possible mechanisms for doing
work on the ball are the gravitational force and the tension in the string.
However, the tension can in fact do no work on the ball since the force is
always perpendicular to the velocity. Thus we need consider only the
interchange of kinetic and potential energy:

lmuz - 1mll.r2 = l.l'mx2 - lmwz = mgl,
2 2 2 2

u? = vt =0 — wl=2gl
Taking I =0.75mand v =5ms ' gives w=3.2ms ' and u = 6.3ms™".
At the highest point, the centripetal force is mw?/l = 6.86 N
downwards. mg of this is supplied by the weight of the ball, so the tension
in the string is 6.86 — 0.5 X 9.81 = 2.0N.
At the lowest point, the centripetal force is mu?/l = 26.48 N upwards.
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However, the tension in the string must also support the ball's weight, so
the tension must be 26,48 + 0.5 X 9.81 = 31.4N.
The work done by gravity as the ball moves from the lowest point to

the highest is 2 mgl =7.4J.

Problem 21

A car of mass m travelling at speed v moves on a horizontal track so that
the centre of mass describes a circle of radius r. Show that the limiting
speed beyond which the car will overturn is given by
02 = ﬁ.
h
where 2a is the separation of the inner and outer wheels and h is the
height of the centre of mass above the ground.

Solution

Let us assume that the car is travelling into the page and is turning
towards the left. It must be subject to a centripetal force mv?/r to the
left, provided by frictional forces acting on the tyres. We can draw a rear
view of the system, as in figure 18.

R Ry
A

ol 2l
- -

Figure 18

Resolving vertically,
R[ + R; = mg. (1)

Resolving horizontally,

2
Fi+F= ”"T" )
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Taking moments about the centre of mass G,

(Fy + F2)h + Ria = Rya,

Rk = (Ry = Ry 3
Combining this with equation (2) to eliminate F, + F, gives
2
Ry - R, = M2 )
ar

We now have two simultaneous equations, (1) and (4), for R; and R;.
Solving these by adding and subtracting, we find that
2 2
Ao and 2R, = mg + MY

ar ar

2R1 =mg—

We can see from these expressions that R, will become zero, i.e. the
inner wheels will leave the ground and the car begin to overturn, when

hmv?
mg = .

so the limiting speed is given by v* = gra/h as required.

[There is a much easier way of showing this, in the frame of reference
which rotates at the same rate as the car (i.e. at an angular speed of v/r
about the centre of the circular track). This requires the introduction of a
fictitious centrifugal force (see problems 33 and 34), of magnitude mv?/r,
acting through the centre of mass G and directed away from the centre of
the circle. At the instant when the car begins to overturn, the forces R,
and F; are zero, so the only forces acting on the car are R,, F;, the
centrifugal force and the weight mg.

If the resultant P of the centrifugal force and the weight passes outside
the point of contact with the ground (the outer wheels) as shown in figure
19, the couple on the car will be clockwise, causing it to overturn. Clearly

Figure 19
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the critical condition, when overturning is just about to occur, happens
when the resultant P passes through the contact point. By using similar
triangles, we can see that the condition for overturning is thus

muz a
—+mg>—
r ¢ h
which gives v* > gra/h as before.]
[These analyses are only valid if the frictional forces F; and F, are large
enough to provide the centripetal acceleration. If they are not, the car
will skid instead of overturning. If the coefficient of friction between the

tyres and the road is p,
Fi+ F, = (R, + Ry),

where the equality implies that the tyres are skidding. Since Ry + R, =
mg and Fy + F = mv?/r, the limiting speed before skidding occurs is
given by

v? = ugr.

If we want the car to skid rather than overturn, we must have
ugr < gra/h, i.e. p<afh. This is likely to be true for any sensibly
designed car. ]

Problem 22

A coin of mass 10 gram rolls along a horizontal table with a velocity of
6cms™!. What is its kinetic energy?

Solution
Let the coin have radius r, mass m and linear velocity v (see figure 20).

Figure 20
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Its angular velocity wis o/r and its moment of inertia [ is mr?/2 (see
problem 23). Thus its total kinetic energy is
2

lm.l)2 + llu; = lil'm.l2 + llmrzl—’_ = Emuz.

2 2 2 22 4
It is independent of the coin's radius (which was not given in the
problem). Substituting m = 0.010 kg and v = 0.06 ms™" gives a kinetic
energy of 27 .

Problem 23

Show that the moment of inertia of a uniform disc of mass M and radius
R about an axis through its centre and perpendicular to its surface is
equal to MR?/2.

A record turntable is accelerated at a constant rate from 0 to 33}
revolutions per minute in two seconds. It is a uniform disc of mass 1.5 kg
and radius 13 cm. What torque is required to provide this acceleration
and what is the angular momentum of the turntable at its final speed?

A mass of 0.2 kg is dropped vertically and sticks to the freely rotating
turntable at a distance of 10 cm from its centre. What is the angular
velocity of the turntable after the mass has been added?

Solution

The moment of inertia of a body is given by
I = 2
= Xmyri,
i

where the body is considered to be made up of point masses such that the
ith mass is m; and it is at a perpendicular distance r; from the axis of
rotation. For the disc, we can calculate its moment of inertia by adding
the contributions from annuli of radius r and width dr, since all the mass
within such an annulus is at the same distance from the axis of rotation.
Let us put o for the mass per unit area of the disc. Since the area of the
annulus is 27r dr, its mass is 2rro dr and its moment of inertia is

2nr’0 dr. We can integrate this expression from r = O to r = R to find
the total moment of inertia:

R 4
I =2sraj rdr= ”—UZR—.
o
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The total mass of the disc is M = orR? so we can use this expression to
eliminate o, giving
- MR?

2

I

as required.

The torque G required to give a body of moment of inertia I an
angular acceleration dw/dt is Idw/dt. Since the angular acceleration of
the turntable is uniform, we can write

G= I Winal ,
T
where @y, is the final angular velocity and T is the time taken to reach
this value. From the data,
1 2 _ 2
I= 5 1.5 (0.13)? = 0.0127 kgm

and

1
anan = 232 = 349157,

so taking T = 2's gives G = 0.0221 N m. The angular momentum
J = Iayng = 0.0442 kgms ™.

‘When the mass is dropped onto the turntable and sticks to it, it
increases the moment of inertia by an amount mr?, where m is the mass
and r is the distance from the axis of rotation (see figure 21). Taking
m =0.2kg and r = 0.1 m gives a value of 0.002 kg m? for the increase in
1, so its new value is 0.0147 kg m?. We are told that the turntable is freely

1=4MR?=0.0127 kg m? 1=4MR? + mr2 = 0.0147 kg m?

Figure 21
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rotating, so no torque is now acting upon it and its angular momentum
must therefore be constant at the value 0.0422 kgms™'. Thus

® = 0.0442/0.0147 5" = 3.05™! (= 29 r.p.m.).

Probhlem 24

A cylinder of mass m, radius r and radius of gyration k is released from
rest and rolls without slipping down a plane inclined at an angle a to the
horizontal. Use the conservation of energy or an alternative method to
derive an expression for the acceleration of the cylinder down the slope
due to gravity,

Solution

Let us assume that when the cylinder has rolled a distance x down the
slope it has acquired a velocity v and an angular velocity w, as shown in
figure 22. The centre of mass of the cylinder has fallen through a distance
x sin a, so the loss of gravitational potential energy is mgx sin a. This
must be balanced by the gain of kinetic energy, so

. 1 1
mgxsina = ~mo* + ~Io?,
s 2 2

Figure 22

where I is the moment of inertia. Since the cylinder rolls without
slipping,

v=ra,
and the moment of inertia is given by

I=mk?,
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so the kinetic energy can be written as

2
1::102(] + k—)
2 r?

Thus
2
mgxsina = 1mu’(l + k—)
2 r
Differentiating this expression with respect to time gives
2
mgusina = mvﬁ(l + k—)
dt r?

which can be rearranged to give

dv _ gsina
dt 2
1+ X

2

[The minimum possible value of k is zero, corresponding to the case
when all the mass of the cylinder is concentrated on its axis, and the
maximum possible value is r, when all the mass is concentrated at the
circumference, so the acceleration must lie between g(sin a)/2 and
gsina.)

Problem 25

An ice skater of mass 75 kg is spinning about a vertical axis through the
centre of her body, with arms outstretched horizontally, at a rate of two
rotations per second. She then very quickly pulls her arms inwards so that
they lie along her axis of rotation. Her angular speed increases to 6
rotations per second. By approximating her outstretched arms to a rod of
total length 1.4 m and mass 5 kg, estimate the radius of gyration of her
body (excluding her arms).

The kinetic energy of the skater increases when she pulls her arms in.
How is this possible?

Solution

Let us put M for the mass of the skater, and & for her radius of gyration
(both excluding her arms). We will also put m for the mass of her arms,
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and [ for the length of the equivalent rod. Since the moment of inertia of
a rod about its centre is

1

—mi?,

12
the skater's total moment of inertia when her arms are outstretched is

I = Mk? + 1oe
12

‘When she pulls her arms in, we assume that they lie along her rotation
axis so they will contribute nothing to her moment of inertia which thus
becomes

3'2=Mk2

(see figure 23). Since no external torque acts on the skater, her angular
momentum must be conserved, so if we put @, and w, respectively for her
initial and final angular velocities, we must have

hoy = Loy

= O

le——mass M mass M + m ——»]

|-—|'.|m|lm|l(ll‘illerl].l.M'.kz ]

Figure 23

and hence

ﬁ:ﬁz:}_
L o

Thus, using our expressions for I, and I,

Lot = 2ma2,
12
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=
24M

Putting m = 5kg, M = 70kg and | = 1.4 m gives k = 0.076 m. [We can
check whether this is a reasonable answer by approximating the skater’s
body to a uniform vertical cylinder of radius r. Such a cylinder has a
radius of gyration of r/V2, hence the radius must be about 11 cm and the
circumference about 70 cm. This is clearly a reasonable figure for the
‘average’ circumference of an ice skater.]

We can see that the skater’s kinetic energy must have increased as
follows. Her kinetic energy E is given by I «?/2, where I is her moment
of inertia and w is her angular velocity. Her angular momentum J is given
by Iw, and this is constant since no external torque acts. Thus we can
rewrite the kinetic energy as E = J?/2I, which shows that if / decreases,

E must increase.

Problem 26

Find the ratio of the height & of a cushion on a snooker table to the
radius r of a ball as shown in figure 24, such that when the ball hits the
cushion with a pure rolling motion it rebounds with a pure rolling motion.
(Assume that the force exerted on the ball by the cushion is horizontal
during the impact and that the ball hits the cushion normally.)

Figure 24

Solution

Let the ball’s mass be m and its moment of inertia /, and suppose that it
is initially rolling to the right, as shown in figure 25, with speed u. We will
also suppose that it rebounds to the left at speed v, so that the change in
momentum is m(v + u). The impulse P exerted on the ball by the
cushion is thus m(v + u).
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> €]

Figure 25

The line of action of this impulse passes at a distance i — r from the
centre of the ball, so that ball’s angular momentum is changed by an
amount P(h — r) in an anticlockwise sense. The ball initially has a
clockwise angular velocity u/r (since it is rolling without slipping), so its
initial angular momentum is Ju/r. After the collision, if the ball is still
rolling without slipping its angular velocity must be v/r anticlockwise, so
the change of angular momentum is

I(u + v)
-
Thus we have

Iuto), P(h—r)=m(u+ v)(h - r),
hence
rh=r)= L
m
Now for a solid, uniform sphere of radius r,
1_27
m 5
S0
hr — r* = 2r%/5,
hence h = T7r/5.

Problem 27

A thin uniform rectangular plate of length a, width b and mass m has a
moment of inertia

1 2 32
—m(a* + b%)
12 (
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about an axis through its centre and perpendicular to its plane. Identify
the principal axes of inertia and give the values of the principal moments
of inertia.

What is the moment of inertia of the plate about an axis in the plane of
the plate and forming a diagonal of the rectangle?

If the plate is made to rotate about the diagonal, show that the angle
between the angular velocity and the angular momentum is

a
arctan — — arctan —.
b a

Solution

The three principal axes of a cuboid are the three axes of symmetry,
normal to the faces of the cuboid. Since a thin rectangular plate is a
special case of a cuboid, one of the principal axes is normal to the plate,
and the other two are in the plane of the plate and parallel to the edges.
All three principal axes pass through the centre of the plate, as shown in
figure 26.

I

3-axis perpendicular to plane
Figure 26
The perpendicular axes theorem for a lamina (thin plate) states that
I 1+ I 2= I 3

and since we expect I, to be proportional to mb? and I to be
proportional to ma?, it clearly follows that

I = L nb? and I = L a2,
12 12

[These are identical to the results for rods of length b and a about the
centres, and we could of course have derived them from first principles. ]
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To find the moment of inertia about a diagonal, it is easiest to consider
two sets of x—y coordinates, one aligned with the rectangle and one
aligned with its diagonal, as shown in figure 27.

- — - =
o

Figure 27

The moment of inertia about the x’-axis is given by
lx' = Emly '1?,

where m; is the mass of an element of the plate, and the sum is carried
out over the whole plate. Now

y' = ycostl — xsin@,

L= S mylcos? 8 + 3 mxisin® 0 — 2 m; x; y, cos Osin 0.
But we also know that
2 1 3
mixi= I, = —ma*,
Smxt= 1= Lma
1
Smiyi=1= E"’bz.
>mx;yi =0 (bysymmetry),
so that
I = %(azsirl2 8 + blcos? 6).

We also know that

a’ . b
cos’ @ = and sin? @ = .
a* + b? a* + b?
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so we finally obtain

1 a’b?

Iy ==-m .

6 a®+ b?
If the plate is rotated at angular velocity w about its diagonal, the angular
velocity has a component wcos 6 in the x-direction and a component
wsin @ in the y-direction. The angular momentum thus has a component
Iiwcos B in the x-direction and a component [ywsin 8 in the y-direction,
so the angle between the direction of the angular momentum axis and the
x-axis is

[,wsin @ Z5in B
2 — arctan 25N 0 _ a

arctan
Liwcos 8 b*cos O b
The angle between the angular velocity vector and the x-axis is
6 = arctan (b/a), so the angle between the two vectors is

a b
arctan — — arctan —
b a

as required.

Problem 28

A cotton reel is made up of a hub of radius a and two end caps of radius
b. The mass of the complete reel is m and its moment of inertia about its
longitudinal axis is /. The reel rests on a perfectly rough table (so that
only rolling motion is possible) and a tension T is applied to the free end
of the cotton wrapped around the hub as shown in figure 28. In what
direction does the reel begin to move? Find the frictional force exerted by
the table and the direction in which it acts.

Y%

Figure 28
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Solution

Let us assume that the reel moves to the right, and therefore rolls
clockwise. Since the tension in the thread exerts an anticlockwise moment
on the reel, the frictional force must exert a larger clockwise moment.
The forces acting on the reel are thus (ignoring vertical forces acting
through the centre) as shown in figure 29.

F=

Figure 29

The net force to the right is T — F so the linear acceleration dv/dt is

T-F
m

The net clockwise moment is bF — aT so the angular acceleration dw/dr
is

bF — aT

—
Now for a pure rolling motion the velocity v and the angular velocity @
are related by v = bw, so

ﬂ = bﬁ_
dt dt
Thus
T-F - b(bF — aT)
m I

Rearranging this to obtain an expression for F in terms of T gives
F(I + mb*) = T(I + mab),

=Tf+mab

F .
I + mb?
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To check that our initial assumption that the reel moves to the right was
correct, we can use this result to calculate the net force to the right,
_ Tmb(b — a)
I+mb?
and the net clockwise moment,
_IT(b - a)
I+ mb? '
which are both positive as we assumed.

T-F

bF — aT

An elastic spherical ball of mass M and radius a moving with velocity v
strikes a rigid surface at an angle & to the normal. Assuming it skids while
in contact with the surface, the tangential frictional force being a constant
fraction p of the normal reaction force, show that
(a) the ball is reflected at an angle ¢ to the normal where
jtan 6 — tan ¢| = 2y,
(b) the angular velocity of the rebounding ball changes by an amount

Sk cos 8.
a
You may assume that the component of velocity perpendicular to the
surface is reversed in direction without change of magnitude.

Solution

The problem refers to a change in the angular velocity of the ball, so it is
presumably not safe to assume that the ball is not initially rotating (and in
fact if the ball were not rotating, it could not skid against the surface so
the angles & and ¢ would be identical). Let us therefore assume that it
has an initial angular velocity w; and a final angular velocity w;, as shown
in figure 30.

(a) We are told that the perpendicular component of the velocity is
reversed by the impact, so (with the notation of figure 30)

vcos 8 = ucos¢. (1)

The change in the perpendicular component of the momentum is
2Muv cos 6, so this must be the perpendicular component of the impulse
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Figure 30

delivered to the ball by the surface. Since the frictional force is u times
the perpendicular force, the component of the impuise parallel to the
surface must be

2Mupucos 8.

If the ball is rotating clockwise as shown in the diagram, this impulse will
be to the right, but it would be to the left if the ball were rotating
anticlockwise.

The parallel component of the ball's momentum must thus change by
2Mupucos 60, so the parallel component of the velocity changes by
2vpcos 6. Thus

usin¢ — vsin @ = 2uvcos 8. (2)
Equations (1) and (2) give
tan¢ — tan @ = 2,

but if the original angular velocity were anticlockwise instead of clockwise
we could obtain

tan¢ — tan @ = =2,
S0 we may put
|tan @ — tan ¢| = 2u.

(b) We have shown that the horizontal component of the impulse
delivered to the ball is 2Mvucos 8, and since the ball's radius is a the
impulsive moment (angular impulse) is 2M vpa cos . Since the impulsive
moment is equal to the change in angular momentum, and the angular
momentum is given by /@ where [ is the moment of inertia, we must
have
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_ 2uMvacos@ _ 2uMvacos 8 _ Suvcos 0

1 a
g Ma?®
5

Aw

A pendulum is constructed from two identical uniform thin rods @ and b
each of length L and mass m, connected at right angles to form a ‘T" by
joining the centre of rod a to one end of rod b. The ‘T is then suspended
from the free end of rod b and the pendulum swings in the plane of
the ‘T".
(a) Calculate the moment of inertia I of the ‘T’ about the axis of
rotation.
(b) Give expressions for the kinetic and potential energies in terms of
the angle @ of inclination to the vertical of the pendulum.
(c) Derive the equation of motion of the pendulum.
(d) Show that the period of small oscillations is
1L
18g

Solution
(a) Figure 31 shows the “T" suspended vertically.

a
,—

L
Figure 31

The moment of inertia of a thin rod of length L and mass m about its
centre is mL2/12, so application of the parallel axes theorem gives the
moment of inertia of rod b as

2
= Loz s m(i) =12,
12 2 3
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Application of the parallel axes theorem to rod a gives its moment of
inertia about the suspension point as

I,= Lonr2 4 me2= Bz,
12 12

Thus the total moment of inertia of the system is / = (1/3 + 13/12)mL? =
17mL*/12.

(b) Figure 32 shows the ‘T" at an angle 6 to the vertical.

Figure 32

The kinetic energy of the system is given by

2
Ly(doY,
2 \dt

At an angle & the centre of mass of rod b has been raised through a
distance L(1 — cos 8)/2 and the centre of mass of rod @ has been raised
by L(1 — cos 8), so the potential energy is

3’"3"‘ 3meL (1 — cos6)

with respect to the value at 8 = 0.

(c) The equation of motion of the pendulum can be derived using the fact
that the total energy is constant:

24 Lz( ‘:8) + Bﬁ‘L(l cos 8) = constant.
t

Differentiating this expression with respect to time gives

2
EmLz(ﬁ)(d e) 3mglL me(de)_o‘
12 de J\ dei? 2 dt

which can be rearranged to give
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40 _ 18 gsin
dr? 17 L

[Note that we could also have derived this result by using Lagrange’s
equations of motion.]

(d) When the oscillations are small, we may put sin 8 = & so that the
equation of motion becomes

2
46 __18g4
dr? 17 L
We recognise this as the equation of simple harmonic motion with angular
frequency (18g/17 L)"2, 5o the period of small oscillations is
7L
18¢

as required.

2n

A uniform rod of length a is freely pivoted at one end. It is initially held
horizontally and then released from rest. What is the angular velocity at
the instant when the rod is vertical? When the rod is vertical it breaks at
its midpoint. What is the largest angle from the vertical reached by the
upper part of the rod in its subsequent motion? Describe the motion of
the lower part of the rod. (Assume that no impulsive forces are generated
when the rod breaks.)

Solution

Suppose the rod has mass m. In rotating from a horizontal to a vertical
position, the centre of mass falls through a distance a/2 so the loss of
potential energy is mga/2. Since the rod is initially at rest, its kinetic
energy as it passes through the vertical position must therefore also be
given by mga/2.

Now the moment of inertia of a rod of length a and mass m about an
end is ma®/3, so we must have '

1ma o _ mga
2 3 2
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which gives

4 w= 3—8
a

When the rod breaks, we are told that no impulsive forces act so that the
angular velocity of the upper part immediately after the break occurs is
still \/(3g/a). However, the mass and length of this part of the rod are
both half of the corresponding values for the unbroken rod, so the
moment of inertia is one eighth of its former value, or ma®/24. The
kinetic energy of this part of the rod is thus

If the rod now rotates through an angle 8, as shown in figure 33, its
centre of mass will rise through a distance

a
—(1 = cos 8),
4(

Y

Figure 33
so it will gain potential energy
nga“ - cos é).

The largest value of @ reached by this part of the rod will occur when all
the kinetic energy has been converted to potential energy. Thus

-nga = ESSE(I - cos &),
1

1—-cosf = -,
2

>  hence 8 = 60°.
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At the instant the rod breaks, shown in figure 34, the velocity of the
upper end of its lower half is wa/2 to the left; and the velocity of the
lower end is wa, also to the left. The motion of this part at this instant can
thus be resolved into a linear velocity 3wa/4 to the left, and an angular
velocity @ (clockwise) about its centre of mass. The centre of mass of the
free fragment will thus follow a parabolic path downwards and to the left,
while the fragment rotates clockwise at a constant angular velocity.

A uniform rod of length !/ and mass 2m rests on a smooth horizontal
table. A point mass m moving horizontally at right angles to the rod with
an initial velocity V collides with one end of the rod and sticks to it.
Determine (a) the angular velocity of the system after the collision,

(b) the position of the point on the rod which remains stationary
immediately after the collision, and (c) the change in kinetic energy of the
system as a whole as a result of the collision.

Solution

Let us put u for the velocity of the system’s centre of mass after the
collision, and w for its angular velocity about the centre of mass, as shown
in figure 35.

The first thing we need to do is to find the position of the centre of
mass of the composite system. If we let this be a distance x; from the end
of the rod to which the mass sticks, we can find x; as follows:

‘We will use x to measure distance along the rod, withx =0
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Figure 35

corresponding to the end to which the mass sticks. From the definition of
centre of mass, we can write

I{rpdx
Xo = HM ’

where p is the mass per unit length of the rod and M = 3m is the total
mass of the system. Since p = 2m/l, this gives

— | xdx
IJo 2m P _ 1
Xg S—— e — =,
3m 3ml 2 3

The next thing we need to know is the moment of inertia of the composite
system about its centre of mass. Since the moment of inertia of a rod of
length [ and mass M, about its centre, is MI?/12, we can use the parallel
axes theorem to find the moment of inertia about an axis which is a
distance (I/2 - 1/3) = /6 from the centre, It is

2
12 6 9
Since the mass of the rod is M = 2m, we thus have [ = 2mi?/9 for the
rod. The point mass will add m(/3)? to this, giving a total moment of
inertia I = ml?/3.

(a) During the collision no external forces act, so the linear and angular
momenta of the system will be conserved. The initial angular momentum
is mV1/3, and the final angular momentum is / w. Equating these terms,

mvl _ mPw
3 3]
sow=V/L

(b) The initial linear momentum is mV and the final linear momentum
is 3mu, so u = V/3. Consider a point a distance y to the left of the centre
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of mass. Its velocity is w — wy, so the position on the rod which remains
stationary immediately after the collision is at y = u/w. Taking u = V3
and w = V/I gives y = 1/3, so the point is a distance 2//3 from the end to
which the mass sticks.

[Figure 36 illustrates the motion of the rod after the mass has stuck to
it. The mass is located at the right-hand end of the rod, and the centre of
mass of the system is a distance /3 from this end. It can be seen that the
point at a distance //3 from the other end of the rod is initially
stationary.]

Figure 36

(c) The initial kinetic energy is
Ly

2

and the final kinetic energy is

Lamy? + 21a? = Ly 4+ Ly = L2,
2 2 6 6 3

Thus the loss of kinetic energy is mV2/6.

Problem 33

An aircraft flies over the North Pole at 900 km h™' and continues south at
a constant speed along a particular line of longitude. Estimate the angle
between a plumb line hanging freely in the aircraft and the true radius
vector from the centre of the Earth to the aircraft when the aircraft is

(a) at the North Pole, (b) at the equator, and (c) at latitude 45° N.
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Indicate the orientation of the plumb line in each case. You may assume
the Earth to be a sphere of radius 6.4 x 10° km.

Solution

The problem is concerned with the motion of a body relative to a rotating
frame of reference (the Earth), and such problems are often most easily
dealt with by ignoring the rotation of the frame. This requires the
introduction of two fictitious forces, namely the centrifugal force

me X (r X w)
and the Coriolis force
2mv X a.

In these expressions, /m is the mass of the body, v is its velocity with
respect to the rotating frame, and r is its position vector relative to the
rotation axis. @ is the angular velocity of the rotating frame of reference.

(a) Figure 37 shows the aircraft, seen from above, when it is at the
North Pole.

Trlw
@ (out of paper)
- j ®

Figure 37

At the North Pole, the aircraft is flying perpendicular to the Earth’s
rotation axis (which is directed upwards through the North Pole), and the
vector r is zero. The term r X @ is zero, so the centrifugal force is zero.
The term v X @ has magnitude ve and direction to the right of the
aircraft’s motion, so the plumb line will be deflected to the right. To
calculate the deflexion, we can draw a view from behind to show the
forces acting on the plumb bob, as shown in figure 38.

Balancing horizontal components gives

Tsin 8 = 2mow
and balancing vertical components gives

Tcos® = mg,



Problem 33 5

2]
T
2mve
mg
Figure 38

so tan 6 = 2ow/g. Taking v =900 kmh™! =250 ms™',
@ = 21/(24 x 60 x 60) s™! [see note below] = 7.272 x 1073 s™! and
g =9.81 ms™2 gives tan @ = 3.7 x 1072, Thus the deflexion angle 8 is 3.7
milliradians = 0.21 degrees. The direction of the deflexion is to the right
of the aircraft’s motion.

(b) As the aircraft crosses the equator flying south, the velocity vector
v is directed oppositely to the angular velocity vector @, and the position
vector r points upwards with magnitude R (the Earth’s radius). Again, it
is useful to draw the view from above, shown in figure 39.

4 ®
af— —

4O]
(out of paper)
Figure 39

The Coriolis force is clearly zero, and the centrifugal force acts
vertically upwards. Since there is no sideways force acting upon the
plumb bob, the plumb line has a deflexion of zero.

(c) When the aircraft crosses latitude 45 °N (still flying southwards), it
is easiest to visualise the fictitious forces relative to the Earth rather than
relative to the aircraft, as shown in figure 40.

The vector v X @ is directed into the paper and has magnitude vw/y/2,
so the Coriolis force on the plumb bob has magnitude mvwV/2 and
direction to the right relative to the aircraft’s motion. The vector r X e is
directed into the paper and has magnitude Rw/\/2, so the vector
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Figure 40

@ X (r X ) is directed to the left (on the diagram), with magnitude
Ra?/\/2. Relative to the aircraft's motion, the centrifugal force is thus of
magnitude mR«?/\/2 in a direction 45° above the forward horizontal,
This can be resolved into a component mR«w?/2 forwards, and a
component mRa?/2 upwards. The plumb line will thus be deflected
forwards and to the right (i.e. approximately south-west).

We can calculate the deflexion in the same way as we did in part (a).
The effect of the upward component of the centrifugal force is to reduce
the apparent value of the acceleration due to gravity by an amount
Re?f2 = 0.02ms™2, so we can allow for this by taking g' = 9.79 ms™2,
The deflexion to the right is thus given by

tan 6 = m}{?—
which gives tan 8 = 0.0026, so the deflexion to the right is 2.6 milliradians
or 0.15 degrees. The deflexion forwards is given by

tan @ = E’

2g'

which gives tan 8 = 0.0017, so the forward deflexion is 1.7 milliradians or
0.10 degrees. These can be combined to calculate the total deflexion as
(0.15% + 0.10%)"2 degrees = 0.18 degrees, in a direction tan™" (0.15/0.10)
= 56 degrees west of south.

[In fact, our assumption that the Earth’s angular velocity w is 27
radians in 24 hours is not strictly accurate. The Earth takes 24 hours to
rotate once with respect to the frame which rotates round the sun once
per year. Relative to an inertial frame, therefore, the Earth is rotating
faster, by about one part in 365. The Earth’s rotation period is thus
approximately 23.93 days, which is called a sidereal day. The difference



Problem 34 77

of 0.3% between the sidereal and solar days will not make a significant
difference to our calculations.

Problem 34

Find an expression for the deviation in angle between a stationary
plumbline and the local vertical at a latitude ¢, and calculate the
maximum value of this deflexion. Assume the Earth to be a uniform
sphere of radius 6400 km.

Solution

This is simpler than the previous problem since the plumb bab is
stationary with respect to the Earth’s surface, so the Coriolis force is zero.
The forces acting on the bob are thus its weight mg, the centrifugal force
ma? R cos ¢, and the tension T in the string, as shown in figure 41.

Figure 41
Resolving parallel to the local vertical,
Tcos @ + ma*Rcos’ ¢ = mg,
and resolving horizontally,
T'sin @ = m«?R cos ¢sin ¢.
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Eliminating T and m gives
g — e?Rcos? ¢

cotf = '
«? R cos ¢sin ¢

and since g > o’ R, we can ignore the cos? ¢ term and write cot 8 =
1/tan @ = 1/ to give

@’ Rceosgsing _ &R @R 26,
g 2g

This angular deflexion is southwards in the northern hemisphere and
conversely, and has a maximum value at latitude 45° N or S. This
maximum value is clearly

«*R
28
Taking w = 7.292 x 10735~ (one revolution per sidereal day),
g=9.81ms 2 and R = 6.4 X 10% m as before gives a maximum deflexion
of 1.7 milliradians (0.099 degrees).
[If we do not want to make the approximation g > «?R, we can
differentiate our exact expression for cot & to obtain (after a little

algebra)
deotf _, _ (g/o? R — cos’ ¢)(cos’ ¢ — sin’ ¢)
d¢ cos® ¢sin® ¢
Setting this equal to zero to find the minimum value of cot @ (and hence
the maximum value of 8) gives (after a little more algebra)

6=

0052 ¢ o _.—..g__
- o?R
Substituting the values for @, R and g gives ¢ = 44.95° and hence
6 = 0.100 degrees. We can see that the approximation was well justified.|

Derive the relationship between the impact parameter and the scattering
angle for Rutherford scattering.

Ina Ruther[ord scattering experiment, 4 MeV alpha-particles are
incident on 'JAu foil. Calculate the impact parameter which would give a
deflexion of 10°.
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Solution
Figure 42 shows the geometry of Rutherford scattering.

Figure 42

The particle ¥ enters at the top right travelling along a path which, if
undeflected, would miss the deflecting particle X by a distance b (the
impact parameter). We can describe the position of the particle ¥ at an
arbitrary time using polar coordinates (r, ), and for simplicity we will
write

F=

h -

for the repulsive force exerted on Y.
Let us introduce an x-axis along the line of symmetry. If the mass of
the particle is m, we have

dx B B dy
m—— = —cosy = cos y——.
darr  r? v 24y dt

dt

Now mr2dy/dt is equal to the angular momentum J of the particle Y
about the deflecting particle X, and it is a constant, so we can write

2
dx _ B dy

e dr’

Integrating this with respect to time gives
dx _ B
— = —siny

d J
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(the constant of integration is zero because dx/dt = 0 when y = 0, by
symmetry).

A long time after the particle ¥ has been deflected by the particle X, it
will be travelling in a constant direction ., and dx/dt will therefore
have a value of v COS Y.y, Where v, is the velocity at infinite distance
from X. Thus we have

Ve COS Whay = %sin Yinaxs

Jv
tan Yooy = Bﬂ .
However, we also know that the angular momentum J of the particle ¥ is

given by mv.b where b is the impact parameter, so we can write

motb
3
Finally, we note that the scattering angle x is given by
WYWoux +t X=1,
SO Ymax = 7/2 — x/2. Substituting for x thus gives

tan Yoy, =

2 B
The charge on an alpha-particle is +2e and the charge on an atomic
nucleus of atomic number Z is + Ze, so the repulsive force between them
at a distance r is
22Z¢?
dmeyr?
The parameter B is thus given by

2
B = ﬁ'
2ngg

and the impact parameter b required to give a deflexion x is
2
Ze_ otk

dnggE 2

where E is the initial kinetic energy of the alpha particle. Taking Z = 79,
E=4x10°x16x10""Jand y = 10°gives b = 3.2 x 10" m,
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An alpha-particle, of mass /m and charge +2e, moves in the force field of
a heavy nucleus of charge + Ze. It is initially at a large distance from the
nucleus and travelling with speed v (<<c) along a path which if continued
without deviation would pass at a distance b from the nucleus. What is
the distance of closest approach of the actual path of the particle?

Solution

As in the previous problem, let us write the electrostatic repulsion force
as

B
F=—,
]
where
2
B = 22e .
4ney

The electrostatic potential energy of the alpha-particle, when it is a
distance r from the nucleus, is

B

r
Let us write a for the closest distance of approach, and u for the speed of
the alpha-particle when it is distance a from the nucleus. It is clear that
the angular momentum of the alpha-particle about the nucleus is mob
when the particle is a large distance from the nucleus, and since no
external forces act on the system this quantity must be conserved. When
the particle is at its closest distance a from the nucleus it must be
travelling perpendicular to its radius vector, so the angular momentum is
given by mua. Thus, by conservation of angular momentum, we must
have

H=—

a
At infinite distance from the nucleus, the potential energy of the
alpha-particle is zero and its kinetic energy is mv?/2. At its closest
distance a, the kinetic energy is

1,1 (ub)’
-mu*=-m|l—|,
2 2 a
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and the potentital energy is
B

—
a

so by conservation of energy we have

2
%mu1 = lm(ﬁ) +B

2 \a a
This can be rewritten as a quadratic in a:
ﬂz - ﬂﬂ' - bz = 0‘
mv?

whose solutions are

2 (2] )

It is clear that only one of these solutions is positive and therefore
meaningful, so if we select this solution and substitute into it our
expression for B we finally obtain our solution

2 2,4
g:z—e+ J(zz_e+bz)
2rggmu® 4ntegmo*
We can see that this is reasonable, because if we set Z =0 (no
electrostatic repulsion) we obtain @ = b, and if we set b = 0 (head-on

collision) we obtain a = Ze2/mggmuv?, both of which results are easily
verified by a simpler calculation.

Problem 37

A cylindrical rod has length L, radius r and shear modulus n. One end of
the rod is clamped. Show that a torque C applied to the other end will
twist it through an angle ¢, where

2LC
$= "

anrt

An engine is transmitting a power of 75 kW at 1100 r.p.m. through a
cylindrical drive shaft of radius 0.025 m and length 2.0 m. If the shear
modulus of the material of the drive shaft is 80 GPa, calculate the angle
through which it is twisted.
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Solution

Consider a cylindrical shell of radius a and thickness da, as shown in
figure 43.

A
\J

Figure 43

The angle of shear @ is given by ¢a/L, so the shear stress is equal to
nea/L. It is thus a function of position within the rod. Let us now
consider the cross-section of this element, shown in figure 44.

Figure 44
The element dvy has an area ada d, so the force acting on it is
dF = ii’—"a da dy.
The contribution to the torque is dC = a dF, so
dc = "—L“’awa dy. s

We can now integrate this with respect to a (from 0 to r) and y (from 0
to 2m) to obtain the total torque:

r r 4 4
c="—¢ja3dafdw= AP gy = TNP
L Jo 0 L 4

2L
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Rearranging to find ¢ in terms of C gives

2LC
¢= :
mnr
as required.

The drive shaft is rotating at 1100 r.p.m., so its angular velocity w is
2m(1100/60) s~ = 11557, Since the power being transmitted is 75 kW,
the torque on the rod must be (7.5 x 10%)/115Nm = 652N m.
Substituting C = 652Nm, L =2.0m, n =8 x 10" Nm~? and
r = 0.025 m into our expression for ¢ gives 0.027 radians (1.5 degrees).

Problem 38

Estimate the pressure at the bottom of the Marianas Trench (11.0 km
below sea level). How large an error would be caused by neglecting the
compressibility of sea water? Assume that the density of sea water is
1025 kg m™ at sea level and that its bulk modulus is 2.1 GPa.

Solution
The variation of pressure with depth in a stationary fluid is given by

ap
dz

where p is the pressure, z is the depth, pis the density and g is the
acceleration due to gravity. The bulk modulus 8 is defined as

= P8

B=_—%_
dvjv
where dV [V is the fractional change in volume of a sample subjected to
an isotropic pressure increase dp. If we consider a sample of the fluid
having mass M, its volume V = M/p so that

M
dv = -"—dp
p2

and hence dV/V = —dp/p. Combining these equations to eliminate dp
gives

p
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This differential equation can be solved by rearranging and integrating it:

[[de - [ade
. pz o B ’
where py is the density at z = 0 and p is the density at depth z. Evaluating

the integrals gives the following expression relating the density to the
depth:

Lo Lo g M

We can now use this expression to find the variation of pressure with
depth. Since
_ Bdp
p
the relationship between p and p must be

dp
p—m=3h£. @)

where py is the pressure at z = 0. If we multiply equation (1) by py we
obtain

1—.@.: Po8z
p B’
so that
nf = —ln(l - %).
o) B

Substituting this into equation (2) gives
Z
p=py— Bln(l - HJTS)

Inserting the values pp = 1.01 x 10° Pa, B = 2.1 x 10° Pa,

o= 1.025% 10°kgm™3, g = 9.81 ms~2 and z = 1.10 x 10* m, we obtain
p = 1.14 x 10° Pa (1.12 x 10° atmospheres). If we had ignored the
compressibility of water the pressure at depth z would have been

Po + pogz = 1.11 x 10® Pa, so we would have underestimated

the pressure by 3 x 10° Pa (about 3%).
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Problem 39

Show that for a monatomic model solid the Young modulus E is given
approximately by

2
£-1(4Y)
ro dr? r=re

where U is the interaction potential energy of a pair of atoms distance r
apart and ry is their equilibrium separation.
When a uniform beam is bent, the bending moment M is given by

v= EL

R
where R is the radius of curvature of the arc and [ is the second moment
of area of the cross-section about the neutral axis. Use this relation to
show that when a compressive stress is applied to the ends of a straight
beam it will buckle when the stress reaches a critical value. Obtain an
expression for this critical stress.

A uniform round rod of length 1 m and radius 10 mm is subjected to a
compressive stress. At what value of the compressive strain will the rod
begin to buckle? (/ for a uniform circular disc of radius R about its
diameter is given by 7R*/4.)

Solution

The bonds between the atoms of a solid can be modelled as springs of
spring constant k. The shape of the interatomic potential function U(r)
determines the value of k as follows (see problem 19): The force F
between a pair of atoms is given by

F=——,
dr
so dF/dr is —d*U/dr?. If we evaluate this at the equilibrium separation rq
and recognise that a restoring force (positive k) corresponds to negative
F (since the force is directed opposite to the displacement), we can see

that
2
dr? Jr=r,

Now let us consider a macroscopic specimen of the solid of length L and
cross-sectional area A. If the atoms have a simple cubic arrangement, the
specimen has a length of L/rg bonds. Stretching the specimen by dx will
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increase the length of each of these bonds by rodx/L, so the tension in
each chain of atoms will be krodx/L. However, the specimen will contain
A/r3 of these chains of atoms, so the total force required to produce an
extension dx must be kAdx/Lrg. The stress in the specimen is thus
kdx/Lry, and dividing this by the strain dx/L we see that the Young
modulus is given by k/rg. Thus we have
E= i £U

dr? lr=r,
as required.

Let us assume that the beam has length [, and that the compressive
forces F have succeeded in bending the beam slightly (very much
exaggerated in figure 45), such that its midpoint has been displaced
through a distance a (<< I}. The bending moment M at a point on the
beam is clearly given by

M= F(a-y),
so the curvature is given by

==

Figure 45

Now as long as |dy/dx| is much less than unity, 1/R = d?y/dx?, so the
configuration of the beam satisfies the following differential equation:

&y F
—_—— _‘a - .
dx? EI »

This is somewhat easier to solve if we make the substitution p=a — y,
giving
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and we recognise that the general solution of this equation is
n= Asin(kx) + Beos(kx), where k%= E—i

To find the values of A and B we consider the boundary conditions at
x=0andx = +1/2.
Atx=0,y=0son=agiving B=a.
Atx =0, dy/dx =050 dn/dx =0 giving A = 0.
Thus n = acos (kx), but at x = +//2 we know that y = a, so n =0, and
this requires that kI/2 = 7/2. Since k depends on F, we have found the
value of F we were looking for:
m El
e
[This is the force at which the beam will begin to buckle. The effect of
increasing the force is to increase the value of a such that the simplifying
assumptions of our analysis are no longer valid. ]
If the cross-sectional area of the beam is a, the critical stress is
m El
a?
The critical strain is therefore
Ll
al*’
so if the beam has the form of a rod of radius R, we can put I = 7R*/4

and a = 7R? to obtain the expression n2 R?/4{? for the critical strain.
Taking / = 1 m and R = 10 mm gives a value of 2.5 x 10~ for this strain,

F = k*El =

Problem 40

Two particles of mass /m are connected by a light inextensible string of
length . One of the particles rests on a smooth horizontal table in which
there is a small hole. The string passes through the hole so that the
second particle hangs vertically below the hole. Take the position of the
hole as the origin and describe the position of the particle on the table by
plane polar coordinates r and 8, as shown in figure 46.

(i) Write down a formula for the angular momentum of the particle on
the table about the origin in terms of r and d8/d.

(ii) Explain why this angular momentum is a constant.
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Figure 46

(iii) Write down a formula for the sum of the energies of both masses in
terms of 7, dr/dt and d@/dt. Using the result that this energy is constant,
eliminate d8/dt and show that

(8]-r-3-r
i Y 2 &,
where y and § are constants and g is the acceleration due to gravity.

(iv) Initially the particle on the table is at a distance {/2 from the origin
and is travelling with speed a in a direction at right angles to the string.
Obtain a formula for (dr/dt)* when r = 1.

(v) Hence find the condition such that the particle initially below the
table does not pass through the hole. (The string always remains taut.)

Solution

(i) The tangential speed of the mass on the table is r(d8/dr) so its
angular momentum J is mr?(d6/dr).

(ii) No torque acts on the system so J must be constant.

(iii) The kinetic energy of the mass on the table is

() (5]

and its gravitational potential energy is constant. The speed of the
suspended mass is dr/dt so its kinetic energy is

1 ( dr )’
=-m|—1.
2 \dt
Since it hangs a distance { — r below the table we can write its potential

energy as

constant — mg(l = r),
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which is equal to a different constant +mgr. Ignoring constant additive
terms, we can thus write the total energy E of the system as

e=rl(5) o+ 53]

Substituting J = mr2(d8/dt) to eliminate d8/d:, this can be rewritten as

2
E-(d’)+gr+ r
m dt 2m?r?

where y is a constant. Rearranging gives
(ﬁ)’ —y-S_ g
dt rt

as required, where & = J2/2m? which is also a constant.
(iv) The initial conditions are

r=1/2,

(dr/dt) = 0 and

r(d8/dt) = a
so that

dofdr = 2a/l.

The angular momentum J is thus equal to mla;/2, so the constant d is
equal to Ia?/8. We can thus evaluate y:

2
y=(-é£-)+a+gr 0+“'; 4,8 _ 2 8
dt r 12 2 2 2

The value of (dr/dr)* when r = [ is then given by
y— 6/ — gl = ?f2 + glf2 — a?[8 — gl =3a?/8 — gl/2.

(v) The condition that the lower particle does not pass through the hole
is clearly equivalent to the condition that dr/dt falls to zero for r < /. The
limiting case is therefore 3a%/8 = gl/2, and the condition we require is

o2 <28t
3

A particle of mass m moves in a central force field such that its potential
energy is given by V = kr", where r is its distance from the centre of
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force and k and n arc constants. Find the conditions for a stable circular
orbit.

Solution

The motion of the particle must be confined to a plane, so the problem is
a two-dimensional one. Clearly the most useful system of coordinates in
which to describe the motion will be polar coordinates, so let us begin by
writing down an expression for the kinetic energy:

2 2
Ey = 1m(i) + lmr’(gi) .
2 \d 2 dt

Since the particle’s potential energy is V = kr", its total energy is given
by
2 2
E= 1m(£) + 1mr=(-‘fﬂ) + k",
2 \dt 2 dt

and as no external forces act on the system, this quantity is conserved.
The angular momentum J is also conserved, and since J is given by
mr*(d6/dr) we can use this fact to rewrite (d8/dt) in terms of r:

2
E=1m(i’—) r Lk
2 \de 2mr?

This expression looks like (has the mathematical form of) the total energy
of a particle of mass m moving in a single dimension such that its effective
potential energy V' is

12
2mr?

A circular orbit corresponds to r = ry = constant, in other words to a
position of equilibrium in the one-dimensional problem. We know that
this equilibrium position is the value of r for which dV'/dr = 0, so let us
evaluate this differential coefficient:

V'= + kr".

v 2
L LA L
dr mr
Setting this equal to 0 at r = ry, gives
2
nlJH-Z = J

mnk
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Since ry, J and m are all positive, this gives us our first condition, which
is that n and k must have the same sign. [We could have written this
down earlier, since it is just the condition that the central force is
attractive. ]
For the equilibrium to be stable, we must have d?V'/dr’ >0 at r = ry.

Differentiating again gives

V' _ 32 L n - k2,

dar*  mrt

Putting r = rg and d°V'/dr? > 0, and multiplying through by ra. gives

2
3, n(n — Dkri*? >0,
m

and substituting our expression for rg*? gives

2
Lin+2)>0.
m

The condition for stability is thus n > —2. Putting these results together,
we have

n>0,k>0
or
-2<n<0,k<0

as the conditions for stable circular orbits.

Problem 42

Give Lagrange's equations of motion. Applying them to the motion of a
planet orbiting the Sun, give expressions for the kinetic and potential
energies of the planet in polar coordinates and obtain two equations of
motion for the radial and angular motion. Show that the angular equation
of motion can be integrated and leads to the conservation of angular
momentum.

By changing the radial coordinate r to u = 1/r and eliminating time,
show that the radial equation of motion has the form of a differential
equation for displaced simple harmonic motion. Hence obtain a solution
for the shape of the orbit.
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Solution

Lagrange’s equations of motion can be expressed as
:{(QE) _3L
dt\3p;] 3q;’

where g; is a position-like variable, p; = dg,/dr is a momentum-like
variable and L is the Lagrangian, defined as T — V' where T is the
kinetic energy of the system and V is its potential energy.

For a planet of mass m in orbit about the Sun of mass M, the kinetic

energy is given in polar coordinates by

2 2
2 \adr 2 dt
and the potential energy is given by
GMm
E—
We will thus take

V=-

G=r,
py = dr/dt,
Q= 0,
p2 = d6/dt
as the variables that describe the motion. The Lagrangian is thus

1 1 GM
= ~mpi + -mgip + ——.
2 2 a1
Considering first the radial variable (subscript 1),

dL/3p; = mp, = mdr/dt,

and
3L/3q, = mg,p3 — GMm/q} = mr(d6/di) — GMm/r*.
Applying Lagrange's equation gives
d*r ( de )2 GMm
m— = mr|{—1] — ——.
dr? dt r?
Now considering the angular variable (subscript 2),
3L/apy = mqip; = mri(d6/dr),

(1)
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and
aL/ag, = 0.
Thus

i(meﬂ) =0.
dr dt

This shows that

2d0 _
mr-—-=
& @)
is a constant of the motion, and in fact we recognise it as the angular
momentum of the planet about the Sun.

We want to use equations (1) and (2) to derive an expression for the
shape of the planet’s path in space, i.e. an expression for r as a function
of @ with the time-dependencies of both r and 6 cancelled out. The
problem asks us to use the variable u = 1/r instead of r itself. Thus

du _ du dr dt _ 1 dr/d:

d0 dr di dé 2 dojde”

Substituting from (2), we can replace r*(d8/dt) by the constant term
J/m, so that

du _ ﬂﬂl @)
de J dt
We can also calculate the value of d2u/d6%:
fu_ (i) d d(in)
de* do\de] de di\de)
Substituting from (3) gives
du _ _m (dr)dr) (4)

de? J (d6fdt)

Dividing (1) by d6/dt gives
m(d*r/dr®) _ 40 _ _GMm
(d6/dr) dt rXde/dr)

and substituting from (4) for the term on the left-hand side and from (2)
for the terms on the right-hand side, this can be rewritten as

d*u - J GMm?
de* r J
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Dividing through by —J and recalling that u = 1/r, we obtain

2 2
d'u _ _ . GMm ) )
de 2
This looks like the differential equation for simple harmonic motion, with
the angle @ replacing the usual time variable, so we will try a solution of
the form

u:AOﬂG(BG]+ C,

where A, B and C are constants. This would give d?u/d6? =
— AB? cos (B#8), so equation (5) is satisfied if B = 1 and C = GMm?/J2.
The general solution of the equation of motion is thus

u=-!—=Ac059+C,
r

where A and C are constants. This is the polar equation of an ellipse.
[As we have shown, the constant C = GMm?/J? is determined only by
the angular momentum.]
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Problem 43

In Arthur C. Clarke’s novel 200! an object in free space has the form of a
very large plane slab 222 m thick. A test body released 100 m away from
the surface of the slab, initially at rest relative to it, takes 20 minutes to
fall to its surface. What is the density of the slab, assumed homogeneous?

Solution

If we ignore edge effects (as the problem hints that we should by telling
us that the slab is ‘very large’), it is clear that the gravitational field lines
must be perpendicular to the slab and that the gravitational field strength
g must be constant.

Gauss's theorem in gravitation states that

Ig- ds = —-47G3I M

where jg - ds is the integral of the gravitational field g over a surface
whose outward-pointing normal is ds and >, M is the mass enclosed
within the surface. We can choose any Gaussian surface, but the most
convenient is one which reflects the symmetry of the situation, so we will
choose one which has sides perpendicular to the slab and ends of area A
parallel to the slab, as shown in figure 47.

If the slab has thickness ¢ and density p, the mass 2, M enclosed by the
Gaussian surface is ptA, and the contribution to Ig - ds is —gA from each
end and zero from the sides (since at the sides ds is perpendicular to g).
Applying Gauss’s theorem thus gives

—2gA = —47GptA,

g = 2nGpt.
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Figure 47

Now for a body falling from rest in a uniform gravitational field of
strength g, the distance x fallen in time T is g7%/2, thus

= LanGpr?,
2
which gives, on rearranging,
X
p= 5
nGtT

Substituting x = 100 m, ¢ = 222 m and T = 20 minutes = 1200s gives
p=149x 10°kgm™.

Problem 44

A sphere of uniform density p has within it a spherical cavity whose
centre is a distance a from the centre of the sphere. Show that the
gravitational field within the cavity is uniform and determine its
magnitude and direction.

Solution

By the principle of superposition, we know that the (vector) gravitational

field in the cavity is equal to the gravitational field of the original sphere

minus the gravitational field of the material which has been removed.
Let us consider first the gravitational field inside a sphere of density p.
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At a radius r, the gravitational field is equal to the field due to the mass
contained within radius r, so we can write

Girrrjp
_ 3 _ 4aGpr
g - 72 = _'_'é_'"_i

r
and since the field is directed radially inwards, we can write this in vector
form as

4
= ——gGpr.
B 3 r

Now we can consider the sphere with a spherical cavity (see figure 48).

Figure 48

Consider a point X within the cavity such that the vector displacement
of X from the centre of the cavity is r. The vector displacement of X’
from the centre of the original sphere is thus a + r, and the gravitational
field at X due to the original sphere is

-%:r(}‘p(a +r).
The gravitational field due to the material removed to make the cavity is
4
——nGpr,
3 /r
so the total gravitational field at X is

4 4 4
= ——aGp(r + a) + -7Gpr = —-nGpa.
8= —3mCAr +8) + JnGpr = —2nGpa
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> The field within the cavity is thus uniform. Its magnitude is 4vGpa/3
(i.e. depends only on the position, and not the size, of the cavity) and its
direction is parallel to the line joining the centre of the cavity to the
centre of the original sphere.

Problem 45

A uniform hollow sphere has internal radius a and external radius b.
Taking the potential at infinity to be zero, show that the ratio of the
gravitational potential at a point on the outer surface to that on the inner

surface is
26° - a%)
3b(b? — a?)
Soiution

Figure 49 shows the sphere.

Figure 49

Suppose the density of the hollow sphere is p (this will cancel out later
since we will be calculating a ratio). The mass M of the hollow sphere is

clearly
4
= 5nrp(bi* -a)
and the potential at a point on the outer surface is — GM/b, so we may
write
G i1m(bJ —a%)
Vib) = - 3

b
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Next we consider a point at a distance r from the centre of the sphere,
such that a < r < b. The magnitude of the gravitational field strength g at
this point is that due to the mass contained within radius r, and since this
mass is

4 33

—ap(r’ — a’)

3
the gravitational field strength is

Ggﬂp(r’ -a’)

§=- T.
where the negative sign shows that the field is directed radially inwards,
i.e. opposite to the direction of increasing r.

Now we know that the relationship between g and the gravitational
potential V is

dv
g=-—

d

3_ 3
V(a)—V(b)u—rgdr=M_rL_".dr
b 3 b

2 3@
=M[f_+a_l
b

3 2 r
=M_(a_‘_b_’+a_’ua_’)

3 \2 2 a b
=i£p£(3_f_b_’_a_’)

3 \2 2 )

Thus using our expression for V(b) we obtain

3 2 2 3
V(a)=§££_€(_bz+ﬂ_+i‘;_b__ﬂ_)
3 b 2 2 b

2 2
=3ﬂ(-§.é_+31),

3 2 2
so that
- 6 (=)
Vib) _ 3 b _ A -aY)
V@)  ampG (_ 3, gﬁ] 3b(b? - @)
3 2 2

as required.
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A hole is bored in a straight line through the Earth from Cambridge to
New York, and a ball-bearing is dropped in at the Cambridge end.
Assuming that frictional and air resistance forces are negligible, and that
the Earth may be taken as a uniform-density sphere of radius 6400 km,
how long does it take the ball bearing to arrive in New York? [Neglect
any effects due to the rotation of the Earth, and assume the acceleration
due to gravity at the Earth’s surface to be 9.8 ms™2.]

Solution

The problem does not tell us the geographical locations of Cambridge and
New York, and it is unlikely that we are expected to know them, so we
should not be surprised if they do not figure in the answer.

Consider the situation when the ball-bearing is at the point P, a
distance x from the mid-point of the tunnel (see figure 50). We will
denote the perpendicular distance from the tunnel to the centre of the
Earth (which we do not know) by a, and the radial distance of P from the
Earth's centre by r.

Figure 50

We know from Gauss’s theorem that the gravitational field at a point P
inside a uniform sphere is the same as the field which would be produced
by all the matter of the sphere closer to the centre than P, so the force F
acting on the ball-bearing is given by
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4 3
—-mr’pmG
F= 2 ’
r z ’
where p is the Earth's density, m is the mass of the ball-bearing, and G is
the gravitational constant. The component of this force acting parallel to
the tunnel in the direction of increasing x is — Fsin 8, so the acceleration

of the ball-bearing is
d*x 4 .
— = ——grpGrsin 8,
dr? 3 pe

but the distance x is given by r sin 8, so we can write this as

7]
ii_i = —iwpox'
dr? 3
which is the equation of simple harmonic motion, and is (as we hoped)
independent of a. The period of this motion is

Zv\/ 3
4Gnp

and the time T for the ball-bearing to get from Cambridge to New York
will be half a cycle, so

T=rr\{ 3 .
4Gnp

Now we can use the information we have been given about the Earth’s
radius and surface gravity to find the density p. If the radius is R, the
surface gravitational acceleration must be

5srrR!,aG
g=3 _ 47RpG
R? 3 7
50
__ 38
P=4RG

Substituting this into our expression for T gives

T = n\/ﬁ.
g
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so taking R =6.4 x 10°m and g = 9.8 ms ™2 gives T = 2.5 x 10°s
(about 42 minutes). [In fact this is half the orbital period of a satellite in a
low orbit round the Earth, ignoring the effects of air resistance. ]

Problem 47

In 1910, on its sixth trip around the Sun after that of 1456, Halley’s comet
was observed to pass near the Sun at a distance of 9.0 x 10'"" m. Estimate
how far the comet travels from the Sun at the outer extreme of its orbit,
and determine the ratio of its maximum orbital speed to its minimum

speed.

Solution

The comet’s period must be (1910 — 1456)/6 = 75.7 years, and we know
from Kepler’s third law that the periods of bodies orbiting the Sun are
proportional to the 3/2 power of their semi-major axes, so the semi-major
axis of the comet’s orbit must be 75.7%? times as great as the semi-major
axis of the Earth's orbit (since the Earth takes 1 year, by definition, to
orbit the Sun). Thus the semi-major axis a of the comet’s orbit is 17.9
astronomical units, where the astronomical unit is defined as the
semi-major axis of the Earth’s orbit.

We can calculate the length D of the astronomical unit as follows:
For an object of mass m in a circular orbit of radius D around the Sun
(mass M), the gravitational force GMm/D? can be equated to the
centripetal force ma? D, so that the angular velocity w is given by

GM
D
Hence the period T is given by
72 = 4’ D? .
GM
which can be rearranged to give
pi = GMT*
4

We recall that this result is also true for an elliptical orbit if D is the
semi-major axis, so taking 7 = 1 year = 3.16 x 10" s and M = 2.0 x
10% kg gives D = 1.50 x 10" m. The comet’s semi-major axis a is thus
2.69 X 10 m.,
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The comet’s minimum distance ry, from the Sun is given by a(1 — ¢)
where e is the eccentricity (see figure 51), and has a value of 9.0 x
10'° m, so
10
Lo S0x 100 o

e ] . ——
2.69 x 102

Foax =01 + )

Fonin = @1 = £}

Figure 51

The maximum distance ry,, from the Sun is given by a(1 + €) = 2.69 x
10" x 1.9665m = 5.3 x 102 m,

[The problem did not ask us to calculate the eccentricity of the comet’s
orbit, and in fact we did not need to do so since ry,, could have been
obtained directly using rupax = 2@ — Fmin.]

The ratio of maximum to minimum orbital speed is equal to the ratio
Fenax/Tmin = (1 + €)/(1 — €) = 59.

Problem 48

If gravitational forces alone prevent a spherical, rotating neutron star
from disintegrating, estimate the minimum mean density of a star that has
a rotation period of one second.

Solution

We will assume that the star remains spherical even when it is just about
to disintegrate, and that the density is uniform (the former assumption is
less reasonable than the latter). If the star has radius r and angular
velocity w, the centripetal acceleration of a particle at its equator is &*r.
This must be provided by the gravitational force, otherwise the star will
disintegrate, so we must have

Gg:rr’p
> wlr.

rl
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Thus
S 3 _ 3n .
4G GT?
where T is the star’s rotation period. Taking T = 1s gives p> 1.4 X
10" kgm™3,

[In fact, the densities of neutron stars are about 5 x 10'” kgm™2, so our
simple formula suggests that they should have rotation periods of at least
0.5 milliseconds. The fastest observed pulsars (which are spinning
neutron stars emitting beams of electromagnetic radiation) have periods
of about 1 millisecond. ]

Problem 49

An astronaut marooned on the surface of an asteroid, of radius r and
mean density equal to that of the Earth, finds that he can escape by
jumping. What is the maximum value of r?

Solution

‘We will assume that rotation effects can be ignored, and that the
maximum height to which the astronaut could jump on the surface of the
Earth is h. If the Earth’s mass is M and its radius is R, the gravitational
field strength at the surface is
gE = GM _ 4nGpR
= —— =
R? 3
where pis the Earth’s mean density. Thus the maximum kinetic energy
which the astronaut can convert to potential energy in a jump is mggh,
where m is his mass. We will assume that this quantity is the same for the

astronaut on the asteroid.
At the surface of the asteroid, the astronaut’s gravitational potential

energy is
_GM'm
r
where M’ is the mass of the asteroid and r is its radius. We can write this
as

*

_ 4nGmr?p
—



>
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where we have assumed that the asteroid’s mean density is the same as
the Earth’s. Thus in order to be able to escape from the asteroid,
4nGpRmh _ 4nGmr’p .
3 3

i.e. the maximum value of r is V/(Rh). Taking R = 6.4 x 10°m and
guessing it = 1 m gives ry,, = 2.5km.

S rt< Rh:

Problem 30

The planet Jupiter has a radius equal to 11.2 times the Earth’s radius, a
mass equal to 318 times the Earth’s mass and a period of rotation about
its axis of 10.2 hours. Calculate (a) the minimum velocity with which a
rocket would need to leave the Jovian surface in order to escape entirely
from the gravitational attraction of Jupiter, and (b) the radius of a
circular orbit around Jupiter in which a satellite would remain above the
same point on the Jovian surface. (You may take the escape velocity from
the Earth to be 11.2 kms™! and the radius of a geosynchronous orbit to
be 44200 km.)

Solution

(a) The gravitational potential energy of a body of mass m at the surface
of a spherical planet of mass M and radius R is

GMm

R
[If the planet is rotating, the body will also have kinetic energy, but this
term is negligible in comparison with the gravitational potential energy
for both of the planets under discussion.] In order for the body to escape
from the planet it must therefore be given an initial velocity v such that

lmuz = ._qM._i R - 4 J-._h_‘—.‘
2 R R

The escape velocity from Jupiter is therefore

112% /2% kms! = 59.7kms".
11.2
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(b) A satellite of mass m in a circular orbit of radius r and angular
velocity w about the planet experiences a gravitational force

GMm
2

r
which provides the centripetal force mw?r. The angular velocity is thus
given by

o =M
3

If the orbit is geosynchronous and the planet has a rotation period of T,
w = 2n/T. Inserting this relationship and rearranging gives

2
e GMT” .« M7,
47
Since the Earth rotates once about its axis in 23.93 hours (see problem
33), the radius of a stationary orbit about Jupiter must be

3
44.2 x 10° x 318" x (ﬂ) km = 171 x 10° km.
23.93

Problem 51

A planet is in a circular orbit about a massive star. The star undergoes a
spherically symmetric explosion in which one per cent of its mass is
suddenly ejected to a distance well beyond that of the planet’s orbit. Find
the eccentricity of the new orbit of the planet, assuming the planet itself is
unaffected by the explosion.

Solution

For definiteness, let us put M for the mass of the star before the
explosion, ry for the radius of the planet’s orbit, and m for the planet’s
mass. We can find the orbital speed v, by equating the gravitational force
to the centripetal force:

GMm _ mv} G
2

2
= —_— = —.
ro o ]

Immediately after the explosion, the planet’s position and velocity are
unchanged (since to change the position in an infinitesimal time would
need an infinite velocity, and to change the velocity would need an
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infinite acceleration), so we know the behaviour of the planet at one
point in its new orbit. Since the planet is travelling perpendicularly to its
radius vector at this point, this must be either the nearest or the furthest
point of the new orbit from the star (it is actually the nearest). If we can
find an expression for ry, the distance from the star to the other point at
which the planet is moving tangentially (see figure 52), we can find the
eccentricity by comparing r; and ry. The simplest way to do this is by
considering the conservation of energy and of angular momentum.

&

position of planet
when explosion occurs
£
-

Figure 52

At distance rg, the kinetic energy of the planet is mud/2 which we can
write as

GMm
2.?‘0

using our expression for vg. If we write M’ for the new mass of the star,
the potential energy of the planet at this position is

GM'm

o
Let us write v, for the speed of the planet at its furthest distance r, from
the star. In order to conserve angular momentum we must have

Uprp
n

mugrp = miywyr, S0 =

The planet's kinetic energy at r, is thus

2.2
vpr
lmou‘

2
2 n
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which we can write as
GMmr,

2r}
again using our expression for vg. The potential energy at ry is

GM'm

n
Thus equating the total energy at rp with the total energy at r; we obtain
GMm _ GM'm _ GMmry _GM'm
2ry ro 2ri n

If we put p for the dimensionless ratio M‘/M and p for the dimensionless
ratio ry/ry, this expression can be simplified to

2u

?.

Multiplying through by o gives
Pl =24) + 2up = 1 =0,

which can be factorised as

(p=1(p(1 -2u] +1) =0,
and since we can eliminate p = 1 as a solution, we must have

1
2u-1
[We can see from this, incidentally, that if 4 < 1, p must be greater than
1, so that r| is greater than ry as we stated earlier.)

Now the eccentricity e can be found from the expressions rg = a(1 — e)
and r, = a(l + e) where a is the semi-major axis of the ellipse. Taking the
ratio of these expressions to eliminate a (which we do not want to know)
we find that

1+e p—1
p= , Soe= .
1-¢ p+1
Substituting our expression for p gives

| Sl
"
and taking u = 0.99 gives e = 0.01.
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Problem 52

In a certain inertial frame two light pulses are emitted, a distance 5 km
apart and separated by 5 us. An observer who is travelling, parallel to the
line joining the points where the pulses are emitted, at a velocity v with
respect to this frame notes that the pulses are simultaneous. Find .

Solution

The ‘standard configuration’ in special relativity problems involves two
inertial frames S and 5’ such that, according to observers stationary with
respect to the frame S, the frame §' has a velocity v in the x-direction. If
Ax, Ay, Az, At are the intervals measured in S between two events, and
Ax', Ay', Az’', At’ are the intervals between the same events measured
in §', the relations between the intervals are given by the Lorentz
transformations:

Ax’ = y(Ax — DA!). Ax = V(Ax' + Uﬁl'),

Ay’ = Ay, Ay = Ay',

Az’ = Az, Az = Az,

Ar' = y(At - vAx/cY), At = y(Ar' + vAx'/c?),
where

1
et
1= 0v¥/e?

We will assume that § is the frame in which the pulses are emitted with a
time separation of 5 us, so that Ax = 5km, At = 5 us. We require to find
the frame S’ in which At’ = 0. From the Lorentz transformation, we can

see that this is so if

v = c*A1fAx.
Inserting the values of At and Ax gives v =9 x 10" ms™! (= 0.3 ¢).

110
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Observer A sees two events at the same place (Ax = Ay = Az = 0) and
separated in time by At = 107%s. A second observer B sees them to be
separated by At’ = 2 x 107 s. What is the separation in space of the two
events according to B? What is the speed of B relative to A?

Solution

Observer A is at rest in frame §, and observer B is at rest in the frame
§'. The Lorentz transformation for Ar’ gives

At' = yAr
(since Ax = 0), so we must have y = 2. Now since

y= \/___1“_
1 - v¥/c?

it follows that

reel-2)

50 v = c(1 — 1/4)2= \/3 ¢/2. The Lorentz transformation for Ax’ gives
Ax' = —yvAt

(again using the fact that Ax =0), so
Ax' = —2%3 x 10° x 107 m = —520 m.

Thus according to observer B, the spatial separation of the two events is
Ax'==520m, Ay’ = Az' =0.
[We could have calculated the magnitude of Ax’ directly, without first
calculating v, by using the Lorentz invariant interval. This is defined as
Ast = Ax? + Ay? + Az - AL,

and it can be shown that As? = As'?, i.e. that the interval between two
events is the same in any inertial frame. In this problem, Ay’ = Az' =0
so that

0 - A = Ax'? — *Ar?,
which can be rearranged to give
Ax'? = cH(Ar? - A1),

Putting At’ =2 us and Ar = 1 us gives Ax' = +520m.]
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Problem 54

Two inertial frames of reference S and §’ are in the standard
configuration, frame S having velocity v with respect to frame §. At the
instant when their spatial origins O and O’ coincide, a light beam is
emitted from O and O’ along the positive x- and x'-axis. The beam is
reflected by a mirror M fixed in § at a distance d from O and with its
plane perpendicular to the x-axis. Consider the following three events:

(1) light beam reaches M,

(2) reflected beam returns to O',

(3) reflected beam returns to O.
Calculate the times of these events as measured by observers in frame §.
Use the Lorentz transformation to determine the times of these events as
measured by observers in frame §'. Show how observers in frame §'
would explain their measurements without reference to frame §.

Solution

It will be helpful to draw a space-time diagram of the events in §, as
shown in figure 53.

1Pwm3
) /

2
'flEmlt 1

world line of M

Event 0 x

Figure 53

The dashed lines show the world-line of the light beam. We will assume
that clocks in both frames are synchronised to ¢ = t' = 0 when the origins
of the frames coincide at event 0 (emission of the light beam).
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The mirror M is a distance 4 from the origin O, so light will take a
time d/ec to reach it. Thus

h= dj’t’.'.

When we perform the Lorentz transformations later we will also need the
x-coordinate of this event, which is obviously

X1=d.

At time t;, the light beam is at x = d. After this time, the light beam
travels in the negative x-direction, so at time ¢ > 1y its x-coordinate is

x=d=c(t=1)
=d - c(t - dfc)
=2d = ct.

At time 1, the x-coordinate of O’ is vt, so at time ¢, when O’ and the
light beam meet, we must have )

2d - ¢ty = vy,
Thus
f = 2d .
c+v

The x-coordinate of this event can be found by substituting into either
x =2d — cty or x = pty, to give

2dv
c+u

X3 =

The time coordinate of event 3 is easy to calculate, since it is just the time
required for the beam of light to travel from O to M and back again.
Thus

t = 2d/e.
Clearly
X3 = 0. )

Now let us calculate the time-coordinates of these events in the frame §',
using the Lorentz transformation

= y(: - z}_x)
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Thus
=4 - 24} = 20— o,
c & c
fi - ?( 2d - 22!12d ) - 2}’d {l - szf.‘})
c+v  c(c+v) ctv
(which is equal to 2t1),

‘5”7(£_0)=£‘
c c

In order to see how observers in S’ would interpret these measurements,
it is helpful to draw the space-time diagram for the frame §’, as shown in
figure 54.

Event 0 +
Figure 54

According to the observers in §’, O is moving in the negative
x'-direction at some speed u. We can use their measurements of f] and 3
to calculate u as follows:

At time t', the x'-coordinate of O is

X' = -ut.

For times less than #{, the light beam moves in the positive x’-direction,
and for times greater than rq it moves in the negative x'-direction. Thus
at time 2¢] the light beam has an x'-coordinate of zero, and at time

t' > 1} the x'-coordinate is

x'==c(t' - 2n).
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The x'-coordinates of O and of the light beam must be equal at ¢* = 13,
S0

ury = c(t3 — 2t3)

and hence

2’
u'—'c(l - —-‘-'-)
4]

Substituting the observed values
I =1’_d(1 -_?_) and ,5=_2._5
c c c
gives u = v, so the observers in §' see the frame § moving backwards at
speed v. [We could have written this down straight away, since it follows
directly from the postulates of special relativity.]
The observers in §’ can also use their measurements to calculate the
distance d' between O and M: At time ¢’, the x'-coordinate of M is
x'=d —w'=d-vt.
At time ¢’ the x'-coordinate of the light beam is
x'=ct,

and when ¢’ = 1] these x'-coordinates must be equal. Thus

cy=d — vty
hence
d =(c+v)n.

Substituting the observed value of ¢ gives
2 24 12
d'="—"(1—i)(c+u)=-,-d(1—”—)=d(1—"—) =4
< c d ¢ Y

The observers in S* thus measure the distance from O to M to be d/y,
which is in agreement with the length-contraction formula.

A member of a colony on a moon of Jupiter is required to salute the un
flag at the same time as it is being done on Earth, at noon in New York.
If observers in all inertial frames are to agree that he has performed his
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duty, for how long must he salute? (The distance from Earth to Jupiter is
8 x 10° km. The relative motion of the Earth and Jupiter's moon may be
ignored.)

Solution
Write down the Lorentz transformation for ¢ in differential form,
At' = y(At — vAx/c}),

and let § be the frame of reference in which the Earth (and the moon of
Jupiter) is at rest, and §"' the rest frame of an arbitrary observer.

Identify the salute on Earth and the salute on the moon of Jupiter as
two events. In the frame §, the spatial displacement Ax between these
two events is D (i.e. the distance from Earth to Jupiter) and the temporal
separation Aris T.

We require that in §'At¢’ is zero, hence

T = vD/c.

Thus the member of the colony must be saluting at a time v D/c? after the
salute on Earth, as measured in the frame §, and since v can vary
between *c¢ he must salute for a total time of

2D/c

=2x8x10"/3 x 105 s
=53x107s

= 1.5 hours.

Two rockets A and B depart from Earth at steady speeds of 0.6¢ in
opposite directions, having synchronised clocks with each other and with
Earth at departure. After one year as measured in Earth’s reference
frame, rocket B emits a light signal. At what times, in the reference
frames of the Earth and of rockets A and B, does rocket A receive the
signal?

Solution

In this problem we have three inertial frames to consider, so we will use
coordinates x and f to denote quantities measured in the Earth’s frame,
x4 and 14 to denote quantities measured in A's frame, and xg and 15 to
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denote quantitics measured in B’s frame. We will assume that, according
to an observer in the Earth’s frame, rocket A is travelling at speed v in
the positive x-direction and rocket B in the negative x-direction. With
these assumptions, we can write down the Lorentz transformations:

x = y(xq + vly), xp = y(x = vt),

t = y(ty + vx,/ch), ty = y(r — vx/c?),

x = y(xg — vig), xg = y(x + vt),

t = y(1p — vxg/c?), tg = y(t + vx/c?),
where

v =0.6¢c

and
y=0 - oY) V2 =5/,

It will be convenient to use a system of units in which time is measured in
years and distance in light-years, in which case ¢ has a value of 1. Again,
it is helpful to draw a space-time diagram in the Earth’s frame of
reference, as shown in figure 55.

Event 0 x (light years)
Figure 55
In the Earth’s frame of reference, event 1 ( B emits the signal) has
coordinates

= —0.6,
1= +1,
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so at time ¢ > 1 the x-coordinate of the light signal is
x==06+(t-1)=1- L6.
At time ¢, the x-coordinate of rocket A is
x = +0.61.
The x-coordinates must be equal at event 2, so for this event we must
have
t—1.6=061,
hence ¢ = 4. Thus according to an observer in the Earth frame, event 2
occurs after 4 years. The x-coordinate of this event is therefore
0.6 x4=24,
We can now substitute these coordinates into the Lorentz

transformation formulae to find the time coordinates of event 2 in A's
and B's frame of reference:

14 = ¥(t - vx)

(remember that ¢ = 1)
- 5(4 - 0.6 % 2.4) = 3.2,

so that, according to A, event 2 occurs after 3.2 years.
tg = y(t + vx)
- 2(4 +0.6%2.4) =68,

so according to B, event 2 occurs after 6.8 years.

Problem 57

A very fast train of proper length L, rushes through a station which has a
platform of length L (< L,). What must be its speed v such that the back
of the train is opposite one end of the platform at exactly the same instant
as the front of the train is opposite the other end, according to an
observer on the platform?

According to this observer, two porters standing at either end of the
platform (distance L apart) kick the train simultaneously, thereby making
dents in it. When the train stops, the dents are at a distance L apart.
How is the difference between L and L, explained by (a) the observer on
the platform, and (b) an observer travelling in the train?
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Solution

According to the observer on the platform, the train undergoes a Lorentz
contraction by a factor of y, so that its length is Ly/y. This must clearly
be equal to L if the two ends of the train are to align with the two ends of
the platform, so

y=Q0 =¥tV = Ly/L.
Rearranging,
vfe = (1= LY/L{)"™,

v=c(l - LYL})"~

(a) According to the observer on the platform, the kicks are
administered at either end of the train so the dents will be at the two ends
of the train. When the train stops this is found to be the case, although
the train is no longer undergoing a Lorentz contraction so the separation
of the dents is greater than it was when the train was in motion.

(b) According to an observer on the train, the train is of length Lg but
the platform is moving at velocity —v so it undergoes Lorentz contraction
from its proper length L to a length L/y = L?/Lg. The fact that two
porters standing this distance apart nevertheless manage to make dents in
the train separated by L, is explained by the fact that the kicks are not
administered simultancously.

We can show this using the Lorentz transformations. Let us identify
frame S as the frame in which the platform is stationary, and S’ as the
frame in which the train is stationary. The train thus has a velocity +v in
the x-direction relative to the platform. We will call the two porters A
and B, and assume that their x-coordinates are 0 and L respectively in
the frame S. We will also assume that, in frame §, the kicks occur at time
t = 0. Thus we have, using the Lorentz transformations, the data shown

in Table 5.

Table 5

In frame § In frame §*
A kicks the train x=0,¢r=0 x=0,1t"=0
Bkicksthe train x=L,1r=0 x'=yL,t'=—=yoL/c

In order for an observer at rest in the frame S' to measure the distance
between the kicks as Lg, we must have y = Lo/L as before. However, we
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front of train

kick

Figure 56

see that in this frame porter B’s kick is administered earlier than porter
A’s kick, by an interval of time equal to yv L/c?. To show that this is
consistent with the Lorentz contraction of the platform observed by the
train, we can use this time interval to calculate the length of the platform
according to an observer in §’.

According to observers in §', the porters are moving at speed v in the
negative x’-direction, so at t' = 0, porter Bis at x’ = Ly — yv*L/c? and
porter A is at x’ = 0. The length of the platform, according to an
observer in §’, is thus Lo — yo?L/c?. Using the fact that y = Lg/L, this
can be rewritten as Lo(1 — v?/c?), and using the fact that (1 — v?/c?) =
1/y2, it can be simplified to Lo/y?. Thus according to an observer moving
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with the train, the length of the platform is Ly/y* = L/y, so it has been
Lorentz-contracted as we expect.

This can be summarised on space-time diagrams in § and §’, shown in
figure 56.

Problem 58

Given two observers O and O’, with O" moving at uniform velocity v in
the positive x-direction relative to O, use the appropriate Lorentz
transformations to show that if an object is moving with velocity
component i, in the frame of reference of O’, then

_ Ut
X -
1+ W;'
¢
where u, is the corresponding velocity component according to O.

(a) A space ship is launched from Earth and maintains a uniform
velocity of 0.900c. The space ship subsequently launches a small rocket in
the forward direction with a speed of 0.900c¢ relative to the ship. What is
the speed of the small rocket relative to the Earth?

(b) According to observations on the Earth, the nearest star to the
solar system is 4.25 light years away. A space ship which leaves the Earth
and travels at uniform velocity takes 4.25 years, according to ship-borne
clocks, to reach the star. What is the speed of the space ship, expressed as
a fraction of the speed of light ¢?

Solution
The frames of reference of O and O’ have the standard relationship, so
that the Lorentz transformations are given, in differential form, by

dx' = y(dx — v dr),

di’' = r(dt - %)
JE
[We could also write down the reverse transformations, but in fact we
don’t need them.] The ratio of these two expressions gives the component
Uy
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Multiplying through by the denominator of the right-hand side and
rearranging, we obtain

vy

‘.2

dx(l + ) = di(u, + v),

from which we can write down the required result:

dx uy + v
Uy = — = ———,
dt 1+ Ul

&2

(a) This result can be applied directly if we identify O with an observer
on Earth and O’ with an observer on the space ship. We have v = 0.900¢
and u,- = 0.900¢c, so

0.900¢c + 0.900c  _ 1.800¢

| 4 (0.900)0.900c)  1:810°
"_2

The speed of the rocket relative to Earth is thus 0.994c.

(b) We can solve this using the Lorentz transformations. Let us identify
§ as the frame in which the Earth and the star are at rest, and S’ as the
frame in which the space ship is at rest, and synchronise clocks to
t =" = 0 when x = x’' = 0. If we put D for the distance to the star in the
frame §, the coordinates in § of the event of the space ship reaching the
star are

U, =

x=D,
t = D/v.

Thus the time coordinate of this event in the space ship’s frame §' is
t' = y(t — vx/c?)
= y(Dfv — Dv/c?)

= (yD/v)(1 = v*/c?)
= Dfyv.

Now we are given that 1’ = 4.25 years and D/c = 4.25 years, so it follows
that

yvfc = 1.
Putting
B=uv/c
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for convenience, we have

vB=1,

and since
1
Vs ——m——
vV -p4)
this gives
£,

1-p
so that

=102,
hence v = ¢//2.

Problem 59

To an observer, two bodies of equal rest mass collide head on with equal
but opposite velocities 4¢/5 and cohere. To a second observer, one body
is initially at rest. Find the apparent velocity of the other, moving mass
before the collision and compare its initial energy in the two frames of
reference.

Solution

It is clear that the apparent velocity of the second mass must be equal to
the relative velocity of the two masses, which is given by the relativistic
addition of 4¢/5 and 4¢/S:

b= 4c/S + 4c/5 _ 8¢/5
1 + (4¢/5)(4c/5)(1/c?)  41/25
= 40c/41.

The total initial energy of either particle in the first frame is ymc®, where
m is its rest mass and y is the Lorentz factor for a speed of 4¢/5, thus

2

= (5/3)mc?.

'‘E =
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In the second frame, the same formula applies for the moving particle but
y is now the value appropriate to a speed of 40c/41, thus

mcz

= (41/9)mc?.

E =

Thus the initial energy of the moving particle is greater by a factor of
41/15 in the second frame.

Problem 60

A beam of monochromatic light, whose wavelength in free space is 4, is
split into two separate beams and each is then passed through identical
troughs of water. Show that if the water in one trough is stationary and
the water in the other trough is moving with speed v (<< c) in the
direction of the light, the phase difference between the emerging beams is

Ag = 2uL/A)(n? — 1)(v/c),

where L is the length of the troughs and n is the refractive index of the
stationary water. Suggest suitable values for L and v in an experimental
arrangement for verifying this result.

Solution

Figure 57 shows the arrangement.

Figure 57

The refractive index n defines the speed at which light propagates with
respect to the medium as c/n, and since the moving water moves forward
(i.e. in the same direction as the light) in the laboratory frame at speed v,
the speed of the light relative to the laboratory frame must be the
relativistic sum of v and c/n, i.e.
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c
v+ =
n

1+ -2
nc

Thus the time taken for light to travel from one end of the trough of
moving water to the other, measured in the laboratory frame, is

Troving = L(1 + v/nc)/(c/n + v)
= (Lnfc)(1 + v/nc)(1 + vnfc)™".
Since v <« c, we can use the binomial theorem to expand this expression
to the first order in v, giving

Toving = (Lnfc)(1 + v/nc — vnfc).
The time required for light to travel through the trough of stationary
water can be deduced from this expression by substituting into it v = 0, to
give

Tmlmw = Lﬂ)’f
(which is obviously correct), so the difference in travel times through the
two troughs is

AT = (Lnfc)(vfc)(n — 1/n)

= (Lv/c?)(n® - 1).

The phase difference A¢ is given by 2rvAT where v is the frequency, and
substituting v = ¢/A finally gives

A¢ = @uL/A)(n* = 1)(v/c)

as required.

Water has a refractive index n of approximately 1.33 at optical
wavelengths (say 500 nm), and if we assume that A¢ must be at least /2
to produce a measurable effect, substitution into this expression shows
that Ly must exceed about 50 m?s™!. Possible values for a demonstration
mightbe L =5mand v =10ms™".

In its rest frame, a source emits light in a conical beam of width +45°. In
a frame moving towards the source at speed v, the beam width is +30°.
What is v?
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Solution

There are several ways of solving this. The longest, but most basic, is to
use the Lorentz transformations directly. It is also possible to use the
formulae for relative velocity, or (the shortest method) to use the
aberration formula.

(1) Using the Lorentz transformation directly.

First we need to set up two inertial frames 5 and §' in which to describe
the problem. If we adopt the standard configuration in which frame §’
has a positive velocity v in the x-direction when observed in frame §,
figure 58 shows that we can consider the light to be emitted at up to +45°
from the x'-axis in the frame §'.

1]

Y
\J

Figure 58

‘We can write the spatial parts of the Lorentz transformations in
differential form:

Ax = y(Ax' + vAL'),
Ay = Ay'.

If we consider a photon travelling at the very edge of the cone, in §' it
will make an angle of 45° with the x'-axis. If the photon connects two
events which have a separation along the x'-axis of Ax’, the separation
along the y'-axis must be numerically equal to Ax’ (because the photon is
travelling at an angle of 45°), and the time interval Ar’ must be Y2Ax'/c
(because the photon travels a distance \/2 Ax’ at the speed of light).
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Thus we have

Ax',
Ay’ = Ax',
At = \2Ax'[c.

Transforming into the frame §, we find

Ax = r(Ax' + Y20Ar ”A‘t') = mx'(l + _"_VZU)’
[ c

Ay = Ax’.

The photon must make an angle of arctan (Ay/Ax) with the x-axis (which
we are told is 30°), so

y(l ¥ !:_li) - lanl30" = Vs
Substituting y = (1 — v?/c?)~"? gives
1+ V2(vfe) _
V@ - (v/e))
If we put # = v/c for convenience, and multiply throughout by
(1 - %2, we obtain
1+V28=(3-38)"
Squaring:
1+2V2p+2p =338
This can be rearranged as a quadratic equation in f3:
sPr+2y2p-2=0.

Solving the quadratic gives v/c = +0.410 or —0.976. Clearly we require
the positive solution, so our result is v = 0.41 ¢. [The negative solution
corresponds to the transformed cone making an angle of —30° with the
axis. It was introduced when we squared our expression for f.]

(2) Using the velocity transformation formulae.

A photon travelling along the edge of the cone has velocity components,
in §', of
vy = c/V2

and
vy, = c/V2.
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In the frame §, these will transform to v, and v, where, in general,

v+ vy
U B e——
1+ vv}/c?
and
_u(- v}/
r - -

1 + vol/c?
In this particular case, we thus obtain

v

c
+ —
V2
Uy =
14 —2
Vic
V(-%)
oo = £ c?
, _—————————
2
v,
V2e
Since v, /v, = tan30° = 1//3 we have

1+ V2(/e) _
V(1 = (v/c))

as before.

[1f we were unable to remember the transformation for v,, we could
solve the problem using the velocity transformation for v, alone, using
the fact that the speed of light is the same in all inertial frames, as shown
in figure 59.

¥y

Figure 59
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Thus v, /c = cos30° = V/3/2, so

[
v+ —
V2 _ Vic
e 5
14—
V2c
Cross-multiplying this expression gives
20+ V2c=V3c+ V(3R2)o,
which can be solved to give
p=cY3-V2

2—\]3
2

= 0.410 ¢ as before.]

(3) Using the aberration formula for light making an angle ¢
with the x-axis and ¢' with the x'-axis.

tan (¢/2) = \/: ; :jj: tan (¢'/2).

Substitution of ¢ = 30° and ¢’ = 45° gives
1-vfc _ tan’l5°
1+ vfc tan?22.5°

therefore
v _ 1-0.4185

©  1+0.4185
= (.41,

Problem 62

Estimate the minimum frequency of a y-ray that causes a deuteron to
disintegrate into a proton and a neutron, commenting on any assumptions
you make. The masses of the particles are

mg = 2.0141m,,

my, = 1.0078m,,
m, = 1.0087m,.

= 0.4185,



130 Special relativity

Solution

We will assume that the deuteron is at rest, and that the proton and
neutron are created at rest. This cannot be quite correct, since it violates
the principle of conservation of momentum, but the masses of the
particles involved are large so the associated velocities will be small.

The total mass of the products is 2.0165m,, which is greater than the
mass of the deuteron by 0.0024/m,,. The extra mass must be provided by
the energy of the photon, so the minimum possible frequency must be
given by

hyv = 0.0024m,c2.

Substituting m, = 1.66 x 107" kg gives v= 5.4 x 10 Hz.

[We can roughly check the reliability of our assumption as follows. The
momentum of this photon is given by hv/c = p = 1.2 x 1072 kgms™'. If
all of this momentum were transferred to (say) the proton, it would
acquire a velocity of p/m = 7.2 x 10° ms™!. This is much less than the
speed of light, so we are justified in ignoring changes in mass caused by
the velocities of the particles. In fact, the error in our calculation can be
shown to be less than 0.1%.]

What is the speed of an electron which has a total energy of 1 MeV?

Solution
The total energy E is given by
E = ymye?,
50
v = E/(moc?)
=10° x 1.60 x 107"7/(9.11 x 1073)/(3.00 x 10%)
= 1.95.
Now
y == 0/,
so

vfe = (1 = 1/y)""
= ().86.
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Therefore
v = (.86¢.

Praoblem 64

A particle of rest mass my is travelling so that its total energy is just twice
its rest mass energy. It collides with a stationary particle of rest mass m,
to form a new particle. What is the rest mass of the new particle?

Solution

Before the collision, particle 1 (the moving particle) has a total energy of
2mqc? and a non-zero momentum which we will call p, as shown in figure
60. Particle 2 has a total energy of moc? and a momentum of zero. Thus
by conservation of energy and momentum, the new particle has a total
energy of 3mgc? and a total momentum of p.

Before After
particle 1 particle 2 new particle
—@>rr © —@>
g g "
Figure 60

We can find p by using the energy-momentum invariant for particle 1:
- pc = mych;
rearranging,
pr = EYe? — m}c?

= (2moc*/c? — mic?
= 3m§cz.

Applying the same invariant to the new particle (whose rest mass we will
call m,), we have
E? - p*c? = mic,

mict = B3myc?)? = 3mdc? - 2

= 6mac*.
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Thus
my = V(ﬁ my.

Explain carefully why an uncharged pi-meson (mass 134 MeV/c?) can
always decay into two photons whereas a photon of sufficient energy can
decay into an electron-positron pair only in the presence of matter.

Solution

(1) Decaying pi-meson.

However the pi-meson is moving, we can define its zero momentum
frame (ZMF) in which it is at rest. In this frame it can clearly decay into
two photons of equal and opposite momentum, each of which carries a
total energy of 67 MeV. If the process is possible in one inertial frame, it
must be possible in all inertial frames even though the details (energy and
momentum of the photons) will differ.

(2) Decaying photon.

If we assume this to be possible in the absence of matter, the electron-
positron pair produced by the decay will have a ZMF. However, a photon
cannot have zero momentum, so the decay process is impossible in the
ZMF and hence in all frames.

In the presence of another particle, however, we can allocate energy
and momentum between the photon and the particle as required, and the
process becomes possible. For example, let us consider a photon of
energy hv decaying in the presence of a particle of rest mass M to
produce an electron-positron pair (each of rest mass m), and the original
particle of mass M, all at rest (see figure 61).

Since all the particles after the decay are at rest, the total momentum of
the system is zero. Since the photon’s momentum is +hv/c, the initial
momentum of the particle of mass M must be —hv/c.

The total energy of the system after the decay is (M + 2m)c?, which
must be equal to the total energy before the decay. Since the energy of
the photon is kv, the initial energy of the particle of mass M must be
(M +2m)c* — hv.



Problem 66 133

Before
E=hv E
A -9
p=hvic P oM
After
m . . m
o
M
Figure 61

We know that for a single particle of rest mass M, the energy E and
momentum p are related by
E? - p:cz _ Mz‘s‘
so on substituting for £ and p we obtain
(M +2m)’c* + h32 — 2(M + 2m)cthy — kv = Mic'.
Therefore
(M +2m)’c* — M%c*
2AM + 2m)c?
_ 2mc}(1 + m/M)
(1 +2m/M)

Thus there is a solution for any value of M, and we deduce that the decay
is possible if the photon has sufficient energy.

A particle of rest mass m moving along the x-axis with velocity v collides
with a particle of rest mass m/2 moving along the x-axis with velocity —v.
If the two particles coalesce, find the rest mass of the resulting particle.

hv=

Solution

Figure 62 shows the situation before and after the collision. Particle 1 ghe
one with mass m) has a total energy of ymc?, where y = (1 — v?/c?)~12,
and particle 2 has a total energy of 0.5ymc?, so by conservation of energy
the resulting particle must have a total energy of 1.5ymc?.
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Before After

particle | particle 2 new particle

—0> <@ —&>
m v U o mp my

Figure 62

Particle 1 has a momentum of ymv, and particle 2 has a momentum of
=0.5ymuv, so by conservation of momentum the resulting particle must
have a momentum of 0.5ymuv.

We now know the energy and momentum of the resulting particle, so
we can use the energy-momentum invariant to find its rest mass m;:

2.4

'

E? - p’ct = mj

mi = E¥et - p¥/c?
= (9/9)yY*m? — (1/4)y*m*v?/c?
= (/47 m*(9 - v*/c?).

Substituting the expression for y = (1 — v*/c?)~"2, we finally obtain
m=" \/ - uz,fc2
1 - v¥/c?
As a simple check, we can see that when (v/c)? << 1 this tends to 3m/2,
which is clearly the correct classical limit.

Problem 67

The proton collider at CERN in Geneva makes use of proton and
antiproton beams travelling in opposite directions. Explain the
advantages of this technique over that of using an antiproton beam hitting
stationary protons by calculating the minimum energy of the antiprotons
(p) needed to give the following reaction in which QQ particle-
antiparticle pairs are produced:

pHp—op+p+ Q2+

(a) for colliding antiproton and proton beams;
(b) for antiprotons hitting stationary protons.
Express your answers in terms of the proton rest-mass energy.

(The Q has a mass of 1.78m,,.)
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Solution

(a) Figure 63 shows the situation before and after the collision. If the
proton and antiproton collide with equal and opposite velocities, the
laboratory frame is the zero momentum frame (ZMF). The resulting
system of particles thus has no net momentum, so the configuration of
minimum energy is when all four particles are at rest. The total energy
after the collision is thus

2r|l'r|,t:1 + 2mqc’t = 5.56mi,c!.

By conservation of energy, this must be equal to the total energy of the
two particles before the collision, so by symmetry the energy of the
antiproton must be half of this value, i.e. 2.78m‘,c2.

Before
—O> @
P P
After
oce
o n
Figure 63

(b) If the proton is initially at rest, the description in part (a) is still
valid except that we need to transform it into a different inertial frame, as
shown in figure 64.

In ZMF
P P
Energy E Energy E
Momentum p Momentum —p
In laboratory frame
Energy E' Energy m, c2
Momentum p' Momentum 0

Figure 64
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In the zero momentum frame, the system has a total energy of 2E and
a total momentum of zero. In the laboratory frame, it has a total energy
of E' + mp'__z and a total momentum of p’. Now for any system, the
quantity

EZ - PZCI

is a Lorentz invariant, i.e. it is the same in any inertial frame, so we have
the relationship

(2E)* = (E' + myc®)? - p'*c?,
which can be expanded as
4E% = E" + mic* + 2E'myc® — p'*cd.
However, the energy E’ and the momentum p’ of the antiproton are
related by
E:Z - pazcz - m;cd‘
and we can substitute this result to eliminate p':
2E? = mlc* + E'mycl.
Therefore
E' = (2E? = m}c")/myc?.
Now E is the value that we calculated in part (a), and we want to express
E’ in terms of the proton rest-mass energy, so if we divide this expression
by myc? we obtain
] 2
A
myc? m
=2(2.78% - 1
= 14.5.

Thus the minimum antiproton energy if the proton is stationary is
14.5m,c%.

Problem 68

A proton of total energy E collides elastically with a second proton at rest
in the laboratory. After the collision the two protons follow trajectories
which are disposed symmetrically at angles +¢/2 to the direction of the
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incident particle. By considering the motion in the laboratory frame, or
otherwise, show that

E - Ey
E +3E,

where Ej is the rest mass energy of the proton.

What is the value of ¢ when the first proton is accelerated from rest
through a potential difference of 1.5 x 10° V before colliding with the
second proton?

cos¢p =

Solution

Let us call the momentum of the initially moving particle p,, and the
energy and (modulus) momentum of each particle after the collision E;
and p, respectively, as shown in figure 65.

Before

®
E,

Figure 65

Conservation of momentum gives

P1 = 2pacos(9/2).
The relationship between E and p, is
E? - plct = E},

which we can substitute into our expression to obtain
(E? ~ Ej) = 4p3c* cos’ (9/2).

We can eliminate p; from this by using the energy—-momentum relation
again:

E% - pgcl = 55-
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which gives
(E? - E}) = 4(E3 - E{)cos’ (/2).

Finally we can eliminate E, using the principle of conservation of energy:
E+ Ey=2E,,

which gives

(E? - E}) = (E? - 3E§ + 2EE) cos (¢/2),

2} E?+2EE,- 3E}

Recalling that cos ¢ = 2 cos? (¢/2) — 1, we can rearrange this to give

_ E?+ E} - 2EE,

s P = ——————
E? + 2EE, - 3E;
_ (E — Eo)
(E = Eo)(E + 3Ep)
Hence
cos = E -~ Ey
E +3E,
as required.

If the first proton is accelerated through a potential V', it acquires a
kinetic energy of eV, so

E=E;+ eV,
therefore
E;’Eo =1+ EVfEQ
=1+ eV/me?
=1+ 1,60 x 107" x 1.5 x 10°/(1.67 x 10~2)/(3.00 x 10%)?
= 2.60,

cos ¢ = (2.60 — 1)/(2:60 + 3)
= (1.286;

therefore ¢ = 73°.
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Consider the elastic scattering of a photon of frequency v by a stationary
electron (the Compton effect). Find an expression for the wavelength
change of a photon scattered through 180°. What is the energy of a
photon of initial energy 1 MeV after a single 180° scattering?

Solution

Let us assume that the photon has a frequency v’ after being scattered,
and that the electron acquires a momentum p as a result of the collision,
as shown in figure 66.

Before Afier
AN [ ] W\ o—
v mo v P
Figure 66

Since the momentum of a photon of frequency vis given by hv/c,
conservation of momentum gives

hv hv'
—=p- (l)
c c
and since the energy of a particle of rest mass my and momentum p is
given by (mic* + p*c?)'2, conservation of energy gives

hy + moc® = hv + (mic* + p2c®)2, )
Rearranging (2) to separate the square root gives

(mic* + P2 = by — BV + myc?,
and squaring this gives

mict + pic? = B2 + WD + mic' = 212w + 2hvmgc?
— 2hv'myct. )

We can eliminate p from this by rearranging (1),
pc=hv+ hv,

and squaring,
pict = K2 + k2 + 202w,
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Substituting this expression into (3) and simplifying gives
20w = (v = v)mgc?.
If we divide throughout by vv'myc we obtain

2ormton(L-Yemi-a
myc w vy

Thus the change in the wavelength on being scattered through 180° is
2h/myc. [The quantity i/mgc is the Compton wavelength of a particle of
rest mass my. |

A photon of energy E has a wavelength ch/E, so taking E = 1 MeV =
1.602 x 1071 J gives A = 1.240 X 1072 m. 2h/myc has a value of
4,853 x 102 m if my is taken as the rest mass of the electron, so the final
wavelength A’ is 6.093 x 107'2 m. The energy of a photon of this
wavelength is 3.260 x 10~ J or 0.20 MeV.
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Problem 70

The Andromeda Nebula, at a distance of 2 X 102 m from the Earth,
radiates 8 x 1077 W in the spectral line of frequency 1420 MHz. Estimate
the number of photons received per second when the nebula is observed
by a radio telescope of collecting area 100 m?.

Solution
The energy of a photon of frequency v is hv, so if the nebula radiates a
power P this must correspond to
i
hv
photons per unit time.

At a distance D, all of these photons will be spread uniformly
(assuming the nebula radiates uniformly and there is no absorption) over
an area 41D?, so the number of photons received in unit time by an area
A will be

PA
4nD*hv
Substituting P = 8 X 107 W, A = 10° m?, D =2 x 10? m and
v = 1.42 x 10° Hz yields 1.7 x 10® photons per second.

What is the force experienced by a mirror when it reflects all the light
from a laser with a power of 10 mW?

Solution

Write P for the laser power, and assume that the photons have frequency
v. Since the energy of the photons is /v, the number incident per unit

141
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time on the mirror must be

L

hv’
Now the momentum of each photon is h/A = hv/c, so the change in
momentum of a single photon when it is reflected from the mirror must
be 2hv/c. Thus the rate at which the momentum of the beam of photons
is being changed, which must (by Newton's third law) be equal to the
force on the mirror, is

[We see that neither the frequency of the photons nor Planck’s constant
appears in the answer, so we do not need to know them. This suggests,
correctly, that the result could have been derived from the wave theory of
light.] Substituting P = 10 mW gives F = 6.7 x 10! N,

A crystalline specimen is irradiated with X-rays of wavelength A. Bragg
reflexion is observed at 23.0°, ¢ and 73.5° (23.0° < ¢ < 73.5°), with
respect to the direction of the incident beam. Calculate a possible value
for ¢.

Solution

Bragg reflexion occurs when beams reflected from adjacent crystal
planes, whose separation is d, are reflected in phase.

The path difference between the two beams shown in figure 67 is
2d cos 8, so for the beams to be reflected in phase,

2dcos @ = nA,

where n is an integer.

Since the angles specified in the problem are the angles of the reflected
beams with respect to the incident beams, they correspond to the angles
180° — 28. Thus the two known values of 8 are 78.5° and 53.25°. In order
to find the values of n to which these are likely to correspond, we take
the ratio of the cosines of the angles:

c0s53.25 _
cos78.5

3.00.
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N/ [

Thus the simplest solution to the problem is that the beam with 8 = 78.5°
corresponds to n = 1, and that with 8 = 53.25° to n = 3 (although n = 2
and 6 respectively, or 3 and 9, and so on, would also be possible). The
beam with 26 = 180° — ¢» must therefore correspond to n = 2, so

cos (90° — ¢/2) _ c0s53.25°
2 3
This gives ¢ = 47.0°,

Problem 73

In an experiment on the photoelectric effect it is observed that for light of
wavelength 500 nm, a stopping potential of 0.25 V is required to cut off
the current of photoelectrons, whereas at a wavelength of 375 nm a
stopping potential of 1.0 V is required. Calculate from these data the ratio
of Planck’s constant to the electronic charge (h/e).

Figure 67

Solution

The relationship between the stopping potential Vs and the wavelength A
is

€V5=£_¢|
A

where c is the speed of light and @ is the work function energy of the
material being illuminated. Dividing this equation by e and calculating
Vs1 — Vs, the difference in stopping potential for two wavelengths A, and
Ay, gives

hef 1 1
Ve = Ve = —| — = —|.
R s
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Thus
h Vs = Vg

e (/i =1/k)
Taking Vs, = 1.0V, Vg =0.25V, 4; = 375 nm, A; = 500 nm and
¢ =2.998 x 108 ms™' gives hfe =3.75 x 107 ¥ JsC~\.

The result is not particularly close to the currently accepted value of
4.136 X 1071 JsC™!, so we ought to estimate its uncertainty. If we
assume that the data have been specified to no more significant figures
than are justified by the experimental errors, these errors must
correspond to at least +1 in the least significant figures. Thus
Vs1 = 1.0 £ 0.1 V ete. It is clear that the errors in 4 are insigificant
compared with the errors in Vg, and that the error in Vg — Vs is
dominated by the error of £ 0.1 Vin Vg;. Thus V§; — Vaa =075+ 0.1V,
which is a fractional error of 13%. We would therefore be justified in
quoting the experimental value of h/fe as (3.8 £ 0.5) x 10~ JsC~!, This
range includes the currently accepted value.

Problem 74

‘What is the velocity of an electron which has a kinetic energy equal to the
energy of a photon of wavelength 1 nm?

Solution

A photon of wavelength A has a frequency ¢/A and thus an energy hc/A.
The kinetic energy of a particle of rest mass m is (y — 1)mc?, where y is
defined by

" Va- Ay

Thus

h
Y Amce

= 1.00243.

Now from the definition of ¥, we can derive

o=

hence v = 2.1 X 107 ms™.,
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[In fact, the electron velocity is non-relativistic so we could have
obtained our answer rather more easily by putting
he _1 mv?.)

A2

Problem 75

To study crystal diffraction we need wavelengths of about 0.5 x 107" m,
What would be the corresponding kinetic energies in eV of (a) a photon,
(b) an electron, and (c) a neutron?

Solution

(a) For a photon, E = hv = hc/A.
Substituting the value for A gives E = 4.0 x 1071 J,
Divide by the electron charge 1.6 X 107° C to convert this to electron
volts: 25 keV.

(b) and (c) For the particles, assuming the velocities are
non-relativistic, we can write the kinetic energy as

2

E=lmp=2"

2 2m

where p is the momentum and m is the particle mass. Using the de
Broglie relation

p = i
A
to relate momentum and wavelength gives
h?
C2ma

(b) For the electron, m =9.1 x 107 kgso E=9.6 x 1077 J =

0.60keV.

(c) For the neutron, m = 1.68 X 107% kgso E =52 x 10" J = 0.33eV.
Both of these values are very much lower than the corresponding

rest-mass energies, so our assumption that the particles are

non-relativistic is justified.
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Problem 76

Estimate the speed and the de Broglie wavelength of an oxygen molecule
at room temperature.

Solution
The mean square speed (v?) is given by

1 w3
~-m{v*) = =kT,
2 v 2

where m is the mass of a molecule, k is Boltzmann’s constant and T is
the absolute temperature. Since the relative molecular mass of the O,
molecule is 32.0, m = 32,0 X 1.66 x 107" kg = 5.31 x 10" kg. We may
take room temperature to be 20°C = 293 K, so {v?) = 2.28 x 10° m?s™2,
hence the root mean square speed is 4.8 X 10° ms~!,

The de Broglie wavelength A = h/p where h is Planck’s constant and p
is the momentum, and since the speed is clearly non-relativistic we may
put

p = mov.

Thus A=2.6 x 107" ' m =26 pm.

Problem 77

Use the de Broglie relation between the wavelength and the linear
momentum of a non-relativistic particle, and the Planck relation between
frequency and quantum energy, to obtain the phase and group velocities
of the wave motion associated with a particle with velocity v << c.

A de Broglie wave travelling in the z-direction passes through a narrow
slit, of width a in the x-direction and long in the y-direction. Derive a
relationship between the width of the slit and the angular spread of the
emerging beam in the xz-plane, and show that it is consistent with the
uncertainty principle.

Solution

The de Broglie relation between the linear momentum p of a particle and
its wavelength A is
h

A= —,

P
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although it will be more useful to write it as

= —;-'&
2’
where k is the wavenumber of the de Broglie wave. The Planck relation
between the energy E and the angular frequency wis
E = E’
27
To find the phase and group velocities of the wave we need to know its
dispersion relation, i.e. the relationship between w and k, and this is
clearly equivalent to knowing the relationship between E and p. Since
for a non-relativistic particle the kinetic energy E of a particle of mass m
and velocity v is mv?/2 and the momentum p = mu, this relationship can
be written as

2

E = _P_

2m
Substituting our expressions for E and p, and simplifying, gives

hi?
= —
4nm

for the dispersion relation. The phase velocity v, is w/k = hk/drm, and
since p = hk/2w we have v, = p/2m = muvf2m = v/2. The group velocity
vgis dw/dk = hkf2am =20, = v.

[The result for the phase velocity may seem surprising, but we should
recall that it is the group velocity that determines how fast the associated
particle travels and that this is therefore the one which we expect to be
equal to v. We can show that the group velocity is equal to the particle
velocity, even if the latter is relativistic, by using the relativistic
mass—energy relation:

P

E? = p*c? + mic'.
Putting E = hw/2r and p = hk/2r gives
2 2,22
Re? _ Wk + mict
an? 47

for the dispersion relation, and differentiating this with respect to k gives

& o E
Since p = ymyv and E = ymyc?, where y is the Lorentz factor, it follows
that dw/dk = v.]
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The de Broglie wave enters the slit from the left, i.e. from z <0, as
shown in figure 68. We know from Fraunhofer diffraction theory (see
problem 113) that when a plane parallel wave of wavelength A falls on a
long, narrow slit of width a, the wave will be expanded into a ‘fan’ with
maximum intensity in the z-direction and an angular width in the
xz-plane of the order of A/a (assuming that A << a). Its width in the
yz-plane will be negligible.

¥
Figure 68

The interpretation of this phenomenon in terms of particles is as
follows. At z <0 a particle will have momentum p, = h/A parallel to the
z-direction, and p, = p, = 0. However, when the particle is within the slit
it has a maximum uncertainty Ax = a in its x-coordinate, though its
y-coordinate has a large uncertainty. The component p, of the
momentum must therefore acquire a spread Ap, = h/a, centred (by
symmetry) on p, = 0. The component p, will be unaffected, since
Ap, = 0. Now a particle which has components of momentum (p,, 0, p,)
makes an angle tan™! (p,/p,) with the z-axis, and if p, << p, this angle is
approximately p,/p,. Thus the spread of directions must be Ap,/p, =
(h/a) + (hfA) = A/a, as before. The two explanations (wave and particle)
are therefore consistent.

Problem 78

Free neutrons have a decay constant of 1.10 x 10~ s~L. If the de Broglie
wavelength of the neutrons in a parallel beam is 1 nm, determine the
distance from the source where the beam intensity has dropped to half its
starting value.
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Solution

The momentum p and the de Broglie wavelength are related by
p="h/a,

so the neutron velocity v is given by
v = hfmh

if the velocity is non-relativistic. Inserting values into this expression, we
find that it gives v =400 ms™', so the assumption is very well justified.

If the decay constant is k, the number of neutrons remaining at time ¢
is given by Npexp (—kr) where N, is the number at time zero, so the
intensity of the beam will be given by I exp (— kr) where Iy is the
intensity at the source. The time required for the intensity to fall to half
of its starting value is thus given by (In2)/k, and the distance travelled by
the beam in this time is

x = o(In2)/k
= h(ln 2)/ mkA.

Substituting the values of k and A, and taking m = 1.67 x 10~% kg, gives
x=25x10°"m.

Problem 79

Using Bohr theory, derive an expression for the frequencies at which light
is absorbed by hydrogen atoms in their ground state. Why would these
frequencies be slightly different for tritium atoms?

Solution

Let us consider an electron of mass m and a singly charged nucleus of
mass M separated by a distance r and both describing circular orbits of
angular frequency w. The circular orbits of the two particles will be
centred on the centre of mass of the system which is at a distance

mr
M+m
from the nucleus, as shown in figure 69.
The orbital speed of the electron is thus
Mrw
M+m'
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- >
- 3 »
mr Mr
M+m M+m 1 Mra
M+m
mriy
M+m
Figure 69

so its angular momentum about the centre of mass is
m( Mrw )( Mr ) _ M’mor?
M+ m/\M+m (M + m)?
Similarly, the orbital speed of the nucleus is

mro
M+m
so its angular momentum is
M( mre )( mr ) _ _Mmlor? _
M+m/\M+m/ (M+ m)?

The total angular momentum J of the system is thus

7= Mmaor? (M + m) = Mmawr? )
(M + m)? M+m
Now if we define the reduced mass of the system as
Mm
"= M+m ®
we can write the angular momentum as
J = por®. (2)

We assume that the angular momentum is quantised in units of A 2w,
where k is Planck’s constant, so that equation (2) can be written as
wrr= " 3)
2ap
[If M = o=, this assumption is equivalent to requiring that the
circumference of the electron’s orbit round the nucleus contains an
integral number of de Broglie wavelengths.]
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The electrostatic force acting on the electron is
2

€
dmgyr?
and this must provide the centripetal force
Mr
ma? = patr.
(M + m) .umz
Equating these, and rearranging, gives
2
oPrd= S )
4Ameon

We now have two equations, (3) and (4), relating @ and r. We can
therefore solve them to find w and r. First, we square equation (3) and
divide by equation (4) to obtain

fl: 2
r=2 : . (5)
mpe
Next, we substitute this into either (3) or (4) to obtain
4
Tue
= . (6)
2eih*n®

Now we can calculate the total energy of the system. The potential energy
is just

_p?
Ep=—,
dmegr
so substituting for r from equation (5) gives
- ﬂf‘
P 485}!1?!2.

The kinetic energy of the electron is
2 2
1mcr.lz( Mr ) = ltlerz-—-—-——-—-—-M m
2 M+m 2 (M + m)?
and the kinetic energy of the nucleus is
2 2
lmﬂ( mr ) - loppp__Mm®
2 M+m 2 (M+m)
so the total kinetic energy E is

Ey = lapp2 Mm__ Lytr?.
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Substituting for r from equation (5) and for w from equation (6) gives
4
e
Ey=——.
8£3hin?
Finally, adding the expressions for the potential and kinetic energy gives
the total energy E as

4

E=—HK_, 0
8egh?n?

The ground state of the atom is the lowest possible energy, which is given

by n = 1. Thus the energy required to excite the atom from the ground
state to a higher state is given by

pe' (1 - L)‘
8ejh? n?

where n is an integer greater than 1. If this energy is supplied by a photon
of frequency v, we can equate this expression to hv to obtain the
frequency v of the transition:

4
V= ‘ueT(l - L)_
Begh® n?

For hydrogen atoms, the nuclear mass M is 1836 times larger than the
electron mass m, so the reduced mass u is

1836m/1837.

For tritium atoms, the nuclear mass is about 5496 times larger than the
electron mass, so u is

5496m/5497.

Thus the frequencies for tritium will be higher than those for hydrogen by
a factor of

5496 , 1837 _ 1 00036.

5497 1836

Positronium is a hydrogen-like system with the proton replaced by a
positron. Use the Bohr model to calculate the energy of the system in its
ground state.



Probiem 81 153

Solution
From the previous problem, we know that the ground state energy of a
hydrogen-like atom is

8elh?

where y is the reduced mass of the electron, defined by 1/ = 1/m + 1/M
where m is the mass of the electron and M is the mass of the nucleus.
For positronium, M = m so u = m/2. Substituting this into the
expression for the ground-state energy gives E = —1.08 x 10718 J.
P Converting this to electron volts gives E = —6.8eV.
[Note that this is half the value for the hydrogen atom.]

Calculate the velocity of an electron in the third Bohr orbit (n = 3) of the
hydrogen atom.

Solution

From problem 79, we have

- Mrw
M+m
where
hn?
r= b
mue?
and
= ﬂ.'ue‘ R
2einn?

Substituting these expressions for r and w into the expression for v gives
D= M—EZ
2(M + m)gghn
» Taking M + m =~ M, and setting n = 3, gives v = 7.3 x 10°ms~!,
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Problem 82

An atom has energy levels E, = — A/n? where n is an integer and A is a
constant. Among the spectral lines that the atom can absorb at room
temperature are two adjacent lines with wavelengths 97.5 nm and

102.8 nm. Find the value of the constant A in electron volts.

Solution

An absorption line corresponds to the atom being excited from a lower to
a higher energy level, i.e. from quantum number n, to quantum number
n; where n; > n,. The energy required to effect this transition is clearly

A A
Em—n)=%5-5,
ny m
so the wavelength of the absorption line must be
chf 1 1)
A(n —rn2)=—(—"—) ,
' A ai n§

where c is the speed of light and h is Planck’s constant. Adjacent
absorption lines must correspond to transitions ny — n; and ny— n; + 1.
The latter transition requires a larger energy so the wavelength will be
smaller. Since we do not yet know the value of A, we must first identify
the values of n, and n, corresponding to the two observed wavelengths,
and we can do this by taking the ratio of the two wavelengths to eliminate
the dependence on A:

1 1
. I PRy
Mm—n) _ mi (m+1) 1028 ..
Am=m*D 11
nt  n}

To solve this, we can rearrange it to give

0.054 _ 1.054 _ 1
T N
Taking n; =2, 3, 4, ..., we can use this expression to calculate the

corresponding value of n,. As soon as we obtain a value which is close
enough to an integer we can assume that we have found the appropriate
values of n; and n;:

n; = 2 gives my = 0.595,

ny = 3 gives ny; = 0,994,

n; = 4 gives n; = 1.445, etc.
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So it is clear that n; = 1 and n; = 3 will give the observed ratio of
wavelengths. We can now substitute these values into our expression for
A(ny — ny) to obtain a value for A. Using the larger wavelength we
obtain

A

-34 =1

_ 2.998 x 10% x 6.626 x 10 {1_1) J=2.174 x 10187
102.8 x 10™° \1 9

and using the smaller wavelength we obtain

- -1

A= 2.998 x 10® x 6.626 X 10 3‘{1 _ i) J=2.173 x 10-%].
97.5 x 10~° \1

Converting these to electron volts using the fact that the electron charge

is 1.602 x 107Y9 C, and averaging, gives a value for A of 13.6 ¢V to the

precision warranted by the data. [We might recall that the jonisation

potential of hydrogen is 13.60 V, so the atom in question must be

hydrogen.]

Problem 83

A spectrometer of resolving power 5 x 10° is used to observe the Balmer
series in the hydrogen spectrum (transitions for which the principal
quantum number changes from n > 2 to n = 2). Find the quantum
number of the highest level for which the line would just be resolved from
its neighbours. Neglect all sources of line width in the light source.

Solution

The wavelength of a line in the Balmer series is given by
1 x(l - L),
A 4 n?

where K is a constant and » is the quantum number of the higher level.
[As we shall see, we do not need to know the value of K.] We need to
know the change in A when n changes by 1, i.e. AA corresponding to
An = 1. If the fractional changes in A and n are small enough (i.e. n is
Iargefenough). AM/An = dA/dn, so we will differentiate the expression
for 1/A:
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thus

dir _ _ 2K2?

dn o
The fractional wavelength change AA/A corresponding to a change An = 1
is therefore given approximately by

AL _2KA_ 2

A n? ,13(1—_.1__)
PR

(we have dropped the minus sign since we are only interested in the
magnitude of the change in ). Now the resolving power R of a
spectrometer is defined as the largest value of A/AA which it can resolve
(see problem 115), so we have

3
A n<2R.
4

Taking R = 5 x 10° and ignoring the term n in relation to the term n’/4
gives n* < 4 x 10° and hence n < 158.7. Thus the spectrometer should be
able to resolve lines up to about n = 158.

State the Schrédinger equation for a particle of mass m moving in the
xy-plane subject to a potential energy V(x, y). What is the probability of
finding it in a small area AS centred at the point (x, y) where the
wavefunction is y(x, y)?

A particle of mass m is confined to a line and has a wavefunction
y = Cexp(—a’x?/2). Calculate C in terms of & and obtain an expression
for the potential energy at distance x from the origin if the total energy is
h*a?{8m’m. Write down an integral expression for the probability of
finding the particle between the points x =4 and x = 5.

(You may assume that

[ ew(=ydy = V)

Solution

Schridinger’s (time-independent) equation is, in two dimensions,

W (azw alw)
S Y L C¥) L (E-vyy=0,
8mm\ax?  ay? v
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where 1 is the wavefunction. The probability of finding the particle in an
area AS is given by p*ypAS.

If y = Cexp(—a?x?/2), the probability density p(x) = y*yis
C?exp (—a?x?). This probability density must be normalised so that

[ pwac=1;

thus

C’Jm exp(—a?x?)dx = gr’ exp(—-yYdy = Cr _ 1.
= @ o= a

So
C = a2y 'A,
If y = Cexp(—ax%/2),
dyfdx = —a?xCexp(—a?x?f2)

and
d*yfdx? = —02Cex¥ (—a®c?2) + a*x*Cexp (—a’x?f2)
= a?y(a?x? - 1).
Substituting into Schriddinger’s equation, and including the information
that E = h*a?/8n*m, thus gives

Ko ey, Ko
87*m 8rm

so V = hla*x}/8r*m.

[We recognise this as the potential of a simple harmonic oscillator,
since the classical restoring force —dV /dx is proportional to —x. The
constant of proportionality is the classical spring constant k, which thus
has a value of h?a*/4n?m. The angular frequency  of a mass m on a
spring of spring constant k is given by o = k/m, so in this case,

w = ha?2nm. Comparing this with the quoted energy of the quantum
state, we see that E = hw/4n = hv/2. This is in fact the zero-point energy
of a one-dimensional harmonic oscillator.]

The probability of finding the particle between x = 4 and x = 5 is given
by the integral of the probability density:

-v=0,

5
p(4,5) = rw*wdx = c’J’ exp (—ax?) dx = %[ exp(—a?x?) dx.
4 4 Vals

[We could evaluate this in terms of the error function.]
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Calculate the possible values of the energy of a particle of mass m
situated inside a deep one-dimensional potential well of width a described
by V =0for 0 < x =a and V = = elsewhere.

An electron is confined within a thin layer of a semiconductor. If the
layer can be treated as a deep one-dimensional well, calculate its
thickness if the difference in energy between the first and second levels is
0.05eV.

Solution
The Schridinger equation in one dimension is
_ Ky
8nm dx?
When V = 0 (inside the well), this becomes

+Vy=Ey.

&y
8m*m dx?®

‘We recognise this as a differential equation having sinusoidal or
cosinusoidal solutions, and try

Y= Acos(kx) + Bsin(kx).
With this form of y, d*y/dx® = — k*y, so the energy is
2,2
E=EX
8mm

Since the potential V is infinite for x < 0 and for x > a, the wavefunction
1 must be zero at these values of x. The condition that y{0) = 0 clearly
requires that A = 0, and the condition that y{a) = 0 requires that

Ey=-

ka = mn,

where n is a positive integer. n = 0 is not allowed, since it would give
y = 0 everywhere. Figure 70 shows the first three solutions (see problem
103).
Substituting these values of k into our expression for £ gives
n! hZ

2

8ma
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\ ]

Figure 70

The lowest energy is thus h?/8ma?, and the second level will have an
energy 4h%/8ma?, so the difference between the first and second levels
must be 34%/8ma?. Equating this to 0.05eV = 8.0 x 107! J, and
substituting the electron mass for m, gives @ = 4.8 nm.

Problem 86

Consider particles of mass m and energy E moving along the x-axis
under the influence of a potential V' (x). The particles have energy E >0
and the potential has the form

Vi(x) =0forx <0,
Vix) = Vyforx =0,

where Vj is a constant such that V; > E.

(i) For x < 0 show that there are solutions of the Schridinger equation
of the form y{x) = exp (ikx). Determine the two possible values of k and
use the appropriate operator to determine the corresponding values of
the momentum.

(ii) A beam of particles travels in the positive x-direction from negative
x. Describe qualitatively what happens to the particles in the beam
according to classical mechanics and according to quantum mechanics.

(iii) For positive x consider electrons with E = 1V and the potential
with V = 2 eV, If y(x) is the wavefunction at the point x, where x is
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measured in units of 10! m, determine |y{(1)/y(0)|>. What does this

quantity represent?

Solution
Figure 71 shows the potential V' (x) and the total energy E.

Vo

E

e
\J
"

Figure 71

(i) In one dimension, the Schrodinger equation can be written

W d'y
—_—— T (E-V)u=0
a2 T W

and in the region x < 0 we have V = 0 so the equation becomes
2
_h° @ + Ep=0.
8rm dx?

Let us try a solution of the form y = exp (ikx). d®y/dx? is — k* exp (ikx)
which is equal to —k?y, so the Schrddinger equation requires that

This can clearly be satisfied (so that the assumed form of y is a possible
solution of the Schridinger equation) if

K= STEm . [8TEm
W [
The momentum operator is
4 3
2mi 9x

such that the momentum p of a particle with a one-dimensional
wavefunction v satisfies the equation

ch ody _
miax TV
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If y = exp (ikx), dy/dx = ik so that py = hky/27. The momentum p is
thus given by hk/2r, so the two solutions correspond to momenta of

+ 87 Em
2r h?

[These are identical to the equivalent classical expressions, since,
classically, E = mv?/2 so that \/(2Em) = muv, which is the classical
momentum. ]

(ii) According to classical mechanics, the particles would have negative
kinetic energy in the region x = 0. Since this is impossible, the particles
would be reflected (elastically scattered) at x = 0. Quantum-
mechanically, the particles are also reflected, but not from a definite
value of x. The wavefunction ¥ does not fall abruptly to zero at x = 0 but
instead diminishes exponentially with increasingly positive values of x (it
is an evanescent wave), so that the probability of finding a particle at
x > 0 decreases exponentially with increasing x.

(iii) To find the ratio of ¥ at x = 10”'% m to its value at x = 0, we need
to know the form of y{x) for x = 0. Returning to the Schrédinger
equation, we can write

p= =+ \/(2Em).

2 g2
W 4%, ry=no,
8r’m dx?
where T = E — Vj is the classical kinetic energy, which (as we noted
before) is negative. By analogy with the solution y = exp (ikx), we can
write the solutions to this differential equation as y = exp (ixx), where

=k \/Szrsz_
hl

Since T is negative, these values of k are imaginary, so we can write them

as
h2
where o is real. Substituting these values of x into y = exp (ixx) gives the
two solutions ¥ = exp (ax) and y = exp (—ax), and we can reject the
solution y = exp (ax) since it becomes infinitely large as x tends to
infinity. Finally, then, we can write the general solution when x = 0 as
= Aexp(—ax), where A is a constant. Taking Vo — E=1eV =
1.60 x 107 J and m = 9.11 x 10~ kg gives @ = 5.12 x 10° m™!, so over
a distance of 10™'% m, |y falls by a factor of exp0.512 = 1.67. The value
of |y(1)/y(0)|? is thus 1.6772 = 0.36. This is the ratio of the probability of
finding an electron at x = 107" m to that of finding one at x = 0.
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Problem 87

B8 decays with a half-life of 4,51 x 10° years, the decay series
eventually ending at %Pb, which is stable. A rock sample analysis shows
that the ratio of the numbers of atoms of 2Pb to 2*U is 0.0058.
Assuming that all the Pb has been produced by the decay of 2*U and
that all other half-lives in the chain are negligible, calculate the age of the
rock sample.

Solution

After a time f, a sample of *®U originally consisting of N atoms will have
decayed to N exp(—At) atoms, where the decay constant A is given by

hp

and 1,5 is the half-life. We are told (in effect) that we may assume that all
the decayed atoms have become 2™Pb, so the number of these atoms is
N(1 — exp[—At]). The ratio of lead to uranium is thus

1 — exp(—Ar)

exp(—A4t)

Taking this ratio as 0.0058 we have Ar = In 1.0058 = 0.00578, and taking A
as (In2)/(4.51 x 10° years) = 1.54 x 107'° year ™! gives r = 38 x 106
years.

=exp(Ar) - 1.

Problem 88

A certain ummum ore contains both 23U and 33U. Analysis shows that it
contains 0.80 g of *HPb for each gram of the relevant uranium isotope.

(a) Determine the age of the ore in years.

(b) If the sample initially contained 3.00 mg of ;‘SQU. how much remains
now?

(c) Determine the present-day activity due to the %U.

(MP5U) = 3.08 x 10717571, A(BU) = 4.87 x 10-18571,)

Solution

(a) The first thing we need to do is to decide whether “psPb results from
the radioactive decay of 23U or of 33U. a-emission causes the atomic
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number Z to decrease by 2 and the nucleon number A to decrease by 4.
B~ -emission causes Z to increase by 1, but does not change A.
p*-emission causes Z to decrease by 1 and also leaves A unchanged, and
y-emission alters neither Z nor A. We can see from this that, during a
decay series, the nucleon number A must change by integral multiples of
4 at each step. This observatron identifies %U as the originator of the
series termmatmg at %Pb, since their values of A differ by 32 which is a
multiple of 4. 33U cannot be a member of the series since its nucleon
number differs from that of “3Pb by 29, which is not a multiple of 4.

Let us suppose that at the time the ore was formed there were N atoms
of 28U, After time t there will be N exp (—At) atoms of 2#U, where 1is
the appropriate decay constant, and N(1 — exp[—At]) atoms of *Pb.
The ratio of the mass of 2Pb to the mass of 28U is thus

mpp(1 — exp[—At]) _ 206(1 — exp[~A1]) _ 0.80
nyexp (—=At) 238exp (—At) ’
where mpy is the mass of an atom of the lead isotope, and similarly for
the uranium isotope.
Rearranging this expression, we find

exp(Aty =1= —---——0'802;6238

so that Ar = 0.65. Taking A = 4.87 X 107 57! gives r = 1.34 x 10"7s =
4.3 x 10° years. [This is approximately the estimated age of the Earth.]

(b) In the same period of time, the amount of Z*U will have decayed to
a fraction exp (—1.34 x 10" x 3.08 x 10'7) = exp (—4.13) = 0.0161 of
its original amount, so there will be 3.00 x 0.0161 mg = 48 ug.

(c) The activity in becquerels is the number of disintegrations per
second. If there are N undecayed atoms, the activity is AN. Since the
mass of 2*U is 48 x 107 kg and the mass of an atom of 2*U is
approximately 235 X 1.66 x 1072 kg = 3.90 x 10 ¥ kg, N = 1.23 x 10",
Taking A = 3.08 x 1077 5! gives the activity as 3.8 Bq.

Problem 89

The following deuterium reactions and corresponding reaction energies 0
are found to occur.

¥N(d, p)*N, 0 = 8.53 MeV,

BN, a)C, Q = 7.58MeV,
B¢, a)'B, Q =5.16 McV.

=0.92,
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What is the Q value of the reaction "B(a, n)"*N?

(The notation “N(d, p)"*N represents the reaction "N + d — N + p.
;He = 4.0026m,,, 1H = 2.0140m,,, :H = 1.0078m,, n = 1.0087m,. One
twelfth of the mass of °C = 931 MeV/c?.)

Solution
The Q value of the first reaction implies that
UN+d="N+p+8.53MeV,

where "N represents the mass of the '*N nucleus in energy units, and so
on. This can be rearranged to give

UN - BN =p-d+8.53MeV.
The second reaction similarly implies that
BN -BC=a-d+7.58MeV,
and the third reaction implies that
BC-"B=a-d+516MeV.
Adding these three equations gives
YN - "B = p + 2a - 3d + 21.27 MeV.
If we write Q for the reaction energy of "'B + a— "*N + n, we must have
Q=UB-YN+a-n=3d—a-p-n-2127MeV.
Now

3d—-a=-p-n=(3x2.0140 — 4.0026 — 1.0078 — 1.0087)m,,
= 0.0229m,
and

Im, = 931 MeV

Q = 0.0229 x 931 — 21.27 MeV = 0.05 MeV,

It is proposed to use 113Cd as an attenuator in a nuclear pile. Calculate
the thickness required to attenuate a neutron beam to 0.01% of its
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original intensity if it has a density of 8.7 x 10° kgm™~? and a cross section
of 2.1 x 10* barns. (1 barn = 10"%# m2.)

Solution

Consider a slab of the attenuator with area A and thickness dz. If the
number of atoms per unit volume is n, the slab contains nAdz atoms, and
if we write o for the cross-section of each atom, the total cross section of
the slab is onAdz. This is a fraction ondz of the slab’s total area, so the
intensity of the beam is reduced by a fraction ondz on passing through
the slab. We can thus write the differential equation describing the
intensity I of the beam as

d = —ondz,
I

which has the solution
I = Iyexp(—onz).

If the intensity is to be reduced to 0.01% = 10~ of its original value,
onz =In10*=9.21.

The number density n of atoms is given by p/m where p is the density
and m is the atomic mass. p is given as 8.7 X 10° kgm™? and we may take
mas 113 x 1.66 x 107 kg = 1.88 x 107 kg, giving n =
4,63 x 10 m™?, Thus

7= 9.21
2.1 x 10* x 107% x 4.63 x 10%
The thickness required is thus 95 um.

m=95x 10" m.
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Problem 91

Show that the periods of a pendulum bob are the same for linear
oscillation and circular motion (for small displacements).

Solution

Consider a pendulum of length / describing linear oscillations (i.e.
oscillations in a plane), as shown in figure 72.

1
1

Figure 72

We will assume that the horizontal displacement x of the pendulum
bob is small enough that the vertical component of the bob's motion can
be ignored. This requires that there is no net vertical force on the bob. If
T is the tension in the string and mg is the weight of the pendulum bob,
resolving vertically gives

Tcosl = mg
and resolving horizontally gives
Tsin @ = —md*x/de?,
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so by taking the ratio of these two expressions we obtain
d*xfdt* = —gtan 8.

Now for small values of 8, tan 8 = x /I, so we can write the equation of
motion as

dixfdi® = —gx/l.

The solution of this differential equation is simple harmonic motion of x,
with angular frequency

= (g/)".

[This result can also be obtained by considering the energy of the system.
In terms of the angle &, the potential energy of the system is

mgl(1 — cos )
plus an arbitrary constant, and the kinetic energy is
2
2 dt

The total energy E is constant, so the rate of change of E with time must
be zero. Thus

dE dé ,d8 d%0
mlf— — =

— = mglsin§ — + 0
dt dt dt  dp?
and hence
d’ _ _ gsin@
dr? [

If we put sin & = @, we obtain the differential equation of simple
harmonic motion with angular frequency @ = (g/! )m, as before. ]

Now consider circular motion of the bob. The same diagram can be
used, but now the term dx/dr? is the centripetal acceleration of the bob,
so if € is the angular frequency of rotation,

gx/l = Qx
and hence
Q=(g/H=w

as required.
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Problem 92

Two bodies of masses m and 3m are attached to each other and to two
fixed points by three identical light springs as shown in figure 73.

L L L
W
Figure 73

The whole arrangement rests on a smooth horizontal table. The springs
are stretched so that the tension in each spring is T and its length is L
(much greater than its unstretched length). Show that the angular
frequencies of the normal modes for longitudinal oscillations of small
amplitude are given by

o = 4+ 3{7 T )
3 mL
Describe the motions of the two bodies for each normal mode.

Solution

Let us call the spring constants of the springs &, and consider the forces
acting when the body of mass m (call this body 1) is displaced from its
equilibrium position by x; and the body of mass 3m (body 2) is displaced
by x; (see figure 74).

] x
o ->»
spring 1 m spring 2 3m spring 3

Figure 74

It is clear that spring 1 is extended by x; relative to its length at
equilibrium, so the increase in its tension is kx,. Similarly, spring 2 is
extended by x; — x; relative to its length at equilibrium, so the increase in
its tension is k(x; — x;). Thus the net force acting on body 1 must be kx,
to the left from spring 1 and k(x; — x,) to the right from spring 2. The
force in the direction of increasing x, is thus

k(x: - Il) - le = "'2kX1 + k.‘.’g.
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By similar reasoning, the net force acting on body 2 is

ktl - 2kx20

5o we can write the equations of motion of the two bodies as
md’x,;’d{z = —=2kx; + kx;, (n
Imdixyfdi? = kx; — 2kx;. (2)

We assume that sinusoidal solutions exist, so we look for solutions of the
form

x1 = Aexpliwr),

Xy = Bexp(iwt),

where A and B are, in general, complex to take account of the possibility
that the two bodies might oscillate out of phase with one another.
Substituting these solutions into (1) and (2) gives

-ma?A = —2kA + kB (3)
and

-3ma’B = kA — 2kB. 4)
Rearranging (3) gives

(2k — ma?)A = kB (5)
and rearranging (4) gives

(2k = 3ma?)B = kA. (6)

Equations (5) and (6) can be combined by multiplying them together to
eliminate A and B:

(2k — ma?) 2k — 3ma?) = K2,
which can be rearranged to give

Imiw! - Bkma? + 3k% = 0.
This is a quadratic equation in « which can be solved to give

o = Bkm £ V(64K m? — 36kPmY) _ 4+ VT k-

6m? 3 m

[An alternative method of obtaining this result is to use matrix notation.
Equations (3) and (4) can be rewritten as

_3ma’A _

—-6A4 + 3B,

- 3”':’2” = A-2B,
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which can be written in matrix form as

)= 2115)

where A = 3m?/k is an eigenvalue of the matrix. In order for this
equation to be satisfied, the determinant of the matrix M + AI must be
equal to zero, where I is the identity matrix and M is the matrix

7 =)

Thus

-6+ A 3

(-6+A)(-2+21)-3=0,

which can be rearranged as a quadratic in A:
P -8A+9=0.

The solutions of this quadratic are
A=4 %17,

and recalling that A = 3ma?/k we obtain

2=tV K
3 m
as before.]

Now if L is much greater than the unstretched lengths of the springs,
the spring constant k = T/L, so finally we obtain

P=dEVT T
3 ml

as required.
Our result for o can be substituted into equation (5) or equation (6) to
find the ratio A/B. Choosing equation (6) for simplicity, we obtain

A/B =2 - 3mu’/k
=2~ (417
Thus the lower-frequency solution has A/B = \/7 — 2, which is real and

positive, with a numerical value of 0.646. The two bodies thus oscillate in
phase, the lighter body having an amplitude of oscillation 0.646 times that
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of the heavier body. Figure 75 shows the two extreme positions of this
mode.

e ey
[oe e

Figure 75

The higher-frequency solution has A/B = —2 — /7, which is real and
negative, with a numerical value of —4.646. The two bodies oscillate in
antiphase, the lighter body having an amplitude of oscillation 4.646 times
that of the heavier body. Figure 76 shows the two extreme positions of
this mode.

[~ eme

m Im

Figure 76

Two bodies of mass M; and M, are connected by a spring but are
otherwise free to move along a horizontal line. A periodic force F cos wt
is exerted on the body of mass M, along the line. Show that its
displacement is given by

k - oM,
AP MM, — k[M, + M3))

where k is the spring constant (restoring force per unit extension).
Indicate by a sketch graph the dependence of amplitude on frequency w.

x; = Fcosawit
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Solution

Write x, and x; for the respective displacements of the masses M and
M, from their equilibrium positions, as shown in figure 77. The extension
of the spring is clearly x, — x,, so the total force acting on M, is

k(xy — x,) + Fexp(iwt) = M, d*x,/dr* (D
x -"z
—_
_p.m.
Feosax M)
Figure 77

and the total force acting on M, is

—k(x; = x;) = M, d*x,/dr* 2)
(we have used the complex exponential notation to simplify the
calculation).

Since we are forcing the system at frequency w, let us try as a solution

= Aexp(iwt),
x3 = Bexp(iwt).

Differentiating these twice with respect to time, and substituting into (1)
and (2), gives

kBexp (iwr) — kA exp (iwt) + Fexp(iwt) = — M, A’ exp (iwt),

—kBexp (iwt) + kA exp (iwt) = — M3 Ba? exp (iwt). 8';

Rearranging (2') to obtain B in terms of A gives
.
k — Myo?

Substituting this into (1') and eliminating exp (iwt) gives

KA _ kA + F = —M,Ad?,

k — Mya?
which can be rearranged to give

F(k — Myu?)

m’(mmlu, - k[M, + M,])
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Thus
k - o M,

=F
O M My — KM, + Ma))

as required.

The amplitude of the motion of M, is clearly the term A. We can see
by inspection that it will have a value of zero when «? = k/M; and that it
will be infinite (resonance) when

o = k(M + M2)[(My M) = k(1/M, + 1/M).

The amplitude will also be infinite when @ = 0 (this just corresponds to a
steady force accelerating the whole system), and it will tend to zero as
tends to infinity.

Figure 78 shows a sketch of A as a function of w.
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Problem 94

Derive the equation of motion of a particle of mass m subject to restoring
and frictional forces of magnitude kx and b dx/dr respectively, where x is
its displacement and k and b are positive constants.

Show that x = A exp(~—yr)cos(wr + ¢) is only a solution of the
equation of motion for 4km > b? and determine the value of y. w, y, A
and ¢ are real constants. Comment on the physical meaning of this
solution.
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An object oscillates harmonically with a frequency of 0.5 Hz and its
amplitude of vibration is halved in 2 5. Find a differential equation for the
oscillation.

Solution

Since the restoring force acts in the direction opposite to the displacement
of the particle, it is given by the expression —kx. Similarly, the frictional
force is —b dx/dt, and since the total force acting on the particle must
equal the rate of change of its momentum, we may write the equation of
motion as

md*x/dt* = —kx — bdx/dt
or
mdix/dt* + bdx/dt + kx = 0.

Let us try x = A exp(—yt)cos (wt + ¢) as a solution of this equation.
Repeated differentiation with respect to time gives

dx/dt = —Ayexp(—yt)cos(wt + ¢) — Awexp(—vyt)sin(wt + @),
d*xjdt* = A(Y* — o) exp(—yt)cos(wt + ¢)
+ 2Aywexp(—yt)sin(wt + ¢).

Substituting these into the differential equation, and eliminating the
factor A exp(—1yt), gives

(my? — ma? — by + k) cos (wt + ¢) + (2myw — bw)sin (wt + ¢$) =0.

Clearly, if this expression is to be true at all times, both
my* = ma? — by + k and 2myw — bw must be equal to zero. The
second of these conditions implies that

y=b2m.

Substituting this into the first condition, and rearranging, gives
ma? = k — b*/4m.

This can only give a real value for w if the right-hand side is positive, so
4km > b?

as required.
[This part of the problem could also be solved using the complex
exponential notation. If we rewrite

x = Aexp(-yt)cos(wt + ¢)
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as
x = Re{Bexp(iat)},

where B and & can both be complex, the differentiations are much
easier.

dx/dt = Re { Biaexp (iat)}

and
d*x/dt* = Re {— Ba? exp (iat)).

Substituting these results into the equation of motion gives
ma? — iab — k=0,
which is a quadratic in a. The solutions of this quadratic are

ib £\ (=b* + 4mk)
2m '

a’ =
Now if a is a complex number y + iz, where y and z are real, the
time-variation of x is given by

Re {exp (iyr)} exp(—zt),

which is the required variation. The condition for a to have a non-zero
real part is that the term under the square root sign should be positive, so

dkm > b?

as before. Also, we can identify z as y, so that
y=b2m

as before.]
This variation of x with ¢ corresponds to an under-damped decaying
oscillation. The last part of the problem clearly deals with this kind of
motion, so we know the form of differential equation we are looking for.
Since the frequency fis 0.5 Hz, the angular frequency must be
nf=ws"', i.e.
@ =7 (in s1 units).

Since the amplitude is halved in 2's, we must have exp (=2y) = 1/2, so
y=%In2 (in si units).

Now we know that y = b/2m, so

b/m =1n2 (in si units)
= 0.6931.
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We also know that
ma? = k — b*fdm,
which can be rearranged to give

kfm = o + (b2m)?
=%+ (In2)*/4 (in s1 units)
= 9.9897.

Now the original differential equation for the motion of the object was
md*x/dt* + bdx/dt + kx =0,

which can be divided by m to give
d*x/df?* + (b/m)dx/dt + (k/m)x =0,

so substituting our values for b/m and k/m we can finally write the
differential equation as

d*x/de* + 0.693dx/dt + 9.99x = 0 (in s1 units).

[We have to specify that the coefficients are ‘in s1 units’ since they are not
dimensionless. The first coefficient has the dimensions of time™ so it
could be quoted as 0.693s™", and the second coefficient has the
dimensions of time =2 so it could be quoted as 9.99572.]

Problem 95

A steady force of 40 N is required to lift a mass of 2 kg vertically through
water at a constant speed of 2ms~'. Assuming that the effect of viscosity
can be described by a force proportional to velocity, determine the
constant of proportionality. (The effect of buoyancy should be
neglected.)

The same mass is then suspended in water by a spring with force
constant k = 100 Nm™'. Determine the equilibrium extension of the
spring. The mass is released from rest 20 cm below its equilibrium
position at time ¢ = 0. Show that it will vibrate about the equilibrium
position according to an equation of the form

d®x/d? + 2y dx/dt + wx =0,

and determine y and wy for this system.

Given that x = A exp(—yt)cos (w!t + ¢) is a solution of this equation if
o = wj — ¥, calculate the period of oscillation of the system, and sketch
the variation of x as a function of time.



Problem 96 177

Solution

‘When the mass is lifted vertically, it moves at constant speed so no net
force must be acting upon it. The ypward force of 40 N must therefore
balance the sum of the downward forces, namely mg + cv where m is the
mass (2 kg), v is the velocity (2ms™!) and c is the constant of
proportionality. Thus

c=(40 -2 x9.8)2=102Nsm™".

When the mass is suspended in water by a spring of spring constant k, at
equilibrium it will be stationary so no viscous force will act upon it. The
weight mg of the mass will thus be entirely balanced by the tension X in
the spring, where X is its extension, so

X = mg/k = 9.8 x 2.0/100 = 0.196 m.

The general equation of motion of the mass about its equilibrium position

is
mdx/dt* + cdx/dt + kx =0,

which becomes, on dividing by m,
dxfdt* + (c/m)dx/dt + (kfm)x = 0.

This has the required form if we identify y = ¢/2m and ay = V/(k/m).
The numerical values of these coefficients are thus y = 2.55s™! and
wy =7.07s71,

We are told that x = A exp (—yt) cos (wr + ¢) is a solution of this
equation if o = wj — 2, and w s clearly the angular frequency of the
oscillation. Substituting the values of y and ay gives

w=(7.07% - 2.55) 257! = 6.5957",

so the period of oscillation is (27/6.59) s = 0.95 s. This variation of x with
t represents an exponentially decaying (damped) oscillation, which is
plotted in figure 79 assuming A = 1 and ¢ = 0. The amplitude of the
oscillation falls by a factor of e in a time 1/y = 0.39 s, which is less than
the period of oscillation, so the degree of damping is quite strong (Q is
small-see problem 99), although it is still under-damped.

The equation of motion for a damped simple harmonic oscillator is

2
mdE L =0,
de? dt
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Figure 79

where k and A are constants, m is the mass and x is the displacement of
the system.

Describe the conditions for lightly damped, critically damped and
over-damped oscillations. Draw diagrams to show how the displacement
varies with time in the three cases, given that in each case the system is
initially displaced and then released from rest.

A system whose natural frequency in the absence of damping is
4rads™! is subject to a damping force such that k/m = 10s~'. Show that
the system is over-damped and that the general solution for the
displacement is

x = Aexp(—2t) + Bexp(—81).

The mass is initially at x = +0.5 m and given an initial velocity V towards
the equilibrium position. Find the smallest value of V that will produce a
negative displacement.

Solution
As usual, we try a solution of the form
x = xgexp(iwt)

and substitute into the differential equation of motion. After removing
the constant factor xgexp (iwr) this gives the quadratic

me? — ikw — A=0,
which is solved for w to give

_ ik £ V(dmA - k)
2m )

w
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The square root term determines the kind of damping involved:
(a) Term under the square root is positive:
K <d4mi;
under-damped.

If k? << 4ma, the system is lightly damped and the solution for @ is closely
approximated by

o= 24 K,

where the real part describes oscillation at the natural frequency and the
imaginary part describes exponential decay. We ignore the solution in
which the real part of the frequency is negative, since it is not physically
meaningful. However, there are two distinct solutions, and these can be
combined by writing the displacement x as

x = (Acosay! + Bsinayt) exp(—at),

where A and B are constants, ay = (A/m — k2/4m*)'2 and o = k/2m.
(b) Term under the square root is zero:

K = 4mh;
critically damped.

The solution is

ik
w=—,
2m’

i.e. exponential decay with no oscillation. The two solutions in this case
are obtained by writing the general solution for x as
x = (A + Bt)exp(—at),

where A and B are constants and & = k/2m as before.
(c) Term under the square root is negative:

k> 4ma;
over-damped.

The solution of the quadratic equation now gives two imaginary values of
w, corresponding to exponential decays, without oscillation, with
different time-constants. These two exponential decays can be combined
to give a general solution for x:

x = Aexp(—at) + Bexp(—pi),
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where A and B are constants,
a = k2m + (K*/am? - Afm)'2,

and
B = kf2m — (K*fdm? = A/m)'?,
These forms of behaviour are sketched in figure 80, for the cases

k*/dmA = 0 (undamped), 1/4 (under-damped), 1 (critically damped) and
4 (over-damped).

lime \

Figure 80

In the numerical problem, we are given that the natural frequency is
457" and that k/m = 10s™'. Now since the natural frequency is given by

V(A/m), we have

Am =16
and

kfm =10
in st units. Thus the oscillation frequency wis
_ ik £ V(@mA - k)
2m

= 5i + (16 — 25)"2
=5i + 3

and the two solutions are therefore A exp (—2¢) and B exp(—8t), the
system being over-damped. The general solution is thus

x = Aexp(—2t) + Bexp(—81)

as required.
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Now the initial conditions are that x = +0.5 and dx/dt = —V (where V
is a positive number) at ¢ = 0, and these conditions will determine the
values of A and B.

From the condition on x,

A+ B=05,

and since dx/dt = —2A exp (—2t) — 8B exp(—81), the condition on dx/dt
gives

-2A -8B =-V,

Combining these two relationships gives
A=(@4-V),
B =(V - 1)/,

so the subsequent motion of the mass is given by
x = a-Vv exp(—2r) + V-1 exp (—81).

For the displacement to become negative, it must pass through zero, so

4=V (-2 = 1=V

exp (~81),

thus

= £X _6f .

If the displacement only just becomes negative, it will reach zero at
f=m,50

4-v
1-v
Thus V = 4, i.e. the minimum value of V required to give a negative
displacement is 4 ms™!.

Problem 97

A particle of mass m moves in one dimension and is subject to a restoring
force which is proportional to its displacement x and a damping force
which is proportional to its velocity. Derive the differential equation for
its motion when it is also acted upon by a driving force Fcos wgt.
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If x = Acos(wgt + ¢), show that at low frequencies wg the phase ¢ is
zero and the amplitude A is independent of the driving frequency wg,
whereas at high frequencies ¢ = 7 and A depends on wg.

Solution

If the particle has position x and velocity dx/dt, the restoring force is
—kx (i.e. directed oppositely to the displacement) and the damping force
is —cdx/dt (opposite to the velocity), where k and c are constants. The
net force acting on the particle is thus Fycos wgt — kx — cdx/dt, and this
must be equal to the product of the particle’s mass and its acceleration:

d*x dx
m—— = Fycoswpt — kx — c—,
dr? 0008 @x dt
which can be rearranged as
d*x dx
m—— + c— + kx = Fycos wy!.
dr? dt 0eosex

If we assume that the solution to this differential equation has the form
given, namely x = A cos (wgt + ¢), we can evaluate dx/dr and d%x/de?
and substitute them into the equation to find A and ¢:

& —opAsin(opt + ¢),
dt

d!

—;‘ = —wpA cos(wpt + ).
dt

Substituting into the differential equation gives
—mwf.-A cos(wgt + @) — cawpAsin(wpt + ¢) + kA cos(wgt + ¢)
= Fycos wgt.
At sufficiently low frequencies we can ignore the terms whose magnitudes
are proportional to @f and wg on the left-hand side, so that
kA cos(wpt + ¢) = Focos wgt.

The phase ¢ is thus equal to zero and the amplitude A is equal to Fy/k,
independently of wy. At sufficiently high frequencies, the term in wg
dominates the left-hand side so that

—mwéA cos(wyt + ¢) = Fycos wgt.

Now since —cos (x) = cos (x + m), we can arrange for the amplitude A to
be positive by putting ¢ = 7, The amplitude A is then Fy/mo#, so that it
depends on wg, as required.
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Problem 98

Show that the steady state complex amplitude of a damped oscillator
driven by an external force Fexp (iwr) is given by the expression

Y
M(wy - &) + iwb
Explain the meanings of the symbols used and the condition for
resonance.

A machine of total mass 100 kg is supported by a spring resting on the
floor and its motion is constrained to be in the vertical direction only. The
system is lightly damped with a damping constant of 942Nsm™!. The
machine contains an eccentrically mounted shaft which, when rotating at
an angular frequency w, produces a vertical force on the system of
Fyw? cos wt, where Fy is a constant. It is found that resonance occurs at
1200 r.p.m. (revolutions per minute) and the amplitude of vibration in the
steady state is then 1 cm. Estimate the amplitude of vibration in the
steady state when the driving frequency is (a) 2400 r.p.m. and (b) very
large. You may assume that gravity has a negligible effect on the motion.

Solution
Assume that the system consists of a mass M connected to a spring of
spring constant k and damping constant ¢. The equation of motion is thus
Md?x/dt* + cdx/dt + kx = Fexp(iwt).
Assume that the solution for x is given by x = A exp (iwt), and substitute
this into the differential equation. Eliminating exp (iwt), this gives
-~MA& + icwA + kA = F,
and on rearranging, this gives
- F
k- Mo + iwc
This has the required form if we identify b with ¢ (the damping constant)
and wy with V/(k/M) (the resonant frequency if the damping term is

Zero).
Given that the force amplitude is Foe’, we may write the amplitude of

vibration as
Fo?
4| !

- VMol - ) + ?b?)
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Since the system is lightly damped, its resonant frequency will be ay at
which value |A| is

,F_Daj.:l_ =lem

(a) At 2400 r.p.m., @ = 2y, so
4Fpwh
VOM?wy + 4wpb?)
2,4 -12
- ﬁ&(w @ +4) ,
b wib?
Taking M = 100kg, b = 942Nsm™', wy = 407s™" and Foay/b = 1 cm,
this gives
|A| = 0.10 cm at 2400 r.p.m.
(b) As w— =,

Al -fo_ Foon b

thus |A| tends to a constant value of 0.075 cm.

Problem 99

Estimate the quality factor Q of the bell ‘Big Ben'.

Solution

Q values relate to resonant systems, and are defined in terms of the
differential equation governing the motion of the system. They can be
approximated, however, by considering the behaviour of such systems at
resonance or under conditions of freely decaying oscillation. The latter is
clearly more appropriate here, so we will need to estimate the resonant
frequency of the bell and the time for its amplitude to fall significantly,
say by a factor of e.

We probably do not know (I certainly don't) the frequency at which the
bell rings, but it is fairly low (below middle C, which is about 260 Hz) so
we might guess 100 Hz (the lower limit of human audibility is about
20 Hz). The time required for the amplitude to decay by a factor of e we
might estimate at 2s.
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A good approximation to Q for large values of Q is 27 times the
number of cycles required for the amplitude to decay by a factor of e, so
our estimate of Q is

(2m) x (100) X (2) = 1300.

And at this level of approximation, we would not be justified in quoting
the answer any more precisely than

Q = 10°.

[Definitions of the quality factor Q vary, but the most precise is as a ratio
of coefficients in the differential equation describing the motion of a
resonant system. If the equation is

Ad’x/di* + Bdx/dt + Cx = F,

where F is the forcing function and x is the displacement,

0= V(AQ),
B
Approximations to Q are:

(i) ratio of amplitude at resonance to amplitude at zero frequency,
for the same amplitude of force;

(ii) ratio of resonant frequency to the separation of the two
frequencies at which the amplitude is 1/y/2 times the maximum
value, for the same amplitude of force;

(iii) = divided by the logarithmic decrement A (defined as the natural
logarithm of the ratio of the amplitudes of successive half-
oscillations); this is equal to 2z times the number of oscillations
required to reduce the amplitude by a factor of e;

(iv) 27 divided by the fractional energy loss per cycle.

All of these approximations tend to Q when Q is large. None is
particularly good for small Q, and (iv) is the worst of all.]

Explain why the displacement A sin (k.r — wr) at position r and time ¢ is
called a plane wave. In which direction does it travel?

A wave displacement is y = 0.5sin (0.1x — 0.4r), where all quantities
are in s1 units. Determine

(a) the wave amplitude,

(b) the wavelength,

(c) the time period,
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(d) the wave velocity,
(e) the acceleration a of the displacement.
Sketch graphs of y and a at ¢ = 0 for x in the range 0 to 100 m.

Solution

If the displacement is given by A sin (k.r — wr), the phase of the wave is
k.r — wt. At a particular time ¢, a surface of constant phase is thus
defined by k.r = constant, and this is the equation of a plane normal to
the direction of the vector k. Thus this displacement describes a simple
harmonic wave propagating in the k direction.
y = 0.5sin(0.1x — 0.4¢) can be interpreted by comparing it with the
standard form
y = Asin(kx = wr)
for a wave propagating in the +x direction.
(a) by direct comparison, the amplitude A4 is 0.5 m.
(b) The wavenumber k is 0.1 m™', so the wavelength
A=2n/k =62.8m.
(c) The angular frequency wis 0.4 5™}, so the period
T =2n/fw=15.7s.
(d) The wave velocity v is w/k = A/T =0.4/0.1 =4 ms™'.
(e) The acceleration a is obtained by differentiating y twice with
respect to time, thus:
a = d?y/di* = —(0.4)%(0.5) sin (0.1x — 0.4¢) in st units
= =0.08sin (0.1x — 0.4r).

In order to sketch y and a at t = 0, substitute this value of ¢ into the
expressions for y and a to obtain

y(t = 0) = 0.5sin(0.1x),
a(t = 0) = —0.08sin (0.1x).

These can now be plotted straightforwardly in figure 81.
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A wave is represented by
yy = 10cos (5x + 251),

where x is measured in metres and ¢ in scconds. Show that this represents
a travelling wave and deduce its wavelength, frequency, speed and

direction of travel.
A second wave for which

y, = 20cos (5x + 25¢ + n/3)

interferes with the first wave. Deduce the amplitude and phase of the
resultant wave.

Solution

A harmonic wave with angular velocity  travelling with velocity v in the
+x direction can be written as

'P=ACOS(£— wt — ¢)=Acos(w:-£+¢),
v v

where A is the amplitude of the wave and ¢ is its phase. Comparing this
with the expression for ¥, shows that the wave is a harmonic travelling
wave with w =25s57! and wfv = =5m™". Thus v = =5 ms~!, so the wave
is travelling at 5 ms™! in the negative x-direction. The angular frequency
of the wave is 255! so the frequency is f = w/2m = 3.98 Hz. The
wavelength Ais given by v = fAso A= 1.26 m.

We can find the resultant y of the two waves y, and y, from the

principle of superposition:
Y=+ ¢

To simplify the working, we will put 5x + 25t = K so that
y = 10cos K + 20cos{K + m/3).

We wish to express the resultant as y = A cos (K + ¢) where A is the
amplitude and ¢ is the phase. Expanding both expressions and equating
them gives

10cos K + 200051{005% — 20sin Ksin%

= A cos K cos ¢ — Asin K sin ¢p.
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Since cos(#/3) = 1/2 and sin (7/3) = (\/3)/2, the left-hand side becomes
20cos K — 10Y/3sin K. Equating the coefficient of cos K and sin K gives

Acos¢ =20,
Asin ¢ = 10V/3.
Dividing the second result by the first gives tan ¢ = (1/3)/2 s0 ¢ = 0.714
(radians) = 40.9°.
Squaring the two results and adding them gives A? =
207 + 10® X 3 = 700 s0 A = 26.5. Figure 82 shows these results
graphically.
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Figure 82

The figure confirms that the amplitude of y is 26.5. The phase ¢ can be
determined from the figure by noting that y reaches its maximum value
when K = 1.7737 which, since y has a period of 27, is equivalent to
K = —0.227n. Since cos (K + ¢) is maximum when K = —¢, it follows
that ¢ = 0.227x radians = 0.714 radians.

Problem 102

A short-wave (HF) radio receiver receives simultaneously two signals
from a transmitter 500 km away, one by a path along the surface of the
Earth, and one by reflexion from a portion of the ionospheric layer
situated at a height of 200 km. The layer acts as a perfect horizontal
reflector. When the frequency of the transmitted wave is 10 MHz it is
observed that the combined signal strength varies from maximum to
minimum and back to maximum 8 times per minute. With what slow
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vertical speed is the ionospheric layer moving? [Assume the Earth is flat
and ignore atmospheric disturbances.]

Solution

Writing D for the length of the direct path along the Earth’s surface and
H for the height of the reflecting layer (see figure 83), we can see by
Pythagoras’ theorem that the path difference p between the two routes is

2\12
p=2(H2+%) -D.

ionosphere

transmitter Earth's surface receiver
-l
Figure 83

Interference between the signals arriving by the two routes causes the
observed fluctuation in intensity, such that each time p changes by A (the
wavelength of the radiation) the received signal strength will vary through
one cycle. The frequency f of the observed fluctuation will thus be given

where vis the frequency of the radiation and c¢ is the speed of light.
Differentiating our expression for p with respect to time gives

-1/2
a _ 2H(H2 + E) ‘f_H,
dt 4 dt
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The angular frequency w and the wavenumber k are related by
w= ck,

so the frequency of the nth mode is

ck,
I 2’
thus
- T
h ZL\/p

(Mersenne's law). Taking n = 1 (for the fundamental), and rearranging
to make T the subject, we obtain
T = 4L%f},

soif L=0.5m, p=0.01 kgm™" and f, = 247 Hz, T must be 610 N.
[These figures are typical of a piano string.]

Problem 104

A uniform inextensible string of length [ and total mass M is suspended
vertically and tapped at the top end so that a transverse impulse runs
down it. At the same moment a body is released from rest and falls freely
from the top of the string. How far from the bottom does the body pass
the impulse?

Solution

Consider a point distance x above the bottom of the string. The mass of
string below this point is clearly
Mx/l,

so the tension at this point is Mgx/l. The mass per unit length of the
string is M/, so the speed of transverse waves at the point x is

= [ Mex/l _
v Wt Vigx).

The time T(x) taken for the pulse to travel from x' = [ (the top) to x is
thus
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A long string of mass per unit length 0.2 kgm™! is stretched to a tension
of 500 N. Find the speed of transverse waves on the string and the mean
power required to maintain a travelling wave of amplitude 10 mm and
wavelength 0.5 m.

The string is joined to another, of mass per unit length 0.8 kgm™'.
‘What fraction of the power carried by the wave is transmitted to the
second string?

Solution

The speed c of transverse waves on a stretched string is given by

\/ T

C=4/—,

p

where T is the tension and p is the mass per unit length. Setting
T =500N and p = 0.2kgm™! gives

c=50ms" .

The power required to maintain a travelling wave of amplitude a and
angular frequency w is

cpa’e?
2 r
so putting ¢ = (T/p)"? and w = 2wc/A this becomes

p = 20T
A2 plﬂ
Substituting the values given, we obtain P = 197 W.

[If we cannot remember the formula for the power required to maintain
a wave on a stretched string it is fairly straightforward to derive. We can
calculate the total energy per unit length by calculating the kinetic energy
per unit length and doubling the result, since the average kinetic and
potential energies in a travelling wave are equal:

Write

P=

y = asin(kx — wr)
for the displacement of the string, and differentiate to find the velocity:

3y/3t = —awcos (kx — wt).
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Thus at a particular instant, say t = 0, the velocity is given by
—awcos (kx).

Consider an element of length dx at position x along the string. Its
mass is pdx and its velocity is —awcos (kx), so its kinetic energy is

patae? cos? (kx)dx /2.
Thus the total kinetic energy in length L is

1, ot
S w’Lcos’{kx)dr.

Now the average value of cos? (kx) is 1/2, so the kinetic energy per unit
length must be

paa?.

The total energy (kinetic plus potential) per unit length is twice this value,
and in order to maintain a travelling wave we must increase the length of
string which is moving, at a rate of ¢ (length per unit time). Thus the rate
at which energy is being supplied to the wave, i.e. the power, is

1, cpatat
2¢=pate? = =
4.00 2 )
To calculate the power transmission coefficient into the second string, it
is easiest to use wave impedances. The impedance Z of a transverse wave
on a stretched string is given by

Z=cp=(Tp)'",

so the impedance of the first string is Z; = 10 kgs™'. The mass per unit
length of the second string is given as 0.8 kgm ™', and the tension must be
the same as that in the first string (since they are connected), so

Z, =20kgs™!. The power transmission coefficient is given by

42,2,
(Zy + Z,)
=4 x 10 x 20/30°

= 8/9.

[As before, if we cannot remember the formula relating the power
transmission coefficient to the wave impedances of the strings, or the
expression for the wave impedance of a stretched string, the result can be
derived from first principles. We will assume that the strings are stretched
along the x-axis, with the first (lighter) string at x =< 0 and the second
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(heavier) string at x = 0, The incoming wave on the first string has
amplitude a (= 10 mm) and is travelling in the +x direction, so it can be
described by the equation

y = aexp(i[k;x — wt]),

where k; is the wavenumber of the waves on this string. This string also
carries a reflected wave travelling in the —x direction. If we assume that
this wave has an amplitude ar, it can be expressed as

y = arexp(i[—kx = wt]),
so that the total disturbance on the first string can be described by
y = aexp(i[k;x — wt]) + arexp(i[—k;x — wt]) forx <0,

Let us suppose that the wave transmitted into the second string has
amplitude ar and wavenumber k,. The wave is travelling in the +x
direction so it can be described by

y = atexp(i[kx — wt]) forx =0.

‘We assume that the second string is infinitely long so that we do not have
to consider any reflected waves travelling in the —x direction.

We can now consider the boundary conditions at x = 0 where the
strings are joined. Firstly, we note that the y-coordinates of the two
strings must be identical at all times at x = 0 (otherwise they would not be
joined together), which gives

a+ ar = at,
or
l+r=1 (1)

Secondly, we note that the tensions in the two strings are the same. This
implies that the value of dy/dx must be the same for each string at x = 0
(otherwise there would be a kink in the string at the interface, resulting in
a net force acting on the interface which has no mass). Evaluating dy/dx
for string 1, we find

dy/dx = ik aexp (i[k;x — wt]) — ik ar exp (i[—k;x — w1]),
and for string 2,

dy/dx = ikjat exp (i[k;x — wt]),
so if the values of dy/dx are to be equal at x = 0 we must have

tkya — ikyar = ikjat
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or
1 - r = kt/k,. @)

Combining equations (1) and (2) to eliminate r and hence find 1, we
obtain

2k

ky+ ky
Now the wavenumber k is related to the wave speed ¢ by w = ck, where
w, the frequency of the wave, is constant. Thus ka/k; = ¢1/e;, and since
the wave speed c is proromonal to p~/2 where p is the mass per unit
length, ky/k, = (po/p1)'”. Taking p, = 0.2kgm " and p, = 0.8kgm™!
gives ka/k; = 2, so ¢ = 2/3. The amplitude of the wave transmitted into
the second string is thus 2/3 of the amplitude of the incident wave.

We have already shown that the power carried out by a wave is given
by cpa’@?/2, so if T and w are constant, the power is proportional to
a’p'. The power transmitted into the second string is thus (2/3)3(4)"?
times the incident power, so the power transmission coefficient is 8/9, as
before. ]

The phase velocity of a surface wave on a liquid of surface tension T and
density pis

\{( 2:1T

where g is the acceleration due to gravity and A is the wavelength of the
wave. Find the group velocity v, of the surface waves.

What is v when v, takes its minimum value as a function of
wavelength?

Solution

The first thing we need to do is to rewrite the equation for v, as a
dispersion equation relating w, the angular frequency, to k, the
wavenumber. Recalling that

v, = wfk
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and
A=2n/k,

we obtain

ol (e}
w7

Since vy = dw/dk, we may differentiate this to find the group velocity:
2
g+ 3k°T
dw _ P

" °T
2\{(“’* ¥ _)
p

Since we have introduced the variable k (= 2/1), not given in the
problem, we should really rewrite this expression using 4 instead of k:

b = &+ 127°T/pk’
t T 2V(2ng/A + 80T /pAY)

We are asked to evaluate v, when v, is minimum. We can save ourselves
a little trouble by realising that when v, is minimum, so is u:. and the
condition for this is that

vy _y,
dA

Now by differentiating the original expression for v, this gives

8 _uT_g
1 Ap
A= 2n(T/gp)'"”.

Substituting this value of A back into the expression for v, gives the value
of vy as

4
. 2\/ (8\/; iss \/ ﬁi) ) \/(2\/[2:3’;’71) ) \'(2(%)' '
T T
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[The condition that d(u,z,)_z’d). = (O really only defines an extremum (i.e. a
maximum or minimum) of v:, and hence of v,. To convince ourselves
that this is indeed a minimum, we can either differentiate again with
respect to A, and it is clear that this second derivative must be negative, or
we can look back at the original expression for v;,. It is clear that at small
values of A, the term 27T /Ap dominates, so that vp becomes large at small
A. Similarly, at large values of A the term gA/2r dominates, so that v is
large at large values of A. Thus the extremum which we have found must
be a minimum, and not a maximum. This can be demonstrated by
calculating v, as a function of A for water, for which we can take
p=998kgm™3 and T = 0.0727 Nm™', as shown in figure 85.

Lo
0.9

e 2 2 22 2
B N o=

phase velocity in ms!
s

Ll
r

D LI T T 1 L] ] ] Ll T T T T 1
0 0.005 0.01 0.015 0.02 0.025 0.03
wavelength inm

Figure 85

The minimum value of v, occurs at a wavelength of 0.017 m and has a
value of 0.23 ms™'. The value of vg at this wavelength is also equal to
0.23ms™".]

Problem 107

The phase velocity v of gravity waves in a liquid of depth & is given by the
formula

v? = & tanh kh,
k
where g is the acceleration of free fall and k = 2a/A is the wavenumber, A

being the wavelength. Sketch the dispersion relation for such waves, and
show that the group velocity is always between v/2 and v.
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Find the phase and group velocities for gravity waves of frequency 1 Hz
in a liquid of depth 0.1 m.

Solution

First we need to deduce the form of the dispersion relation w(k), which
we can do by using the fact that the phase velocity is w/k. Substituting
this into the expression we have been given for the phase velocity v, and
rearranging, gives

o = gktanh (kh).

In order to sketch this function (see figure 86), we can consider the
limiting forms as k — 0 and k — .

Aw
*
o
ﬂéi’t w\ﬂ‘"
&,s“
k o
Figure 86

When k& — 0, tanh (kh) — kh so w— (gh)mk, ie.woe k.

When k — o, tanh (kh) = 1 50 w— (gk)'?, i.e. 0= Vk.

The group velocity v, is given by dw/dk, so if we differentiate our
expression for «” we obtain

2wm, = gtanh (kh) + —E
cosh? (kh)
Thus
gk*h
cosh? (kh)
2gk tanh (kh)
kh
2sinh (kh) cosh (kk)
kh
2 sinh(2kh)’
The function x/sinh (2x) is shown in figure 87.

gk tanh (kh) +

= |

]
g |>
2z

0l

T B =

+

+
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[*To solve this equation numerically it is probably quickest to use the
Newton-Raphson method. If we put
f(x)=xtanhx —a =0,
where a = (.402, and x, is an approximation to the root, then

X
Xpsl = Xy — f,{ ")
f'(xa)
should be a better approximation. Since
) X
fx)= + tanhx,
cosh” x
this gives
x2+ 21 + cosh2x,)
Xytanhx, —a 2
Ll = Xp = = inh 2
I __ + tanh X, X, + il ]
cosh® x, 2

A suitable starting value x, is /0.402 = 0.634, since for small x,
tanhx = x. Thus

X = 0.681,
X = 0680.
x3 = 0.680,

so the method has converged to three significant figures after two steps.]

Prove that the group velocity v, of electromagnetic waves in a dispersive
medium with refractive index n is given by
_ c
vy = ————,

dn

n+ w—
dw

where c is the free-space velocity of light and w is the angular frequency
of the waves.

A pulsar is a star which emits very sharp pulses over a broad range of
radio frequencies. These travel through the interstellar medium in a
straight line before arriving at Earth. Radio observations show that the
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arrival time of a particular pulse measured at 400 MHz is 700 ms later
than the arrival time of the same pulse measured at 1400 MHz. The
refractive index of the interstellar medium is given by

Ne?
eoma?

where e and m are the charge and mass of an electron, and N is the
electron density, which is known to have an approximately uniform value
of 3 x 10" m~? in the space between the Earth and the pulsar. Calculate
the distance to the pulsar.

n=1-

Solution
The refractive index n is defined as the ratio of ¢ to the phase velocity, so
ck

w

The group velocity v, is dw/dk, but since the required answer is given in
terms of dn/dw rather than dn/dk it will be more convenient to calculate
the reciprocal of the group velocity:

1 dk 1 d
— = —=——(nw)
[ do ¢ dw

[
= (n + wdn/dw)/c.

Thus
c
Vg =
n+ ol
dw
as required.

The group velocity is the velocity at which a pulse travels, so the time
taken for a pulse to travel a distance D will be

D D( dn)
= —== —|n+ w—1|.
v, ¢ dw

This looks rather awkward given the expression for n(w), so we should
see whether the expression can be approximated. If we evaluate

Ne?
game?
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at either of the two specified frequencies, say 400 MHz, we find that it is
-1%2
3 x 10* x (1.6 x 10°"%) - 1.5 x 10-1
8.85x 107" x 9.1 x 107 x (2m x 4 x 10%)?

i.e. very much less than unity. This means that a simple binomial
expansion for n will be very accurate, so that

Ne?
2egma?

n=1-

and

dn 2N

do 2gmar
Thus

2 2 2
r=£a£(l- Ne? . _Ne )=_Q(+ Ne )
vy ¢ 2epma?  ggmat! ¢ 2eyma?

The component D/c is independent of w and so will not contribute to the
difference in arrival times of the two pulses, so we can write

2
At = _’S.Q(L - _1_)
2epme\ 0} w3

for the difference in arrival times. This can be rearranged to give
2egmcAt ( 11 )“
Ne® .

o
Taking wy =2r X 4 x 10°s™! and @, = 27 x 1.4 x 10757,
g=885%x102Fm!,e=16x100"C, N=3x10"m3,
c=3x10ms™, m=9.1x 10" kg and At = 700 ms, this gives

D =3.0x10"m.

D=

Since a light-year is

3 % 10% x 60 x 60 x 24 x 365m
=9.5x% 10" m,

this distance is about 3000 light years. The diameter of the Galaxy is
about 75000 light years, so our answer is a reasonable one.
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According to Descartes’ theory of the formation of the rainbow, a ray of
sunlight is refracted as it enters a spherical raindrop, undergoes a single
internal reflexion, and is then refracted as it leaves the drop, as shown in
figure 88.

Figure 88

The rainbow is formed from the rays whose deviation from the original
direction is either maximum or minimum. Show that the rainbow should
form an arc of radius 42° round the point opposite to the Sun, and that it
should have a width of approximately 1.6° with the red part on the
outside. (The refractive index of water is 1.330 for red light and 1.341 for
violet light.)

Solution

We will assume that the incident ray makes an angle # with the normal to
the drop’s surface. The refracted ray will make an angle ¢, where by
Snell’s law

sing = 200 (1)
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where n is the refractive index of water. Since the normal to any part of
the surface of a sphere must pass through its centre, we can identify two
congruent isosceles triangles, as shown in figure 89.

Figure 89

At the first refraction, the ray is deviated through an angle § - ¢
anticlockwise. At the internal reflexion it is deviated through 7 — 2¢ in
the same sense, and at the second refraction it is again deviated through
8 — ¢. The total deviation D is thus 26 — 4¢ + x. To find the extremum,
we set dD/d8 = 0:

Q =2 - 4@ =0
dé de

L9 _1 @)

Differentiating equation (1) with respect to @ gives

d¢ _
NPT
and substituting from (2) gives

cosp = 29080 3)
n

We now have two equations, (1) and (3), relating ¢ and 8, so we can

eliminate one of the angles to find an expression for the other one. The
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easiest way to do this is probably to add the squares of the two equations,
using the fact that cos’ ¢ + sin® ¢ = 1, to give

4cos® 0 + sin? @ _

n? n?

To solve this, we can put cos® @ = 1 — sin 6 and rearrange the resulting
expression to give

2
sin9=\/4 ";
3

Taking n = 1.330 for red light gives 8 = 59.585° and ¢ = 40.422°, so the
deviation is 260 — 4¢» + 180° = 137.48°. Since a deviation of 180°
corresponds to the sunlight’s direction being reversed so that the light is
observed to come from the direction opposite to the Sun, a deviation of
137.48° corresponds to a ring of red light of radius 180° — 137.48° = 42.52°
centred on the antisolar point (see figure 90).

Repeating the calculation for violet light {for which n = 1.341) gives
8 = 58.946° and ¢ = 39.705°, from which it follows that the deviation is
139.07°. Thus we have a ring of violet light of radius 40.93° centred on the
antisolar point. The rainbow therefore has a mean angular radius of
(42.52 + 40.93)/2 degrees = 41.7° and an angular width of (42.52 — 40.93)
degrees = 1.6°, with the red part on the outside.
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The relationship between u and x is given by

1,1 1
u v f

where v = —x (because the image is virtual), so
11,1
u f «x

and the magnification M = Dfu = D/f + D/x. This clearly takes its
maximum value when x takes its minimum value of D, giving
My = 1 + D/f as required.

Problem 111

The distance between an object and its real image, formed by a
converging lens, is held fixed. Show that there are two possible positions
for the lens, and that the size of the object is given by (h,h;)"? where i,
and h; are the sizes of the two images.

Solution

Let us put f for the focal length of the lens, and u and v for the object
and image distances respectively. u and v satisfy the equation

1.1 1

—- —= —

u v f
but we are also told that the distance from the object to the image is
fixed. Let us call this distance a, so that

utv=a.

We can combine these equations to eliminate either u or v: Multiplying
the first equation through by uv to remove the fractions on the left-hand
side gives

u+v=2

Substituting u + v = a on the left-hand side and v = @ — u on the
right-hand side gives

_ u(a —u)

f
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which can be rearranged as a quadratic equation in u:

u? — au + af = 0.
This has two solutions

L=z V(a® - 4af)

2
provided that a > 4f (which is the minimum distance between the object
and the image). Thus we have shown that there are two possible positions
of the lens for a given object-to-image distance a.
The magnification is given by —uv/u, which we could write as 1 — a/u

(using the fact that u + v = a). However, to evaluate this would involve
taking the reciprocal of the expression we have just derived for u, which

would be tedious. Instead, let us use the expression 1/u = 1/f — 1/v to
write the magnification as 1 — v/f, and then substitute for v to give the

expression
_a-u-f
f

for the magnification. If the object height is &, the image heights are thus
2.
= _i(a o _Vla-4af] f) = —i(a—Zf— Vla® - 4af))
f 2 2 2f
and

__hf,_a VIe®-4af] N__ h  _ 2
s f( ? Ll f) Peta=2f + VI~ daf).

Forming the product h,h; gives
2
hyhy = ~:}—z(a= +4f? = daf — a® + daf) = K2,

so we have shown that the object size is (hlhz)m as required. [This
technique is sometimes used to measure the size of an inaccessible
object. }

Problem 112

Draw a scale diagram of the optical component in a refracting telescope
in normal adjustment, giving the components the following values in your
diagram:
objective lens focal length 12 cm, diameter 6 cm;
single eyepiece lens focal length 2 cm, diameter 2 cm.
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Consider an object at infinity near the edge of the field of view but for
which all light entering the objective will emerge from the eyepiece. Draw
three rays (solid continuous lines) from this object; one through the
centre and one through each edge of the objective, showing how they pass
through the telescope and enter the observer's eye, situated at the
exit-pupil of the telescope. Any construction rays should be dotted. Find
the telescope's magnifying power, its field of view, and the diameter of
the exit-pupil.

Solution

Since the object is at infinity, the objective must produce an image in its
back focal plane, 12 cm behind it. The eyepiece is focussed on this image,
so the distance from the objective to the eyepiece must be 14 cm.
Knowing this, we can draw the lenses, optic axis and focal plane, as
shown in figure 92.

objective focal plane

eycpiece

1
I
I
T
+
.
optic axis !
I
¥
I
I

Figure 92

Now it is clear that the ray at the edge of the field of view which just
passes through the eyepiece must connect (say) the lower edge of the
objective to the upper edge of the eyepiece, so we can draw this ray ABC
with B being the point at which the ray crosses the focal plane. B
therefore defines the position of the internal image, and all rays from the
object must pass through this point. We can thus draw a ray through B to
the point O (the centre of the objective), and continue this to D (since
rays passing through the centre of a lens are undeviated) and to L. We
can also draw rays AF and HG parallel to OD, since these are the rays
arriving at the objective from the object, and since the object is at infinity
they must be parallel. Next, we can draw the ray HBK, and we find that
the point X lies at the centre of the eyepiece lens, as shown in figure 93.

Since the ray HBK passes through the centre of the eyepiece lens it can
be continued without deviation to J. Because the eyepiece is set up to
produce an image at infinity (normal adjustment), rays LN and CM can
be drawn parallel to KJ to give the complete diagram, shown in figure 94.
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H focal plane
*'““\: ovepee
]
| C
o B
—— M
D optic axis K “‘-—-::.-”\f
1
1
1
]
F A
Figure 94

The magnification of the telescope is the ratio of the angle between the
emerging rays and the optic axis to the angle between the incoming rays
and the optic axis. Measuring (or calculating) the slope of the ray KJ
shows it to be —6/28, and the slope of the ray DO is +1/28, so the
magnification is —6.

If the angle between the incoming rays and the optic axis were any
greater, not all of the rays entering the objective would pass through the
eyepiece. The field of view of the telescope is thus 2 arctan (1/28) = 4.1°.
It is clear that the diameter of the exit-pupil is the distance CK, and from
our construction we have noted that K is on the optic axis of the system,
so that the diameter is 1 cm. [We could also have calculated this by
recalling that the exit-pupil diameter is given by the objective diameter
divided by the modulus of the magnifying power.]

Problem 113

A beam of light of wavelength 600 nm passes through a slit of width
0.01 mm and strikes a screen, normal to the beam, placed a distance 2 m
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from the slit. Derive an expression for the shape of the intensity
distribution seen on the screen and thereby deduce the width between the
first minima of the distribution.

Suppose the screen were to be coated with phosphor and a beam of
electrons were to be used instead of light. Through what potential
difference should the electrons be accelerated before they reach the slit if
the spreading of the beam is to be reduced by a factor of 10° below that
found for light?

Solution

We may analyse this problem using the approximations of Fraunhofer
diffraction.

Figure 95 shows the slit extending from y = —w/2to y = +w/2, and
two rays leaving the slit and arriving at the screen at position x. One of
the rays leaves the slit at y = 0, and the other at y, and since w << z (the
distance from the slit to the screen), the two rays are very nearly parailel
and the path difference between them is approximately y sin 8. The
contribution to the wave amplitude at x due to the region of the slit
extending from y to y + dy thus has phase ky sin 8, where k is the
wavenumber of the radiation, and amplitude proportional to dy (we are
neglecting variations in the lengths of the rays), so we may write the
amplitude in the direction 8 as follows:

w2 .
a(f) = J ﬂexp (iky sin 8) dy.

Figure 95
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Evaluating the integral (which is a Fourier transform) gives

. ( kw sin B)
] wh 2sin | ————
a(6) = [ exp (iky sin 8) _ 2
ik sin 8 -wf2 ksin @
Squaring this to find the intensity /(6), and omitting constant factors, we
obtain
. 5 ( kw sin 8)
sin -
1(8) =<
©) sin® @
This function is shown in figure 96.
L]
sin @
Figure 96
The first zeroes occur when
kwsin® _ o csin@=t 2l aa
2 kw w

Taking A = 600 nm and w = 0.01 mm gives sin 8 = +0.06, so

8 = +0.06004 radians. The distance x on the screen is given by

x = ztan 0, so putting z = 2 m gives x = +0.1202 m. The width between
the first zeroes is thus 240 mm.

If we require the spread to be reduced by a factor of 1000 using the
same slit, it is clear from our formula that the wavelength must be
reduced by a factor of 1000. Thus the electron beam should have a
wavelength of 0.6 nm. Now we know that the wavelength of a particle is
given by the de Broglie relation as

h

P
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where A4 is Planck’s constant and p is the particle's momentum, and the
momentum is related to the kinetic energy E for a non-relativistic particle
of mass m by

E = p_z
2m
If we put E = eV where V is the accelerating voltage, and combine these
expressions, we obtain
h!
2meA?’

Substituting £ = 6.6 X 107 Js, m =9.1x 107 kg, e = 1.6 x 107° C
and 1=6x 107" m gives V =4.2V.

V=

Problem 114

A Young's slits experiment is set up in which two narrow slits, of
separation d, are illuminated by light of wavelength A. The diffraction
pattern is viewed on a screen at a distance D. Derive expressions for the
intensity distribution on the screen and the separation of the fringes.

If D =1m, A=600nm, and the distance from the centre of the fringe
pattern to the 10th bright band on one side is 30 mm, calculate the
separation d of the slits.

A film of transparent material is placed over one of the slits, and the
displacement of the centre of the fringe pattern is observed to be 30 mm.
Calculate the refractive index of the material if its thickness is 20 um.

Solution

We can use the same approach as in the previous problem. This time,
however, instead of integrating the contributions to a(8) over a range of
y, we just add contributions from y = +d/2 and y = —d/2 to represent
the light emerging from the two slits. Thus we have

3(9) = exp (— lkdﬂ) + exp (M) = zms(kdﬂl‘l 9)
2 2 2 —
Squaring this to find the intensity, and ignoring constant factors, gives

1(8) = cos® (M)
2
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Now if 6 << 1, we may take sin # = tan & = x/D, where x is the position
on the screen. Substituting this expression for sin 8, and putting A = 2a/k,
gives the following expression for the intensity as a function of x:

« cos2( T4X
I(x) cosz(AD).

These ‘cos? fringes’ are sketched in figure 97.

1(x)

Figure 97

Since cos? (nm) = 1 for any integer n, the separation of the fringes is
given by the value of x for which

ndx

—_—=T,

AD
i.e. the separation of the fringes is AD/d. The position of the 10th bright
fringe is thus x = 10AD/d, so taking A = 600 nm, D = 1 m and
10AD/d = 30 mm gives d = 0.20 mm.

When a sheet of transparent material of thickness ¢ and refractive index

n is placed in front of one of the slits, it changes the phase of the light

passing through it by an amount
2mt

ap="(n 1)

(provided the angle @ is still small). We can write the amplitude a(8) in
this case as

a(0) = exp(—iy) + exp(iy + iAg),
where 1 = (kd sin 8)/2. The real part of this expression is
cos Y + cos(y + A¢)
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and the imaginary part is

—siny + sin(y + A¢),
so the intensity, which is proportional to the sum of the squares of the
real and imaginary parts, is proportional to

2(1 + cos ycos[y + A¢] — sinysin[y + Agd])

=2(1 + cos[2y + A¢])

=4 2 A_¢)‘
ms(w-!— -

Thus the position of the central maximum is shifted from y =010
y = —Agy/2. Recalling that

- kd sin 6 ~ ndx
2 AD’

we see that the shift Ax in the position of the central maximum must be
given by
Ax = APA® _ Di(n—1)
2nd d

Taking Ax =30mm, D =1m, ¢t =20 um and d = 0.2 mm gives
n =130

[There is a less mathematical way to see this. The shift in the fringe
pattern, 30 mm, is equal to the width of 10 fringes, and we know that
each fringe corresponds to a phase difference of 27 between the rays from
the two slits. Thus the transparent sheet must introduce a phase
difference of 207, so we have

2re(n — 1) _
A

20m;
hence

n=l+ﬁ.
f

Taking A = 6.00 X 10~" m and ¢ = 2.0 x 10~ m gives n = 1.30 as before.]

Problem 115

A diffraction grating has N slits. Show that the resolving power R = A/AA
of the grating is given by R = mN, where m is the order of interference
which is under observation.
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Solution

First we need to calculate the diffraction pattern of the grating. The
aperture function of the grating can be expressed mathematically as the
product of an infinitely wide diffraction grating (whose slits we shall
assume to have a spacing d) and a ‘top-hat’ function of width Nd which
has the effect of truncating the grating so that it contains N slits. This is
shown in figure 98.

”HHIH Original grating =

o 1T e AN

spacing d width Nd
Figure 98

Since the Fraunhofer diffraction integral is a Fourier transform, the
convolution theorem tells us that the amplitude diffraction pattern of the
original grating is equal to the convolution of the amplitude diffraction
pattern of the infinite grating with the amplitude diffraction of the
‘top-hat’ function. We know that the diffraction pattern of the infinite
grating is a series of delta functions at values of sin 8 given by mi/d,
where m is an integer, and that the diffraction pattern of a slit (see
problem 113) of width Nd is proportional to

. (Nwdsin 8)
sin | —————

sin &
This function has a maximum value when 8 = 0, and first falls to zero

when sin 8 = £1/Nd. We can now sketch the amplitude diffraction
pattern of the original grating, as shown in figure 99.

diffraction pattern amplitude

width A /Nd
T/ JI\. P2 S i e
-2 =1 0 1 2 order m
—
spacing A/d

Figure 99
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If we increase the wavelength slightly, the scale of the diffraction
pattern, which is proportional to A, will increase. We will assume that two
wavelengths are resolved if the maximum of one coincides with the first
zero of the other, as shown in figure 100.

diffraction pattern amplitude
A A+al
T
peaks of order m
Figure 100

It is clear that the two peaks are separated by a distance A/Nd in sin 8,
and since the value of sin @ is mi/d, the fractional change in sin 8 is
1/mN. Since sin 6 is proportional to A, this must also be the fractional
change in A, i.e. AA/A. The resolving power R is thus equal to mN, as
required.

Problem 116

A telescope is used to observe at a distance of 10 km two objects which
are 0.12 m apart and illuminated by light of wavelength 600 nm. Estimate
the diameter of the objective lens of the telescope if it can just resolve the
two objects.

Solution

Rayleigh’s criterion for the angular resolution A# of a circular aperture of
diameter D >> A gives

A6 =122
D

and for two objects at distance z separated by s the angular separation is
A0 =2 (provided s « z).
Z
Combining these two expressions gives

Dp=1222

s
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and substitution of = 6 X 10""m, z = 10* m and 5 = 0.12 m gives
D =6cm.

The visibility V of the fringes observed in a Michelson interferometer is
defined as

y = Jmax = Twin

I max + I min

where I, and I, are the intensities at the maxima and minima of the
fringe pattern. In observations of the sodium D-lines, V varies from a
maximum of 1.00 to a minimum of 0.33 over a range of approximately
500 fringes. Explain these observations and deduce values for the
fractional wavelength difference between the sodium D-lines and for their

relative intensities.

Solution

Let us consider first a Michelson interferometer being used to study light
of amplitude a and a single wavenumber k. The signal is split into two
equal parts of amplitude a/2, and one half is subject to a path difference d
with respect to the other half. When the two signals are recombined, the
complex amplitude of the resultant signal can be written as

% + %exp [ikd] = %(1 + exp|ikd]).

The intensity of the resultant is found by squaring and adding the real and
imaginary parts of this expression:

I= ";[(1 + cos [kd])? + sin? [kd]]

2
= -‘3—(2 + 2cos [kd]) = %(1 + cos [kd]),

where we have written I, for the intensity a® of the original signal. This
represents fringes whose intensity varies between zero and /), so the
visibility V of the fringes is unity. The spacing of the fringes (which we can
define as the change in d between one maximum of intensity and the
next) is 2n/k.

Now we can consider the output from the interferometer if the incident
light contains two closely spaced spectral components, the first having
intensity /) and wavenumber kg — Ak/2 and the second having intensity
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I; and wavenumber kg + Ak/2. The intensity I of the output when the
path difference is d is

I= ﬂ(l + cos [ku - ﬁ—k d) + 2(1 + ms[ku + ﬂ]d).
2 2 2 2
which can be rewritten as

I=l|+.{2+!|+l‘z (Ak )Cm(kud)
2 2 2

Il 2 I sm(ﬂd)sm(kod)

This expression has the form
I = A + Bcos(kod) + Csin (kod),

where A is a constant and B and C are slowly varying functions of d
(since we are assuming that Ak < kg). This describes intensity fringes
with wavenumber kg, varying from a minimum value of A — \/(B? + C?)
to a maximum value of A + \/(B? + C?). This is shown schematically in
figure 101.

Al

Y

Figure 101

The visibility of the fringes is thus
2 2
V= V(B + C%)

(ol 252 o{20)

I;‘f’!z
2
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The maximum value of V occurs when d = 0 and is clearly given by
V = 1 as observed. The minimum value occurs when Akd/2 = /2 and is
given by
L -1
L+1
(In fact, it is given by the modulus of this expression. We are assuming
that Iy > I.) Since the observed minimum value of V is 0.33, the ratio of
the intensities of the two lines must be I,/I; = 0.50. We can calculate the
fraction wavelength separation of the two lines as follows:

The first minimum in the visibility function occurs at d = n/Ak, but the
fringe separation is 2m/kg so the number of fringes N over which the
visibility changes from maximum to minimum is given by

min

T 2 ko
Ak ko 2Ak

Since k « 1/A, the fractional wavelength difference AA/4 is equal to the

fractional wavenumber difference Ak/k (apart from a minus sign which

we can clearly ignore since we are not interested in the sign of the

difference), so
ML
A 2N
Taking N = 500 gives AA/A = 1/1000. [In fact, the mean wavelength of

the sodium D-lines is 589.30 nm and their separation is 0.59 nm, so the
result is a very accurate one.}
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The electric potential at a perpendicular distance r from a long straight
wire of cross-sectional radius a is given by

V(r)=-KInL,
a

where K is a constant. Calculate the electric field as a function of
distance. Hence, using Gauss’s theorem, determine the charge g per unit
length of the wire.

A second identical wire, carrying charge —¢g per unit length, is placed
parallel to the first at a distance d from it. Calculate the potential
difference between the wires, assuming that d > a.

Solution

In general, the relationship between the electric field E and the potential
Vis
E=-VV.

However, the field due to the wire clearly has cylindrical symmetry so we
can write this as E = —dV /dr. Differentiating the expression for V gives
E=K/r.

Gauss’s theorem states that, for a closed region of space,

-1
[E—ds- EQEQ.

where E is the electric field vector on the surface of the region, ds is an
element of the vector area of the surface (pointing outwards), and 2>, Q is
the total charge contained within the region of space. If we choose a
cylindrical region of space, coaxial with the wire and having radius r and
length L (as shown in figure 102), it is clear that over the curved surface
the magnitude of E is constant and it is directed everywhere perpendicular
to the surface.

The contribution to the integral is thus 2rrLE. Over the ends of the
cylinder, the electric field is normal to the surface so there is no

2
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Figure 102

contribution to the integral. Thus, from Gauss’s theorem, the charge
contained within the cylinder is

Q =2nrLEg; = 2nKL#g,

»  so the charge per unit length of the wire is ¢ = 27 K &.
If we now include another identical wire, carrying charge per unit
length —gq, distance d from the first (as shown in figure 103), we can find
the total field by superposition.

+q -q
[ B r O

y -
Figure 103

The field at r due to the wire carrying charge per unit length +q is
K /r, and the field due to the wire carrying charge per unit length —¢ is
K /(d — r). Thus the total field is

sz(i+ 1 )

r d-r

The potential difference between the wires is found by integrating the
field with respectto r,fromr =ator=d — a:

d—r
d—a
a

[This result could also have been written down directly using the form of
»  V(r).]1fd > a, V can be approximated as V = 2K In(d/a).

V= xJ’d-"(l+ ! )dr: Kllnr —In(d - ))&
a r

=2KIn
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A soap bubble 10 cm in radius with a wall thickness of 3.3 x 10 %cm is
charged to a potential of 100 V. The bubble bursts and falls as a spherical
drop. Estimate the potential of the drop.

Solution

In order to find the charge on the bubble, we need to know the
capacitance of a spherical shell of radius a.

Let us assume that such a shell is given a charge Q, and construct a
Gaussian surface round it. Since the field is (by symmetry) radial, a
spherical Gaussian surface of radius r (> a) will be everywhere normal to
the field. Gauss's theorem then gives 4nr2E = Q/g;, so

E=—2
4nrie,
Since for a radial field E = —dV /dr, we can find the potential of the shell
by integrating — E with respecttorfromr=®tor=a:

=_ 0Q (“dr _ 0
dmegl= r?  dmesa
Using the definition Q@ = CV to find the capacitance C gives C = 4rga.

If the initial radius of the bubble is @ and it is charged to a potential V,
it must therefore carry a charge 4rgaV.

When the bubble bursts, it forms a spherical drop of radius a’ carrying
the same charge. The volume of this drop must be equal to the volume of
liquid contained in the bubble, which is clearly 4ma®t, where ¢ is the wall
thickness. Thus

4na*t = §ma" so a' = (3a21)'P.

Now if we assume that the soap solution conducts electricity, all of the
charge will reside on the surface of the drop and its capacitance will be
given by 4meqa’ (see figure 104).

The potential of the drop will thus be

Q _dngaV _aV _ a

V.
dmega’  4dmea’ @' (3aP)P

Puttinga = 0.10m, ¢ = 3.3 X 10~® m and V = 100 V gives the potential
P on the drop as 10kV.
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Bubble: C = 45z Drop: C = 4ag’
Figure 104 ’

A spherical nucleus has a total charge Q (uniformly distributed) and
radius R. Find the electric field at any point inside the nucleus at a
distance r from the centre. Hence find the potential difference between
the centre of the nucleus and its surface.

Solution

The field at radius r will, by Gauss's theorem, be that due to the charge
enclosed within that radius. Since the charge is uniformly distributed, the
enclosed charge will be proportional to r*, and so equal to

3
r

Q( R) '

Thus the field at radius r (<R) is given by
3
E= Q(‘L) oo .
R/ 4megr?!  dmeyR?
Since the field is radial, we can find the potential difference between the
centre and the surface by integrating E with respect to r from r = 0 to
r=R:
R 2
V= Q j rdr = _Q R_ = Q
dmegR* Jo

4megR® 2 8mgR

[It is interesting to estimate an order of magnitude for this potential
difference by putting Q = 1.6 x 107" C and R = 10~"* m. This gives V of
the order of 0.1 MV.]
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Determine the electric field as a function of radius 7 in a spherically
symmetric model of an atom in which the nucleus is a point charge of
magnitude +e and the electron charge is distributed with charge per unit

volume p{r) given by
2
p(r)={ - 1583(1 —r—z)forrsa.

8na a
Oforr >a,

where a is a constant.

Solution

For a spherically symmetric distribution of charge, the field E(r) at
radius r is given by Gauss's theorem as

E(n = L0,
4#501'2

where g(<r) is the charge contained within a sphere of radius r. g(<r)
can be found by integrating the electron charge density with respect to
volume, and including the nuclear charge:

r
g(<r)=e +4r| prldr
1]
n 2
=e- 3¢ (1 —r—)rzdr.
2‘!3 o a!
Performing the integral, we obtain

so that E(r)is

E(r) = —= (1-5—’3+3_’3).
dneyr? 20 24°
This expression is only valid in the range 0 < r < a, since this is the range
of values of r for which the expression for p(r) is valid. Our expression
for g(<r) shows that it is zero when r = g, so g(<r) must be zero for all
values of r = a (as we would expect). Thus E(r) is also zero for r = a
(i.e. outside the atom).
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Problem 122

Show that the potential energy of a charge Q uniformly distributed
throughout a sphere of radius R is

3_ 0%
5 dngyR

Solution

The simplest way to solve this is to build up the sphere by adding a shell
of radius dr to a sphere of radius r, and integrate the work done as the
sphere is built up from r =0to r = R.

Since the charge is uniformly distributed, the charge on a sphere of
radius r is

The charge contained in a spherical shell of radius r and thickness dr is

dnridr _ 3Qrdr

B T

The work done in bringing charges () and Q; from infinite separation to
separation r is

10
dmeyr ’

so we can write the increase dE in the potential energy resulting from
adding a thickness dr to the sphere as

_Qr30r}dr 1 _ 3Q%* dr
R} R dmer  4ngR®
Integrating this from r = 0 to r = R gives

2 R 2
E = LJ’ r‘ dr = 2 Q
4aggR% Jo 5 dnegR

as required.
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Show that the maximum values of the electric field | E| for points on the
axis of a uniform ring of charge g and radius a occur at a distance
x = *xafV2.

If an electron is placed at the centre of the ring and is then displaced a
small distance x along the axis (x << a), show that it oscillates with a
frequency

= \/L
16w ega’ m

where m is the mass of the electron.

Solution

To find the electric field at a point on the axis, we can use the expression
for the field due to a point charge, and integrate round the ring as though
it were a series of point charges.

Consider an element of the ring of length dl, as shown in figure 105. It
contains a charge

dl

2ma

so at distance r it causes an electric field
dE="# , 1 __qd

2ma qd:rq,rz 8magyr?

di

Figure 105
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The field dE acts in the direction 6, and it can be resolved into a
component dE cos @ along the axis and a component dE sin 8
perpendicular to it. When we integrate round the whole ring, the
perpendicular components will cancel out by symmetry, so we need only
consider the components parallel to the axis. Thus

a
E= —g-—oosﬂr' dl = qcosﬂ'
8rtagyr? 0 dmegr?

Now we can express both cos 8 and r? in terms of x and a:

rt=a®+x?,
x X
ms 8 S—== D —————
ro (a+ xR
so we can write E as a function of x as follows:
E = L‘
4meg(a? + x) N2
The form of E(x) is sketched in figure 106.

Figure 106

In order to find the points where | E| reaches its maximum value we
differentiate it with respect to x and find where dE/dx = 0:

4E _ L([al + 2 = 3x7a? + xz]-s.-’z).
dx dwg

so the condition that dE/dx = 0 requires that

(@ + x?)™ = 3x%(a® + x?)"*,
i.e.a® + x?=3x2,

which gives x = +a/V2 as required.
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Considering the motion of an electron near the centre of the ring, we
can see that the field E varies approximately linearly with x:

E = L_
4m:°a’
Since the electron has charge —e, we can write the force acting upon it as
2
F= —_E_e_.x = m.é_}...
dnega’ dr?

We recognise this as the equation of simple harmonic motion, with
angular frequency w given by

=9

drgga’m
so using the relationship @ = 2zv gives

y= \/vf_q_u_
16 ga’m

as required.

Problem 124

An infinite line of charge A per unit length is parallel to the line of
intersection of two infinite conducting planes set at right angles to one
another, such that it is a distance a from one and b from the other. Show
that this arrangement is equivalent to four line charges so far as the
electric field in the quadrant containing the original line charge is
concerned. Hence calculate the charge induced per unit length on each
plate.

Solution

This problem is most easily solved by the method of images, in which the
electric field due to a charge near a conductor is calculated by introducing
‘image charges’ which, in combination with the original charge, produce a
field which satisfies the boundary condition that the resultant field is
normal to the surface of the conductor. For a plane conductor, the image
charge is equal in magnitude and opposite in sign to the real charge, and
is located in the ‘mirror image’ position on the other side of the
conductor.
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The geometry of the problem is shown in figure 107. In order to satisfy
the boundary condition on the field at the horizontal plane, we can
introduce an image line charge —A a distance a below it, and in order to
satisfy the boundary condition at the vertical plane each of these line
charges (real and image) must have an image to the left of the vertical
plane. Thus the arrangement of line charges shown in figure 108 will
produce the correct distribution of fields in the upper right-hand
quadrant.

b
+4
[ ]
v_l“_
Figure 107
1
)
1
b | b
i
-4 * : .+A.
a : a
)
B fo——m—————
a : a
1
+ie : ®-i
b b
Figure 108

In order to calculate the resulting distribution of charge on the plates,
let us first consider the effect of a single pair of line charges, as shown in
figure 109.

From Gauss's theorem, the field E; at a distance 7 from a line charge A
per unit length is 4/2meyr, so the resultant field at x is

2 2sing =22
2megr mggr?

downwards.
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E,
D

1
-le
Figure 109

‘We also know from Gauss’s theorem that if a plane conductor carries a
charge per unit area of o, the electric field away from the conductor is
0o/, 5o the local charge density on the plane at x must be —AD/rr?. The
charge per unit length (into the page) contained by a width dx of the
plane is thus
_)‘_Ddx = +_A_de'
mr? T
so the charge per unit length induced on the plane is proportional to the
angle subtended at the charge.
We can now use this result to calculate the charge per unit length
induced on each plate. Let us consider first the horizontal plate, as shown
in figure 110.

+A@®

Figure 110

The charge per unit length induced by the right-hand pair of line
charges on the horizontal plate is —A(7 — 8)/, and the charge per unit
length induced by the left-hand pair of line charges is +16/r. Thus the
total charge per unit length induced on this plate is —A + 246/r.
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Considering now the vertical plate, we can draw the diagram shown in
figure 111.

*>---.
+
F

e .4
Y " e
a)b H
=
+Ae | e
|
Figure 111

The charge per unit length induced by the upper pair of line charges is
—A(m/2 + 6)/m and the charge per unit length induced by the lower pair of
line charges is +A(7/2 — 8)/m, so the total charge per unit length induced
on this plate is —248/x.

Now the angle @ is given by arctan (a/b), so we can finally write the
charge per unit length induced on the horizontal plate (from which the
line charge is at a distance a) as

A(lnrctan a_ I),
g b
and the charge per unit length induced on the vertical plate (from which
the line charge is at a distance b) as

—.{(i arctan E-).
T b
[We can check that these results are plausible as follows:

Firstly, the total charge per unit length induced on both plates is equal to
-4, which is clearly correct since every field line originating on a charge
in the line charge must end on a charge induced on one of the plates.

Secondly, when a = b the angle 8 = /4 so the charges per unit length
induced on the plates are —A/2 on each, which is clearly correct by
symmetry,

Thirdly, when b tends to infinity the angle 6 tends to zero, the charge
per unit length on the horizontal plate tends to —2A and the charge per
unit length on the vertical plate (from which the line charge is infinitely
distant) tends to zero, which is also clearly correct.]
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Problem 125

A telephone wire of diameter 1 mm is suspended parallel to the ground at
a height of 10 m. What is the capacitance to ground of this wire per unit
length? (Assume the ground to be a conducting plane.)

Solution

The electric field distribution between the wire and the ground can be
found by the method of images.

The real situation is as shown on the left of figure 112, but the field
distribution between the wire and the ground will be reproduced by the
arrangement shown on the right of the figure.

DO OJ\
1 ..

Figure 112

We saw in problem 118 that the potential difference V between two
parallel wires of radius a separated by a distance d (>> a) is

v=2km,
a
where
K = Qf2zg,

one wire carrying a charge per unit length +Q and the other carrying a
charge per unit length — Q. By symmetry, the potential difference
between one of the wires and the horizontal symmetry plane must be half
of this value, so we can write the potential between the wire and the
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ground as

Vg = K];.i:i.mi: i.h-,i = ihﬂ,
a 2mgg a 2me (Df2) 2mey D

where D is the diameter of the wire. The capacitance per unit length is
thus
2mgy

4h
In—
D

Substituting & = 10m and D = 1 mm gives 5.2 X 1072 Fm™".

Near the surface of the Earth there is a downward-directed electric field
of 150 Vm™'. Using Gauss’s theorem, calculate the surface charge density
at the Earth’s surface. Assume the Earth is a conducting medium.

At 200 m above the surface of the Earth the downward field is
100 Vm~'. Calculate the average volume charge density in the Earth’s
atmosphere below 200 m.

Express your answers as an excess (or deficit) of electrons per unit area
or per unit volume.

Solution

Since the Earth is a conducting medium, there can be no electric field
below the surface. Let us apply Gauss’s theorem over a closed region of
space having parallel, vertical sides, a horizontal upper surface of area A
above the Earth’s surface, and a horizontal lower surface (also of area A)
below the Earth’s surface, as shown in figure 113.

Gm;u? surface of
area A (into page) charge q contained within
\ J field E Gaussian surface
B
+ + Earth's surface
1 1
field zero

Figure 113
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Since the electric field is vertical, the sides of the region contribute
nothing to IE - ds, and since the field is zero at the lower surface of the
region, it also contributes zero to the integral. Thus [ E-ds=—EA,
where E is the magnitude of the electric field. (The minus sign arises
from the fact that the vector area of the upper surface points upwards,
whereas E points downwards.) The total charge contained within the
region is therefore —g EA, so the charge per unit area is —g E. This
corresponds to an excess of electrons at a density of & E/e per unit area.
Taking E = 150 Vm™' gives an excess of 8.3 x 10° electrons per m? at the
Earth's surface.

200 m above the Earth's surface the downward field has fallen to
100 Vm™'. The apparent surface density of electrons as seen from a point
at this altitude is thus 5.5 % 10° m~2, so the volume between zero metres
and 200 metres must contain a deficit of electrons of 2.8 x 10° m™2.
Assuming that the charge is uniformly distributed, this corresponds to a
volum;: density of (2.8 x 10°/200) m™>, i.e. a deficit of 1.4 x 107 electrons
perm’.

[We can calculate this result directly by using the Maxwell equation

v-E=P£,
&
where p is the charge density. Since E, = =150 Vm™! when z = 0 and
—100 Vm~! when z = 200m, 3E,/3z = +0.25 Vm™? assuming that p is
constant. Since E, and E, are both zero, the value of V- E is
+0.25Vm™2, 50 p=2.2 x 1072Cm™>. This corresponds to a deficit of
electrons, with a volume density given by p/e as 1.4 x 10" m™* as before.]

Problem 127

A parallel-plate capacitor is formed by two identical plates, each of area
A, separated by a small distance d. One plate has a total charge Q and
the other Q'. Neglecting edge effects, calculate the charge per unit area
on each of the four metal surfaces and the electric field close to each
surface.

By setting Q' = — (@, obtain an expression for the capacitance C.

Solution

Let us assume that a charge q is on the inside of the plate with total
charge Q. By conservation of charge, the outside of this plate must carry
acharge Q — q. Since the field between the plates is uniform (we are
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Now we can assume that Ad/v << 1, which gives g = (Q — Q")/2. [We can
note in passing that this implies that the charges on the two outermost
surfaces of the capacitor are equal.] Thus the charge per unit area on each
surface, reading from left to right on the diagram, is

(Q +Q)24,
(Q - 024,
Q' - 0)R4,
(Q + Q)24,

and the fields are

Ey = (Q + Q)128A,
Ey = (Q ~ 024,
Es=(Q + Q)26A.

If Q' = —Q (the normal arrangement for a capacitor), the external fields
E, and E; are zero and the internal field E; = Q/gyA. The potential
difference across the gap d is thus

=04
BA’
and since the capacitance C is defined by Q = CV/, this gives C = g4/d.

Problem 128

A 15 nF capacitor is connected across a 70 V battery. How much work
must be done in order to double the plate separation (a) with the battery
connected, and (b) with it disconnected?

Solution

(a) Let us write C, for the initial capacitance of the capacitor, and V for
the e.m.f. of the battery. Since we know that the capacitance of a
parallel-plate capacitor is inversely proportional to the separation of the
plates, the final capacitance must be Cy/2. The initial energy stored by
the capacitor is CyV'?/2, and the final energy stored is CoV?/4 if the
battery is connected (so that the potential difference across the capacitor
remains at V). Thus the energy stored by the capacitor has decreased by
CoV?/4. However, the charge stored in the capacitor must change from
CoV to CyV/2, so an amount of charge C,V//2 must be pushed
‘backwards’ through the battery, increasing its potential energy by
CyV?2/2. The increase in the total energy of the system, and thus the work
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which must be done on it, is thus Cy¥2/4. Substituting the values
Co=15nFand V =70V gives 18 ul.

(b) If the battery is disconnected, the charge on the capacitor must
remain constant while the capacitance is being changed. This will change
the potential difference across the capacitor. Since the relationship
between the charge Q, the capacitance C and the potential difference V
is @ = CV, halving the capacitance must double the potential difference.
Thus the energy stored by the capacitor after the plates have been
separated must be }Co/2)(2V)? = CoV2, i.e. an increase of CoV'2/2.
Since the battery is disconnected this is the only energy term, so the work
done on the system must be CoV'2/2 = 37 ul.

An air-spaced parallel-plate capacitor has square plates of side /
separated by a distance . Write down an expression for its capacitance C.

A square block of dielectric of side {, thickness ¢ and relative
permittivity g, is now inserted so as to completely fill the space between
the plates. Calculate the change in the stored energy of the system:

(i) if the plates have a constant charge Q,
(i) if a constant potential difference V is maintained between the
plates by means of a battery.

With the battery still connected between the plates, the block of dielectric
is withdrawn in a direction parallel to one side of the plates until only a
length x remains between the plates (see figure 115). Find the magnitude
and direction of the force which acts on the block when it is in this
position. (Ignore edge effects throughout this problem.)

me

Figure 115

Solution

The capacitance C of the air-spaced capacitor is g/2/t.
The capacitance C' of the capacitor when the gap is entirely filled with
dielectric of relative permittivity & is gq&.1%/1.
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(i) The energy stored by a capacitor of capacitance C carrying a charge
Q is 0%/2C, so the energy change on inserting the dielectric when Q is
held constant must be

2 2
AU = Q_(L - L) = &(l - 1)_
2\C ¢/ 2g0\g

(i) The energy stored by a capacitor of capacitance C charged to a
potential difference V is V2C/2, so the change in this energy on inserting
the dielectric when V is held constant must be

Vz szglz
—(C'-0C)= g —1).

2 ( 0) Y ( )
However, the charge stored on the capacitor increases by (C' — C)V so
the energy stored by the battery must decrease by (C' — C)V2. The
change in the total energy stored by the system is thus —(C' — C)Vi2,s0
We can write

Vig,
2
To find the force on the dielectric slab when it is partially inserted, it is

simplest to find an expression for the total energy of the system and then

to differentiate it. The system consists, in effect, of two capacitors
connected in parallel across a battery of potential V. The first of these
capacitors is air-spaced and has an area of /(/ — x) and a separation ¢, so
its capacitance is

C, = gl(I - x)/t.
The energy stored in its electric field is thus

C1V22 = gl(l — x)V?/21.
The second capacitor is filled with the dielectric medium and has an area
of Ix and a separation ¢, so its capacitance is

C, = geIx/t.
The energy stored in its electric field is

G VY2 = gedxV? /2,
so the total energy stored in the electric fields is

&lV?

2t

As before, however, we must also consider the energy stored in the
battery. The total charge withdrawn from the battery is C,V + C;V, so

12
AU = - (& = 1).

(I = x + gx).
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the energy stored in it has decreased by (C, + C;)V?, which is
numerically twice the value of the energy stored in the electric fields. The
total energy of the system can thus be written as

2
U=-2Y"0 ).
2t

Differentiating this with respect to x gives
v _ _alv?

a2
so the magnitude of the force is &y(¢, — 1){V?/21. Since U decreases as x
increases, the force must act in the direction tending to increase x. The
force is thus inwards, i.e. tending to move the dielectric further between

the plates.

Problem 130

Estimate the capacitance of a thundercloud. If the breakdown electric
field in air is 3 x 10° Vm™!, what charge flows down a lightning bolt?

(e = 1),

Solution

A reasonable guess for the dimensions of a thundercloud might be a 1-km
cube. If all the charge is separated to opposite faces of the cloud, it
behaves like a parallel-plate capacitor with an area of 105m? and a
separation of 10° m. The formula C = gyA/d gives the capacitance as
8.85 x 10~°F, but this precision is clearly not justified so we could
estimate the capacitance as =108 F.

The charge stored by a capacitor is given by CV, where V is the
potential difference across the plates. If the field is 3 X 10° V™! and the
separation of the ‘plates’ is 10° m, the potential difference is 3 x 10° V,
giving a stored charge of about 30 C.

[A lightning discharge takes typically 1 ms, so the current is about
30kA.}

An air-filled coaxial cable consists of a metal wire of diameter d
surrounded by a thin metal sheath of diameter D. When the wire is
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charged, deduce expressions for the electric field E(r) and electric
potential V(r) at a radial distance r (d/2 < r < D/2) from the central
axis. Hence deduce the capacitance per unit length of the cable.

The breakdown field strength of airis 3MVm™. 1f 4 = 1 mm and
D = 1cm, calculate the potential difference between wire and sheath at
which electrical breakdown occurs.

Solution

By symmetry, the electric field is directed radially and depends only on
distance from the axis. Let us assume that the inner wire carries a charge
per unit length o, and use Gauss's theorem to calculate the electric field
E.

If we construct a Gaussian surface which is a cylinder of radius r and
length I, coaxial with the capacitor (as shown in figure 116), the charge
contained within it is ol. The surface integral IE « ds is 2nrlE, since the
field E is everywhere constant and normal to the curved surface. Thus, by
Gauss's theorem, 27HE = allg, so

a

E =
(r) o

Figure 116
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Now E = —VV, but since E is radial and varies only with r this simplifies
to E = —dV/dr. Thus the potential V can be found by integrating E(r)
with respect to r. If we call the potential of the inner wire Vj, we have

1 2r
V() - Vo= ——2 —d-——l( )
) ° 2:reuJ.m r 2ney d

Thus

2r
V(r) Vo -2';-8:'!1( 4 )

We can use this expression to evaluate the voltage between the
capacitor's conductors by setting r = D/2, giving a potential difference of

Ve—%In (2)_
d

Since the charge Q on the capacitor is o/, and the capacitance C is

defined by Q = CV/, the capacitance per unit length is

_2me

In(D/d)’
The maximum electric field occurs where r is minimum, i.e. at r = d/2. If
we set the field at r = d/2 equal to the breakdown field E, our
expression for E(r) shows that the charge per unit length o on the
capacitor must be Eymgod. Substituting this value of o into our expression
for the potential difference V across the capacitor gives

V= ﬂ In (2) .

2 d

Taking Ey, =3 x 10°Vm™,d = 1mmand D = 1 cm gives V = 3.45kV.

A capacitor consists of two air-spaced concentric cylinders. The outer of
radius b is fixed, and the inner is of radius a. If breakdown of air occurs
at field strengths greater than E}, show that the inner cylinder should
have:
(a) radius a = b/e if the potential of the inner cylinder is to be a
maximum;
(b) radius a = b/Ve if the energy per unit length of the system is to be
maximum, where e is the base of natural logarithms.
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Solution

(a) From problem 131, we know that the potential difference V when the
maximum field has its breakdown value is given by

V = Epaln (—!?—)
a

To find the maximum value of V' if b is fixed, we differentiate this
expression with respect to a and set dV/da = 0:

- epl2]-)

so dV /da = 0 implies that In (b/a) = 1, therefore b/a = e ora = bfe as
required.

(b) Again using a result from problem 131, we know that if the charge
per unit length on the inner cylinder is o, the field is

E=-2
2mEgr

The maximum field occurs at r = a, so if we set this maximum field to be
Ey, we can write

aEb
. .

£=

Now the energy per unit volume of an electric field E is g E2/2, and the
volume of a cylindrical shell of radius r, thickness dr and length L is
2narL dr, so the total energy U stored in a length L of the capacitor is

U = 22nLa?E} I T _ eaLa? B A = epLa?Edin (i).

2 ar a
[We could also have derived this result using U = CV%/2 and the
expression for the capacitance obtained in problem 131.] Differentiating
this with respect to a to find the maximum value of the energy per unit

length gives
du b
— = guLEy|2al )
o gom ‘,( a n[ ] a)

so dU/da = 0 implies that In (b/a) = 1/2, therefore b/a = Ve or
a = b/Ve as required.
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L
dip

R

Figure 117

If we choose our loop to be a circle of radius r (> R) centred on the
rod’s axis, it is clear that IB +dl = 2m Br. The current enclosed by the loop
is I, so we have B = ugl/2nr for r > R.

For a point inside the rod (r < R), we can again construct a circular
loop centred on the rod's axis, and the loop integral will still be 27 Br.
However, the current encircled by the loop will be less in the ratio of the
loop’s area to the rod’s cross section, i.e. it will be I(r/R)?. Thus for
r< R,wehave B= m!rﬂrrRz. We can thus sketch B(r) as shown in
figure 118.

Hol __.B
2nR

Figure 118

Problem 135

A coaxial cable consists of two thin coaxial cylinders electrically
connected at one end; an inner cylindrical conducting tube of radius a
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carrying a steady current I which is screened by an outer cylindrical
conducting sheath of radius b which provides a return path. There is no
dielectric medium present.

Using Ampére’s theorem to derive the total magnetic energy stored in
the space between the conductors, show that the inductance of a length [
of the cable is

2 a
If this cable (@ = 5mm, b = 10 mm, ! = 1000 m) is now employed in a
(resistanceless) LC circuit containing a capacitance C = 1000 uF,
determine the period of oscillations (neglect the capacitance of the cable
itself).

Solution

We showed in problem 134 that the magnetic field at a radial distance r
from the axis of a cylinder carrying a current [ is
B=tol
2nr
Now the energy stored per unit volume of a magnetic field B is B?/2u, so
the total magnetic energy stored in a length [ of this cable is

b 2
E= r( ) L oantar -ﬂfi_"“”l (ﬁ).
2ar ar Ja r 4 a

We also know that the magnetic energy stored by an inductance L
carrying a current [ is LI%/2, so that equating these two expressions gives

L=ty (ﬁ)
2n a
as required.

Substituting the dimensions of the cable into this expression, we find
that it has an inductance of 1.38 x 10~* H. [In fact, this will be an
underestimate of the inductance, because the magnetic fields within the
conductors are not zero as we saw in problem 134. If we assume that the
current in the inner conductor is uniformly distributed, and that the
magnetic permeability of the conductor is unity, the field within it will
add ppl/8x to the inductance, which is not insignificant.]

‘We recall that the resonant frequency of an LC circuit is given by
o = 1/LC, so @ = 2.69 x 10° s™! and the period of oscillation
is 27r/w = 2.33 ms.
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[We can check that it is reasonable to neglect the capacitance of the
cable itself by using the result from problem 131 that the capacitance per
unit length is

2mey
In(b/a)’
Substituting the dimension of the cable into this expression gives a
capacitance per unit length of 8.0 x 107" Fm™, so that the capacitance

of a cable 1000 m long is 0.08 uF, which is clearly negligible compared
with the 1000 uF capacitor connected externally.]

A long straight copper wire, of circular cross section, contains n
conduction electrons per unit volume, each of charge q. Show that the
current / in the wire is given by

I= nqmmz.

where v is the drift velocity and a is the radius of the wire.

At a radial distance r from the axis of the wire, what is the direction of
the magnetic field B due to the current I'? Assuming that the magnitude
of the field is B = yo!2nr (r = a), obtain an expression for the Lorentz
force F on an electron moving with the drift velocity at the surface of the
wire.

If I = 10 A and a = 0.5 mm, calculate the magnitude of (a) the drift
velocity and (b) the force, given that for copper, n = 8.5 x 10® m™2,

Solution

The current [ in the wire is defined as the rate at which charge crosses a
plane perpendicular to the direction of the current. Mathematically,

I:Q-QQ
dt  dx dt’

i.e. the current is given by the product of the charge per unit length of the
wire with the mean velocity of the charge carriers. Clearly, dQ/dx = nqA
where n is the number of charge carriers per unit volume, g is their
charge and A is the cross-sectional area of the wire. Thus I = nguna® as
required.

Using Fleming's right-hand rule, the direction of the field at X (see
figure 119) is out of the page if the conventional current (flow of positive
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0O ; }.f_.

Figure 119

charge) is to the right as shown. The electron drift is to the left since the
electrons are negatively charged. The Lorentz force F on a particle of
charge g moving with velocity v in a magnetic field B is

F=gvxB,

so the Lorentz force on an electron acts inwards. The magnitude of the
magnetic force on an electron at the surface of the wire is
I r
F=B¢;w=”‘J q I __ .
2ma nqrm’ 2n’na’
IfI=10A,a=0.5mmand n = 8.5 x 10%¥ m™3, we find
v=94%10""ms'and F=6.0 x 107N,

Two coaxial plane coils, each of # turns of radius a, are separated by a
distance a. Calculate the magnetic field on the axis at the point midway
between them when a current J flows in the same sense through each
coil.

Electrons in a colour television tube are accelerated through a potential
difference of 25 kV and then deflected by 45° in the magnetic field
between the two coils described above. If a is 100 mm and the maximum
current available for the coils is 2 A, estimate the number of turns which
the coils must have.

Solution

To find the magnetic field on the axis of a circular coil, at a distance x
from the plane of the coil, we can use the Biot-Savart law:

dlxr

El

I
dB:&_
4r 7
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where dB is the contribution to the magnetic field from a current /
flowing in an element of wire of vector length dl whose position vector is
r relative to the point at which we are calculating the field (see figure
120).

dl

Figure 120

Since dl and r are mutually perpendicular, their cross product dl X r
has magnitude r d/, and its direction must be in the plane of the triangle
(with sides a, r and x) and perpendicular to the vector r. By symmetry
we can see that, when we integrate over the whole loop, only the
components of B which lie along the axis will not cancel out. Thus we can
write

L L
4nr?

Integrating round the whole coil involves / running from zero to 2mnl
(since there are n turns each of length 27a), so the total field is

B= pol2mna sin8 = ponla? )
4xr? 2a? + x2)P2
The field at x = a/2 (midway between the coils) is thus
ponl
2a(5/4)’
so the field due to both coils together is
4\ yonl
(3) “a

The constant (4/5)*? has a value of 0.716.
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If we assume that the magnetic field strength between the deflecting
coils has a constant value B, given by the expression we have just
calculated, everywhere between the coils and is zero outside this region,
the electrons will describe a circular path in the magnetic field, with an
angular velocity @ = eB/m.

When the electrons have travelled a distance x = a (measured parallel
to their original direction, starting from the point at which they enter the
field), they have been deflected through an angle of 45° = #/4 radians as
shown in figure 121. The relationship between a and the radius 7 of the
circular path is thus

a = rsin(n/4) = r/V2,

S0
r=av2.
- '/ o
path of electrons -
E :
‘—‘-‘—‘L—‘-
Figure 121

Now if the electrons are travelling at speed v (which is unchanged by the
magnetic field), the relationship between v, r and w is

v=rw,

so we must have

V2 aeB
U= —
m
Putting
2eV
R

m
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where V' is the accelerating voltage, and

B =0716""

a

and rearranging to make n the subject, gives

Mol e

n

We can now substitute / =2 A and V = 25kV (the radius of the coils
does not matter) to obtain n = 210. Since our assumption that the field is
zero outside the coils is not a very accurate one, we can state the answer
as n = 200.

[The arrangement of two equal coils separated by a distance equal to
their radii is known as Helmholtz coils. It produces a ficld on the axis
between the coils which is nearly uniform, as we have assumed. Using our
expression for the magnetic field on the axis of a single coil, we can
calculate the variation of the field due to two coils, as shown in figure
122.

combined magnetic ficld

position of position of
first coil second coil

Figure 122

It can be seen that our assumption that the field is uniform between the
coils is a very reasonable one. The assumption that the field is zero
outside the region between the coils is less reasonable. ]
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Problem 138

Use Ampgere's law to find the magnetic field strength well inside a very
long solenoid of length /, cross-sectional area A and total number of
turns N, carrying current [. Show that the magnetic field strength at the
centre of the solenoid is approximately twice the value at each end, on
the axis of the solenoid.

If the solenoid is long enough for these ‘end effects’ to be completely
neglected, calculate its self-inductance L. How much work is done in
establishing a current /7?7

Solution

Consider a side view of the solenoid, as shown in figure 123. Let us
assume that the magnetic field inside the solenoid has a magnitude B and
a direction which is parallel to the axis, and that the magnetic field
outside the solenoid is zero. If we construct a loop whose length is x in
the direction of the solenoid axis, as shown by the dashed line, the loop
will enclose Nx/I turns and therefore encircle a current of Nix/I. The line
integral IB + dl will have a value of Bx, so Ampere’s theorem gives

Bx = B0 }:”x

and thus B = yyNI/I.

B —

N tums

Figure 123

To find the magnetic field strength at the ends of the solenoid, on the
axis, we can use the Biot—Savart law to find the field at a general position
inside the solenoid, which we will assume to have a circular cross-section
of radius a. Let us consider the field at a distance x from an element of
the solenoid of length dx, as shown in figure 124,

The current carried by the element is clearly N/ dx/I, so the magnetic
field at x has a direction along the solenoid axis (by symmetry) and a
magnitude dB equal to

YoNIdx 210 sin 8.
4nl r?
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Figure 124

We can write this in terms of a and 8 by using

r = afsin 8,
x = aftan 6,

dx = —a dBfsin? 8.
On substitution of these values, we obtain

NI

dB = - Gno de.

This can now be integrated to give the total field B in the solenoid:

N
= ""2—"'(005 6, — cos 6),

where 6, and 6, are the values of 8 at the two ends of the solenoid, as
seen from the point at which we wish to determine the field strength, as
shown in figure 125.

Figure 125

For a point well inside a very long solenoid, 8 clearly ranges from 0 to
@, which gives the result B = o NI/l that we obtained earlier. For a point
at one end of the solenoid, 8 ranges from u1/2 to @, which gives a value
half as large.

[There is a much easier way of deriving this result for the field strength
at the ends of the solenoid, although it will not give us an expression for
B at a general point. We note that the expression B = NI/l for the
field well inside a long solenoid is proportional to the number of turns per
unit length. If we take an infinitely long solenoid and chop it into two
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halves, we will produce two solenoids which are essentially identical to
the original one, i.e. still infinite in length, and, since they will have the
same number of turns per unit length, the distribution of the magnetic
field inside them will be the same as in the original solenoid. Since the
middle of the original solenoid is converted into two ends by this process,
we can see that the field strength at the middle must be equal to twice the
field strength at the ends.]

If the solenoid is long enough to neglect the ‘end effects’ (i.e. much
longer than its diameter so that we can assume the magnetic field to be
constant along the solenoid), the total flux linked is

2
® = BNA = iﬂ%ﬂ,
and since @ = LI where L is the self-inductance, we obtain
L=maNAJL.
To find the work done in establishing a current / in the inductor, we
can use the result that the energy per unit volume of a magnetic field B is
B%/2u5 to calculate the total energy U as

2 2472
_L(’""N!) Al = waN*AI .
2\ ! 2!
This can be rewritten in terms of the self-inductance L as U = LI*/2.
[We can derive this result more generally as follows: If the current in
the inductor is changing, the induced e.m.f. € is given by
dr dt

The rate of doing work on the system, dW /dt, is given by —%1, so we
have

dt dt 2dt
Integrating from / = 0 to some current [, we thus find that W = LI/,
Since U =0 when I = 0, the work done on the system, W, must be equal
to the total energy of the magnetic field.]

AW _ Al L‘i(ui)_

A metallic ring of cross-section 2.5 em?, mean radius 40 cm and relative
permeability 1500 is wound uniformly with 3000 turns of wire. If a current
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of 1.6 A passes through the wire, find the mean B field and magnetisation
in the ring.

Solution

In the presence of a magnetic medium, Ampeére’s circuital theorem
becomes

Lme=L

where H is the magnetic intensity. The magnetic intensity is related to the
magnetic flux density B and the magnetisation (magnetic dipole per unit
volume) M by

H=2_Mm
Ho
and, in an isotropic medium, B and H are related by
B = upoH,

where u is the relative permeability. Combining these two expressions,
we can write M in terms of H as

M= (u- 1H.

If we put N for the number of turns of wire and [ for the current flowing
in it, it is clear that the total current encircling the ring is NI. Ampére's
circuital theorem shows that this is equal to 2rrH where r is the radius of
the ring, so we must have

=N

2nr
The mean B field is thus

NI
2mr

Substituting = 1500, N = 3000, I = 1.6 A and r = 0.40 m gives
B = 3.6 T. The mean magnetisation M is

(u—1)NI

2mr .

and substitution of the values gives M = 2.9 x 10° Am™!, [The area of
the ring is not needed in the solution.]
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constant throughout the ring. We can thus abandon the subscripts, and
write

H(L - d) + 24 — g,
Ho

where H is the magnetic intensity in the ring and B is the flux density in
the ring and in the gap.

The solution we are looking for is the value of B which simultaneously
satisfies this relation and the B( H) relation for the material of the ring. A
graph of the B( H) relation has the form of part of an ellipse, or if we
change the scales suitably, a circle (see figure 127).

Figure 127

The circle has radius K, and since the given relation between B and H
applies only when the fields are antiparallel, only those two quadrants
have been drawn. The straight line represents the relation

H(L-d)+22=0
Ho
and it makes an angle 6 with the B-axis where
tan@ = --g—-—
L-d
By inspection of the diagram, we can see that the value of B must be

+ K cos 8. Since
1

00519=—-—'
1+ tan®@
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circuit is formed by a metal rod which slides along the rails with constant
velocity v such that its position at time ¢ is given by x = vt, There is a
constant magnetic field B perpendicular to the plane of the rails.
Neglecting the resistance of the rails and the rod and the self-inductance
of the circuit:
(a) calculate the current induced in the circuit;
(b) calculate the external force required to maintain steady motion of
the rod;
(c) calculate the power Py supplied to maintain the steady motion of
the rod;
(d) compare P, with the power P; dissipated in the resistor and
comment on the result.

Solution

Figure 128 shows the arrangement.

(a) The magnetic flux linked by the circuit is BLvt, so the induced
e.m.f. is the rate of change of flux linked, or BLv. Thus the current
flowing in the circuit must be / = BLv/R.

(b) The force acting on a straight rod of length L carrying a current [/
perpendicular to a magnetic field B is F = BIL. Substitution of our
expression for I gives F = B2Lv/R. Lenz's law states that the force acts
to oppose the motion, so the force is in the —x direction.

{c) The power Py required to maintain the rod in steady motion at
velocity v is Fv, so P, = B2L*v¥/R.

(d) The power dissipated in a resistor R carrying a current [ is I°R.
Substitution of our expression for [ gives P, = B2 L%?*/R, which is
identical to our expression for P;. These two terms must be equal, since
Py is the rate at which work is done on the system, and we know that the
kinetic energy of the system is constant. All the work put in must thus be
dissipated, and the only available mechanism for dissipation is in the
resistor.

L |

-—

vt
Figure 128
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Problem 143

A vertical square loop of copper wire with sides of length 10 cm is falling
as shown from a region where the magnetic field is horizontal and of
magnitude 1.2 T into a region where the field is zero, as shown in figure
129. The wire has a diameter of 1 mm.
(i) Calculate the magnitude of the current round the loop in terms of
the velocity v of fall, and indicate its sense.
(ii) What is the magnetic force acting on the loop, again expressed in
terms of v?
(iii) If the velocity of fall reaches a steady value whilst the upper arm
of the circuit remains in the field, calculate this velocity.
(The resistivity of copper is 1.7 X 1078 Qm); the density is 8960 kgm™3.)

B=12T
B=0
Figure 129
Solution

Let us write a for the length of the sides of the square, d for the diameter
of the wire, p, for the resistivity of copper and p,, for its density.

(i) The rate at which the flux linked by the loop is changing is Bav, so
this is the magnitude of the e.m.f, E in the coil. The resistance of the
loop is given by

ndf2}  ad
so the current [ is given by E/R as

_ Bavwd® _ nBod’

16p,a 16p,
Since the magnetic field is directed into the page, the current in the upper
arm of the loop must flow to the right in order that the force on it should
act upwards (Lenz's law), so the current must flow clockwise round the
loop.

1



262 Electromagnetism

(ii) The upper arm of the loop experiences a force Bla upwards. The
two vertical arms experience equal and opposite forces which cancel out,
and the lower arm experiences no force since it is not in the magnetic
field, so the total force F is given by

Fe= nB*vd’a
16p,
and it acts upwards.

(iii) If the velocity reaches a steady value, the upward force must
balance the weight of the loop which is

pmdan(df2)’g = npudag.
Equating the two expressions, and rearranging to make v the subject,
gives
p = 160cPm8
B
Using the values given, and taking g = 9.81 ms™?, gives v = 17mms™!,

Problem 144

In a certain region there are a uniform electric field E and a uniform
magnetic field B both directed along the z-axis. A particle of charge Q
and mass m is injected at time ¢ = 0 with a velocity v, along the x-axis.
Find the velocity of the particle at time r. What would be the motion of
the particle if the initial velocity v, were parallel to the z-axis?

Solution

The Lorentz force acting on a particle of charge Q and velocity v in an
electric field E and a magnetic field B is

F=Q( +vxB).

Here we have E = (0, 0, E) and B = (0, 0, B). if v = (v,, v,, v.), the
force is

F = Q(v,B, —v.B, E).
Looking first at the z-component (because it is the simplest), we have
du: = QFE 50 QE‘
dt m m
since v, =0 when t = 0.

U, =
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Now considering the motion in the x- and y-directions, we have

dv, _ QBv, and dvy, _ _QBo, _

dt m di m
This is a pair of coupled differential equations. We can ‘decouple’ the
equations by differentiating one of them with respect to time and
substituting the result into the other equation. This gives

2 22 2 12
d*v, =—QBu,and-5f-”—"-=+QB
de? m? dr? m?

These are equations of simple harmonic motion, with general solutions

Uy.

v, = acoswt + bsinwr,
v, = ccoswt + dsinwt,
where w = QE
m
Now at time ¢ = 0, v, = pg and v, = 0. Also, dv,/dt =0 and
dv,/dt = —QBuvg/m = —wvy (using the coupled differential equations for
dv,/dt and dv,/dt). Thus

a=vyb=0,
c=0,d=—-up,.
We can thus finally write the velocity at time ¢ as
V= (uuoosgﬂ. —ppsin %. %)
m m m

[This describes circular motion in the xy-plane combined with uniform
acceleration in the z-direction.]

If the initial velocity were in the z-direction, then at t = 0 we have
vy = vy = dv,fdt = dv,/dt =0. Thus a = b = ¢ = d = 0, and the particle
merely accelerates in the z-direction with v, = vg + QEt/m.

Problem 145

State the Biot-Savart law which gives the magnetic field B at a distance r
from a current element. Hence obtain an expression for the magnetic
field B due to a point charge Q moving with constant velocity v
(assumed non-relativistic).

Point charges Q and Q' are constrained to move along the x- and
y-axes, respectively, with the same uniform speed v. At time t = 0 both
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charges are at the origin. At time ¢ calculate the Lorentz force F on Q'
due to the magnetic field of Q.

Solution

The Biot-Savart law may be written as

dB = .uol'dlxr'
4 5

where dB is the contribution to the magnetic field due to a current /
flowing in an element of a (notional) wire of length dl located at position
r. If we write / = dQ/dt and v = dlfdt, we derive the expression for the
field B due to a charge O moving at velocity v:

- Qv xr

4 B
Since both charges start at the origin at t = 0, we may write the position
ry of the charge Q as v,¢, and the position r; of the charge Q' as vy¢. The

vector displacement r of Q' with respect to Q is then (v; — v,)1, and the
magnetic field at Q' due to Q is thus

HQ vy X (v3 — vy)
a2y -vf

The Lorentz force on a charge Q' moving at velocity v, in a magnetic
field B is Q'v; X B, so the force F actingon Q' is
¥ = Q0" va X [vy X (v2 - "!)].
4?‘2 I"z - ‘fll3
Since v; X v, = 0, this can be simplified to
F = H0QQ" ¥2 X (v1 X v3)
411'!2 [\'2 - Yila
Taking vy = (v, 0, 0) and v; = (0, v, 0) gives

v; X v3 = (0, 0, v?),
vy X (v X v:)mz (v*,0,0) and

|V1 — Vzl“ =2 IJJ.

The Lorentz force is thus
HQQ’
8V2m?

parallel to the x-axis.
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Problem 146

What is the mass of singly charged ions which follow a circular path of
radius 0.41 m when placed in a transverse magnetic field of 0.223 T, the
initial energy being 100 keV? What electric field must be superimposed if
the ions are to pass undeflected through the magnetic field?

Solution

If a charged particle of mass m and charge g moves in a magnetic field B,
the force on the particle is perpendicular to its velocity. The field thus
does no work on the particle, and the particle’s kinetic energy (and hence
speed v) will remain constant. We can thus equate the magnetic force
Bgqu with the centripetal force mv?/r, where r is the radius of curvature
of the particle’s path, to give
Bar

.
Now the particle's kinetic energy Ey = mv?/2, so we can put

\/2& \/zw
D= —_— = —_—
m m

where V is the kinetic energy measured in electron-volts. Substituting
into our expression for m, and rearranging to make /m the subject, gives

qu r
T2ev

Taking g = e (for singly charged ions), and substituting the given values,
yields m = 6.7 x 107% kg (i.e. they must be helium ions).

If an electric field E is superimposed such that the ions are
undeflected, the electric force gE must balance the magnetic force Bgu,
so that E = v B. Substitution of our value for m into the expression

\/zw
v = —_
m

gives v =2.2 X 10°ms™!, so that E =4.9 x 10° Vm ™!

Problem 147

In a helium dilution refrigerator *He and *He are mixed in a special
chamber to obtain extremely low temperatures. A Bainbridge mass
spectrometer is used to measure the ratio of the two isotopes.

m=

m=



266 Electromagnetism

(a) If the spectrometer were used with 100 Vem™! between the plates
and a magnetic field of 0.2 T, what would be the speed of an ion that can
pass through the velocity filter?

(b) If the velocity-filter exit slit were 1 mm wide, could this machine
resolve the two isotopes?

Solution

Figure 130 shows the arrangement of a Bainbridge mass spectrometer.

positive ions

(a) Within the velocity selector (the region containing both E and B
fields), a positive ion of charge g and speed v will experience a force Eq
to the left as a result of the electric field, and a force Bqu to the right as a
result of the magnetic field. The ions that travel in a straight line (and so
emerge from the velocity selector) must therefore have v = E/B. Taking
E=10'Vm 'and B=02Tgivesv =5x 10°ms™".

(b) Within the region containing only a magnetic field, the ions will be
deflected into a circular arc of radius r. Equating the magnetic force Bquv
to the centripetal force mv?/r gives the radius of the arc as

muv

F=—

Bq
and clearly the sideways deflexion of an ion is given by 2r. The deflexion
of a singly charged *He ion is thus
2x3x1.66 x 107% x 5 x 10*
0.2 X 1.60 x 107"

m = 15.6 mm
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and the deflexion of a singly charged “He ion will be 4/3 times as large, or
20.8 mm. The separation between the ends of the two trajectories will
thus be 5.2 mm. The exit slit width of 1 mm will broaden the two
trajectories into bands of width 1 mm, so they will not overlap and the
isotopes will be resolved.

Problem 148

Two long concentric cylindrical conductors of radii a and b (b < a) are
maintained at a potential difference V' and carry equal and opposite
currents . Show that an electron with a particular velocity u parallel to
the axis may travel undeviated in the evacuated region between the
conductors, and calculate 4 when @ = 50 mm, b = 2.0mm, V = 50V and
I'=100A.

It is also possible for the electron to travel in a helical path. By
regarding such a path as the combination of a circular motion
perpendicular to the axis with a steady velocity parallel to the axis,
indicate without detailed mathematics how this comes about.

Solution

From problem 131, we know that the electric field E in the region
between the conductors varies with the distance r from the axis as

E =

2nggr '
where o is the charge per unit length on the inner cylinder, and we also
know that the potential difference V between the conductors is given by

v=-1n (1)

2me, b
Combining these expressions to eliminate o gives
E= 4

From problem 134 we know that the magnetic field B varies with r as



268 Electromagnetism

Let us consider a cross-section of the system, as shown in figure 131.

If the inner cylinder is at a positive potential with respect to the outer
cylinder, the electric field E is directed radially outwards. If we assume
that current flows into the page along the inner cylinder and out of the
page along the outer cylinder, the magnetic field will be directed
clockwise as shown.

[2)

Figure 131

Consider an electron travelling with velocity u« into the page, at a radial
distance r from the axis of the cylinders. It experiences an electric force
Ee radially inwards, and a magnetic force Beu radially outwards. In order
for the electron to be undeviated, these forces must balance so that
u = E/B, Substituting our expressions for E and B gives

VvV _
_rin(3) _ 2V

Mol a
2nr ol ln ( b )

This expression is independent of r, so the electron’s position does not

matter, Taking the values given in the problem, the velocity of an

undeflected electron is 7.8 X 10° ms™".

If the electron is to describe a helical path about the axis, the net force
acting upon it must be of constant magnitude, and directed radially
inwards (and this is clearly possible given the orientations of the fields).
This will provide the necessary centripetal acceleration for the circular
component of the motion, while the fact that the force has no component
parallel to the axis will give the electron a steady component of velocity
parallel to the axis.
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Problem 149

Two parallel rectangular superconducting plates of length /, width b and
separation a (I > b >> a) are joined at each end to form a one-turn coil of
negligible resistance. What is its self-inductance? How much energy is
stored in the magnetic field when a steady current [ flows?

The separation a increases by a small amount 8a. Calculate the various
energy changes (a) when the coil includes in its circuit a lossless battery
which maintains a constant current I, and (b) when the circuit consists of
the coil alone. Deduce the magnitude and direction of the force per unit
area between the two plates.

Solution

The set-up is shown in figure 132.

v

*4——~3—r

Figure 132

The magnetic field is perpendicular to the current in the plates, so we
can draw a cross-section of the system as shown in figure 133.

b
<

* —ee current [ into page
ar--€—B8-,
* y——————_1 cument ] out of page

Figure 133

If we assume that the magnetic field strength B is constant between the
plates, and zero outside them, application of Ampere's theorem round



270 Electromagnetism

the dashed curve gives

= Wl
b
To calculate the flux linked by the coil we must multiply this flux density
by the area of the coil measured perpendicularly to the direction of B.
This area is clearly la, so the flux linked by the circuit is

@:&,‘

b
and the self-inductance of the coil is given by ®/1, so L = pyla/b.
The energy U stored by the magnetic field is given, in general, by
U = LI*/2. Substituting our expression for the self-inductance L gives
Hola I?
2

(a) If the self-inductance is changed without changing the current, the
change in the energy stored by the magnetic field is clearly

U=

2
SU = wl'l
2b

(b) If the circuit contains only the coil, no e.m.f{. is supplied so there can
be no change in the flux linked by the coil, and so the current will change
as the inductance changes. We can rewrite the energy stored in terms of
the flux linked as

@%b

2ula’

so the change in U when a is changed by da is given by
b

2uyla?

U=

oU =~ da.

Rewriting this in terms of the current I gives

2
SU = —M
2b

Since this is negative, the change is energetically favourable so the forces
on the plates must be outwards (repulsive). The force F is —dU/da, so
the force per unit area on each plate is

w1l

26 b 2
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A circular parallel-plate capacitor of radius a and plate separation d is
connected in series with a resistor R and a switch, initially open, to a
constant voltage source V. The switch is closed at time ¢ = 0. Assuming
that the charging time of the capacitor, t = CR, is very long compared
with a/c and that d <« a (C is the capacitance and c is the velocity of
light), find an expression for the displacement current density as a
function of time. Obtain an expression for the magnetic flux density B as
a function of time and of position between the capacitor plates.

Solution

The charge on the capacitor plates at time 1 is given by
Q = CVo(1 — exp[~t/1]),

so the charge density on the plates is

CcV,
—2(1 - exp[~t/1]),

A
where A = ma? is the area of the plates. By Gauss's theorem the charge
density is equal to & E, where E is the electric field between the plates,
and since the displacement current density jq is equal to the rate of
change of g E we must have

. _CVqy

jo=——cxp (—t/7).

Since = CR and A = ma?, we may write this as

Vo
ja= exp(—1/1).
4 1R P

To find the magnetic flux density B between the plates we can apply
Ampere’s circuital theorem.

If we consider a circular loop of radius r concentric with the capacitor,
as shown in figure 134, it links a total displacement current

rV,
Ig=nrijy = —Zexp(~t/7).
d la 2R P
Ampeére's theorem shows that i5/4 is equal to the loop integral IB - dl
round the loop (since there are no free currents between the capacitor
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A A A Ao—displ current
|~ Amperean loop of radius r
Qdmommﬂ
Figure 134

plates). Since B has azimuthal symmetry, the integral is just 2nrB, so we
obtain

B= HorVo ——exp(—t/1).

2na’R

[The condition that T > a/c implies that the energy stored in this
magnetic field can be ignored in comparison with the energy stored in the
electric field between the plates. We can see this as follows. The
maximum energy Esstored in the electric field (when the capacitor is
fully charged) is CV /2. The maximum energy E, stored in the magnetic
field can be found by integrating the energy per unit volume B%/2p, over
volume at time ¢ = 0:

2 .. e |
E,= ( toVo ) dJ‘ ri2nrdr = —(—H'V“ ) dma
2u\27a*R 2\ 27a’R 4

The ratio of these terms is

En Hod

E. 8iRC
Now we can write R = t/C > a/Cc, so
& « podCcz-
Ee Bmlz
Putting C == gna?/d and gquy = 1/c? gives En/E. << 1/8.]
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A current of 1 mA enters the resistor network shown in figure 135 at A
and leaves at B. Find the current in each resistor.

II 2k0 "
A_u_] 1 kO ’_r( 1k 1kQ I——q»——-ﬂ
II 2k ll
Figure 135
Solution

For convenience, we will work with the numerical values of currents,
resistances and voltages, in mA, kQ and V respectively to give a
consistent set of units. Let us label the two internal connexions C and D,
as shown in figure 136, and denote the current flowing in the upper 2 kQ
resistor by a. Since a current of 1 enters the network at A, the current in
the 1 kQ resistor between A and C must, by Kirchhoff's first law, be

1 — a. Let us also denote the current in the resistor between C and D by
b. Again applying Kirchhoff's first law, we can see that the current in the
lower 2 kQ resistor must be 1 — @ — b and that the current in the resistor
between D and B mustbe a + b.

ar——

{2}
a+h
a_"’L‘;[ 1k r.-f[ ) |_<D..-[ 10 ]—4»-’-3
o Bl

Figure 136
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Now we can apply Kirchhoff's second law by considering the voltages
dropped across the various resistors. Since the current in the upper 2 kQ
resistor is g, the voltage dropped across it is 2a. Similarly, the voltage
dropped across the resistor between A and C is 1 — a and the voltage
dropped across the resistor between C and D is b. Thus the voltage drop
from A to D is 1 — a + b, which must be equal to 2a, so we have

l-—a+b=2a.

The voltage drop across the lower 2 kQ resistor is 2(1 — @ — b), and the
voltage drop across the resistor between D and B is a + b, so we can
write the following equation for the voltage drop from C to B:

l—a—-b)y=b+a+b=a+2b.

Solving these two simultaneous equations gives a = 2/5 and b = 1/5, so
we can now write down the currents as follows:

Upper 2 kQ resistor: a= § mA.
Left-hand 1 kQ resistor: 1-a=3imA.
Middle 1 kQ resistor: b=3mA.
Right-hand 1 k€ resistor: a+b=3mA.
Lower 2 kQ resistor: 1-a-b=§mA.

Find the Thévenin equivalent for the circuit to the left of terminals A and
B in figure 137, Calculate the current in and the voltage across the 15 Q
load resistance.

Figure 137

If Ry were a variable resistance, what should be its value for maximum
power to be developed in R ? What is the value of this maximum power?
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Solution

A Thévenin equivalent circuit consists of an e.m.f. E in series with a
resistance R, with E and R chosen such that the output from the circuit
will be the same as the output appearing at the terminals A and B under
the same loading conditions.

If we first consider the effect of removing the load resistance Ry, as
shown in figure 138, we can see that the voltage across the terminals of
the Thévenin circuit must be E. The 20 Q and 30 Q resistors of the
original circuit act as a potential divider, so that the voltage across AB is

15 30 V=9V,
30+ 20
Thus E=9V.

A A
200 130 |—o p 0
15V _[ E

Figure 138

it
=

Now we consider the effect of connecting A and B with a short-circuit
as shown in figure 139. It is clear that the current flowing between A and
B in the Thévenin circuit must be E/R. In the original circuit, the
connexion has the effect of connecting the 13 Q and 30 € resistors in
parallel, giving a combined resistance of 9.07 Q. The total resistance into
which the battery is discharging is thus 29.07 , so the total current drawn
from the battery is 0.5160 A. This current is divided, with a fraction 30/43

Figure 139

A

il
X
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Deduce from these data the Thévenin equivalent circuit representing
the device and calculate the voltages produced across loads of 1 MQ and
10MQ.

Suppose that the output of the device varies sinusoidally at a frequency
of 1 Hz and that there is a large 50 Hz noise signal due to mains pickup.
Show how a capacitor could be added to the circuit to filter out the
unwanted 50 Hz signal. For a load Ry of infinite resistance, calculate the
value of the capacitance required to attenuate the 1 Hz signal by 3 dB.
With this capacitor, calculate by what factor the 50 Hz noise is attenuated
and express this attenuation in dB.

Solution

Replacing the device by its Thévenin equivalent (having an e.m.f. E and
a resistance R) gives the circuit shown in figure 141.

R

E _|_ AR

Figure 141

The two resistors act as a potential divider, and V_is given by
_ ER,

" R+R,

Taking the reciprocal of this expression (for convenience) and
rearranging it gives

1_1 _R1 ’ a

VL

Thus if we put R; and R; for the two values of Ry, and V| and V; for the
corresponding values of V|, we obtain
1 R 1 1 R 1
= @
Vl E Rl V2 E Rg
This can be rearranged as

R_1Vi-1/v, -

E 1/R,-1/R,
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Substituting (3) into (1) gives

Ry, - Ry
YT @
Ry/Vy = Ry/V,
and substituting (4) into (3) gives
V; = Vl
= )
Vi/R, = Va/R,

Inserting the values R, = 10°Q, R, = 10°Q, V; =75 x 107 V and
V> =5 V into equation (4) gives E = 14.85 V. Inserting the values into
(5) gives R = 197kQ.

Across a load resistor of 1 MQ, the voltage would be

14.85 x 105/(197 x 10° + 10°%) = 12.41 V.
Across 10 MQ, the voltage would be
14.85 X 107/(197 x 10° + 107) = 14.56 V.

In order to filter out high frequencies (where by ‘high’ we mean much
larger than 1 Hz), we should connect a capacitor across the output
terminals of the device, as shown in figure 142, The impedance of a
capacitor falls with increasing frequency, so that at high frequencies most
of the voltage signal will be dropped across the internal resistance R.

16

Figure 142
If we write Z for the impedance of the capacitor, the ratio vey/vi, is

given by Z/(Z + R). Taking Z = 1/iwC, we have

Vout _ 1/iwC _ 1

0w R+1/ioC 1+ iwRC’
The factor by which the power is reduced is thus

1

|0gut/v; [P S—
/o 1+ @RC
For an attenuation of 3 dB at 1 Hz we require that this factor should be
equal to 107%? = 0.5012, Hence

wRC = (0.50127" — 1)'2 = 0.9976.
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Taking w = 27s~! and R = 197 kQ gives C = 8.06 x 1077 F = 0.81 uF. At
50 Hz, w = 100rs™" so (1 + «?R2C?)™" = 4.02 x 10™* which corresponds
to an attenuation of —10log;, (4.02 x 10~%) dB = 34 dB.

[The choice of the ‘3 dB point’ is based on the fact that 10793 is very
close to 1/2. If it were exactly equal to 1/2, the 3 dB point would occur at
the frequency at which wRC = 1. The error in calculating the appropriate
value of C using this approximation would be only 0.2% . We can also
approximate the second part of the problem by noting that at a frequency
50 times greater, @RC will be close to 50, and since 507 >> 1 we can
neglect the 1 in the denominator and write the attenuation as
approximately 1/50° = 4 x 107%.]

Problem 154

Determine the voltage across and the charge stored in each of the
capacitors shown in figure 143.

6 pF

-

10 yF

—i—

4 uF

| 1

11

20V

____1}‘ _______ |!__
Figure 143
Solution

The 6 uF and 4 uF capacitors connected in parallel have a combined
capacitance of 6 + 4 = 10 uF. The total capacitance of two 10 uF
capacitors connected in series is (1/10 + 1/10)~! = 5 uF. Thus the total
charge withdrawn from the positive terminal of the battery must be

5 % 20 = 100 uC. This must be equal to the charge on the 10 yF capacitor,
so that voltage across this capacitor is 100/10 = 10 V. The remaining 10 V
must be dropped across the 6 uF and 4 uF capacitors, so the charge on the
6 uF capacitor is 6 X 10 = 60 p¢C and the charge on the 4 uF capacitor is

4 % 10 = 40 uC. To summarise, we have the results shown in Table 6.



vy

Problem 156 281

Solution

When the circuit is balanced, the voltages at the two terminals of the
detector are equal. If we write Z, for the total complex impedance of the
inductor L, and the resistor Ry, and define Z,, Z; and Z, similarly, the
condition for balance is
zZ, _  Z
Z\+ 2, Z3+2Z,
which can be rewritten as

Zi_ 2
Z, Z,
or
ZIZ‘ = 2223.
Now we have
Z,= R+ ioL,, Z,= Ry,
1 1
Zy= Ry + ——, Zy= '
P T G T iec,
50
iq.ﬂ:}?zﬂsq. Ry .
wa4 C..| iwC;
Equating real and imaginary parts of this expression gives
Ry = RaC4 1nd Ly = C4R3R;.
o}

These conditions for balance are independent of the frequency w as
required. [This kind of bridge circuit is called an Owen bridge.}

Substituting the values given for C3, Cy, R; and R; gives R, =0.31Q
and L, = 8.0mH.

A lossy capacitor C behaves as though it had a resistance R, in parallel
with it. Using the bridge circuit shown in figure 145, a balance is obtained
at 150 Hz when Ry = Ry =500 Q, C; = 1 4F, R; = 300 Q. Find the values
of C] and Ri.
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Qv O
Figure 145

Solution

‘When the bridge is balanced, the complex impedances in the arms of the
bridge satisfy the relationship

zZ, _ Z,

zZ, Zy

Now we have

Land L =L +iwc,

Zy=Ry, +
iwC; Zy R

so the condition for balance is

BB, Oy facr-—1)
Ry, R G wC Ry
Equating real and imaginary parts gives
Ri_R, G o
Ry, R G

and

?CyC3RyRy; = 1. @)
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Rearranging equation (2) to obtain an expression for 1/R, gives

1 2GR, 3
R,
and substituting this into equation (1) gives
G _R_ a?C,C3RE. @)
C; Ra
Equation (4) can now be rearranged to give an expression for Cy,
Ry/Rs

1

C PGRI+1/C,
and substitution of the values given in the problem yields C; = 0.93 uF.
Substitution of this value into equation (3) gives R, = 4.1kQ.

[The calculation can be simplified by noting that, since Ry = Ry, Z,
must equal Z,. Using Z, = Ry + 1/iwC, and taking R, = 300 Q,
w=3007s"" and C, = 107 F gives

Z; = (300 - 1061i) Q.
Since 1/Z,; = 1/R, + iwC), we need to calculate the reciprocal of Z5. It is
1/Z, = (2.468 + 8.727i) x 10°*S,

so Ry = 1/(2.468 x 107*S) = 4.1kQ and C; = (8.727 x 10™4)/(300 m)F
= 0.93 4F as before.]

Problem 157

A voltage Vg = Vjcos wt, where Vj is a real amplitude, is applied
between the points A and B in the network shown in figure 146. Given
that

1
C =
wRY3
and
L=RV3
@

(i) calculate the total impedance between A and B,
(ii) verify that voltages of equal amplitude are developed between the
point X and the points A, ¥ and Z,
(iii) determine the phases of these three voltages relative to V5.
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z L
_II}_._/W\__,
—[ 7 J—4x B
—[Il—z—| —
C
Figure 146
Solution

(i) The complex impedance Z of an inductor L is iwL, so if L = R\/3/w,
Z = iR\/3.

The complex impedance Z of a capacitor C is 1/iwC, so if
C = (wRV3)™!, Z = RV3/i = —iRV/3. Thus the complex impedance Zy,
of the upper branch of the network between X and B is R(1 + i\/3), and
the complex impedance Z, of the lower branch is R(1 — i\/3). The
complex impedance of Zy, in parallel with Z; is

ZyZy _RA+iVIA-iVI _ 4R _ oo
Zy+ 2, 2R 2R '

Thus the total impedance between A and B is 3R.

(ii and iii) It is easier to solve these together, finding the amplitudes
and phases of the voltages Vy, Vyy and V;y simultaneously. We will use
the complex exponential notation and, for convenience, set the voltage at
B to zero. The voltage at A can thus be written as V{,(0), by which we
mean a voltage of amplitude V and phase angle zero, and we will use the
notation Vp to refer to Vy — Vjp, i.e. the voltage at A minus the voltage
at B, etc.

Since the impedance between B and A is 3R and the impedance
between B and X is 2R (both real), the voltage at X is given quite simply
by

2 2
Ve ==V, = ZV,(0)..
x=3Va 30()

Considering the upper branch between X and B, we have a potential
divider so that

Vz__iRV3 __ V3

Vx  RO+iV3)  1+iV3

The numerator of this expression has an amplitude of /3 and a phase
angle of 90°, and the denominator has an amplitude of (1> + [V3]})? =2




|
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and a phase angle of tan~" (\/3/1) = 60°. The whole expression therefore
has an amplitude of 1/3/2 and a phase angle of 90° — 60° = 30°. Thus

v, V3
—_— 30° y
e 200
S0
Vo
Vz = —(30°).
z V3( )
Similarly, we can write
Vv _ =RV _ =iV3 _ V3 a0
V¢ R(1-iV3) 1-iV3 2 4
S50
Vo
Vy = —(=30°).
Y V3( 30°)

We can now calculate the voltage differences:

Vax = V4 — Vy = Vy — 2V,/3 = V/3, which, since it has a phase angle of
zero, is in phase with the voltage V5.

2Vy

=

This can be visualised on a phasor diagram, as shown in figure 147.

Vi
Vrx=Vy—Vx= V;-(—w") -

Vx

\

Vix

Figure 147

The real part of this expression is

Vo 2V, Vo
—cos(—30°) - — = —,
V3 ( ) 3 6
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and the imaginary part is

Yo ==V
VBsm{ 30°) 2\/3

Thus the amplitude is

(“ [zvs )l =%

and the phase is

1
23

1

6

arctan = —120°.

Thus
v,
Vyx = T"(—lZO").
Finally,
2V,
30°) - =2,
\/3( ) - 3

Again, we can show this on a phasor diagram (figure 148).

VZ.X:VZ-VX_

Vax

Figure 148
The real part of this is

VD 2V, Vo
300) - 20 = 0
V300 - 3
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and the imaginary part is

Yo incary = Vo
V3 sin (30°) 3 \/3'

The amplitude of Vzy is again V,/3, and the phase is +120°, so

Vi
Vax = T“(lZO“).

Problem 158

An electrical circuit consists of a resistance R, inductance L and
capacitance C in series. If a charge is put on the capacitor at some instant,
determine the condition that V¢, the voltage across the capacitor, is
subsequently oscillatory. Assuming that this condition is satisfied, derive
an expression for the time T for the amplitude of V¢ to drop by a factor
of e.

An external voltage source of variable frequency is introduced into the
circuit in series with the other components. Show that, for small R, the
width of the resonance (defined as the angular frequency range for which
the amplitude of V¢ is greater than 1/4/2 of its resonance value) is
approximately 2/T.

Solution

Figure 149 shows the circuit with no external voltage source.

R L IC}—

Figure 149

The e.m.f. across a resistor of resistance R carrying a current [ is R/,
and the e.m.f. across an inductor of inductance L carrying a current [ is
L dl/dt. A capacitor of capacitance C holding a charge Q has an e.m.f.
Q/C across it, and since J = dQ/dt the e.m.f. across the capacitor is
given by

% J’l dt.
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Since the three components are connected in series, the same current /
must flow through each, and the sum of the e.m.f.s across all the
components must be zero, so we must have

RI + L—+—I.'dr=0

Differentiating this expression with respect to time gives a differential
equation for the current I:
L gdL L 1oy,
dr? dt C
Now if the e.m.f. across the capacitor is to vary in an oscillatory manner,
the current I through the circuit will also have an oscillatory behaviour.
We will therefore look for an oscillatory solution of the form

1 = Iyexp(—iwt),
in which case

dl/dt = —iwl
and

d*1/dt* = —a?l.

Substituting into the differential equation gives
~La?l - iwRI + L =0,
c

which is a quadratic equation in w. The solutions of this equation are
—iR * V(-R? + 4L/C)
2L ’

so the condition that the current (and hence V) is oscillatory, which is
equivalent to saying that w must have a real part, is that

AL

=

R*<
If this condition is satisfied, we may write @ = @ — iR/2L where a is real.
Thus the current I has the form

I = Ipexp(—iwt) = Iqexp(—iat) exp(—Ri1/2L).

The amplitude of the oscillatory current, and therefore of the e.m.f. V¢,
varies with time as exp (~ Rt/2L), and thus the time T for this amplitude
to fall by a factor of e is given by T =2L/R.
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Now we insert an a.c. voltage source into the circuit, as shown in
figure 150.

R L lc

v

S
Figure 150

Since this is an a.c. problem, we can use complex impedances. The
total impedance of the circuit Zy = Zg + Z, + Z¢, where Z is the
complex impedance of the inductor, and so on. The current in the circuit
is given by = V/Zq, and the e.m.f. across the capacitor is given by
Ve = IZ¢. Thus we have

1
V_ ZC _ iwC _ 1
V  Zp+ ZL+ Zc _ 1 1-@?CL + iReC
R+IEIJL+-'—;E
]

Since R is small, |V/V| will attain its maximum value when
1— @?CL =0, i.c. at an angular frequency wy = 1//(LC). The maximum
value of |V/V| is clearly 1/(RayC).

Also since R is small, the resonance will be narrow so that the
frequency w will not differ very much from ay. We can thus neglect
changes in the imaginary part of the denominator of our expression for
V¢/V. Since we are looking for the frequencies  at which |V/V| is V2
times its maximum value, these must occur when the real part of the
denominator is equal to * the imaginary part. Thus

(1 — &*CL) = £RwyC,
which can be rearranged, using the fact that ay, = 1/y/(CL), as

2
(i) =1+ RanC.
gy

If RanC << 1 we can use the binomial expansion to take the square root
of this expression:

(ﬁ) ~14+ RnC
wy 2
The two solutions for o are thus ay + RwiC/2 and ay — RwjC/2, so that
the width of the resonance is Aw = RwiC = R/L = 2/T, as required.
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A capacitor C, which may be considered to be loss-free, is connected with
an inductor to form a closed loop. The inductor behaves as a pure
inductance L in series with a resistor R. If, when the circuit is first
connected the capacitor is charged, derive the condition for oscillatory
decay.

Derive an expression for the quality factor Qy of the circuit by
considering the decay of the oscillation, using the result that the
amplitude falls by a factor of e in Q,/r periods.

A quality factor @ can also be defined in terms of the circuit
parameters as ayL/R, where g = 1/LC.1f C =2 yF and L = 1 mH,
calculate the maximum value of R such that Q) and Q; agree to better
than 1 part in 10°,

Solution

The first part of the solution proceeds exactly as in problem 158, and
leads to the result that the condition for oscillation is

R’<£.
C

If this condition is satisfied, the current / flowing in the circuit can be
described by
I = Iyexp(—iwt),

where w is complex. As we saw in problem 158, the real part of w is

V@AL/C - R?)
2L
and the imaginary part is
- R
2L

If we write this as @ = a — ib, the decay has the form
I = Iyexp(—iat)exp(—bt),

so the period is 27/a and the time taken for the amplitude to fall by a
factor of e is 1/b. Thus the number of cycles required for the amplitude to
fall by a factor of e is af2nb, so we have

O =nt =2
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Substituting our expressions for the real and imaginary parts a and b of @

thus gives
> 0, = V(4L/C - R2
2R
The second expression for Q can be written as
_ml 1 [L
&=k “wV¢

so the ratio of the two expressions is

G- )

Since we require this ratio to be equal to 1 to within 1 part in 10°, we are
justified in using a binomial expansion to approximate the square root:

2
g]_ =] = E,‘
0, 8L
Thus if the two expressions are to agree to better than 1 part in 10°, we
must have
RC 1o,
8L

P Substituting the values given in the problem yields R <2 Q.

A series LCR circuit has resonant frequency ax, and a large quality factor
Q. Write down in terms of R, w, ay and Q (a) its impedance at
resonance, (b) its impedance at the half-power points, and (c) the
approximate forms of its impedance at low and high frequencies.

Solution
(a) The complex impedance Z of a resistance R, inductance L and
capacitance C in series is

Z=R+iol + —— = R+ ioL — ——
iwC wC

P Atresonance the imaginary part of Z is zero, so that Z = R.
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(b) At the half-power points | Z| is a factor /2 greater than its value at
resonance. Since the real part of Z has a fixed value of R, this means that
the imaginary part at the half-power points must be %R, so the values of
Z are R(1 £ i).

(c) We know (e.g. from problem 159) that

1 1 /L
d Q=—]=,
V(LC) and Q R\/C

so C = 1/QuyR and L = QR/ay. At sufficiently low frequencies, Z is
dominated by the effect of the capacitor, so Z = —i/wC. Thus at low
frequencies

Z = —-_IQR%.
w

At sufficiently high frequencies, the impedance is dominated by the
inductor, so Z = iwL which can be written as
Z~ iQRm.
ay

In the circuit shown in figure 151 the inductor has a self-inductance L and
the three resistors have the same resistance R. The switch is closed at

1 = 0. Obtain expressions for the currents I, and I as functions of time,
and illustrate these variations on a labelled graph.

/

Figure 151
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Solution

It will simplify the problem if we assign a fixed value to the voltage at
some point in the circuit, so that we can deal with voltages rather than
voltage differences. Let us set the negative terminal of the battery at zero,
so that the positive terminal is at V. It will also simplify the problem if we
introduce variables I, for the total current drawn from the battery, and
V' for the voltage at the point where the three resistors are connected
together, as shown in figure 152.

— Y

0

Figure 152

For the resistor in which current [, is flowing, we have

V-V
Iy = . (1
™
For the resistor in which current I, is flowing, we have
I= L @
R

For the third resistor, we have
vi=nRr+ L9 3)
dt

We can eliminate I, since it must be equal to Iy + I,. Applying this to (1)
and rearranging the equation gives

V'=V = R(I, + Iy). 4)
Now we can eliminate V' by combining (2) and (4):
V=2R12+R]1. (5)
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current

hh=h+h

A
V3R -

V2R

VIR |~

h

Figure 153

A solenoid with self-inductance L = 2 H and carrying a steady current of
1 A has the current source suddenly disconnected. What is the minimum
capacitance which should be connected across the terminals of the
solenoid in order to prevent the potential difference generated by the
collapse of the magnetic field from rising above 300 V?

Solution

The simplest approach is to recall that the energy stored by an inductor
carrying a current [ is LI%/2 and that the energy stored by a capacitor
charged to a potential V is CV?/2. Initially (before the current source is
disconnected) I = Iy =1 A and V = (). The maximum potential
difference Vi, is thus given by

SOV = ILI,
2 2
which can be rearranged to give
2
C= L( o ) .
Vl‘ll“
Putting L =2H, I3 =1A and V,, =300 V gives C = 22 uF.

[Another approach to the problem is to recognise that, once the current
source has been disconnected, the circuit is an LC resonant circuit in
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which the current will oscillate at angular frequency @ = (LC)™"2. Since
the current must be equal to I at ¢ = 0, we may write

‘

I = Igcos .
V(LC)
Now the e.m.f. V across an inductor in which the current is changing is
given by V = — L dI /dt, so we have

oL g \/_ _t

\/(LC) V(LC) \/(LC)

Thus we see that the maximum e.m.f. V,, and the maximum current /,
are related by

1.2 1,2
~CViax = -LI
2 max 2 0

as before.]

Figure 154 shows an amplifier constructed from a field-effect transistor
with mutual conductance g, = 2 x 1073 8.
For small a.c. signals v, calculate:
(i) the voltage gain of the amplifier;
(ii) the input impedance.
(The capacitors C; and C; can be assumed to have negligible a.c.
impedances.)

Solution

To a good approximation, we can assume that the gate of the FET draws
no current and that there is infinite impedance between the drain and the
source. The mutual conductance g, is defined by

igg = gm(”; - vy),

where iy, is the (a.c.) current flowing in to the source and out of the
drain, and vg and v, are the (a.c.) voltages at the gate and drain
respectively. We can thus draw the equivalent circuit for small a.c.
signals, as shown in figure 155.

As a first approximation, let us ignore the current flowing through the
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——— 49V

t

vin o— | [&]
._._—I |—O Vit
4 MO 1k
3k
[~ - 3 OV
Figure 154
J:-—o Vout = ¥y
a | Jieniod
4 Mi2
Yin= Vg
IkQ
To ov
Figure 155

4 MQ resistor. The current iy, flows through a total resistance of 4 kQ to
give a voltage drop of v,, 50 numerically we can put

4% 10° X 2 X 1073 (Uip = Vou) = outs
which can be simplified to
8 vy = 9 Uours

so that the voltage gain vyy,/v;, is 8/9 = 0.889.

Using this same approximation, the voltage at the point where the
three resistors meet is 3v,,,/4 (the 1 kS and 3 kQ resistors are just acting
as a potential divider) which can be written as 2v;,/3, so the voltage
across the 4 MQ resistor is v;,/3. The current flowing in this resistor is
numerically v;,/(12 % 10%), so the input impedance is 12 MQ.
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[Let us now calculate the results exactly. It is probably easiest to begin
with our approximate results, and put

Voat = guiﬂ(l + a)and v; = g”in(l + B,

where v, is the voltage at the point where the three resistors meet, and
we expect || and || to be much less than 1.

The current iy is given by gy, (Vin — Uow) Which can be written
numerically as

2 x 10 3p,(1 — 8[1 + @]/9) = 2 x 10730;,(1/9 — 8a/9).

The voltage dropped in the 1k resistor is numerically a thousand times
this value, so we can write

Soul1 + @) = Z0a(1 + ) = 2u.-n(§ - “T")

which simplifies to f§ = 4a.
The current flowing in the 4 M resistor is numerically equal to

Vi = 200(1 + B)

3
s« m—?o-m(l - 3_“).
4% 10° 33

so the total current flowing in the 3 k€ resistor is numerically equal to

2% 10‘3;;.-,.(1 - B) +2.5% 10‘?:4,.(l - E‘i).
9 9 3 3

which must be equal to v,/(3 k). Expressing this numerically, and
multiplying through by 3 x 10°,

241 + 4a) = 6»;,,(1 - 8a) a5 x 10“»;,.(1 - 8—“)
3 9 9 3 03

This can easily be solved for a to give 3.12 X 107, The gain is thus

8(1 + 3.12 x 107%)/9, which is negligibly different from the value we
calculated before. Substituting this value of « into our expression for the
current flowing in the 4 MQ resistor gives 8.33125 x 107 v,,, so the input
impedance is 12.003 MQ, which is also negligibly different from the
previous value. Our initial assumption that the input current could be
neglected in calculating the various voltages in the circuit was thus
entirely justified.]
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Problem 164

Figure 156 shows a typical low-power npn bipolar transistor of current
gain f = 31./21, and mutual conductance g, = 31./0V\, connected for
use as an emitter follower. The transistor is fed by an a.c. signal from a
source of small e.m.f. v, and negligible impedance, and drives a load of
impedance Ry. Biassing components are not shown and the impedances
of the capacitors can be assumed to be negligible.

(i) Derive expressions for the input impedance of the circuit as seen by
the source and the output impedance as seen by the load.

(ii) Derive an expression for the a.c. voltage gain of the circuit and
comment on its numerical value.

(iii) Suggest a suitable biassing arrangement and give rough values of
the circuit components appropriate for a supply voltage Vo =9V and a
quiescent emitter current of 1 mA.

%égﬁ

Figure 156

Solution

(i and ii) Since we are dealing with a.c. signals, we can put

= Biy = gu(vp — v.).

The emitter current i, is iy, + i, = iy(1 + ). We can show these currents
and voltages on a modified circuit diagram (figure 157) from which the
capacitors have been removed (since they have negligible a.c.
impedance).

It is clear that the emitter current i, flows through R and Ry in parallel,
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=B+ iy

Ve

0 X

Figure 157

so if we write r for their combined resistance (i.e. 1/r = 1/R + 1/R.), we
must have

Ve = ir = (B + 1iyr.

Combining this with the fact that Si, = g, (v, — v.), and noting that
vy = vy, gives

Bi, = gm{'-’: - [ﬁ + l]'.br)r
which can be rearranged as

ib(B+ [B + 1]gmr) = gmbss
so the input impedance R;, = v,/iy, is

BB+ Vgar
&m

JRin

[In practice, g+ >> 1 and B >> 1, so this can be written approximately as
Ry, = Pr. This will be large, which is what is needed in a follower circuit. ]

It is perhaps marginally easier to find the output impedance by first
finding the a.c. voltage gain. This is defined as

G=2,
Uy
If we put v, = (B + 1)iyr, this becomes

G = B+ Divr
v,
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and we can substitute the reciprocal of our expression for Ry, in place of
ip/vs to give
_ B+ 1)gar
B+ (B+ 1)gar
Since g,r >> 1 and 8 >> 1, this will be very close to (just less than) unity,
which is another of the requirements of a follower circuit.

To find the output impedance R, of the circuit, it is helpful to
consider a model of the amplifier’s behaviour, as shown in figure 158.

G, is the gain of the amplifier when there is no load resistor (i.e. when
R, is infinite). The output current i,,, is given by
i _ Gaviﬂ
ot = ——— 0
Ry + Ry

and it can also be written as v,,,/Ry. Equating these two expressions, and
writing G for the amplifier gain vo,,/vi, when the load resistor is
connected, we obtain

_G‘— = E
R+ R. R’
which can be rearranged to give

Ga
Ry ={— — 1) R..
( G ) -
We have already shown that the gain G is given by

= (B+1)gmr .
B+ (B+1)gnr
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50
Loy £
G B+ 1)gnr

Since g, 7 >> 1 and (B + 1) = B, we can use a binomial expansion to
derive

1
BmT
G is the value of G when Ry is infinite, i.e. when r = R, so using the
same approximations,

G=1-

Gum1-—1_
EmR
Hence
1- ln
Row~ R —252° 1 -RL(_l__,__l.__)=_l,,
-1 gn’  EmR/  gm
Eml

Thus the output impedance will be approximately 1/g,,, which will be
large, as required.
[1f we do the calculation without approximations, we have
Rew _ RB+[B+1gar) _ |
R, r(B+[B+1]gnR)
Using the fact that R/r = 1 + R/R_ we can rewrite this as

Rew _ B+BR/Ru+(B+VgaR _ _ _ PR/R

Ry B+ (B+gaR B+ (B+ gk
The output impedance is thus
Rou AR ___)

B+ (B+1)gnR
(iii) A suitable biassing arrangement might be as shown in figure 159.

In order that the output should be able to swing as far in the positive
direction as in the negative direction, the d.c. voltage V, of the emitter
should be close to 4.5 V. If the quiescent emitter current is 1 mA, this
would require R = 4.5kQ. The base voltage V), will be about 0.6 V
higher than this, or about 5.1 V. The voltage dropped across R, is thus
3.9V and the voltage dropped across R, is 5.1 V, so R;/R; = 3.9/5.1 =
0.76. The resistance of R, in parallel with R, should be small compared
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Figure 159

with the a.c. input impedance, which is of the order of BR, so if we
assume that g = 100, it might be reasonable to choose R, and R, such
that their parallel resistance is less than about 50 kQ2. Reasonable values
might be R; =40kQ and R, = 50kQ.

Figure 160 shows an amplifier using two identical npn bipolar transistors
connected to form a long-tailed pair. The two inputs carry small-signal
voltages vy and v,. Each transistor has mutual conductance
8n = 31c/IVre.

(i) For the values of the resistors given find the value of the quiescent
pc voltage at the collector of T;.

(ii) Derive an expression for the small-signal voltage v, in terms of v,
and v,.

(iii) Outline the advantages of replacing R; by a constant-current
source.

(iv) Sketch a circuit suitable for use as a constant-current source in this
context.

Solution

(i) Under quiescent conditions, the inputs are zero and the bases of the
transistors can be assumed to be at 0 V. The voltage drop between the
base and the emitter of a conducting transistor is typically 0.6 V, so the
emitters will be at about —0.6 V, giving a voltage of 8.4 V across Ry. The
current in Rj is thus 1.79 mA, of which (by symmetry) half is contributed



304 Electric circuits
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Figure 160

by T,. Since the base current is very small compared with the emitter
current, the collector current will be about 0.90 mA, so the voltage
dropped across R, will be about 4.2 V. The voltage at the collector of T;
will thus be about 4.8 V.

(ii) For the a.c. analysis, we can redraw the circuit as shown in figure
161.

Figure 161
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From the definition of g, we can write
iy = gm(vy — V),
iy = gm(v2 — v),
where v is the a.c. voltage at the point where the emitters are connected

together. The collector current i. is given by i, and the emitter current
ie is (B + 1)iy, 50 i, = (B + 1)i./B. Thus

io1 = __-___gm(ﬁ + 1) (Ul - U) and llez = —gm(ﬁ + 1) (b‘; - U).
B B
The current in the ‘tail’ resistor R; is therefore
i +iea=g'(vy — v+ —0),

where g' = g.(B + 1)/B. This current must also be equal to v/R;, since
the other end of Rj is at zero a.c. voltage, so

v
"y + v —20) = —.
g +n ) N

(Since R, = R, = R;, we can just write R for their value.)
Rearranging this to obtain an expression for v in terms of vy and v,

gives

_ &'R(v +vy)

1+2g'R

We can now substitute this into our expression for i y:
&m(v2 + 028'R ~ v18'R)

1+2g'R
This current flows through the resistor R, from a.c. voltage zero to a.c.
voltage v, (at the collector of T3), s0 vy = — Ri, giving

i = gm(v2 — v) =

-8R

1+ 2¢'R
[We can calculate the numerical values in this expression reasonably
accurately. The relationship between /. and V. in a transistor is given by
the Ebers—Moll equation

eV,
I = I,(exp [-—k;*] - 1),
where I, is the saturation current, e is the charge on the electron, k is the
Boltzmann constant and T is the absolute temperature. Since I >> I, for

(118'R = v28'R = vy).

Uout
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a transistor in the conduction region, the *~1" term can be ignored and
the resulting exponential equation can be differentiated to give
al. _ el

Ve KT
Thus g, = el JkT = epl./(f+ 1)kT. Taking I, = 0.90mA, T = 300K
and B = 100 (the value is not critical as long as §>> 1) gives g, = 0.034 8.
g’ thus equals (B + 1)g./B = 0.035 S. With R = 4700 Q, our expression
for v,y becomes

vy
Vou = 80(v; — v7) = ?]

(iii) The circuit is intended to function as a differential amplifier, so
that the output should be proportional to (v) — v,) with no dependence
on the mean input signal (v, + v;)/2. We can see that the circuit performs
fairly well in this respect, since its differential-mode gain is about 80 and
its common-mode gain is only about —0.5. However, it would be better if
the common-mode gain could be reduced to zero, and this is the purpose
of replacing R; by a constant-current source. We can see this as follows:

A constant (d.c.) current requires that the sum of the two (d.c.) emitter
currents is constant, so that a small-signal current i¢; must be
compensated by i,s = —i.. The sum of the two collector currents must
therefore be zero, which requires that v = (v; + v,)/2. The current i, is
therefore given by g'(v; — v) = g'(v; — v1)/2, so the output voltage
Vow = —Rig = Rg'(vy — v7)/2. In principle, then (i.e. assuming that the
constant-current source is perfect), the common-mode gain has been
reduced to zero.

(iv) A suitable constant-current source using the voltages available in
the circuit could be as shown in figure 162.

Figure 162
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If we require / = 1.8 mA and choose Ry = (say) 1 kQ, V; must be
=7.2V. V¥, will be about 0.6 V greater than this, i.c. about —6.6 V, so the
voltage dropped across R, is 6.6 V and that across Rs is 2.4 V. The
resistors Ry and Rs should therefore have a ratio of about 2.75.

In the generalised operational amplifier circuit shown in figure 163, Z,,
Z; and Z; are impedances. The operational amplifier has an input
impedance greater than 10 MQ and a gain equal to 10° up to 100 Hz but
inverscly proportional to frequency at higher frequencies.

(a)If Z, =1kQ and Z; = 100k, draw a graph to show how the
voltage ratio V,/V, varies with frequency.

(b)If Z, = 1kQ and Z; consists of a parallel combination of a resistor
R, = 10kQ and a capacitor C = 1 uF, draw a graph to show how V,/V;
varies with frequency.

0
Figure 133

Solution

We will entirely neglect the input impedance of the operational amplifier,
so that .he inputs are assumed to draw no current. The positive terminal
of the onerational amplifier is thus at a voltage of zero.

If we write A for the gain of the operational amplifier, the voltage at its
negative terminal must be — V,/A. Equating the current in Z, to the
current in Z, (since no current enters the amplifier) thus gives

Vi+ Vo/A _ -Vy)/A-V,
z, z,
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Rearranging this gives

V) -A

V.
VoA
Z,
[Note that if A is infinite, which is the assumption in the case of a

‘virtual-earth amplifier’, this expression becomes — Z,/Z,.]
(a)If Z, = 1kQ and Z; = 100 kQ, the expression for V,/V; becomes

V, . -A
v .
1 1+ 1+ A
100
We may use this to construct Table 7.
Table 7
f/Hz A V2V,
=100 109 -99.9
100 10 -99.0
10 10 -90.8
108 102 -49.8
106 10t -9.01

We note that, as long as A is large compared with 100, the ratio is
approximately —100, but at sufficiently high frequencies (as A tends to
zero) the ratio tends to zero. The graph of | V,/V/| is shown in figure 164.
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(b) If Z; consists of a 10 k<2 resistor in parallel with a 1 uF capacitor,
and Z, is a 1 k resistor, the ratio Z,/Z, becomes 0.1 + 0.00liw. At a
frequency of 1 Hz, wis 2rs™" so Z,/Z, = 0.1 + 0.006 283 i. Since the
gain A of the operational amplifier is 10° at this frequency, the expression
for V,/V; becomes —100000/(10001.1 + 628.3 i). The denominator has
an amplitude of (10001.1% + 628.3%)"? = 10020.8 and a phase angle of
tan™' (628.3/10001.1) = 3.6°. The ratio V,/V, thus has a magnitude of
9.98 and a phase angle of 180° — 3.6° = 176.4°. Repeating this analysis for
other frequencies, we can complete Table 8.

Table 8

f/Hz  magnitude  phase

100 9.98 176.4
10 8.47 147.9
102 1.57 99.0
100 0.159 9.9

10¢ 1.59 x 10-2 90.1
10 1.58 x 10-? 90.0
106 1.45 x 104 90.0

Again, we may use the table to draw graphs, as shown in figure 165.
The inclusion of the RC circuit has sharpened the filtering effect.

12 4 - 180
10 4 L150 2
] &
= 8: phase -120 g
3 6- 90 £
- ] . )
4 amplitude L 60 S
2+ - 305
- o,

0 ¥ T ¥ T T T T T T T T 0
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Give the truth table for the circuit shown in figure 166.

Figure 166

Solution

From left to right in figure 166, the logic gates are a NAND, two ANDs, and
an or.

To construct the truth table, it is helpful to label the intermediate
connexions in the circuit, as shown in figure 167.

A
D
A i
B—y X
E
B
Figure 167

First we consider the output C of the NAND gate:

A B C
0 0o 1
0o 1 1
1 0 1
1 1 0

Next we consider the state D which is the output of an anD gate
operating on A and C:

A B C D
0 0 1 0
0 1 1 0
1 0 1 |
1 1 0 0
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Similarly, E is the output of an AND gate operating on B and C:

A B C D E
0o 0 1 0 0
0 1 1 0 1
P 0 1 1 0
1 1 0 0 0

Finally, the output X is the result of an or gate operating on D and E:

A B C D E X
o 0 1 o0 0 O
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 0 0 O

We recognise this as the exclusive-or (xor) function.
[This result could also have been calculated using Boolean algebra, as

follows:

C=A'B,;
D=A-A-B=A-(A+ B)
E=B-A-B=B-(A+ B);
X=D+E=(A+B)-(A+ B
=A-A+B-B+A-B+B-A
=A-B+B-A,

which is the exclusive-or function. ]

The following table gives the state of a J-K flip-flop after receipt of the
nth clock pulse:

J K On

0o 0 Qn1

0 1 0

1 0 1

1 1 nNot Qo

For the circuit shown in figure 168, deduce how the output F changes on
receipt of a regular train of clock pulses, given that the initial state is

i1=0;=0.
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|
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clock pulses
Figure 168
Solution

The output F is (ot Q) NaND (NoT Q3), which, by De Morgan's
theorem, is Q; or @,. Before the first clock pulse is received, we are told
that @, = @, = 0. The output F is thus 0.

When the first clock pulse is received, the inputs J, and K are both
zero (since they are derived from Q5), so the first flip-flop retains its state
and Q; remains at 0. The inputs to the second flip-flop are J, = 1 (fixed)
and K> = 0, so its output is set to ; = 1. The output of the whole circuit
is thus F = 1.

When the second clock pulse is received, J, and K, are both 1 so the
flip-flop switches its state and Q, changes to 1. The inputs to the second
flip-flop are J, = 1 and K; = 0 (the old value of Q,), so its output is again
set to @, = 1, and the output of the whole circuit is F = 1.

When the third clock pulse is received, J; and K, are both 1 so the
flip-flop again switches its state, reverting to @, = 0. The inputs to the
second flip-flop are J, = 1 and K, = 1 (the old value of (), so this
flip-flop also switches its state, giving (J; = 0. The output of the whole
circuit is F = 0, and the circuit is now in exactly the same state as it was
before the first clock pulse was received, so this behaviour will repeat
itself after every three clock pulses. The output F will thus follow the
pattern:

0 1 1 0 1 1
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A well lagged wire of length L and cross-sectional area A has its ends
maintained at temperatures Ty and T,. The thermal conductivity of the
wire is given by

K=B+CT,

where T is the temperature and B and C are constants. What is the rate
of flow of heat along the wire?

Solution

The rate at which heat is flowing through the wire is given by the
definition of thermal conductivity as

40 _ _ ka4l

dt dx

Since the wire is well lagged, we may assume that no heat enters or leaves
it except at the ends, so dQ/dt must be constant. For convenience, let us
put

p-ld
A dt
where D is a constant. Substituting the expression given for K, we find

8+ cnil - -p.
dx
This differential equation can be solved by rearranging and integrating:
T L
J‘ (B + CT) dT = *DJ. d.
T 0
This gives

B(T, - T)) + %(T% - T3 =-DL.

313
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So

dQ A( C 2 ;)
& - ADp = £|B(T, - T] + =T} - T3]).
. T [Ty — Ta] 2[1 3]

This can conveniently be rearranged to give

Qg _ A ( C )
—==(T, - T))| B+ —[T, + T3]}
- L( 1—T) 3 [Ty + T3]

[We can see that this gives the right answer when C = 0 (i.e. when the
conductivity does not change with temperature). We can also see that the
answer is plausible when C # 0, since B + C(T, + T;)/2 is the mean
value of the conductivities at the two ends of the wire.]

Problem 170

A light bulb filament is constructed from 2 cm of tungsten wire of
diameter 50 um and is enclosed in an evacuated glass bulb, What

temperature does the filament reach when it is operated at a power of
1 W? (Assume the emissivity of the tungsten surface to be 0.4.)

Solution

The power radiated by area A of a black body at temperature T is given
by Stefan’s law:

ﬁ = aT“,

where o is the Stefan-Boltzmann constant. Thus the power per unit area
radiated by a body of emissivity € is ea T4,

If the body’s surroundings are at a temperature Ty, it will absorb a
power per unit area of £aT} from them, so the net power emitted is

P = go(T* - TPA.
Taking e = 0.4, 0=5.67 x 108 Wm 2K, P =1W and
A=m7x002x50x 1075 m? = 3.14 x 10~° m? gives

T* - T4 =1.404 x 108 K*.

It is clear that the temperature T, of the surroundings can be ignored
unless it is very high [it would have to be = 900 K to make 1% difference
to the answer], so we obtain T = 1.94 x 10° K.
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Problem 171

A small spherical satellite is in circular orbit round the Sun. The Sun
subtends at the satellite a solid angle of 7 x 1075 steradians, and the
temperature of the satellite is uniform. Assuming that the emissivity of
the satellite is independent of wavelength, calculate this temperature.
(The effective black-body temperature of the Sun’s surface is S800 K. )

Solution

Let us write T for the satellite’s temperature, r for its radius and ¢ for its
emissivity. We will also write T for the Sun’s effective temperature and
€ for the solid angle which it subtends at the satellite, and will
temporarily introduce R for the Sun’s radius and D for its distance from
the satellite, as shown in figure 169. The relationship between ©, R and
Dis
2
Q- IR

DZ

provided that D > R.

(O=——]

Y

-
-«

Figure 169

The total power emitted by the Sun in 4mR*¢T¢, where o is the
Stefan-Boltzmann constant, so at a distance D the power per unit area is

47R’TS _ QoT4
4gD? T
The satellite presents an area 777 to the incoming solar radiation, and
since absorptivity and emissivity are equal, it must therefore absorb

power

4
QoT
’2 S
b

4
T e=r'QoTse.
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Since the satellite has a surface area 47r? and a uniform temperature T it
must radiate power

dnrlaT*e.
At equilibrium the absorbed and radiated powers must be equal, so
r’QoTie = dnrioTe,

which can be rearranged to give

174
T= Ts(—g;) .
4n
Taking Q@ =7 x 1075 sr and T = S800K gives T = 280 K.
[This problem gives a simplified understanding of the Earth’s mean
temperature, since the Sun subtends a mean solid angle of 6.80 x 1075 sr
at the Earth.]

Problem 172

A frictionless piston of mass m is a precise fit in the vertical cylindrical
neck of a large container of volume V. The container is filled with a gas
and there is a vacuum above the piston. The cross-sectional area of the
neck is A.

(a) Calculate the pressure of the gas in the container when the piston is
in equilibrium.

(b) Assuming that the pressure and volume of the gas are related by
Boyle's law, calculate the restoring force on the piston when it is
displaced by a small distance x.

(c) Assuming that the motion of the piston is slow enough for Boyle's
law to be valid, obtain the differential equation for small displacements of
the piston about its equilibrium position.

(d) Show that the angular frequency of oscillation w is independent
of m.

(e) Calculate w for V = 2000 litres and A = 1.0 x 10™* m?.

Solution

(a) The weight of the piston is g, and this must be balanced by the
upward force pA exerted by the gas pressure, so p = mg/A.
(b) Boyle's law states that pV is constant at constant temperature.
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Differentiating this gives
pdV + Vdp=0.

If the piston is displaced upwards by a distance x, the increase dV in the
volume of gas is Ax, so

pdV _ _mgAx _ _mgx
4 AV v

dp:...

The restoring force on the piston is thus —mgAx/V, where the negative
sign indicates that the force acts downwards.

(c) The acceleration of the piston is thus —gAx/V, which we can
express as a differential equation:

dx _ _gA,
de? v

(d) We recognise this as the differential equation for simple harmonic
motion, with an angular frequency of oscillation w = (gA/V)'2 which is
independent of the mass m of the piston.

(e) If V = 2000 litres = 2.0 m*, and A = 1.0 x 10™*m?, we obtain
@ = 2.2 % 1072 57!, This corresponds to a period of oscillation of about
4.7 minutes.

Problem 173

A cylinder with adiabatic walls is closed at both ends and is divided into
two volumes by a frictionless piston that is also thermally insulating.
Initially, the volume, pressure and temperature of the ideal gas in each
side of the cylinder are equal at Vy, po and T, respectively. A heating coil
in the right-hand volume is used to heat slowly the gas on that side until
the pressure reaches 64 py/27. If the heat capacity C, of the gas is
independent of temperature, and C,/C, = y = 1.5, find the following in
terms of Vy, pp and Ty:

(a) the entropy change of the gas on the left;

(b) the final left-hand volume;

(c) the final left-hand temperature;

(d) the final right-hand temperature;

(e) the work done on the gas on the left.
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Solution
Figure 170 shows the cylinder before and after the input of heat.

;///////////////(}///////////////
7 7

%
Po To Ty Z

? 7
? vﬂ 2
2 %
7 7,

7
Y A

Figure 170

(a) The piston is thermally insulating, so no heat can enter the left-hand
side. Thus the entropy change of the gas on the left must be zero.

(b) Since the entropy of the gas on the left-hand side does not change,
the compression must be adiabatic. Writing p; and V, for the pressure
and volume of this gas after compression, we must have

PoVE =hn vi.

1y 3
v, = yo(f_ﬂ) - Vﬂ(ﬂ) ,
P 14|

Now at equilibrium, the pressures in the left- and right-hand sides must
be equal, so that p; = 64p,/27. Thus the final volume of gas in the
left-hand side must be V(27/64)*? = 9V,/16.

(c) The number of molecules of gas in the left-hand side must also be
constant during the compression. Since the * umber of molecules is
proportional to pV/T, we must have, writing T) for the final
temperature,

So

poVo _ mVy
To T,
Thus

_ "
PoVo
so the final temperature of the gas on the left-hand side must be
(64/27)(9/16) Ty = 4T,/3.
(d) The total volume of gas in both sides of the cylinder must be
constant at 2V, so the final volume in the right-hand side must be

Tl T(b
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2Vy = 9V,/16 = 23V,/16. Let us call this V. If we put T for the final
temperature in the right-hand side, and recall that the final pressure there
is p; = 64py/27, conservation of molecules on the right-hand side gives
poVo _ PiV2
To T
Thus

nv;
poVo

so T; = (64/27)(23/16) T, = 92T,/27.

(e) No heat enters the gas on the left-hand side, so the work done on it
must be equal to the increase in its internal energy AU, which equals
C,AT. Since the specific heat C, is independent of temperature, the total
internal energy U must be C, T, apart from an arbitrary constant which
will not matter since we are only interested in energy differences.

Now we know that C, — C, = NR (where N is the number of moles,
and R is the gas constant) and C,/C, = ¥, so C, = NR/(y — 1). Thus
U = NRT/y - 1) = pV/(y — 1), so we may finally write for the work
done on the gas on the left-hand side

= Ta,

649 _
Vy, = poV, 2716
Pi¥y— Po¥o _ PoVo.
y-1 1/2

This gives 2pyV,/3 for the work done on the gas on the left-hand side.

Problem 174

The internal combustion petrol engine can be modelled on the Otto cycle.
The four stages consist of (a) an adiabatic compression from V, to V,,

(b) an isochoric (constant volume) pressure increase, (¢) an adiabatic
expansion from V; to V) and (d) an isochoric pressure decrease. Sketch
the p — V diagram. Assuming that the gas behaves ideally, with a
constant heat capacity, show that the efficiency is

1

=] ——,
n e

where the compression ration r = V;/V;.



320 Thermodynamics _

Solution
The p-V diagram is sketched in figure 171.

Figure 171

Let us assume there are N moles of gas present. We can use
pV = NRT to calculate the temperatures Ty and T at the ends of
process (b). They are

Tl = pl_vzand T2 = pz_vz
NR NR

50 the heat input during process (b) must b~

Cv VZ
R

Qn=CN(T-T)) = (P2 = n1)s

where C, is the molar heat capacity at constant volume.
The processes (a) and (c) are adiabatic, so the relationship between V
and T is

VY-IT = constant.
The temperatures T3 and T, at the ends of process (d) are thus

r-1 y-1
Ty = (ﬁ) LILEGRYE (ﬁ) Leley
Vi NR Vi NR
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Thus the heat output during process (d) is

v,)f"‘ C,V, (V;)?’"
out = uNT—T=— e - =\ in®
Q. CyN(Ty — T3) (Vl R (p2—p1) v, Q,
Le.

QOI.“

The work done, W, during the cycle, is equal to Qi — Qou, and the
efficiency 5 is W/Q;,, s0

q=Qin_Qou1=l__ 1
Qi Pt
as required.

Problem 175

A monatomic gas of molecular weight M is held at low pressure and
temperature T. The velocity distribution function has the form

Cexp(—ﬁ[vi + uf, + vi]).

Write down the value of 3, and derive the form of the energy distribution
function. Sketch the form of this latter distribution.

Solution

The exponential term in the velocity distribution function is a Boltzmann
factor, which has the general form exp (— E/kT), where E is the energy
and k is Boltzmann's constant. Since the kinetic energy of a molecule of
mass M and velocity (vy, vy, v;) is M(ui + u} + v?)/z. we can see that
p= M[2kT.

To calculate the energy distribution f(E), we consider a range of
energies from E to E + dE such that the fraction of molecules possessing
kinetic energies within this range is defined to be f(E)dE. Now in
velocity space, the set of points representing a constant energy E is a
sphere of radius ¢ centred on the origin, where ¢ is the molecular speed
corresponding to a kinetic energy E. Thus the region of velocity space
corresponding to energies between E and E + dE is a spherical shell of
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Figure 172

radius ¢ and thickness dc, where

—lMc.

12 12
c= (Z—E-) and dc = l(-—z—‘) dE.
M 2\ME

The value of the velocity distribution function is constant throughout this
spherical shell (since its velocity dependence is in fact just a dependence
on the speed c), so to calculate the total fraction of molecules f( E)dE we
merely need to multiply this constant value by the volume of the shell.
Since the area of a sphere of radius c is 4nc?, the volume of the shell is
4nc*de, so we may write f(E)dE as

dwetde - Cexp(—fc?).
Writing ¢ and dc in terms of E gives

f(E)dE = 4n El(L) dE - Cexp( Z'BE)
M 2\ME M

which can be written as

E
E)= KE"ex (——)
f(E) P\" %1
where we have substituted our earlier expression for f§ and combined the

factors which do not depend on E into the constant K. [This constant
could be determined from the normalising condition that

L “HE)E = 1.
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In fact, it is
n
il
Vem\kT

The form of the energy distribution f(E) is shown in figure 172, It has a
maximum at £ = kT/2.

Explain why the distribution of speeds of molecules emerging through a
small hole in an effusive molecular beam source is not a Maxwellian
distribution.

Solution

The short answer is that the faster molecules are more likely to emerge
than the slower ones, so that the speed distribution will be weighted
towards the higher speeds.

In more detail, following standard kinetic theory we can write

%n sin 6 f(c)d6 dc

for the number of molecules per unit volume in the bulk of the gas,
having speeds between ¢ and ¢ + dc and directions between  and

6 + d8. n is the number of molecules per unit volume, and f(c) is the
Maxwell speed distribution.

If we now consider the number of molecules passing through an area A
of the surface in unit time, it is clear that molecules of speed ¢ must travel
a distance of at most c if they are to escape in unit time. This is shown in
figure 173.

The volume of space occupied by these molecules, travelling at an
angle 6 to the surface normal, is

cAcosf,

so the number of molecules emerging per unit time with speeds in the
range c to ¢ + dc and directions in the range @ to & + d@ is

%noos&sin O cflc)dBdc,

i.e. the speed distribution is ¢ f(¢) which is not Maxwellian.
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A
Figure 173

Problem 177

The distribution of molecular velocities may be written

m \ mvi)
=|— - do,,
Plo)dv, (mr) exp( %T) "

where P(v,)dv, is the probability that a molecule will have a velocity
component (in the x-direction) in the range v, to v, + dv,, m is the
molecular mass, T the temperature and k Boltzmann's constant.

From this derive the Maxwell distribution in molecular speeds (in all
directions). Sketch the form of both distributions.

A vessel contains a monatomic gas at temperature T. Use Maxwell's
distribution to calculate the mean kinetic energy of the molecules.

Molecules of the gas stream through a small hole into a vacuum. A box
is opened for a short time and catches some of the molecules. What will
be the final temperature of the gas trapped in the box? (The thermal
capacity of the box is to be ignored.

If

L= “¥"exp (—ax?)dx
(1]

then
"n=n_l!n—2
and
1 fn 1
lo==y|—, 11 = —.
°o=3 1 20)
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Solution

The first part of this problem is very similar to problem 175, in which we
calculated the energy distribution function. As before, we note that the
region of velocity space corresponding to speeds between c and ¢ + dc is
a spherical shell of radius ¢ and thickness dc. This shell has a volume of
4mc?dc. The three-dimensional velocity distribution function is given by

p(vx, vy, v;)dv,do,dv, = P(v,)P(v,)P(v,) dv.dv,dv,,

where p(v,, vy, v;) dv.dv,dv, is the probability that the x-component
of the velocity is between v, and v, + duv,, the y-component is between
v, and v, + dv,, and the z-component is between v, and v, + dv,. The
value of p(v,, v,, v,) is constant throughout the shell, so the probability
that the speed is between ¢ and ¢ + dc is given by the product of this
value and the volume of the shell. Thus

fle) de = ( m )mexp( mcz) 4me? de.

2nkT 2kT
The shapes of these distributions are shown in figure 174.

A

P(v) fle)

T
V(kTim) he
Figure 174

Since the kinetic energy E of a molecule is given by
E= 1il'm.'z.
2
the mean kinetic energy { E) must be given by

-1
(E) —Emjoczf(c) de.
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We have just shown that f(c) is given by Ac?exp(—mc?/2kT) where A is
a constant for molecules of a particular mass at a particular temperature.
Although we know the value of A, it is perhaps easier to note that
[f(c)de = 1, so that

1

A= .
I .cz exp (—mc*2kT)dc
o

Thus

nc"exp(—mcz;’ZkT) dec
(E) = lm

J- cexp(—mc?/2kT) dc
0
We recognise this expression as having the form
1
1n2s,
2 I,

where a = m/2kT. Now 1./I, = 3/2a = 3kT/m,so (E) = 3kT/2.

In problem 176 we showed that the molecules which emerge from a
small hole have a speed distribution proportional to ¢ f(c). The mean
kinetic energy of the emerging molecules is thus given by

j c’e f(c) de
(E) = 1m :
j ¢ f(c) de
0
In a similar manner to our calculation of the mean kinetic energy of the
molecules in the bulk of the gas, we can write this as
I cexp(—mc?/2kT) dc
1 0
(E ) = -im 3
f & exp (—mc?/2kT) de
0

i.e. mlsf2I5. Since Is/I3 = 2fa = 4kT[m, this gives ( E) = 2kT. Thus the
molecules which emerge from the gas have kinetic energy greater by
kT/2, on average, than the molecules in the bulk of the gas. When these
molecules are trapped and allowed to come into equilibrium, they will
reach a temperature T' such that 3kT’/2 = 2kT, and hence the final
temperature will be 4T/3.
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In unit time, the disc moves a distance W to the right, and molecules
with speed ¢ move a distance c in the direction 8. The molecules which
can collide with the disc are thus contained in the shaded region of
figure 176.

Figure 176

This region has a volume (ccos 8 + W)rR2, so it contains
nwR*(c cos 8 + W) molecules. We know that the fraction of molecules
having speeds between ¢ and ¢ + dc and directions between 6 and 6 + d@
is

éf(r) sin@dcdf,

so the number of collisions per unit time arising from molecules having
speeds between ¢ and ¢ + dc and directions between & and 8 + df is

%mez(r cos 6 + W)f(c)sin 0 dcdb.

Each of these molecules transfers momentum 2m(c cos 8 + W) to the
disc, so the force exerted on this side of the disc is

mnaR(c cos 8 + W) f(c)sin 8 dcdf.
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Solution

If the number of molecules per unit volume in the chamber is n, and their
mean speed is (¢}, the number of molecules arriving per unit area of
surface per unit time is

n{c)/4.

Since these molecules stick to the surface, the rate at which the fraction f
of the surface covered is increasing is

df _ n{c) nd? - nnd*{c)
dt 4 4 16
where d is the molecular diameter.
Now
n= L
kT
and
8kT
(C) = =

mm

where p is the pressure, T is the temperature, k is Boltzmann's constant
and m is the molecular mass, so

daf _ V@m _ pd

dt 8 V(mkT)
Taking m = 32 x 1.66 X 107 kg = 5.31 x 10" kg and T = 293K, and
substituting the values given for p and T, gives df/dt = 2.31 x 10°s™".
Thus the time required for f to increase from zero to 0.01 is
0.01/(2.31 x 10°)s =4 x 107%s.

[In fact, the value of df/dt that we have calculated is only valid as long
as f remains small. When an appreciable fraction of the surface has been
covered, df/dt will be smaller because some of the molecules that arrive
will hit parts of the surface that are already covered. However, since we
are considering f < 0.01, the correction needed to take account of this
effect will be negligible.]

Problem 180

A vacuum pump, which maintains a pressure of 107 Pa, is connected to a
large vacuum chamber, of volume 1 m?, by a flange with a circular
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aperture of radius 102 m. The chamber contains air at an initial pressure
of 107* Pa. How long does it take for the pressure to fall to 2 x 10”7 Pa?

(You may assume a value of 450 ms™! for {¢) and that the mean free
path of air molecules at atmospheric pressure is 100 nm.)

Solution

The mean free path at constant temperature is inversely proportional to
the pressure, so at 1073 Pa it must be 100 nm X (10°/107%) = 1000 m. It is
thus much larger than the aperture, so we are justified in using the
formula

1
Zn(c)A

for the number of molecules emerging in unit time from an aperture of
area A. n is the number of molecules per unit volume in the vessel from
which the molecules are escaping, and (c) is their mean speed.

Put n, for the number of molecules per unit volume in the vacuum
chamber, and n, for the number of molecules per unit volume in the
pump. The rate at which molecules leave the chamber is thus

1
-nelc)A
Zele)
and the rate at which they enter it from the pump is
1
=np(c)A.
Jme)

If the volume of the vacuum chamber is V', we can therefore write

dn, 1(1 1 )
—_— e~ A-- Al
&V 4""(6) 4"‘@

Now for a particular gas at a constant temperature, the number of
molecules per unit volume is proportional to the pressure, so we can

rewrite this as

dp. _ (c)A  _
n Ay (Pp — Pc)-

This differential equation can most easily be solved by noting that p, is
constant and putting

P’ = Pc— Pps
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Solution
We know that the number density n(x) will be proportional to

exp (- E/kT),
where E is the potential energy of a particle at height x. If a particle has
volume V, its weight is pgV where p is the density of the metal and g is
the gravitational field strength. However, the particle will also experience
an upthrust of phgV, where py is the density of water, so that the net

downward force is (p — py)gV . The increase in potential energy E for a
rise in height x is thus (p — py)gVx. Taking

3
L
3

we can thus calculate the increase in potential energy for a rise of 1 mm:
AE =107 x (2 x 10° - 10%) x 9.81 x % x (2% 1078 ]
=6.25 x 107! J.

The concentration of particles therefore decreases by a factor of
exp(AE/kT) = 4.57, so the concentration will be 1000/4.57 =

220 particles per unit volume. Note that we would have made an error of
about 10% if we had neglected the upthrust.

Problem 184

Estimate the height at which atmospheric pressure is half the value at sea
level, making clear your assumptions.

Solution

If air behaves like an ideal gas, and the temperature T of the atmosphere
is constant, the pressure will be proportional to the density, and the
density will be proportional to

exp (- mgz/kT),

where m is the mass of an ‘air molecule’, g is the gravitational field
strength (assumed constant), z is the height, and k is Boltzmann's
constant. The height at which the pressure is halved is thus given by

Mg — In2,
kT
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S0

z= ﬂ In2.
mg
Since air consists of about 80% N, and 20% O, we may take m to be
(0.8 x 28 + 0.2 x 32) X 1.66 x 10" kg = 4.78 x 10" % kg. A suitable
value for T might be 283K (10°C), k = 1.38 x 1002 JK ™! and
g=9.81ms 2,50 z =5.8km.

[The main error in this calculation is the assumption that the
atmospheric temperature T is constant. In fact, it decreases more or less
linearly with height, at about 0.0065 Km™", for the first 11 km. We can
allow for this as follows.

For a stationary fluid in a gravitational field g, the variation of pressure
p with height z is given by the hydrostatic equation

dp _ _
dz p8|

where p is the density. For an ideal gas consisting of molecules of mass
m, the relationship between pressure and density can be found from

pV = NkT,

where V is the volume occupied by N molecules of the gas. The mass of
these N molecules is clearly Nm = pVm/kT, so the density pis pm/kT.
Substituting this expression for p into the differential equation for p gives

dp _ _msp
dz kT’
which can be rearranged to give
dp _ _mgd:
P kT

Integrating this differential equation with T constant would give us back
our exponential expression for the variation of pressure with height.
However, let us instead put

T=T)-az
to obtain

[l - et
wp kT az



Problem 185 337

This expression can be integrated to give

In (L) —_me, (_ﬁ_)
Po ak \Ty— az
which, on exponentiating, becomes

L= (1 - az/Ty)mslek,

Po
If we take m = 4.78 x 102 kg as before, and & = 0.0065 Km™!, we
obtain mg/ak = 5.23. Thus

(1 — az/Tg) = 05152 = 0.876,

az/Ty = 0.124.
Taking Ty = 288 K (the standard sea-level value) gives z = 5.5 km.]

Problem 185

A closed cylinder of radius a contains gas at constant temperature T with
molecules each of mass m. The cylinder is made to rotate about its axis
with angular velocity @. Use the Boltzmann distribution law to derive the
variation of density for the gas with distance from the axis. At what
distance from the axis is the density unchanged by the rotation, if w is
small?

Solution

For definiteness, let us call the length of the cylinder L and the initial
density of the gas (when the cylinder is not rotating) py. The total mass of
gas within the cylinder, which must be constant since the cylinder is
closed, is therefore

M = ma®Lpy.

When the cylinder is rotated, it becomes energetically favourable for the
molecules to move towards the edge of the cylinder, so we expect the
density to increase with radius r. Thermal excitation will prevent all of
the molecules from being pushed to the edge of the cylinder.
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This function is sketched in figure 177, for different values of £2.

¥ T ¥ ¥ v v L)
0 01 02 03 04 05 06 07 08 09 10
Figure 177
Writing the function as a series expansion for small 2, we have

P _QU+QR+..)_QU+QR +..))
M Q+ Q2+ ... QlI+Q2+...)

For small Q this is clearly equal to 1 when R? = 1/2. Thus the density is
unchanged for small angular velocity at a distance r = a/\/2 from the
axis.

A problem with high temperature metal oxide superconductors, which
are prepared at 900 °C, is that the oxygen content is too low. This
problem can be overcome by diffusing oxygen in from the surface

at 400 °C.

How long will this process take in a crystal of smallest dimension
107} m, and how long does it take 1o lower the oxygen content again by
heating at 900 °C? Assume that the energy barrier that must be
surmounted to move an oxygen atom from one site to anotheris 1 eV,
that the intersite distance is 2 x 107" m, and that the characteristic
frequency of vibration of the lattice is 10'* Hz. (You may choose to
consider this problem as an example of a one-dimensional random walk.)



340 Thermodynamics

Solution

Write W for the height of the energy barrier and T for the
(thermodynamic) temperature. The probability p of an oxygen atom
surmounting this barrier and thus moving to an adjacent site, at a single
attempt, is

p =exp(—W/kT),

where k is Boltzmann’s constant. The expectation number of attempts
required before a jump occurs is* 1/p, so if we write v for the
characteristic lattice vibration frequency, the mean time between jumps
from one site to a neighbouring site will be given by

(1y = L = exp(W/KT),

vp v

We can view the diffusion process as a one-dimensional random walk in
which steps of length a (the intersite distance) are taken at time intervals
{t). Itis a well-known result that for a one-dimensional random walk,
the root mean square distance from the starting point is \/ N step lengths
after N steps. Thus after time 1, an oxygen atom will have taken /(1)
steps and its root mean square distance x from its starting point will be
given by ‘

a ;
(1)

Thus the time required for a significant number of oxygen atoms to
diffuse a distance x through the crystal is

2 2
t=2_(1) = L exp(W/kT).
a a’v

From the data given in the problem, we have

W=1eV=16x10"1]J,

a=2x10""m,

T=400°C = 673 K,

v = 10" Hz,

x =5 x 107* m (since oxygen atoms can diffuse in from either side
of the crystal).

Substituting these values into our expression for ¢, we find
t = 1.9 x 10%s = 22 days.
The time taken for the atoms to diffuse out again at 900 °C can be
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Solution

The Boltzmann distribution tells us that the probabilities of a dipole being
oriented parallel and antiparallel to the field are

Pparatiet = A exp (uB/kT),
Pantiparallel = A exP(“FBH‘T)-
The normalising constant A can be found by realising that no other
possibility exists, 50 that pparana + Paniiparanet = 1. Thus
i
exp(uB/kT) + exp(—uB/kT)

The fraction f of moments that are parallel to the field is equal 10 ppagiicis
50

exp (uB/kT)
exp (uB/kT) + exp(—uB/kT)

A unit volume of the solid contains N dipoles, of which fN are oriented
parallel to the field and (1 — f)N antiparallel. The net dipole moment per
unit volume, M, is thus equal to

M = u(fN — [L - f]N) = uN(2f - 1).
Inserting our expressions for f, this gives
M = uN exp (#B/kT) — exp(~puB/kT) _ N tanh(ﬁ).
exp (uB/kT) + exp (—uB/kT)
The susceptibility y is given by

1+ xX= ...E... = —B....—.
wH B = ugM
50
MM pouN tanh (uB/kT)

X= B —joM B — jouN tanh (uB/KT)

[At sufficiently high temperatures and low magnetic fields. this tends to
HotE N
kT

This proportionality of x to 1/T is called the Curie law. The condition
that the temperature is high enough is that uB/kT << 1. Since p is usually
of the order of a Bohr magneton (9.3 x 1072* 1'T™"), the temperature
need only be greater than about 1 K for fields as large as 1°T.]
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The rotational energy, according to quantum mechanics, is
_JU+ DR
8mil

where h is Planck’s constant and J is the rotational quantum number,
which must be an integer, so the lowest non-zero rotational energy is
h? h?

4l 2md?

Substituting h = 6.626 x 107> J's, m = 1.67 x 107 kg and

d=8x 107" m gives Epp =2.1X 1072'].

(b) Vibrational mode.

We now model the molecule as two masses m connected by a spring of
spring constant k. The masses vibrate along the molecular axis, as shown
in figure 179.

Eca

<> k <>
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Figure 179

The vibrational frequency v of this arrangement is

_ 1 2k
V= [,
2r m

so the energy needed to excite the lowest vibrational mode is

2k

27 m’

[Actually, the quantum-mechanical analysis shows that the vibrational
energy is given by E = (n + 1/2)hv where n is an integer. The lowest
mode has n = 0 and an energy hv/2 (the zero-point energy), but the
energy required to excite the mode n = 1 is greater than this by Aiv so our
analysis is still valid.]

Substituting the values for k and m gives E,;, = 8.8 x 1072 ],

The temperatures at which the lowest modes will be excited are given
approximately by

Emﬁn
k
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where k is Boltzmann’s constant, so the lowest rotational mode will be
excited at about 150 K and the lowest vibrational mode at about 6000 K.
Thus at temperatures below about 150 K, neither vibrational modes nor
rotational modes will be excited and the only way in which the molecule
can store thermal energy is as kinetic energy of translation. It will
therefore have three degrees of freedom, so the ratio of specific heats, y,
will be 1 + 2/3 = 5/3. The molar heat capacity at constant volume, C,, is
given by

R

Cu =—
y —
where R is the molar gas constant, so at temperatures below about 150K
we expect hydrogen to have a molar heat capacity at contant volume of
about 3R/2 = 12.5 Jmol™' K~'. We can convert this to the specific heat
capacity by dividing by the molar mass of hydrogen, which is
0.002 kgmol ™!, to give 6.25 kI kg 'K\

Between about 150 K and 6000 K, the rotational mode will also be
excited, contributing a further two degrees of freedom. The ratio of
specific heats will become y = 1+ 2/5 = 7/5, and C, will become
5R/2 = 20.8 Jmol~' K~!. The specific heat capacity is therefore
104k kg ' K1,

A graph of the actual specific heat capacity of hydrogen (figure 180)
shows that these predictions are essentially correct. The value of C,
begins to increase from 6.3 kJkg™! K~! at about 50 K, and reaches
10.4 kJ kg~ K~! at about 300 K. Towards 1000 K we can begin to see
evidence of the vibrational mode being excited.

30 50 100 K 300 500 1000

12 ' Il L 1 i L L L
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s A
kg "] i
847 i
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1.4 1.6 1.8 20 22 4 6 28 30
log) (TTK)

Figure 180
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temperatures of about 1000, 1000, 2000 and 3500 K respectively. It thus
seems reasonable that at about 300 K the two lowest modes should each
be half excited, whereas at 1300 K they are fully excited and the third
mode is also half excited.]

According to simple kinetic theory the thermal conductivity of a gas is
given by the expression

K = je,Ac).

Explain the meaning of the symbols on the right-hand side of this
equation and use it to show that the thermal conductivity of a gas should
increase with temperature approximately, but not exactly, as T2,

Make a reasoned estimate of the ratio of the thermal conductivity of
methane gas to that of argon gas, at room temperature and atmospheric
pressure, given the following information. Both molecules can be
regarded as spheres, the radius of the methane molecule being 1.7 times
the radius of the argon atom. The atomic weight of argon is 40; the
molecular weight of methane is 16. Internal vibration of the methane
molecule is not excited at room temperature.

Solution

Ais the mean free path of the gas molecules, i.e. the mean distance
travelled by molecules between collisions with other molecules. {(¢) is
their mean speed, and c, is a heat capacity at constant volume. We can
check which heat capacity it is by using dimensional analysis: The units of
K are Wm™' K, and the units of A{c) are m?s™', so the units of ¢,
must be Jm™2K™'. ¢, is thus the heat capacity per unit volume at
constant volume.

c, is related to the molar heat capacity at constant volume, C,, by

=2

C
©
Na

where n is the number of molecules per unit volume and N, is
Avogadro’s number. The mean free path 4 is given approximately by
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1
dmnrt

A=

for a gas of spherical molecules of radius r, and the mean speed (c) is
given by

8RT
c} = ¥
(e) ‘j M
where R is the gas constant, T is the temperature and M is the molar
mass. Putting these results together gives

K = C, 8RT
12aNsr® ¥ M

Since C, varies only very slowly with T (see problem 188), this implies
that K should vary approximately as T2, as required.

We can use this expression to write down the expected ratio of the
thermal conductivity of methane to that of argon:

Km _ Com TA Ma
Ko Coa rig ¥ My

The molar heat capacity at constant volume, C,, is Rf/2 where the gas
molecules have f degrees of freedom. Since argon is a monatomic gas,

f =3 and C, = 3R/2. The methane molecule is polyatomic and
non-linear, so it is free to rotate about any axis, giving it an additional
three degrees of freedom (we are told that none of the vibrational modes
is excited). It thus has f = 6 and C, = 3R. We can therefore put

Kw _p 1 [90_y,.
Ka 1.7 V16

I.e. we predict that the conductivity of methane should be about 1.1 times
that of argon. [In fact, the ratio is about 1.9, so our assumptions must be
invalid.]

The equilibrium vapour pressures as a function of temperature for carbon
tetrachloride (CCl,) and mercury (Hg) are given in Table 9.
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the CCl, data we find that the slope of the graph of In p, against 1/T is
(—3.87 £ 0.04) x 10° K, so that the latent heat of vaporisation is

32.2 £ 0.3kImol ™. Interpolating the graph to find the value of 1/T at
which the pressure is 760 mm Hg (i.e. In p = 6.63) gives

1/T =2.859 x 10*K™!, so T}, = 350 K.

Similarly for mercury, the slope of the graph is (=7.43 +0.01) x 10°K,
which gives 61.7 = 0.1 kJ mol ™" for the latent heat of vaporisation.
Extrapolation of the graph to In p = 6.63 gives 1/T = 1.613 x 107 K™™',

The accepted values for CCly are L =29 kJmol™" and T,, = 350K, and
for Hg they are L = 58 kJmol™! and T}, = 630 K, so our calculated values
are correct to within about 10%.

Problem 192

A mass of 1 kg is placed upon a block of melting ice. The weight bears
upon an area of 1 mm?, By how much must the temperature of the ice be
lowered for it to resist penetration by the mass? Assume that no heat
flows from the mass. (g = 9.81 ms™2. Latent heat of fusion of

ice =333 kJkg™!. In cold water ice floats eleven-twelfths submerged.)

Solution

We can use the Clausius—Clapeyron equation to calculate the effect of
pressure on the melting temperature of ice:
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and using the values quoted for L and f, and taking T = 273 K and

P = 1000 kgm ™3, gives dp/dT = ~1.34 x 10" PaK ™. Since this is
negative, the melting point of ice must be decreased by increasing the
pressure, and the temperature of the ice must therefore be lowered to this
value to prevent the mass from penetrating the ice. A mass of 1 kg
bearing on an area of 1 mm? exerts a pressure of 9.81 x 1/107% Pa =

9.81 x 10° Pa, so the depression of the melting point

is (9.81 x 10°)/(1.34 x 10") K = 0.73K.

Water boils at 100 °C at sea level and at 83 °C on a mountain 5 km in
height. Estimate the latent heat of vaporisation per mole of water. (For
simplicity assume that air consists of a single molecular species of relative
molecular mass 28.8, and take the ambient temperature to be 10°C.)

Solution

Water boils when it reaches the temperature at which its saturated vapour
pressure p, is equal to the external (atmospheric) pressure. We expect
the saturated vapour pressure to vary with temperature T as

py =< exp(—L/RT),
where L is the molar latent heat of vaporisation.
We also expect the atmospheric pressure p to vary with height z. Since

the potential energy of a mole of air at height z is Mgz where M is the
molar mass and g is the acceleration due to gravity, we may put

p = exp(—Mgz/RT,)

if the gravitational acceleration g and the ambient temperature T, may be
assumed to be constant (e.g. problem 184).

Thus if we put T for the boiling point of water at sea level and T, for
the boiling point at height z, and py for atmospheric pressure at sea level,
we have two expressions for the vapour pressure at height z:

_ poexp(~L/RT,)
exp(—L/RTp)
By eliminating po and taking logarithms to base e, this may be rewritten

= poexp (—Mgz/RT,).
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Rearranging,
-1
L= &(L - L) .
T, T Ty
Substituting the values M = 28.8 x 10 kg, g = 9.8 ms™2, z = 5000 m,
T,=283K, To=373K and T, = 356 K gives L = 39kJmol~!. (The
accepted value is about 41 kJ mol ™!, so our simple method has
underestimated L by about 5%.)

Problem 194

A gas obeying
p(V — b) = RT

has a heat capacity per mole, at constant volume, of C,.

(a) Write down Maxwell's relations, and use them to show that the
internal energy U is a function only of T by finding (3U/3T)y,
(3U/aV)r and hence also (3U/op)7.

(b) Show that for an adiabatic expansion p(V — b)” = constant, where
v is the ratio of principal heat capacities and C, — Cy = R.

Solution

(a) The first result, (3U/3T)y, is by definition equal to C,.
The four Maxwell relations can be written as

(&) (7).~ %)

av/s as/v’ \apls \asl,
().~ G ().
av/r \ar /v’ \ap)r aT/p

The first law of thermodynamics can be written as

dU =TdS - pdV,

so if we perform the differentiation with respect to V at constant T we
obtain

(au) (as)
— =T — -p
av/r av/r
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Substituting the appropriate Maxwell relation gives

(o)
av)r aT /v

Now for the gas defined in the problem, we have

_ RT

V-b
so that

(Eﬂ):i=£
aTlv v—-b T

Thus, for this gas,

57)

Similarly, beginning with dU = T dS — p dV and performing the
differentiation with respect-to p at constant T gives

(&)= m5) - G5),

Substitution of the appropriate Maxwell relation gives

(55). = (7). ~+(50).

From the equation of state we have

(av) R (av) _ _RT
—] =—and|—] = ——,
aTle p aplr P’

so that

() -
oplr

Since we have shown that U depends on neither p nor V if the
temperature is held constant, it follows that U is a function only of T.

(b) For an adiabatic expansion, dS = 0 so dU = —p dV. However,
since we have just shown that U depends only on T we may also put
dU = C,dT, and thus

C,dT + pdV =0.
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We can substitute from the equation of state p(V — b) = RT to eliminate
p and obtain an expression involving only V and T:

RT dV -
V-b
This differential equation can be solved by dividing through by T and
then integrating:

Iﬂ+ RdV

0.

C.dT +

———— = constant,
T V-5

which gives
C,InT + RIn(V — b) = constant.
Substitution from the equati(;n of state to eliminate T gives
Cylnp + (R + C,)In(V — b) = constant.
Recalling that R + C, = C,,, and dividing this expression by C,,, gives
Inp + yln(V — b) = constant.
Finally, taking the antilogarithm of this expression gives the required
result:
p(V = b)Y = constant.

Problem 195

A body has a constant heat capacity C, and an initial temperature 7. It
is placed in contact with a heat reservoir at temperature T; and comes
into equilibrium with it at constant pressure. Assuming T is greater than
T, calculate the entropy change of the universe and show that this is
always positive.

Solution

Since T, is greater than T, heat flows from the reservoir to the body.
The reservoir may be assumed to have infinite heat capacity, i.e. its
temperature is unchanged, but the effect of heat flowing to the body will
be to increase the body’s temperature.

Consider a quantity of heat dQ flowing from the reservoir to the body.
The entropy change of the body will be +dQ/T, where T is the body’s
temperature, and the entropy change of the reservoir will be —dQ/T,.
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Now we use this work (which we have stored somewhere) to drive the
heat engine in reverse in order to raise the temperature of the body above
T,, as shown in figure 184.

body environment
ra |2 e e [ 2 perature T,
infinite heat capacity
dWT
Figure 184

This time, application of the first law gives
dQ] = sz + dW,
but the second law gives the same condition as before. Combining the two
conditions as before, and writing dQ; = A dT, we obtain

A dT(I - ﬁ) =dWw.
T

This expression can be integrated, with W running from zero to the value
we calculated in the earlier part of the problem, and T running from T,
to Ti:

T W
J (1 - E)dT = d_W’
T T 0 A
which gives

w
T-TnT)f=—,
[ 2In Ty, A

T
T3 - Tz - T:ll'l—a'-= 1,
T, A

which can finally be rearranged to give the required form
T
Ty - Tz(l + ln_’) =¥
T, A
[Although the problem does not ask for it, we can substitute into this

expression our earlier expression for W to obtain the relationship
between T, Ty and T5. This gives
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