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PREFACE

This series of physics problems and solutions which consists of seven
volumes — Mechanics, Electromagnetism, Optics, Atomic, Nuclear and
Particle Physics, Thermodynamics and Statistical Physics, Quantum Me-
chanics, Solid State Physics — contains a selection of 2550 problems from
the graduate-school entrance and qualifying examination papers of seven
U.S. universities — California University Berkeley Campus, Columbia Uni-
versity, Chicago University, Massachusetts Institute of Technology, New
York State University Buffalo Campus, Princeton University, Wisconsin
University — as well as the CUSPEA and C.C. Ting’s papers for selection
of Chinese students for further studies in U.S.A. and their solutions which
represent the effort of more than 70 Chinese physicists plus some 20 more
who checked the solutions.

The series is remarkable for its comprehensive coverage. In each area
the problems span a wide spectrum of topics while many problems overlap
several areas. The problems themselves are remarkable for their versati-
lity in applying the physical laws and principles, their up-to-date realistic
situations, and their scanty demand on mathematical skills. Many of the
problems involve order-of-magnitude calculations which one often requires
in an experimental situation for estimating a quantity from a simple model.
In short, the exercises blend together the objectives of enhancement of one’s
understanding of the physical principles and ability of practical application.

The solutions as presented generally just provide a guidance to solving
the problems, rather than step by step manipulation, and leave much to
the students to work out for themselves, of whom much is demanded of the
basic knowledge in physics. Thus the series would provide an invaluable
complement to the textbooks.

The present volume for Mechanics which consists of three parts —
Newtonian Mechanics, Analytical Mechanics, and Special Relativity —
contains 410 problems. 27 Chinese physicists were involved in the task
of preparing and checking the solutions.
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In editing, no attempt has been made to unify the physical terms, units,
and symbols. Rather , they are left to the setters’ and solvers’ own prefer-
ence so as to reflect the realistic situation of the usage today. Great pains
has been taken to trace the logical steps from the first principles to the final
solutions, frequently even to the extent of rewritting the entire solution.
In addition, a subject index has been included to facilitate the location of
topics. These editorial efforts hopefully will enhance the value of the volume
to the students and teachers alike.

Yung-Kuo Lim
Editor



INTRODUCTION

Solving problems in course work is an exercise of the mental faculties,
and examination problems are usually chosen from, or set similar to, such
problems. Working out problems is thus an essential and important aspect
of the study of physics

The series on Problems and Solutions in Physics comprises seven vol-
umes and is the result of months of work of a number of Chinese physicists.
The subjects of the volumes and the respective coordinators are as follows:

1. Mechanics (Qiang Yuan-qi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang
De-tian)

2. FElectromagnetism (Zhao Sh-ping, You Jun-han, Zhu Jun-jie)

Optics (Bai Gui-ru, Guo Guang-can)

4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao-zhong,
Fan Yang-mei)

5. Thermodynamics and Statistical Physics (Zheng Jiu-ren)

Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi)

7. Solid State Physics and Miscellaneous Topics (Zhang Jia-lu, Zhou You-
yuan, Zhang Shi-ling)

i

o

These volumes, which cover almost all aspects of university physics,
contain some 2550 problems solved in detail.

The problems have been carefully chosen from a total of 3100 problems
collected from the China-U.S.A. Physics Examination and Application
Programme, the Ph.D. Qualifying Examination on Experimental High
Energy Physics sponsored by Chao-chong Ting, and the graduate qualifying
examinations of seven world-renowned American universities: Columbia
University, the University of California at Berkeley, Massachusetts Institute
of Technology, the University of Wisconsin, the University of Chicago,
Princeton University, and the State University of New York at Buffalo.

Generally speaking, examination problems in physics in American uni-
versities do not require too much mathematics. They can be characterized

vii



viit Introduction

to a large extent as follows. Many problems are concerned with the
various frontier subjects and overlapping domains of topics, having been
selected from the setters’ own research encounters. These problems show a
“modern” flavor. Some problems involve a wide field and require a sharp
mind for their analysis, while others require simple and practical methods
demanding a fine “touch of physics.” We believe that these problems, as
a whole, reflect to some extent the characteristics of American science and
culture, as well as give a glimpse of the philosophy underlying American
education.

That being so, we consider it worthwhile to collect and solve these
problems and introduce them to physics students and teachers everywhere,
even though the work is both tedious and strenuous. About a hundred
teachers and graduate students took part in this time-consuming task.

This volume on Mechanics which contains 410 problems is divided into
three parts: Part I consists of 272 problems on Newtonian Mechanics;
Part II, 84 problems on Analytical Mechanics; Part III, 54 problems on
Special Relativity.

A small fraction of the problems is of the nature of mechanics as in
general physics, while the majority properly belongs to theoretical me-
chanics, with some on relativity. A wide range of knowledge is required
for solving some of the problems which demand a good understanding
of electromagnetism, optics, particle physics, mathematical physics, etc.
We consider such problems particularly beneficial to the student as they
show the interrelationship of different areas of physics which one is likely
to encounter in later life. Twenty seven physicists contributed to this
volume, notably Ma Qian-cheng, Deng You-ping, Yang Zhong-xia, Ji Shu,
Yang De-tian, Wang Ping, Li Xiao-ping, Qiang Yuan-qi, Chen Wei-zu, Hou
Bi-hui, and Chao Ze-xian.

7 August 1991
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PART 1

NEWTONIAN MECHANICS






1. DYNAMICS OF A POINT MASS (1001-1108)

1001

A man of weight w is in an elevator of weight w. The elevator accelerates
vertically up at a rate a and at a certain instant has a speed V.

(a) What is the apparent weight of the man?

(b) The man climbs a vertical ladder within the elevator at a speed v
relative to the elevator. What is the man’s rate of expenditure of energy
(power output)?

( Wisconsin)
Solution:
(a) The apparent weight of the man is

F=w+2a=w(1+g) ,
9 9

g being the acceleration of gravity.

(b) The man’s rate of expenditure of energy is

th=w(1+§) (V +v).

1002

An orbiting space station is observed to remain always vertically above
the same point on the earth. Where on earth is the observer? Describe the
orbit of the space station as completely as possible.

(Wisconsin)

Solution:

The observer must be on the equator of the earth. The orbit of the
space station is a large circle in the equatorial plane with center at the
center of the earth. The radius of the orbit can be figured out using the
orbiting period of 24 hours* as follows. Let the radius of the orbit be R
and that of the earth be Rjg.

*For a more accurate calculation, the orbiting period should be taken as 23 hours
56 minutes and 4 seconds.
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We have
mu? _ GMm
R~ R’
where v is the speed of the space station, G is the universal constant of
gravitation, m and M are the masses of the space station and the earth

respectively, giving

o2 = GM
" R
As
GMm
mg = R% y
we have
GM = Rig .
Hence )
o2 = Fog
R
For circular motion with constant speed v, the orbiting period is
_27R
T
Hence
4r?R? Rig
T2 R
and .
272\ 3
R= (%19} _42x10'km
472
1003

In an amusement park there is a rotating horizontal disk. A child can
sit on it at any radius (Fig. 1.1). As the disk begins to “speed up”, the
child may slide off if the frictional force is insufficient. The mass of the
child is 50 kg and the coefficient of friction is 0.4. The angular velocity is
2 rad/s. What is the maximum radius R where he can sit and still remain
on the disk?

(Wisconsin)
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Solution:
Under the critical circumstance that the child just starts to slide,
mRw?® = pmg .

Hence 0.4 % 9.8
ug 4 x 9.

As the centrifugal force is proportional to the radius, this is the maximum
radius for no-sliding.

g=98 m/s?

. S
e
(O

Fig. 1.1.

1004
A cord passing over a frictionless pulley has a 9 kg mass tied on one end
and a 7 kg mass on the other end (Fig. 1.2). Determine the acceleration

and the tension of the cord.
(Wisconsin)

Solution:

Neglecting the moment of inertia of the pulley, we obtain the equations
of motion
mE=mg—F

and
maE = F —mgyg .
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Hence the tension of the cord and the acceleration are respectively

Fo 2mumag 772 N
my + ma
and
_(mi—my)g 2
my + mg 16
=1.225 m/s? .
0
F
F
m
X m2
m1g
ma9
Fig. 1.2.
1005

A brick is given an initial speed of 5 ft /s up an inclined plane at an angle
of 30° from the horizontal. The coefficient of (sliding or static) friction is
p = v/3/12. After 0.5 s, how far is the brick from its original position? You
may take g = 32 ft/s2.

(Wisconsin)
Solution:

Choose Cartesian coordinates as shown in Fig. 1.3. For & > 0, the
equation of the motion of the brick is

m& = —mgsind — umgcos@ ,

giving
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N x

mg

Fig. 1.3.

¥ = —g(sinf + pcosh) = _%g .

The time of upward motion of the brick is then
t, = f—‘; = 5/(59/8) = 0.25
and the displacement of the brick is

1
Ty = doty + HtE = = ft .

2

For t > t;, £ < 0 and the equation of motion becomes

0o| er

m& = —mgsinf + pymg cosé

or 3
% = —g(sin@ — pcosf) = _gg .
The displacement during the time interval t;, =0.25 s to ¢, = 0.5 s is
R 1 3¢ 1 3

Ar=t5="3"% 16 8"

so that the displacement of the brick at ¢ = 0.5 s is

S =z +Az=5/8—3/8=0.25ft.

1006

A person of mass 80 kg jumps from a height of 1 meter and foolishly
forgets to buckle his knees as he lands. His body decelerates over a distance
of only one cm. Calculate the total force on his legs during deceleration.

(Wisconsin)
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Solution:

The person has mechanical energy Ey = mg(h + s) just before he lands.
The work done by him during deceleration is E, = fs, where f is the total
force on his legs. As E; = E,

__ mgh _ {80x1 _
f= A +mg—( 001 +80)g=8080g N .
1007

A mass M slides without friction on the roller coaster track shown in
Fig. 1.4. The curved sections of the track have radius of curvature R. The
mass begins its descent from the height h. At some value of h, the mass
will begin to lose contact with the track. Indicate on the diagram where
the mass loses contact with the track and calculate the minimum value of
h for which this happens.

(Wisconsin)

Fig. 1.4.

Solution:

Before the inflection point A of the track, the normal reaction of the
track on the mass, N, is

2
muv

N =— +mgsin@,
R+ gs

where v is the velocity of the mass. After the inflection point,

2
mu
N+ —= sinf ,
7 mg

for which sing@ = %, or § = 30°.
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The mass loses contact with the track if N < 0. This can only happen
for the second part of the track and only if

"TL‘U2

= > mgsiné .
The conservation of mechanical energy
1
mglh — (R — Rsin@)) = -2-mv2

then requires

h— R+ Rsinf > RS;“” ,
or R . 0
h>R- S;n .

The earliest the mass can start to lose contact with the track is at A for
which 8 = 30°. Hence the minimum A required is %—R.

1008

Consider a rotating spherical planet. The velocity of a point on its
equator is V. The effect of rotation of the planet is to make g at the equator
1/2 of g at the pole. What is the escape velocity for a polar particle on the
planet expressed as a multiple of V7

(Wisconsin)

Solution:

Let g and g’ be the gravitational accelerations at the pole and at the
equator respectively and consider a body of mass m on the surface of the
planet, which has a mass M. At the pole,

GMm
mg = Rz
giving
GM = gR?
At the equator, we have
v? M
mVe _GMm e —mg-T9 =9

R R 2~ 2
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Hence g = 2V2/R.
If we define gravitational potential energy with respect to a point at
infinity from the planet, the body will have potential energy

B /R _GMm GMm

dr = =2

(o o)
Note that the negative sign in front of the gravitational force takes account
of its attractiveness. The body at the pole then has total energy
1 GMm
E=-mV:- —— .
2™ R
For it to escape from the planet, its total energy must be at least equal

to the minimum energy of a body at infinity, i.e. zero. Hence the escape
velocity v is given by

1 M
—2—m'u2 - GTm =0,
o WGM
vi= = =2gR=4V?,
i.e.
v=2V
1009

A small mass m rests at the edge of a horizontal disk of radius R; the
coeflicient of static friction between the mass and the disk is p. The disk is
rotated about its axis at an angular velocity such that the mass slides off
the disk and lands on the floor A meters below. What was its horizontal
distance of travel from the point that it left the disk?

(Wisconsin)

Solution:

The maximum static friction between the mass and the disk is f = umg.
When the small mass slides off the disk, its horizontal velocity v is given
by

"TL‘U2

R KM
Thus

v=+/uRg.
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The time required to descend a distance h from rest is

2h
t=y/—.
g

Therefore the horizontal distance of travel before landing on the floor is

equal to
vt = \/2uRh .

1010

A marble bounces down stairs in a regular manner, hitting each step at
the same place and bouncing the same height above each step (Fig. 1.5).
The stair height equals its depth (tread=rise) and the coefficient of resti-
tution e is given. Find the necessary horizontal velocity and bounce height
(the coefficient of restitution is defined as e = —vy /v;, where vy and v; are
the vertical velocities just after and before the bounce respectively).

(Wisconsin)

Fig. 1.5.

Solution:

Use unit vectors i, j as shown in Fig. 1.5 and let the horizontal velocity
of the marble be v,. The velocities just before and after a bounce are
respectively
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v = vl + v;j
and
vy = val + vy .

As the conditions at each step remain exactly the same, v;,v; and vp, are
all constant. The conservation of mechanical energy
1 2

1 9
QMI = oMY, + mgl

gives
vi= v} + 29l .

As by definition

Vf = —€Y; ,
the above gives
2 2gl
vy = —et-

The time required for each bounce is
V; — Uy _ l

t= —— = — |
g U

g g [gie
vi—vy (1+ev; V21+e’

which is the necessary horizontal velocity. The bouncing height H is given
by the conservation of mechanical energy

giving

Vp =

Therefore,

H_ﬁ_gj 29l €%l
29 291-e? 1-—e2"

1011
Assume all surfaces to be frictionless and the inertia of pulley and cord
negligible (Fig. 1.6). Find the horizontal force necessary to prevent any
relative motion of m,, my and M.
( Wisconsin )
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m

m2
F— M

TT777777777777777777

Fig. 1.6.

Solution:

The forces fi, F and mg are shown in Fig. 1.7. The accelerations of
my,ma and M are the same when there is no relative motion among them.
The equations of motion along the z-axis are

(M+my+mg)i=F,
mi=r.
As there is no relative motion of m, along the y-axis,
fi=mag .
Combining these equations, we obtain

ma(M + my + ma)g

F =
my
Y
fy
m
1 )

017///// P77 77777777777777¢ x

Fig. L.7.

1012

The sun is about 25,000 light years from the center of the galaxy and
travels approximately in a circle with a period of 170,000,000 years. The
earth is 8 light minutes from the sun. From these data alone, find the
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approximate gravitational mass of the galaxy in units of the sun’s mass. You
may assume that the gravitational force on the sun may be approximated
by assuming that all the mass of the galaxy is at its center.

(Wisconsin )

Solution:
For the motion of the earth around the sun,
mu? _ Gmm,
r rz

where r is the distance from the earth to the sun, v is the velocity of the
earth, m and m, are the masses of the earth and the sun respectively.
For the motion of the sun around the center of the galaxy,

m,V? Gm,M
R =~ R’
where R is the distance from the sun to the center of the galaxy, V is the
velocity of the sun and M is the mass of the galaxy.

Hence )
RV? R/[(V
M=-g “7(:) -

Using V = 2rR/T, v = 2rr/t, where T and ¢ are the periods of revolution
of the sun and the earth respectively, we have

R\® [ t\?
u=(7) (z) ™
With the data given, we obtain
M =153 x 10'!'m, .

1013

An Olympic diver of mass m begins his descent from a 10 meter high
diving board with zero initial velocity.

(a) Calculate the velocity Vp on impact with the water and the appro-
ximate elapsed time from dive until impact (use any method you choose).

Assume that the buoyant force of the water balances the gravitational
force on the diver and that the viscous force on the diver is bv2.
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(b) Set up the equation of motion for vertical descent of the diver
through the water. Solve for the velocity V as a function of the depth
z under water and impose the boundary condition V =V at = 0.

(c) If b/m = 0.4 m~', estimate the depth at which V' = V;/10.

(d) Solve for the vertical depth z(t) of the diver under water in terms
of the time under water.

(Wisconsin)

Solution:

(a)
Vo= v2gh=v2x98x10=14m/s.
The time elapsed from dive to impact is
Vo 14

t=—=—=1.43s.
g 9.8 s

(b) As the gravitational force on the diver is balanced by the buoyancy,
the equation of motion of the diver through the water is

mE = —bz? ,
or, using & = #di/dzr,

di b

—_0 = —‘*d:l: .

& m
Integrating, with £ = V5 at £ = 0, we obtain

V=i="Voe =",
(c) When V = V}/10,
m In10
= —-l = —— =), N
T 5 nl0 04 5.76 m

(d) As dz/dt = Voe~ =7,
em®dy = Vodt .
Integrating, with z = 0 at ¢t = 0, we obtain

m

2ehe -1 =t

or
x=ﬂln(1+bvoi> .
b m
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1014

The combined frictional and air resistance on a bicyclist has the force

F = aV, where V is his velocity and a = 4 newton-sec/m. At maximum

effort, the cyclist can generate 600 watts propulsive power. What is his
maximum speed on level ground with no wind?

(Wisconsin)

Solution:

When the maximum speed is achieved, the propulsive force is equal to
the resistant force. Let F be this propulsive force, then

F=aV and FV =600 W .

Eliminating F', we obtain

_ 600

V2 = 150 m?/s?

and the maximum speed on level ground with no wind

v=+v150=12.2m/s .

1015

A pendulum of mass m and length [ is released from rest in a horizontal
position. A nail a distance d below the pivot causes the mass to move
along the path indicated by the dotted line. Find the minimum distance d
in terms of ! such that the mass will swing completely round in the circle
shown in Fig. 1.8.

(Wisconsin)
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Solution:

Take the mass 72 as a point mass. At the instant when the pendulum
collides with the nail, m has a velocity v = y/2gl. The angular momentum
of the mass with respect to the point at which the nail locates is conserved
during the collision. Then the velocity of the mass is still v at the instant
after the collision and the motion thereafter is such that the mass is
constrained to rotate around the nail. Under the critical condition that
the mass can just swing completely round in a circle, the gravitational
force is equal to the centripetal force when the mass is at the top of the
circle. Let the velocity of the mass at this instant be v{, and we have

mvi m
1—d_ g
or
vi =(—d)g.
The energy equation
mv?  mu?
5 = ——2—+2mg(l—d) ,

or
2l = (- d)g +4(l - d)g

then gives the minimum distance as

d=

o &

1016

A mass m moves in a circle on a smooth horizontal plane with velocity
vp at a radius Ry. The mass is attached to a string which passes through
a smooth hole in the plane as shown in Fig. 1.9. (“Smooth” means
frictionless.)

(a) What is the tension in the string?

(b) What is the angular momentum of m?

(c) What is the kinetic energy of m?

(d) The tension in the string is increased gradually and finally 7 moves
in a circle of radius Ry/2. What is the final value of the kinetic energy?
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Fig. 1.9.

(e) Why is it important that the string be pulled gradually?
(Wisconsin )

Solution:

(a) The tension in the string provides the centripetal force needed for
the circular motion, hence F = mv/Ry.

(b) The angular momentum of the mass m is J = mvyRy.

(c) The kinetic energy of the mass m is T = mv? /2.

(d) The radius of the circular motion of the mass m decreases when the
tension in the string is increased gradually. The angular momentum of the
mass m is conserved since it moves under a central force. Thus

mygRp = muy (—Izﬂ) )

or
v = 299 .

The final kinetic energy is then

mv?  m(2vg)?
T = A =22/ - 2
1 5 5 2muy
(e) The reason why the pulling of the string should be gradual is that
the radial velocity of the mass can be kept small so that the velocity of the
mass can be considered tangential. This tangential velocity as a function of

R can be calculated readily from the conservation of angular momentum.
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1017

When a 5000 Ib car driven at 60 mph on a level road is suddenly put into
neutral gear (i.e. allowed to coast), the velocity decreases in the following
manner:

60

= ———~ mph,
1+ (&)

where ¢ is the time in sec. Find the horsepower required to drive this car
at 30 mph on the same road.
Useful constants: g = 22 mph/sec, 1 H.P. = 550 ft.lb/sec, 60 mph =
88 ft/sec.

(Wisconsin)

Solution:
Let Vo = 60 mph, then

- v !
Hence

v _ v

dt ~ 60V, ’

and the resistance acting on the car is F = mV?2/(60V;), where m is the
mass of the car. The propulsive force must be equal to the resistance F'
at the speed of V/ = 30 mph in order to maintain this speed on the same
road. It follows that the horsepower required is

P=FV= 7:0‘(/,: = 37500——’“"1;2'""
_ 37200 mphzs.lb wh _ 3725200 mphlb wt
_ 37500 88 frlbwt
2 60 s
— 2500 22 _ 45 wp.

Note that pound weight (Ib wt) is a unit of force and 1 Ib wt = g ft.lb/s2.
The horsepower is defined as 550 ft.lb wt/ s .
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1018

A child of mass m sits in a swing of negligible mass suspended by a
rope of length [. Assume that the dimensions of the child are negligible
compared with {. His father pulls him back until the rope makes an angle
of one radian with the vertical, then pushes with a force F' = mg along the
arc of a circle until the rope is vertical, and releases the swing. For what
length of time did the father push the swing? You may assume that it is

sufficiently accurate for this problem to write sinf = 6 for 6 < 1.
(Wisconsin)

Fig. 1.10.

Solution:
According to Fig. 1.10, the equation of the motion of the child is

mif = —mg —mgsin@ ,

or _
é-}-(%)siné?:—lg 6>0).

With w? = g/I, sin@ ~ 8, the above becomes
6+ w?0=—uw?.

The solution of this equation is § = A cos(wt) + Bsin(wt) — 1, where the
constants A and B are found from the initial conditions § = 1, § = 0 at
t=0tobe A=2, B=0. Hence

6 =2cos(wt) —1.
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When 6 =0,
1
cos(wty) = 2
giving
™
wt1 = *g y
ie.

1r_xf1

w 3 3\g’
This is the length of time the father pushed the swing.

t =

1019

A particle of mass m is subjected to two forces: a central force f; and
a frictional force f,, with

r
fi=-
1 Y‘f (r),
f=-Av (A > 0) s
where v is the velocity of the particle. If the particle initially has angular
momentum Jg about r = 0, find its angular momentum for all subsequent
times.
(Wisconsin)
Solution:
Write out the equations of motion of the particle in polar coordinates:
m@ — ré?) = f(r) — M,
m(270 + rf) = —ré ,

or ,s
1d(mr<9) .
Letting J = mr20, we rewrite the last equation as follows:
4l =M
d m

Integrating and making use of the initial angular momentum Jg, we obtain

J=Joe =t
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1020

(a) A spherical object rotates with angular frequency w. If the only
force preventing centrifugal disintegration of the object is gravity, what
is the minimum density the object must have? Use this to estimate the
minimum density of the Crab pulsar which rotates 30 times per second.
(This is a remnant of a supernova in 1054 A.D. which was extensively
observed in China!)

(b) If the mass of the pulsar is about 1 solar mass (~ 2 x 10%° kg or
~ 3 x 105 M ¢aren ), what is the maximum possible radius of the pulsar?

(¢) In fact the density is closer to that of nuclear matter. What then is
the radius?

(CUSPEA)

Solution:

(a) Consider the limiting case that the Crab pulsar is just about to
disintegrate. Then the centripetal force on a test body at the equator of
the Crab pulsar is just smaller than the gravitational force:

2
mv 2 GmM
R T ST o
or
M _ w?
>
R~ G

where m and M are the masses of the test body and the Crab pulsar
respectively, R is the radius of the pulsar, v is the speed of the test body,
and G is the gravitational constant. Hence the minimum density of the
pulsar is

M 3 3(27 x 30)2

_ 14 3
TiRP ~ 4nG 4w x 6.7 x 10-1 13107 ke/m® .

p:

(b) As % > Pmin,

3M \3 6 x 103 3
Nzo=) =\ Txi3xiom) =19x10°m =1 .
fs (4”Pmin) (47r><1.3><1014> 1.5 > 10° m =150 km

{c) The nuclear density is given by

~
Pnuclear ~ W ’
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where m,;, is the mass of a proton and is approximately equal to the mass
my of a hydrogen atom. This can be estimated as follows:

2x1073 _
mp%mnzmzlﬂxlo 27 kg .
With
Ro~15x10"%m ,
we obtain

Pnuclear ~ 12 x 10” kg/m 3,

If p = puuclear, the pulsar would have a radius

6x10%0 \}
R~ (47rx1.2><1017) ~ A7 km

1021

Two weightless rings slide on a smooth circular loop of wire whose axis
lies in a horizontal plane. A smooth string passes through the rings which
carries weights at the two ends and at a point between the rings. If there
is equilibrium when the rings are at points 30° distant from the highest
point of the circle as shown in Fig. 1.11, find the relation between the three
weights.

(UC, Berkeley)

Fig. 1.11.
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Solution:

Assume the string is also weightless. As no friction is involved, the
tensions in the segments AC and AFE of the string must be the same. Let
the magnitude be T. For the ring A to be at rest on the smooth loop, the
resultant force on it must be along AO, O being the center of the loop;
otherwise there would be a component tangential to the loop. Hence

ZOAE = ZOAC = LAOE = 30° .

The same argument applies to the segments BD and BE. Then by
symmetry the point E at which the string carries the third weight must be
on the radius HO, H being the highest point of the loop, and the tensions
in the segments BD and BFE are also 7.

Consider the point E. Each of the three forces acting on it, which are in
equilibrium, is at an angle of 120° to the adjacent one. As two of the forces
have magnitude T, the third force must also have magnitude T. Therefore
the three weights carried by the string are equal.

1022

Calculate the ratio of the mean densities of the earth and the sun from
the following approximate data:
8 = angular diameter of the sun seen from the earth = %o.
| = length of 1° of latitude on the earth’s surface = 100 km.
t = one year = 3 x 107 s.
g =10 ms™ 2.
(UG, Berkeley)

Solution:

Let r be the distance between the sun and the earth, M, and M, be the
masses and R, and R, be the radii of the earth and the sun respectively,
and G be the gravitational constant. We then have

GM.M,
—792— = M.rw?

2R, 127 _m
- ~ 2360 360 >

i.e.
720R,
r=——.

™
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The above gives
GMa 2

3 =W

(720R,/m)

GM, _ (120\*( 2r \’
R\« 3x107) °

For a mass m on the earth’s surface,

or

GmM,
R2 =mg,
e
giving
GM, _9 _ g __ 97
R R~ (IW) T Bx10°
Hence

pe_ _gn_ (T0\T( 2 \T'_ .
ps  18x103 \ 7 3 x 107 T

1023

A parachutist jumps at an altitude of 3000 meters. Before the para-
chute opens she reaches a terminal speed of 30 m/sec.

(a) Assuming that air resistance is proportional to speed, about how
long does it take her to reach this speed?

(b) How far has she traveled in reaching this speed?

After her parachute opens, her speed is slowed to 3 m/sec. As she hits the
ground, she flexes her knees to absorb the shock.

(c) How far must she bend her knees in order to experience a deceleration
no greater then 10g? Assume that her knees are like a spring with a resisting
force proportional to displacement.

(d) Is the assumption that air resistance is proportional to speed a
reasonable one? Show that this is or is not the case using qualitative
arguments.

(UC, Berkeley)

Solution:

(a) Choose the downward direction as the positive direction of the
z-axis. Integrating the differential equation of motion
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dv
—=g—av
7 g )
where a is a constant, we obtain
v= 2(1 —e ).
a

This solution shows that v approaches its maximum, the terminal speed
g/a, when t — oo.
(b) Integrating the above equation, we obtain

t —at
_9 + ge

o a?

Thus £ — oo as t — co. This means that when the parachutist reaches the
terminal speed she has covered an infinite distance.

(c) As her speed is only 3 m/s, we may neglect any air resistance after
she hits the ground with this speed. Conservation of mechanical energy
gives

k¢? _ mu?

p ~Mt T

where £ is the distance of knee bending and v is the speed with which she
hits the ground, considering the knee as a spring of constant k. Taking the
deceleration —10g as the maximum allowed, we have

mg — k§ = —10mg ,

i.e.
& =11mg/k .

The energy equation then gives

v2 32

=Y - % _0102m .
9 ~ 9x9s  0102m

£

(d) We have seen that if the air resistance is proportional to speed, the

time taken to reach the terminal speed is co and the distance traveled is

also co. However, the actual traveling distance is no more than 3000 m and

the traveling time is finite before she reaches the terminal speed of 30 m/s.

Hence the assumption that air resistance is proportional to speed is not a
reasonable one.
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1024

A satellite in stationary orbit above a point on the equator is intended to
send energy to ground stations by a coherent microwave beam of wavelength
one meter from a one-km mirror.

(a) What is the height of such a stationary orbit?

(b) Estimate the required size of a ground receptor station.
(Columbia)

Solution:

(a) The revolving angular velocity w of the synchronous satellite is equal
to the spin angular velocity of the earth and is given by
GMm

m(R+ h)w2 = m .

Hence the height of the stationary orbit is

i

h= (Eﬁi) — R =359 x10* km ,
W

using G = 6.67x 10~ Nm?kg=2, M = 5.98x10* kg , R = 6.37x10% km .

(b) Due to diffraction, the linear size of the required receptor is about

Ah (3.59 x 104
A% g (X

— 4
D 1 )—3.59x10m.

1025

An inclined plane of mass M rests on a rough floor with coefficient of
static friction u. A mass m; is suspended by a string which passes over
a smooth peg at the upper end of the incline and attaches to a mass ma
which slides without friction on the incline. The incline makes an angle 8
with the horizontal.

(a) Solve for the accelerations of m;, my and the tension in the string
when p is very large.
(b) Find the smallest coefficient of friction for which the inclined plane

will remain at rest.
(Columbia)
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Solution:

(a) When p is large enough, the inclined plane remains at rest. The
equations of motion of m; and my are (see Fig. 1.12)

myg — T =mya ,

T — mygsin @ = maa

7 rough floor 7
Fig. 1.12.
giving
o (my — masinf)g
my + ma
T myma(1 + sin 8)g
my + M3

(b) The inclined plane is subjected to horizontal and vertical forces (see
Fig. 1.13) with

f=Tcosf — Nysinb ,
N =N;cos8 + Mg+ T(1 +sinf) ,
Ny = mggcos8 .
For the inclined plane to remain at rest, we require
f<uN.

The smallest coefficient of friction for the plane to remain stationary is
therefore

2[-

HBmin =
mg cos 8(my — mysinh)
M(m; +m3) + myma(1 +sin8)2 + (m; + ma)macos?6
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1026
A particle of mass m is constrained to move on the frictionless inner
surface of a cone of half-angle «, as shown in Fig. 1.14.

(a) Find the restrictions on the initial conditions such that the particle
moves in a circular orbit about the vertical axis.
(b) Determine whether this kind of orbit is stable.
(Princeton)

4> C
]g ,

8/i
ri mg
]
[ 0
¢ N
Fig. 1.14. Fig. 1.15.
Solution:

(a) In spherical coordinates (r,6,¢), the equations of motion of the
particle are

m@ —ré? —rp?sin? ) = F,
m(r0 +270 — r¢2sinfcosf) = Fy ,
m(rsin 0 + 2¢psin @ + 2rfpcosf) =

As the particle is constrained to move on the inner surface of the cone,
@ = constant = « .

Then § =0, F, = —mgcosa, and Eq. (1) becomes

2

m(l — lp?sin®a) = —mgcosa , (2)

where [ is its distance from the vertex O (see Fig. 1. 15). For motion in
a circular orbit about the vertical axis, { = [ = 0. With I = ly, Eq. (2)
becomes

lop?sina = gcosa . 3)
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The right-hand side of Eq. (3) is constant so that ¢ = constant = ¢, say.
The particle has velocity vo tangential to the orbit given by vp = lp¢g sin a.
Equation (3) then gives

v?) =glgcosa ,

which is the initial condition that must be satisfied by vy and .
(b) Suppose there is a small perturbation acting on the particle such

that ly becomes Iy + Al, Yo becomes g + Ap. Equation (2) is now
d?(lg + Al N2
_((;—t—z—) — (lo + Al) (0 + A@)?sin® a = —gcosa ,

or
Al - 2lppo A sin®a — Al¢(2, sin?a = lpp?sin®a — gcosa

where Al is shorthand for d?(Al)/dt?, by neglecting terms of orders higher
than the first order quantities Al and A¢p. As the right-hand side of this
equation vanishes on account of Eq. (3), we have

Al = 2gpoApsin®a — Alptsin?a=0. (4)

There is no force tangential to the orbit acting on the particle, so there is
no torque about the vertical axis and the angular momentum of the particle
about the axis is constant:

mlvsina = mlz¢ sina = constant = k, say,

or

) k
Po=—F—. (5)
msin® o«

Substituting I = lo + Al, ¢ = ¢o + A¢ into Eq. (5) and neglecting terms of
the second order or higher, we have

loAp + 2Alpe =0 . (6)
Eliminating A¢ from Eqs. (4) and (6), we obtain
Al + (3p3sina)Al =0 .

As the factor in brackets is real and positive, this is the equation of a
“simple harmonic oscillator”. Hence the orbit is stable.
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1027
Three point particles with masses m;, ms; and mj interact with each
other through the gravitational force.

(a) Write down the equations of motion.

(b) The system can rotate in its plane with constant and equal distances
between all pairs of masses. Determine the angular frequency of the rotation
when the masses are separated by a distance d.

(c) For my > mg3 and my >> mg, determine the stability condition for
motion of the mass m3 about the stationary position. Consider only motion

in the orbital plane.
(MIT)

Solution:

Take the center of mass C of the system as the origin of coordinates and
let the position vectors of m,, mz, m3 be ry, ra,rs respectively as shown in
Fig. 1.16. Denote

rjj=r; —r; (4,5 =1,2,3) .

m

AN

m;
Fig. 1.16.

(a) The motion of the ith particle is given by

3
. Gm;m;
m;r; = — E _—'I‘S—rij y
[T

or

3

G .

=Y Te (=129). "
T

Note that the minus sign is to indicate that the forces are attractive.
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(b) With the given condition r;; = d, Eq. (1) is rewritten as

G 3
t=3 Y my(r; — )
i

G [ 3 3
=(ﬁ —ijr,--f-ijrj

ez i
G [ 3 3
= (ﬁ —ijl', — myr; +ZerJ
i i=1

G 3 3
=$'ﬂZW+ZWW
L Jj=1 7=1
GM
=F

where M = m, + ma + m3. Note that the choice of the center of mass as

origin makes Y m,r; vanish. Thus the force on each particle points towards
- the center of mass of the system and is a harmonic force. With d constant,

the system rotates about C with angular frequency

GM
PR
(c) For m3 < m, and m3 < mg, the equation of motion of either of the
masses m; and ma can be written as

w =

G(m; + mz)

_ _Glmtm) o
- 23 D] *

3
T12

F=—

With the distance between m; and mg constant, the system rotates about
its center of mass with a constant angular frequency

G(m1 + mz)
'lU - _—_3___ .
T12
Use a rotating coordinate frame with origin at the center of mass of the
system and angular frequency of rotation w and let the quantities r,T
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refer to this rotating frame. Considering the motion of particle mj in the
laboratory frame, we have

. 2 Gm3m1 Gm3m2 .
ma(f3 — w'rg) = ——3—r3; — —5—r32 — 2M3aw X 13,
T31 732
or
. Gmy Gm, 2 .
F3=—-—3—r31— —3 rss + w’r3 — 2w X 13 .
T31 732

If m4 is stationary, 3 = r3 = 0 and the above becomes

Gm ma
3l(r1——r3)+ 3 (rz —r3) +w?ry =0.
T31 T32

With my,mg > mg3, Y, m,r; = 0 gives mr; ~ —mar; and the above
becomes

—G(%-k?) P3+G(¥_%) r +w?r;=0.
31 T3z 31 Ta2

This relation shows that r; is parallel to r; and thus the stationary position
of mg lies on the line joining m; and my. At this position, the attractions
of m; and my are balanced.

Consider now a small displacement being applied to mg at this sta-
tionary position. If the displacement is along the line joining m; and
mg, say toward m, the attraction by m; is enhanced and that by m;
is reduced. Then m3 will continue to move toward m; and the equilibrium
is unstable. On the other hand, if the displacement is normal to the
line joining m, and mg, both the attractions by m; and my will have
a component toward the stationary position and will restore m3 to this
position. Thus the equilibrium is stable. Therefore the equilibrium is stable
against a transverse perturbation but unstable against a longitudinal one.

1028

A smooth sphere rests on a horizontal plane. A point particle slides
frictionlessly down the sphere, starting at the top. Let R be the radius of
the sphere. Describe the particle’s path up to the time it strikes the plane.

(Chicago)
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Fig. 1.17.

Solution:

As shown in Fig. 1.17, conservation of energy gives
1 2
gmv” = mgR(1 — cos @) .

The radial force the sphere exerts on the particle is
2
mv
F= cosf — —— .
mg R

When F = 0, the constraint vanishes and the particle leaves the sphere. At
this instant, we have

= gcosé,

ol S

v? = 2gR(1 — cosb) ,
giving

c030=§, or § = 48.2° |

U—— gg—@
=/ L

The particle leaves the sphere with a speed v = \/2gR/3 at an angle § =
48.2°. After leaving the sphere, the particle follows a parabolic trajectory
until it hits the plane.
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1029

Point charge in the field of a magnetic monopole.
The equation of motion of a point electric charge e, of mass m, in the
field of a magnetic monopole of strength g at the origin is

rxr

mr = —ge
73

The monopole may be taken as infinitely heavy.

(a) Show that the kinetic energy T' = mi?/2 is a constant of the motion.

(b) Show that J = L + egr/r is also a constant of the motion, where
L=mrxr.

(c) Use part (b) to show that the charged particle moves on the surface
of a right circular cone of opening angle £ given by

)
cosé = 3]

with J as its symmetry axis (see Fig. 1.18). [Hint: Consider r-J.]

where J = J/|J|. R lies in the plane perpendicular to J, but with |R| =
R = |r| so that R may be obtained by rotating r as shown in the figure.
You may use the fact that mR x R =J.
(d) Find the equation of motion for R.
(e) Solve the equation of motion part (d) by finding an effective potential
Vesi(R), and describe all possible motions in R.
(MIT)
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Solution:

a dr d (1 Lo . rxr
(a) E=a(§mr2>=mr.r=r.(_ge % >=0.

Hence T is a constant of the motion.

.. . . egr egr\r-r
=mrxr+mrxr+——+(——T>—
r r r
R )
r rd
rx(rxr rx(rxr
g rxGExn) rx@Exn)

r3

Hence J is a constant of the motion. Note that in the above we have used

As

cosé = % = constant ,

the charged particle moves on the surface of a right circular cone of opening
angle €.
(d) As J and £ are constants of the motion, we have, using
IrXxr
r3 !

. L ..
rxr=—, L=J—eg£, mr = —ge
m r
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This is the equation of motion for R.

37

(e) Let ¢ be the angle between R and a fixed axis in the plane of R and

r x J. The above equation can be written as

2,2

ae . e
m(R~ R¢?) = - X5,

m(Rg +2pR) =0 .

Equation (2) can be written as

m(R2G + 2REp) = %(me) —0.

Hence
mR2p = constant. .

As
R x R = Rig x (Rig + Ryi,)
= R2¢iR X iﬂP ,
mR%p = |mR xR|=J .

Equation (1) can then be written as

. e2g2 J2 d
mR=— Tt~ ar (B
with
_ 1 2 _ 22
Vet (R) = 2mR? (J e'g )
_eg¢ (1
" 2mR2 \cos2¢
e?g? K
T 2mR? tan™§ = R’



38 Problems & Solutions on Mechanics

where K = e2g®tan?¢/2m. Using R = RdR/dR = dR?/2dR, Eq. (3) can
be integrated to give

1 ., K
EmR + ﬁ =FK y

where F is a constant. We then have

R mR2 |2 K
=277 E(E_ﬁ)‘

S

Integrating, we obtain

2mK
+ (ta.n_l\lng—l—tan_lng%—l) = v .7In (¢ — o)

= (‘P_‘PO)SinE )

which gives the trajectory of the tip of R. Note that if J >> eg the motion is
unbounded whatever the initial state, and if J < eg the motion is bounded
when F < 0 and unbounded when E > 0.

1030

Paris and London are connected by a straight subway tunnel (see
Fig. 1.19). A train travels between the two cities powered only by the
gravitational force of the earth. Calculate the maximum speed of the train
and the time taken to travel from London to Paris. The distance between
the two cities is 300 km and the radius of the earth is 6400 km. Neglect
friction.

(MIT)

b——300 km ——]
Ve
7

I I'd

I ‘R=6

] Ve = 6400 km
7/
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Solution:

Define z, h,r as in Fig. 1.20 and assume the earth to be a stationary
homogeneous sphere of radius R. Taking the surface of the earth as
reference level, the gravitational potential energy of the train at z is

A
e i
ht r
' R
'
1
'
Fig. 1.20.
" GmM GmM , , o
V= R T'I‘d'f‘——éﬁa—('f‘ —R),

where m, M are the masses of the train and the earth respectively. Con-
servation of mechanical energy gives, as the train starts from rest at the
earth’s surface,

mu? + GmM(r? — R?)

2 2R3 =0,

or

2 .2
U2=9(R 7‘)’

R
where g = GM/R? is the acceleration of gravity at the earth’s surface. As

r? = h? 4+ (150 — z)? = (R® — 150%) + (150 — z)% = R? — 300z + 22 ,
v? = 9(300 — z)
R i

v 18 maximum when z = 150 km:

=185.6 m/s .

o = \/9.8 x 150 x 150 x 1000
max 6400
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The time from London to Paris is

T— /300 (E B /300 E dzx
o v 0 9 /x(300 — x)

—/1 E——dt-——ﬂ' E—423min
o V9 /t—1) g ) '

1031

Three fixed point sources are equally spaced about the circumference of
a circle of diameter a centered at the origin (Fig. 1.21). The force exerted by
each source on a point mass of mass m is attractive and given by F = —kR,,
where R is a vector drawn from the source to the point mass. The point
mass is placed in the force field at time ¢t = 0 with initial conditions r = ry,
i‘ = Vp.

(a) Define suitable coordinates and write an expression for the force
acting on the mass at any time.

(b) Use Newton'’s second law and solve the equation of motion for the
initial conditions given above, namely, find r(t) in terms of rg, vo and the
parameters of the system.

(¢) Under what conditions, if any, are circular orbits a solution?

(MIT)

v

s

Fig. 1.21.

Solution:

(a) Let ry,r2, r3 be the position vectors of the three fixed point sources.
As they are equally spaced on a circle, we have

ry+ra+r3=0.
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The force acting on the particle m is
F=—k(r—r1)—k(r—r2) — k(r—r3) = -3kr.
(b) The equation of the motion of the point mass is
mi+3kr=0,

with the general solution

r(t) = acos (\/%t) + bsin (\/%t) ,

a, b being constant vectors.
Using the initial conditions r(0) = ry, #(0) = vy, we find

a =ry, b=

0 =ro () e ()

(c) It is seen that if ro.Lvg and y/m/3kvy = 19, the trajectory is a circle.

Vo,

g3

and hence

1032

A phonograph turntable in the zy plane revolves at constant angular
velocity w around the origin. A small body sliding on the turntable has
location x(t) = (z(¢),y(t),0). Here z and y are measured in an inertial
frame, the lab frame. There are two forces in the lab frame: an elastic
force of magnitude k|x| towards the origin, and a frictional force —e(x —v),
where ¢ is a constant and v is the velocity of the turntable at the body’s
location.

(a) If the body is observed to stay at a fixed off-center point on the
turntable (i.e. it is at rest with respect to the turntable), how big is k&7
(b) Assume k has the value you found in (a). Solve for v(t) = x(t) with
general initial conditions.
(c) In (b), find x(t). Describe x(t) in words and/or with a rough sketch.
(UC, Berkeley)
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Solution:

(a) The body has angular velocity w around the origin so that mw?|x| =

k|x|, giving k = mw?.

(b) In the lab frame the equation of motion for the small body is

mik = —kx — ¢(x — V)

= —mw?x — (X — w x X) .

Let z,y, &, 9, &, be the coordinates, velocity and acceleration components
in the rotating frame attached to the turntable. In the lab frame we have

x=(—yw)i+ (y+zw)j,
X = (& - 29w — zw)i+ (§ + 26w — y?)j ,
—kx = —kxy — kyj ,
—c(x —w X x) = —czi — zyj .
Note that in the above we have used w x i = wj, w xj = —wi. The equation
of motion in the lab frame is then written as
m(E — 2w — zw?) = —kz — ¢t (1)
m(§ + 26w — yw?) = —ky —cy . (2)
Multiplying Eq. (2) by i = v/—1, adding it to Eq. (1) and setting z = z+ iy,

we obtain
mz+ (2mwi+¢)2=0.

Integrating once we find

3= éoe—ct/me—ﬂwt , (3)

namely,
& = [&g cos(2wt) + Yo sin(2wt)e~t/™ | (4)
y = [—&o sin(2wt) + o cos(2wt)]e /™ . (5)

By directly integrating Eqs. (4) and (5) or by integrating Eq. (3) and then
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using z = « + iy, we obtain

m(edo + 2mwiyp)

r=1x9+ 2 1 dm2o?
_ [m(ccj::_zirzn;%) cos(2wt) — m(:;nr 4:'8:;2—&)02{/0) Sin(2wt)] et "'(,6)
Y=o — m(22mw£io — cljo)
c2 + 4m2w?
[m(fzmr ::;lz_wczy()) cos(2wt) + m(zf:_zizn;%) sin(2wt)] e~ct/m,

(7

In the above, %, are the components of the velocity of the small body
at ¢t = 0 in the rotating frame.

(c) Equations (6) and (7) imply that, for the body on the turntable, even
if ,y may sometimes increase at first because of certain initial conditions,
with the passage of time its velocity in the turntable frame will decrease and
the body eventually stops at a fixed point on the turntable, with coordinates
((zo + m(cio + 2muwigo))/(¢* + 4m>w?), (yo — m(2mwio — cjo))/(c* + 4m*w?)).

1033

A nonlinear oscillator has a potential given by

kx?2  mAg3
2 3

, with A small.

Find the solution of the equation of motion to first order in A, assuming
z=0att=0.
(Princeton)
Solution:
The equation of the motion of the nonlinear oscillator is
md’z  —dU(z)

_ 2
7 R ra kx + mAz* .

Neglecting the term mAz?, we obtain the zero-order solution of the equation

z () = Asin(wt + ¢) ,
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where w = y/k/m and A is an arbitrary constant. Asz =0at¢t=0,p =0
and we have
z(g) = Asin(wt) .

Suppose the first-order solution has the form z(;) = z(g) + Az,. Substi-
tuting it in the equation of motion and neglecting terms of orders higher
than ), we have

&y + w2x1 = :v(zo)
= %2[1 — cos(2wt)] .
To solve this equation, try a particular integral
zy = B + C cos(2uwt) .
Substitution gives

2 2 A2 A2
—3w*C cos(2wt) + w’B = 5 "5 cos(2wt) .

Comparison of coefficients gives

A? A?

2w CTe

The homogeneous equation
# +wiz, =0

has solution
zy = Dy sin(wt) + D; cos(wt) .

Hence we have the complete solution

. A? A?
z(1) = (A + ADy)sin(wt) + A {—2? + D3 cos(wt) + o cos(2wt)l .

The initial condition = 0 at ¢ = 0 then gives

242
D=-_""—
3w?
and A2
1 2
Ty = A’sin(wt) + — [5 — gcos(wt) + (l—icos(2wt)] ,
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where A’ is an arbitrary constant. To determine A’ and A, additional
information such as the amplitude and the velocity at t = 0 is required.

1034

A defective satellite of mass 950 kg is being towed by a spaceship in
empty space. The two vessels are connected by a uniform 50 m rope whose
mass per unit length is 1 kg/m. The spaceship is accelerating in a straight
line with acceleration 5 m/sec?.

(a) What is the force exerted by the spaceship on the rope?

(b) Calculate the tension along the rope.

(c) Due to exhaustion, the crew of the spaceship falls asleep and a
short circuit in one of the booster control circuits results in the acceleration
changing to a deceleration of 1 m/sec?. Describe in detail the consequences
of this mishap.

' (SUNY, Buffalo)

Solution:

(a)

F= (mrope + msatellite) -a
= (950 + 50) x 5 =5 x 10® N.

(b) Choose the point where the rope is attached to the satellite as the
origin and the z-axis along the rope towards the spaceship. The tension
along the rope is then

F(z) = (Masatellite + mmpe(:v)) -a
=950 +1 x (50 — z)] x 5
=5x10% -5z N.

(c) After the mishap, the spaceship moves with an initial velocity vp and
a deceleration of 1 m/s?, while the satellite moves with a constant speed
vg. After the mishap, the two vessels will collide at a time ¢ given by

a
vot = 50 + vot — §t2 ,

t=\/}-(1)—0=103 .

or
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1035

A ball of mass M is suspended from the ceiling by a massless spring
with spring constant k and relaxed length equal to zero. The spring will
break if it is extended beyond a critical length I, (I. > Mg/k). An identical
spring hangs below the ball (Fig. 1.22). If one slowly pulls on the end of
the lower spring, the upper spring will break. If one pulls on the lower
spring too rapidly, the lower spring will break. The object of this problem
is to determine the force F(t) which, when applied to the end of the lower
spring, will cause both springs to break simultaneously.

XI(f)

1

xp(t)

1

Fit)

Fig. 1.22.
(a) Find an integral expression relating the length x,(¢) of the upper
spring to the applied force F(t).
(b) Using any technique you like, find z,(t) and z3(t) for ¢ > 0 when

F(t) has the particular form
0, t<0
at, t>0"

F(t) = {

where o is a constant.

(c) Use a careful sketch of your solutions to show that if « is too small,
the upper spring will break. Similarly, shown that if « is too large, then
the lower spring could break first.

(d) Show that both springs break simultaneously when a is a solution

of the equation
n (M [E) Z Mo, [E
aVM] o VM’

(MIT)
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Solution:

(a) The equations of motion for the ball and the lower spring are
M3, = Mg — kz1 + kz2 ,
kzo = F(t) .
Eliminating 3, we obtain
Miy+kzy=F(@t)+ Mg . (1)

To eliminate the constant term, let z; = = + Mg/k. Equation (1) then
becomes
Mi+kz=F(t).

Let = e*“ty(t), where w = \/k/M. The above becomes

%e_wt . 2)

7+ 2wy =
The homogeneous part of the above,
7+ 2iwy=0,

can be solved by letting y = C,e*, where C, and a are constants.
Substitution gives a = —2iw.
A particular solution of (2) is obtained by letting § = e~2*f(t), which
gives
G _F)
a M '

. F@) .
y — e—2zwt/ 1\(4) e:wtdt .

Hence the general solution of (2) is

. —2iw F(t iw
y=e 2 t[/—li(l—)e tdt+Cl] y

or

giving
) F(7) .
y = / ¢~ Ziwt [ / F(r) grotgr 4 Cl] dt +C;

and

z, = et {/e"ziwt [/ —FJE) evTdr + C;] dt + Cz} + % , (3
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where Cy,C; are constants of integration. For application to the problem,
either the real or the imaginary part of the last expression is used as the
general solution.

(b) The equation of motion is

for ¢t < 0, and
Mg, + kxy = at + Mg (5)

for t > 0. First obtain the solution of (4) by putting F(t) =0 in (3). This
gives

Mg

%

where C is a constant of integration in place of C,. Taking the real part,
we have

ot —i .
z =zCle 1wt+0261wt+

z; = C}sin(wt) + Cy cos(wt) + % :
The solution of (5) is that of (4) plus a particular solution at/k:
z, = C sin(wt) + Ca cos(wt) + %t + %]
Att =0,z = Mg/k, z2 =0, & =0, so that C = 0, C] = —~a/kw. Hence
Ti(t) = %t + % - %sin(wt) ,
z2(t) = %t .

(¢) In Figs. 1.23 (for large o) and 1.24 (for small ) are plots of the
curves for z; and z3. It is seen that the curve for x, is given by a line
z = Mg/k+ at/k, which is parallel to the z; line minus an oscillatory term
asin(wt)/kw whose amplitude is proportional to o. Hence, if ¢, and ¢, are
the instants z, and z; would reach [, the critical length, we have for large
a, ta < ty, i.e. the lower spring will break first, and for small a, t; < t3,
i.e. the upper spring will break first.

(d) For the two springs to break simultaneously, say at time ¢ = to, we
require

atg

za(to) = 1. = =

or
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X
x x,(t/)
/
// Xz‘f)
’
. s
c 7 H
Mg J/g
0 tatq t 0 ] ;2 t
Fig. 1.23. Fig. 1.24.
ki,
tO =,

a

and M ki
a w
xl(tO)_lc: kg ZC_RSHI( ac) 3
or
(wklc) Mgw
sin[ — | = —
a a
where w = \/k/M.
1036

A pendulum, made up of a ball of mass M suspended from a pivot
by a light string of length L , is swinging freely in one vertical plane (see
Fig. 1.25). By what factor does the amplitude of oscillations change if the
string is very slowly shortened by a factor of 2?

(Chicago)

Mg

Fig. 1.25.
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Solution: Method 1

For a periodic system with a parameter slowly changing, the action J
is an adiabatic invariant. Now

szPodO,

where P, = ML, i.e.

J= }{ ML?6 - §dt = ML?(éz)%”
2092
= w2 02 262,
2 w
— Mg\ ALY

Here we have used T = 2x/w, with w = /g/I, for the period, and

w263
2
by taking 8 = 6y cos(wt + o). Then, as J is an adiabatic invariant,

(%) = ([-Bowsin(wt + po)]?) =

00 X L—3/4 .

When
L— L/2, 6o — 1.686, ,

i.e. the amplitude of oscillation is increased by a factor of 1.68.

Method 2
During discussion in a meeting, Einstein used this example to demon-
strate what an adiabatic invariant is. His proof is as follows:

L1262
Tension of string = Mg(cos8) + <M 3 o >

= Mg (1 - %22) + ML(6%

- 03
—Mg(l-f-z) .

It is assumed that over a period, the length of the string is almost unchanged
and that € is a small angle.
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When L shortens slowly, the work done on the oscillator is —(N)AL,
where N is the tension of the string, —AL is the displacement of the
oscillator. Using the above, we obtain the work done as

2
—MgAL—Mg-%O-AL.

Under the action of the external force, the change in the oscillator’s energy
is

2
A(—MgLcosty) = A [—MgL ( - 0—20)]
= —MgAL + %MgA(LOﬁ)
= —MgAL + %MgOﬁAL + MgL8yAb, .

The work done and the increment of energy must balance, giving

L8y Ay +

363AL
4 0,

or

LOZA In(6L3/4) =0 .

It follows that
6,L%/* = constant |,

or
6o x L34,

When
L— g, 00 — 1.6800 .

1037

A perfectly reflecting sphere of radius r and density p = 1 is attracted
to the sun by gravity, and repelled by the sunlight reflecting off its surface.
Calculate the value of r for which these effects cancel. The luminosity of
the sun is I, = 4 x 103 erg/sec and its mass is M; = 2 x 10® gm. Give
your answer in cm (assume a point-like sun).

(UC, Berkeley)
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sphere

Fig. 1.26.

Solution:

Let N, be the number of photons of frequency v passing through a unit
area perpendicular to the direction of propagation in unit time, I, be the
energy of sunlight of frequency v radiated by the sun in unit time, and R be
the distance from the sun to the sphere. As R > r, the incident sunlight
may be considered parallel and in a direction opposite to the z-axis, as
shown in Fig. 1.26. Then

I,
=/ - v
L / vav, Y 4nR2hv

The photons collide elastically with the perfectly reflecting sphere at
its surface. During a time interval At, for an elementary surface AS at
azimuth angle 8, the change of the momentum of photons of frequency v
along the z-axis is

hv
— +
c

o cos(28) | cos8ASAL .

c

AP,, =N, [

This gives rise to a force of magnitude

vz _ 2h
AR, 2w N, cos?9AS .
At c

Then the total force exerted on the sphere by the sunlight of frequency v is

2w I, /2 3, 2 Ir
F,, —/dF.,z = T‘4ﬂthVA 2m cos” @ -sinf - r°df = AR

AF,, =

2

Hence the total repelling force exerted by the sunlight is

Ir?
4R2¢ "’

F, = /Fuzdu =
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The gravitational force the sun exerts on the sphere is

_ GM,m

=~

where m = p - (4/3)7r3 = (4/3)nr3 is the mass of the sphere. When the
two forces balance, we have

Fy

I;r?  AGM,mr®
4R?c 3R '’

or

31,
"~ 16mcGM,
_ 3 x4 x 103
716 x 3.14 x 3 x 10'0 x 6.67 x 10-8 x 2 x 1033
=597x10"% cm .

1038

A particle of mass m moves along a trajectory given by x = xgcoswit,
Y = Yo Sinwat.

(a) Find the r and y components of the force. Under what condition is
the force a central force?

(b) Find the potential energy as a function of x and y.

(c) Determine the kinetic energy of the particle. Show that the total
energy of the particle is conserved.

( Wisconsin)
Solution:
(a) Differentiating with respect to time, we obtain
& = —zow; sin(wyt), # = —zow? cos(wit) ,
¥ = yow2 cos(wat), § = —yow? sin(wst) .
Newton’s second law gives
F = m(&l + §jj) = —m[zow? cos(w1t)i + yows sin(wat)j]

= —m(wiri + wiyj) .
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The z and y components of the force are therefore

F, = —mwfx )
F, = -mwly .
If wy = wy, F is a central force F = —mw}r.
(b) From
F=-VV,

Le. v v
-5 F,= By

we obtain the potential energy

Fp =

1
V= Em(wf:v2 +wiy?) .

Note that we take the zero potential level at the origin.
(c) The kinetic energy of the particle is

1 1
T= Em(:t2 +9%) = Em[x%wf sin?(w;t) + y2w? cos?(wat)] .
The total energy is then
E=T+V

1
= Em[x%wf sin?(wit) + yaw? cos?(wat))
+ wiz? cos?(wyt) + wiy? sin?(wyt)

1
= (il + ywd)

= constant .

It is therefore conserved.

1039

A particle of mass m is projected with velocity v, toward a fixed
scattering center which exerts a repulsive force F = (mv?/2)6(r — a)f,
where T is a unit vector along the radius from the force center, a is a fixed
radius at which the force acts, and v, is a constant having the dimensions
of velocity. The impact parameter is s, as shown in Fig. 1.27.
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(a) Find the potential energy.
(b) Show that if vy < vq, the particle does not penetrate the sphere
r = a, but bounces off, and that the angle of reflection equals the angle of
incidence.
(c) Sketch carefully the orbit you would expect for vy > vy, s = a/2.
( Wisconsin)

Fig. 1.27.

Solution:

(a) The force F, being a central force, is conservative. A potential can
then be defined:

Vir) = —/ F(r') - dr' = %mvf/ 6(r' — a)dr’

o0
[ smv} forr<a,
0 forr>a.

This is the potential energy of the particle in the field of the force.

(b) The total energy T + V of the particle is conserved:
%mvg = Em'u'2 + %m‘ul2 ,
i.e. v3 —v? = v2, where v’ is the speed of the particle inside the sphere
r = a. For the penetration to take place, v" must be real, i.e. we require
that vg > v;.

If v9 < vq, the particle cannot penetrate the sphere r = a. Then
as the force is radial to the sphere, the radial component of the particle
momentum will be reversed in direction but not changed in magnitude,
while the component tangential to the sphere will remain the same. Hence,
the angles of incidence and reflection, which are determined by the ratio of
the magnitude of the tangential component to that of the radial component,
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are equal. Note that on account of conservation of mechanical energy, the
magnitude of the particle momentum will not change on collision.

(c) For vy > v; and 8 = a/2, the particle will be incident on the sphere
r = a with an incidence angle 6y = arcsin[(a/2)/a] = 30°, and penetrate
the sphere. Let the angle it makes with the radial direction be §. Then
conservation of the tangential component of its momentum requires that

R . Vo
v'8in @ = vys8in 30° = 5

so that @ is given by

. Vo
# = arcsin <2\/v—§——vf) .
As V is constant (i.e. no force) inside the sphere, the trajectory will be a
straight line until the particle leaves the sphere. Deflection of the trajectory
again occurs at r = a, and outside the sphere, the speed will again be v
with the direction of motion making an angle of 30° with the radial direction
at the point of exit, as shown in Fig. 1.28.

Fig. 1.28.

1040

A long-range rocket is fired from the surface of the earth (radius R) with
velocity v = (v,,vg) (Fig. 1.29). Neglecting air friction and the rotation of
the earth (but using the exact gravitational field), obtain an equation to
determine the maximum height H achieved by the trajectory. Solve it to
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lowest order in (H/R) and verify that it gives a familiar result for the case
that v is vertical.
(Wisconsin)

Fig. 1.29.

Solution:

Both the angular momentum and mechanical energy of the rocket are
conserved under the action of gravity, a central force. Considering the
initial state and the final state when the rocket achieves maximum height,
we have

mRvg = m(R + H)vy ,

lm(vz-kvz)— GMm lm 2 GMm
g™\ T Ur R 2™ "RiH’

where the prime refers to the final state at which the radial component of
its velocity vanishes, m and M are the masses of the rocket and the earth
respectively. Combining the above two equations we obtain

L oiso) CMm _L (R \', GMm
g™ T R 2"\R+H) " R+H’

which gives the maximum height H. Considering only terms first order in
H/R, we have

1 2 2 GMm 1 _ﬁ 2_GMm _H
2m(’l),.+’l)g) ~2m(1 )’Ug R 1 7 )

and hence
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For vertical launching, vy = 0, v, = v, and if H/R is small, we can
consider g as constant with g = GM/R%. We then obtain the familiar

formula \
’U2 v

H =~ =—,
2(%) %

1041

In a few weeks Mariner 9 will be launched from Cape Kennedy on a
mission to Mars. Assume that this spacecraft is launched into an elliptical
orbit about the sun with perihelion at the earth’s orbit and aphelion at
Mar’s orbit (Fig. 1.30).

(a) Find the values of the parameters A and e of the orbit equation
r = A1+ ¢€)/(1 + ecosf) and sketch the orbit.

(b) Use Kepler’s third law to calculate the time duration of the mission
to Mars on this orbit.

(c) In what direction should the launch be made from earth for minimum
expenditure of fuel?

Mean distance of Mars from the sun = 1.5 A.U.

Mean distance of the earth from the sun = 1 A.U.

(Wisconsin)

Airship's orbit

SEEm T
Earth's orbit

Mar's orbit
Fig. 1.30.

Solution:

(a) Let R; be the distance of the earth from the sun and R, that of
Mars from the sun. Then
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CA1+e)

B = 1+e 7
A1

R, = 21*e)
1-¢

Solving the equations, we obtain A = Ry =1 A.U., ¢ =0.2.
(b) Let Ty and T be the revolutional periods of the earth and Mariner 9
respectively. According to Kepler’s third law, T72/a3 = constant,

™ T
(Bgm) R

or

R, + Ry\*? 1 \*? 3/2
T — (—a—l—zl—) Tl = ‘1—_6 Tl = 1.25 Tl = 1.40 years .

The mission to Mars on this orbit takes 0.70 year.

(c) In order to economize on fuel, the rocket must be launched along
the tangent of the earth’s orbit and in the same direction as the earth’s
rotation.

1042

A comet in an orbit about the sun has a velocity 10 km/sec at aphelion
and 80 km/sec at perihelion (Fig. 1.31). If the earth’s velocity in a circular
orbit is 30 km/sec and the radius of its orbit is 1.5 x 108 km, find the
aphelion distance R, for the comet.

(Wisconsin)
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Solution:

Let v be the velocity of the earth, R the radius of the earth’s orbit, m
and m, the masses of the earth and the sun respectively. Then

mv? _ Gmm,
"R~ R?
or
Gm, = Rv? .

By the conservation of the mechanical energy and of the angular momentum
of the comet, we have

2 2
-Gm.ms  mev;  —Gmem, MY

R. "2 ~ R 7

meRave = mcRpyp

where m, is the mass of the comet, and v, and v, are the velocities of the
comet at aphelion and at perihelion respectively. The above equations give
2Gm, 2Rv?

R, = = =3x%x10% km .
Va(Va +Vp)  Va(Va + vp)

1043

A classical particle with energy Fo and angular momentum L about
point O enters a region in which there is an attractive central potential
V = —G(r) centered on point O. The particle is scattered by the potential.

(a) Begin by assuming conservation of energy and angular momentum,
and find the differential equation for dz/dr in terms of Eg, L, G(r), and »
(and the particle mass m).

(b) Find an equation for the distance of closest approach, ryy, in terms
of E, L, G(Tyin), and m.

(Wisconsin)

Solution:
(a) .
Ep = gm(r® + r*6%) - G(r) ,

L= mrzé,
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where @ is shown in Fig. 1.32. Then

".‘222(E0+G)_ L2 .
m m2r2

As

dr_dr do _pdr o L
dt ~ do dt ~ de’ T mr?

the above equation can be written as

m m?2r?

dr\® m?t [2(Eg+G) L2
o L?

giving

dr 2m(Eo + G)rt
BN

Fig. 1.32.

(b) At closest approach r = ry;,, 7 = 0. Hence

1 .
Eo = —mr2 02 - G(rmin)

2 min
1, L?
=-mri ———— ~ G(rmin)
9 min mz"';‘nin min
L2
= W— - G(Tmin) y
min

or

61



62 Problems & Solutions on Mechanics

L

V2m[Eo + G(rmin)]
The result can also be obtained by putting dr/df = 0.

Tmin =

1044

A comet moves toward the sun with initial velocity vo. The mass of the
sun is M and its radius is R. Find the total cross section o for striking the
sun. Take the sun to be at rest and ignore all other bodies.

(Wisconsin)
Solution:
Let the impact parameter of the comet be b. At the closest approach

to the sun (closest distance r from the sun’s center), we have from the
conservation of mechanical energy and angular momentum

mVg  mV? _ GMm
2 2 r
mbVy = mrV ,

where m is the mass of the comet and V its velocity at closest approach.
From these, we find
2GM

= 1
b=r +V02r

If r < R, the comet will strike the sun. Hence the total cross section for
striking the sun is

o =n[b(R)]? = =R (1 + 2GM)

ViR

1045

A particle moves in a circular orbit of radius r under the influence of
an attractive central force. Show that this orbit is stable if

0=~

1
r
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where f(r) is the magnitude of the force as a function of the distance r
from the center.

(CUSPEA)
Solution:

For the motion of a particle under the influence of a central force, we
have

mr?0 = constant = L, say,
mi=—f+ mré?

Consider a particle traveling in a circular orbit of radius r subject to small
radial and angular displacements ér, 66:

r(t) =r + 6r(t), 0 =wt+66(t),

where w is the angular frequency of the particle moving in a circular orbit
of radius r given by mw?r = f(r). As

AL ~ mr260 + 2mrér |
daf
dr
f~w+60,

méi & ——6r + mb26r + 2mroé6 |

we have
9
r

(L sf) gy 22
dr r )

r

AL - 2mrwér
r

méit & ——6r + mwér + 2w

In the above, we have retained only terms first order in the small quantities.
The circular orbit is stable only if ér varies simple-harmonically. In
other words, the stable condition is that the coefficient of ér is negative:

_[dt] _30)

dr r <0,

or

£ > [%] -
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1046

A particle of mass m is projected from infinity with a velocity V in
a manner such that it would pass a distance b from a fixed center of
inverse-square repulsive force (magnitude k/r?, where k is a constant) if
it were not deflected. Find:

(a) the distance of closest approach,

(b) the angular deflection which actually occurs,

(c) the differential scattering cross section do/dQ for a homogeneous
beam of particles scattered by this potential.

(CUSPEA)

Solution:
(a) When the particle is at the closest distance from the fixed center of

force, 7 = 0. Conservation of energy gives

mVg k my?
2 R 2

where R is the closest distance and V (= Ré) is the speed of the particle

when it reaches the pericenter. Conservation of angular momentum gives

J=Vymb=mVR,

ie,,
_ Vb
V= R
Hence
m‘/o2 _ E . E‘/O2b2
2 R 2 R’
o %R
2 _ _ b2 —
R mV02 0,

giving the closest distance

k E\2
= 2
R=owg™ (mvo”) T

(b) The trajectory of the particle is shown in Fig. 1.33. The impulse of
the force F acting on the particle is

/ Fdt = mAV
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where AV = V; — V; with |V¢| = |V;| = V. Consider the component of
the impulse in the direction of V;. We have
> dt m
—/_mFooséP'd?dﬁ' = %(Vf Vi -V3)
= mVp(cos26 — 1) .

As F = % mr26’ = J, the left-hand side is

mk [*% , mk
- df’ = ———sin20 .
5 /0 cos 8'df 5 sin 20

Hence ok
%siné?cosé? = 2mV,sin? @,

o J 2} b
_ Vo _ mV; 2
cot @ = - = & .

with E = $mV{, which gives the angular deflection 26.

Fig. 1.33.

(c) The cross section corresponding to impact parameters between b and
b+ db is do = 2wbdb.
As b= % cot 6, .
_ Kk 2
db = 2 ¢ ade

using the absolute value. Thus
k \? cos@
=2 —=] ——db.
do =2m (2E ) sin® 9 ¢
Then, as the scattering angle is 20,
dQ) = 2msin 20d(20) = 87 cossin6d8 ,



66 Problems & Solutions on Mechanics

do _1(k\* 1
dQ 4 \2E) sint9’

which is just Rutherford’s scattering formula.

and thus

1047

Consider a planet of mass m in orbit around a sun of mass M. Assume
further that there is a uniform distribution of dust, of density p, throughout
the space surrounding the sun and the planet.

(a) Show that the effect of the dust is to add an additional attractive
central force
A7pG

3 b
You may neglect any drag force due to collision with the particles.

(b) Consider a circular orbit for the planet corresponding to angular
momentum L. Give the equation satisfied by the radius of the orbit, rq, in
terms of L, G, M, m and k. You need not solve the equation.

(c) Assume F” is small compared with the solar attraction and consider
an orbit just slightly deviating from the circular orbit of part (b). By
considering the frequencies of the radial and the azimuthal motion, show
that the orbit is a precessing ellipse and calculate the angular frequency of
precession, w,, in terms of rg, p, G and M.

(d) 'Does the axis of the ellipse precess in the same or opposite direction
to the orbital angular velocity?

F' = —mkr, where k= G = gravitational constant.

(CUSPEA)

Solution:

(a) The mass of the dust in a sphere of radius r centered at the sun is

4qr3
Maust = 3 £ .
If r is the distance of the planet from the sun, the gravitational force on
the planet due to the attraction of the dust is, on account of the inverse
distance square nature of gravitation, as if all the dust were concentrated

at the sun. In other words,
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—MauemG  —4nr3pmG  —4mpGmr
FIZ 7‘2 = 3 FZTZ—ka.

(b) The planet has acceleration (7 — 62, 26 + ) in polar coordinates.
Its equations of motion are therefore

mi = _Gr# — mkr + mré? (1)
mrd +2mif =0 . (2)

Multiplying (2) by r, we have

d(mr26)
= 2 =0,
dt

or

mré =1L,

where L is a constant. Thus the angular momentum L is a constant of the
motion. Writing

. L2
mré? = —,
mr
the radial equation becomes
. —-GMm L?
mi=——— —mkr+ — .
r2 mrd

For a circular orbit, # = 0, and we have the equation for the radius ry of
the orbit:

~-GM L2
My 4 £,
o mry

(c) Let 0 express a small radial excursion around ro, i.e. n =7 —rp, in
terms of which (1) becomes

fi GMm mk(n + ro) + L
mn—=——————= — —_—
1= "+ ro)? 1T a(re + )

GMm L?
=————2—mkr0(1+-r—) —_
ra (1 + ;’%) 0 mrd (1 + %)
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as 7 < rg. Making use of the equation for circular orbit, we rewrite the
above as

. 2n {GMm 3n L?
mn:r—:( )——n—a—mkn

ré ro mry
L2 2 GMm L2
=-n + mk+—1{— 0} + —
L2
— {——4 + 3km] ,

or

L2
if=—\|—=5 + 3k
! (mﬁra ok
This is the equation of a harmonic oscillator with angular frequency

L2
Wy = mTTg—F:}k

As the radial oscillation frequency is slightly larger than the azimuthal
frequency ;n%;, the orbit is a precessing ellipse.
4]
To first order in p the azimuthal frequency is not affected by the presence
of dust:

0:__5:(.‘)0-
mry

The precession frequency is

. — Wo
\/ mr
mry
2
_ 2(/1+3kmr0 1)
mry

L 3km??

mré "2 L2

Wp = W

Q

3 mkr2
2 L
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In order to express w, in terms of p, G,m and rg, use the expression of L
for k = 0 (any error is second order in wp):

L= vV GMm27‘0 .

/2
3  4m ra ( r3G ) !
wp=zm- —pG—m——nie= =2mp | —
P B oM, T\ M
(d) Since the radial oscillation is faster than the orbital revolution, the
axis of the ellipse precesses in a direction opposite to the orbital angular
velocity as shown in Fig. 1.34.

Then

Fig. 1.34.

1048

A meteorite of mass 1.6 x 10® kg moves about the earth in a circular
orbit at an altitude of 4.2 x 108 m above the surface. It suddenly makes
a head-on collision with another meteorite that is much lighter, and loses
2.0% of its kinetic energy without changing its direction of motion or its
total mass.

(a) What physics principles apply to the motion of the heavy meteorite
after its collision?

(b) Describe the shape of the meteorite’s orbit after the collision.

(c) Find the meteorite’s distance of closest approach to the earth after

the collision.
(UC, Berkeley)

Solution:

(a) The laws of conservation of mechanical energy and conservation of
angular momentum apply to the motion of the heavy meteorite after its
collision.
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(b) For the initial circular motion, E < 0, so after the collision we still
have E < 0. After it loses 2.0% of its kinetic energy, the heavy meteorite
will move in an elliptic orbit.

(c) From

mv?  GmM

r r2
we obtain the meteorite’s kinetic energy before collision:

2
lmvz _ GmM  mgR

2 2r  2r

m x 9.8 x 103 x 64002 ,
= T 2(6400 + 4200) 189X 107m Joules,

where m is the mass of the meteorite in kg. The potential energy of the
meteorite before collision is

_GmM
r

= —mv? = —3.78 x 10"m Joules .

During the collision, the heavy meteorite’s potential energy remains
constant, while its kinetic energy is suddenly reduced to

1.89 x 10"m x 98% = 1.85 x 10"m Joules.
Hence the total mechanical energy of the meteorite after the collision is

E = (1.85 — 3.78) x 10"m = —1.93 x 10”m Joules .

From
E = -GmM _ —-mR?%g
2a 2a '
we obtain the major axis of the ellipse as
0g — R%g _ (6400 x 10%)2 x 9.8
1.93 x 107 1.93 x 107

=208x 10" m =2.08 x 10* km .

As after the collision, the velocity of the heavy meteorite is still perpen-
dicular to the radius vector from the center of the earth, the meteorite is
at the apogee of the elliptic orbit. Then the distance of the apogee from
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the center of the earth is 6400 + 4200 = 10600 km and the distance of the
perigee from the center of the earth is

Tmin = 20800 — 10600 = 10200 km .

Thus the meteorite’s distance of closest approach to the earth after the
collision is 10200 — 6400 = 3800 km.

From the above calculations, we see that it is unnecessary to know the
mass of the meteorite. Whatever the mass of the meteorite, the answer is
the same as long as the conditions remain unchanged.

1049

Given that an earth satellite near the earth’s surface takes about 90 min
per revolution and that a moon satellite (of our moon, i.e., a spaceship
orbiting our moon) takes also about 90 min per revolution, what interesting
statement can you derive about the moon’s composition?

(UC, Berkeley)
Solution:

From the equation mrw? = GmM/r? for a body m to orbit around a
fixed body M under gravitation, we find

r3w? = GM.
Then if M., M,, are the masses and r., r,, are the radii of the earth and

moon respectively, and the periods of revolution of the earth and moon
satellites are the same, we have

T _ Mnm

rd M,
or

M. _ Mm

Ve o Vp'

where V. and V,, are the volumes of the earth and moon respectively. It
follows that the earth and moon have the same density.
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1050

The interaction between an atom and an ion at distances greater than
contact is given by the potential energy V(r) = —Cr~%. (C = €2P%/2,
where e is the charge and P, the polarizability of the atom.)

(a) Sketch the effective potential energy as a function of r.

(b) If the total energy of the ion exceeds Vj, the maximum value of the
effective potential energy, the ion can strike the atom. Find V; in terms of
the angular momentum L.

(c) Find the cross section for an ion to strike an atom (i.e., to penetrate
to r = 0) in terms of its initial velocity vp. Assume that the ion is much

lighter than the atom.
(UC, Berkeley)

Solution:

(a) The effective potential energy as a function of r is

—-C L?
Vert(r) = T tg 3

where L is the angular momentum of the ion about the force center, and
m is the mass of the ion. Its variation with r is shown in Fig. 1.35.

Vets

Fig. 1.35.
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(b) To find the maximum of Veg, Vp, we set

3

4 15 mmd a0

r3

re  m

AV 4C L (40 L2>1

The solutions are

2
ry = 00, r2=ZVCm.

Consider
fnﬁ_—mc+3ﬁ
drz2 8 mrt

Substituting r, and r; in the above we obtain

d*Vegt d*Veg

=0 - e
2 ) 2
dr r=ry dr r=ra

. 4
Hence at r = 2v/Cm, Veg has a maximum value Vg = 15671

(c) In terms of the total energy
1 L?

. Tl
E= gmr 2mr?

+V,

we can write m# = \/2m(E -V)- I;‘:- In terms of L we can write § = -5
Then as

we have

We can then find the angular displacement of the ion with respect to the
atom as it travels from infinity to the closest distance rmi, from the atom:

m:L/ dr .
Tmin 1'2\/2m(E - -4
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As

LA C
E = = — = — —
Vo 16m2C’ 4 rd

> dr

01 = L 1/2

Pmin 72 ( LY L2 + 2mC)
8mC T 4

- /Lzr2 4mC)
11 (Lr — 2v/m

V2 Lr+2\/—'

Tmin, the minimum distance of the ion to the atom, is determined by 55 dr _ 0,
ie.,

Tmin

L2
(E V) - 'r—z =0 )
or
2mErt - L*r* + 2mC =0.
Hence
.  L*xVI*-16m?EC _ [* 4mC
Tmin = AmE “imE - L7

or

2
Tmin — ZV mC .
Substituting 7y, in 8, we obtain
01 = 00

Why cannot we have a finite value for §,? It is on account of the fact
that, under the condition E =VW= -1%;, while » — 0 as 7 — Tmin, the
transverse velocity r§ = g mer.n’ a constant, so that with passage of
time the trajectory will infinitely approach a circle of radius rpin and no
scattering occurs.

If E > Vp, rmin 8s given above is complex, implying that there is no
minimum distance from the atom, i.e., the ion will approach the atom
infinitely. Physically this can be seen as follows. When the ion reaches

the position at which V.g = Vp, 7 # 0 and the ion continues approaching
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the atom. As L is conserved, the speed of the ion, (r26? + 72)1/2 =

1/2
(;L:;, + 1"2) , will become larger and larger as the atom is approached,

if the expression for the potential energy V(r) = —rg; continues to hold.

But this is not so as other ion—atom interactions will come into play when
the two bodies are close to each other.

Suppose the ion approaches the atom with impact parameter b and
initial velocity vg.Then to strike the atom we require

1 I m2vipt
E == 2 = = 0
5™ > V0 = feee T Tic
or 80
W< —5 .
m'UO

Hence the cross section for the ion to strike the atom is

0—7rb2—2—7r E
- - Vo m )
1051

Given a classical model of the tritium atom with a nucleus of charge +1
and a single electron in a circular orbit of radius rg, suddenly the nucleus
emits a negatron and changes to charge +2. (The emitted negatron escapes
rapidly and we can forget about it.) The electron in orbit suddenly has a
new situation.

(a) Find the ratio of the electron’s energy after to before the emission
of the negatron (taking the zero of energy, as usual, to be for zero kinetic
energy at infinite distance),

(b) Describe qualitatively the new orbit.

(c) Find the distance of closest and of farthest approach for the new
orbit in units of rp.

(d) Find the major and minor axes of the new elliptical orbit in terms
of ro.

(UC, Berkeley)

Solution:

(a) As the negatron leaves the system rapidly, we can assume that its
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leaving has no effect on the position and kinetic energy of the orbiting
electron.
From the force relation for the electron,

mv§ € )
— =, (1)
ro 4Amegrg
we find its kinetic energy
mud e?
2 8w €070

and its total mechanical energy

mud e? 2
El = —_— =
2 47T60T0 87T60T0

before the emission of the negatron. After the emission the kinetic energy
2

of the electron is still g 2—, while its potential energy suddenly changes
to

-2¢2 €

4reory T 2megrg

Thus after the emission the total mechanical energy of the orbiting electron
i8

mu} 2e? —3e?
E;, = - = ,
2 47T60T0 87T60T0
giving
3.
Ey

In other words, the total energy of the orbiting electron after the emission
is three times as large as that before the emission.

(b) As Ey = 8;3::0, the condition Eq. (1) for circular motion is no
longer satisfied and the new orbit is an ellipse.

(c) Conservation of energy gives

8megrg  2meQr 2

At positions where the orbiting electron is at the distance of closest or
farthest approach to the atom, we have # = 0, for which

2 02 62 L2 62

—3e2  mr _
8meopry 2 2weor  2mr?2  2meor
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Then with
2
me*rg
L? =m%irl = ——
4reg

the above becomes

3r2 —dror+12 =0,

with solutions

Hence the distances of closest and farthest approach in the new orbit are
respectively

in units of rg.
(d) Let 2a and 2b be the major and minor axes of the new elliptical
orbit respectively, and 2c the distance between its two focuses. We have

4ry
20 = rmin + "max = 3

279
2¢ = Tmax — Tmin = 3

% =2Va? — ¢ = 2v3ro .

3

1052

A satellite is launched from the earth on a radial trajectory away from
the sun with just sufficient velocity to escape from the sun’s gravitational
field. It is timed so that it will intercept Jupiter’s orbit a distance & behind
Jupiter, interact with Jupiter’s gravitational field and be deflected by 90°,
i.e., its velocity after the collision is tangential to Jupiter’s orbit (Fig. 1.36).
How much energy did the satellite gain in the collision? Ignore the sun’s
gravitational field during the collision and assume that the duration of the
collision is small compared with Jupiter’s period.

(UC, Berkeley)
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Solution:

Let r represent the distance from Jupiter to the sun, v; the velocity of
the satellite with respect to the sun at the time it intercepts Jupiter’s orbit
a distance b behind it and before any interaction with it, and m and M,
the masses of the satellite and the sun respectively. As the satellite just
escapes the sun’s gravitational field, we have

1

mv?  GmM,
2 r !

giving

o \[ZGMS 3 \/2 x 4.01 x 104 x 3.33 x 105
YRV T 7.78 x 1011

=1.85x 10* m/s = 18.5 km/s ,

where we have used M, = 3.33 x 10°M, (M, is the earth’s mass), GM, =
gR? (R is the radius of the earth) = 4.01 x 10" m3/s?, r = 7.78 x 10" m.
The velocity v of Jupiter with respect to the sun is given by

B GM,
r o rz
i.e.
GM V4
vy = — = — =13.1 km/s.
J r \/5 /

When the satellite just enters the gravitational field of Jupiter, its
velocity in the Jupiter frame is

Ve =Vi— Vg,

or

vy = V18.5% + 13.12 = 22.67 kmm/s.

If b does not change during the encounter, conservation of the angular
momentum of the satellite in the Jupiter frame shows that this is also the
speed of the satellite in the Jupiter frame when it leaves the gravitational
field of Jupiter. After the encounter, the satellite leaves the gravitational
field of Jupiter with a velocity in the sun’s frame tangential to Jupiter’s
orbit. Thus the speed of the satellite with respect to the sun is

vy =v, +vy =22.67+13.1=35.77 km/s .
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L

SUN
Fig. 1.36.

The energy gained by unit mass of the satellite in the collision is

therefore
35.77% — 18.5?

5 = 468.6 x 10° J/kg .

1053
By what arguments and using what measurable quantities can one
determine the following quantities with good accuracy?
(a) The mass of the earth.
(b) The mass of the moon.

(c) The distance from the earth to the sun.
(Columbia)

Solution:

(a) The weight of a body on the earth arises from the gravitational
attraction of the earth. We have

Gmem
o= T
whence the mass of the earth is
_g®?

Me

G Y
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where the acceleration of gravity g, the radius of the earth R, and the
gravitational constant G are measurable quantities.

(b) Consider a 2-body system consisting of masses m1, mq, separated
by r, under gravitational interaction. The force equation is

Gmimag mimsa 2
= rw

r2 my + ma
or ,
472p3
G(ml + mz) = 'T—z )

where mymy/(m1 + ma2) is the reduced mass of the system. Applying this
to the moon-earth system, we have

4mad

G(mm +m€) = ‘—TT ’

where m,,,, a and T are the mass, semimajor axis and period of revolution of
the moon respectively. With the knowledge of m. obtained in (a) and that
of a and T determined by astronomical observations, m,,, can be obtained.

| ° T

Sun Earth Eros
~— 1 -
Fig. 1.37.

(c) Described below is a historical method for determining the earth-sun
distance using the asteroid Eros. When the sun, earth and Eros are on a
straight line as in Fig. 1.37, two observers A and B at latitudes A, and A,
in the meridian plane containing Eros and the sun measure the angles o,
and a3 as shown in Fig. 1.38. As

ag = Ay — 6+ fo, ar=A -0+,

giving
Be—Ph=ax—a1— X +A,
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Eros

&=
L J~J~G/Equutor

{ al- a

Earth
Fig. 1.38.
and
R, a—a R, a —a
sinf; sinap’ sinf, sing, '
giving
. . R, . .
B2 — P ~sinfPy —sin g, = (sinag —sinay) ,
a; —a
we have . .
R.(sinag —sinay)
a) —a~

az—ay— A2+ A

Kepler’s third law gives

a® T2

a7
where T and T are respectively the periods of revolution of the earth and
Eros around the sun. The last two equations, used together, determine a.

However, this method is not accurate because the orbits of revolution

of the earth and Eros are elliptical, not circular (eccentricity of Eros’ orbit
= 0.228), and the angle formed by their orbital planes is greater than
10°. More accurate, but non-mechanical, methods are now available for
determining the earth-sun distance.

1054

Two long concentric half-cylinders, with cross section as shown in
Fig. 1.39, carry charges arranged to produce a radial electric field E =
ke,./r between them. A particle of mass m, velocity v and negative
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charge —q enters the region between the plates from the left in a direction
perpendicular to the axis of the half-cylinders and perpendicular to the
radial direction as in the figure. Since the velocity v has no component
along the axis of the half-cylinders, consider only motion in the plane of
the diagram for all calculations.

Fig. 1.39.

(a) If the particle moves on a circular path while between the plates,
what must be the radius » of that path?

(b) Next consider a trajectory for which the particle enters the region
between the plates at the same distance r from the axis and the same speed
as in (a), but at a small angle 3 with the direction of the original path. For
small 3 the point P at which this new trajectory again crosses the trajectory
in (a) is independent of 8. Find the location of that point P. (Again the
particle has no velocity component along the axis of the half-cylinders and
remains in the plane of the diagram.)

(c) How is the answer to part (a) changed if a uniform magnetic field is
introduced parallel to the axis of the half-cylinders?

(Columbia)

Solution:

(a) As the particle moves in a circular path, we have

or
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As long as the velocity v of the particle satisfies this relation, it will move
in a circular path whose radius is equal to the distance between the incident
line and the axis of the half-cylinders, while between the plates.

(b) The particle enters the region between the half-cylinders at the
same distance ro from the axis and with the same speed v as in (a), but
at a small angle 8 with the direction of the original path. Conservation of
angular momentum and energy gives

m'r‘zé = mnrgv , (1)
1 : 1
sm(i2 +126%) + gkln | = ) = Sma? . )
2 ro/ 2

As the new trajectory deviates from the original one slightly, we set

r=rg+or,
. d

T_E(ér)»
0 =wo+ 60,

where wq is the angular velocity for the original circular orbit, and ér, 56
are small quantities. Substitution in (1) gives

roU v 1
2

or

By a similar approximation,

ln(ﬁ-)=ln(1+ﬂ)=ﬂ_l
o o ro 2

We can also write

2 2 2 ér or\?
r*=(ro+6ér)*=r5[1+2—+| — .
To To
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Hence (2) can be written, neglecting small quantities higher than the second
order, as

1 (dér\® (3ma? gk 2 (gk mv?
(@) (% - ag) e (5 -5 ) or=o,

2
(%) + ) o

or, noting gk = mv*,
Then taking the time derivative of both sides, we obtain

d26r v)?

with solution
ér = Asin (\/ﬁit + <p) ,
To
where A and ¢ are constants of integration. The initial conditions

r(0) = ro, 7(0) = vsin g,

or d
ér =0, a&-:vsinﬂ att=0,
give
ro .
=0, A= —sing.
14 V2 Y
Hence

ér = %sinﬂsin (\/iriot) .

At the point where this new trajectory crosses the trajectory in (a), ér = 0.
The second crossing takes place at a time ¢ later given by

v mw T
V2—t=m or t=-——-2,

ro \/Q?

and the position of P is given by

. v
6 =0t~ wit=—t=
To

53

which is independent of 3.
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(c) If a uniform magnetic field parallel to the axis of the half-cylinders
is used instead of the electric field, we will have

—7%2- =quB.
Then the radius r of the circular path will be
mv
r= B

1055

The orbit of a particle moving under the influence of a central force is
r@ = constant. Determine the potential energy as a function of r.

(Columbia)
Solution:

Consider a central force F = rF(r) acting on a particle of mass m.
Newton'’s second law gives

F =m(# —r8?) , 1)
0 = m(ré + 2i6) (2)
in polar coordinates. Equation (2) gives
i . 1d, ,.
g = — — = 0
8 + 276 'rdt(r 9) ,
or
r% = constant = h , say,
or
6 = hu?
by putting
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Then as
_dr _ dr 2dr _ du
r=a T e e
_adr o ,d(  du _22d2u
7‘—0—l —hudg( h—)— h 5

rg? = lhzu4 = h%*?
Eq. (1) becomes

2
F = —mh%u? (E—If +u) ,

which is often known as Binet’s formula.
In this problem, let r = % and write the equation of the trajectory as

u=C8,

where C is a constant. Binet’s formula then gives

The potential energy is by definition

r " mh? —mh2]" —mh?
= — F = = =
1% /m (r)dr /m 3 dr [ 572 ]m 52

taking an infinity point as the zero potential level.

1056

Mariner 4 was designed to travel from earth to Mars in an elliptical
orbit with its perihelion at earth and its aphelion at Mars. Assume that
the orbits of earth and Mars are circular with radii Rg and Ry respectively.
Neglect the gravitational effects of the planets on Mariner 4.

(a) With what velocity, relative to earth, does Mariner 4 have o leave
earth, and in what direction?
(b) How long will it take to reach Mars?



Newtonian Mechanics 87

(c) With what velocity, relative to Mars, will it reach the orbit of Mars?
(The time at which Mariner 4 leaves earth must be properly chosen if it is
to arrive at Mars. Assume this is done.)

(Columbia)

Solution:
As the gravitational force on Mariner 4, which is a central force, is

conservative, we have

mi2 _ GmM + mh?
2 r 2r2

E =

where m and M are the masses of Mariner 4 and the sun respectively, G
is the gravitational constant, and k = 126 is a constant. At the perihelion
and aphelion of the elliptical orbit, 7 = 0, r = Rg and r = R)s respectively.
Then

B —GmM  mh? —GmM  mh?

Rw 2R, Rp | 2R%’

. _  [ZOMRxFs
Ry +Rg

At the perihelion we obtain its velocity relative to the sun as

o_h _ [ _2GMRy
Rg Rg(Rm + Rg)

Suppose Mariner 4 is launched in a direction parallel to the earth’s revolu-
tion around the sun. The velocity relative to the earth with which Mariner 4
is to leave the earth is then

giving

2GM Ry
Rg(Rum + RE)

Up =V

where v is the velocity of revolution of the earth. Similarly at the aphelion
the velocity, relative to Mars, which Mariner 4 must have is

Y _y_. _ | _2GMRs __ [GM
r M Ry(RMm + Rg) Rg
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Applying Kepler’s third law we have for the period T of revolution of
Mariner 4 around the sun

Rg+ Rm\?® _
T =Tg (—‘—2—‘—) R,

where T = period of revolution of the earth = 1 year. Hence the time
taken for Mariner 4 to reach Mars in years is

_T _1(Rg+Ru)?
T2 2 2R '

1057

A charged pion (7t or 7~) has (non-relativistic) kinetic energy 7. A
massive nucleus has charge Ze and effective radius b. Considered classical,
the pion “hits” the nucleus if its distance of closest approach is b or
less. Neglecting nucleus recoil (and atomic-electron effects), show that the
collision cross section for these pions is

2 _

o= ﬂg__v_), for 7t
and \

o= i(_Ti‘i_Q, for T ,
where \

Ze
V=5
(Columbia)

Solution:

Let d be the impact parameter with which a pion approaches the nu-

cleus. The pion has initial velocity \/% and angular momentum v 27'md,
where m is its mass. At the closest approach, the pion has no radial velocity,
i.e., v, = 0, v = bf. Conservation of angular momentum gives

V2T md = mb?é
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or
m

Y RV
d= 2Tb0'

Conservation of energy gives
1 .
T=V+ 5mbzﬁr2 ,
as a potential V now comes into play, or

e JXT=V)

m

The collision cross section is
ﬂ————2(T ) mb? = mb? (T ~ V) .

2
o=nd =5

Putting V = zTe’, for 7+ we have

T-V
=gab? | —=
an(T),

and for 7, the potential is _zTe’ and we have

T+V
=7xb{ == .
(T)

1058

Estimate how big an asteroid you could escape by jumping.
(Columbia)

Solution:

Generally speaking, before jumping, one always bends one’s knees to
lower the center of gravity of the body by about 50 cm and then jumps up.
You can usually reach a height 60 cm above your normal height. In the
process, the work done is (0.5 4 0.6)mg, where m is the mass of your body
and g is the acceleration of gravity.
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It is reasonable to suppose that when one jumps on an asteroid of mass
M and radius R one would consume the same energy as on the earth. Then
to escape from the asteroid by jumping we require that

1.lmg = —G%@ .

If we assume that the density of the asteroid is the same as that of the
earth, we obtain

M _R

Mg Ry’
where Mg and Rg are respectively the mass and radius of the earth. As
g = GMg /R, we find

GM 3

R CM_ B

119 1.1Rg

or

R=\/11Rg =/11x 6400 x 103 =2.7x 10° m .

1059

You know that the acceleration due to gravity on the surface of the
earth is 9.8 m/sec?, and that the length of a great circle around the earth
is 4 x 107 m. You are given that the ratios of moon/earth diameters and
masses are

Drm =0.27 and M,

D. . = 0.0123

respectively.
(a) Compute the minimum velocity required to escape from the moon’s
gravitational field when starting from its surface.
(b) Compare this speed with thermal velocities of oxygen molecules at
the moon’s temperature which reaches 100°C.
(UC, Berkeley)

Solution:

(a) Let the velocity required to escape from the moon’s gravitational
field be vy, then
mvl;,  GMam

2 P
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) 3GM 00123 MY,
min = |/ 027 rg e

01
- \/(@ﬂ) -g-D, = 2.38 x 10¥'m/s

giving

0.27

using g = GM,/r2, D,/ D, = 0.27 and M,, /M, = 0.0123.
(b) The average kinetic energy of the translational motion of oxygen
molecules at a temperature of 100°C is 3k7/2:

1
5mv2 = ng.

Y= [3kT \P x 138 x 10728 x 373 _ . m/s
“Vom 32 x 1.67 x 10-27 '

v, which is the root-mean-square speed of an oxygen molecile at the highest
moon temperature, is smaller than vp,;,, the speed required to escape from
the moon.

Hence

1060

An object of unit mass orbits in a central potential U(r). Its orbit is
r = ae~" where 8 is the

azimuthal angle measured in the orbital plane. Find U(r) to within a
multiplicative constant.

(MIT)
Solution:
Let
1 ebG
uU=-=—
r a
Then
d2u b2 bo
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and Binet’s formula (Problem 1055)

F = —mh?4? (%20—1; +u)

gives form =1

2712
F=—h*b +1)u®= _ME+D) 4G
rd dr

Integrating and taking the reference level for U(r) at » — oo, we obtain

—h? v 4+1
V===

where h = r26 is the conserved angular momentum of the object about the
force center and is to be determined by the initial condition.

1061

Hard sphere scattering.
Show that the classical cross section for elastic scattering of point
particles from an infinitely massive sphere of radius R is isotropic.

(MIT)

Solution:

For elastic scattering, the incidence angle equals the angle of reflection.
The angle of scattering is then ¢ = 26 as shown in Fig. 1.40.
If b is the impact parameter, we have

b= Rsin@ ,
and

db = Rcos6df .

The differential scattering cross section per unit solid angle g—g is given by

2mbdb = 2 R? sin 6 cos 0df = %2” sin pdyp ,

or
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Fig. 1.40.

d_d_ 1 R?sin 20d0

dQ 2 sinpdp

_ Rlsinpdp _ R?
T 4 sinpdp 4

Thus the classical differential cross section is independent of the angle of
scattering. In other words, the scattering is isotropic.

1062
Find the angular distribution and total cross section for the scattering of
small marbles of mass m and radius r from a massive billiard ball of mass
M and radius R (m < M). You should treat the scattering as elastic,

involving no frictional forces.
(Columbia)

Solution:

As m < M, the massive billiard ball will remain stationary during
scattering. As the scattering is elastic (see Fig. 1.41), the scattering angle
O is related to the angle of incidence by

8=nm-20,

where 8 is given by
(R+r)sinf=5b.
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The differential scattering cross section is

do _ |2mbdb| 2r| sin@cos @ - (R + r)2do)

dQ? dQ2 2ndcos ©
_|3(R+7)?sin0d6| (R +r)*dcos®
B dcos© B dcos©
_ 1 2

As %% is isotropic, the total cross section is

d
o = 4nd—g =m(R+7r)?.

Fig. 1.41.

1063

A spaceship is in a circular orbit of radius ry around a star of mass
M. The spaceship’s rocket engine may be fired briefly to alter its velocity
{instantaneously) by an amount Av. The direction of firing is specified by
the angle @ between the ship’s velocity v and the vector from the tail to
the nose of the ship (see Fig. 1.42). To conserve fuel in a sequence of N
firings, it is desirable to minimize AV = Y-~ |Av,|. AV is known as the
specific impulse.

(a) Suppose we want to use the ship’s engine to escape from the star.
What is the minimum specific impulse required if the engine is fired in a
single rapid burst? In what direction should the engine be fired?
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Fig. 1.42.

(b) Suppose we wish to visit a planet in a circular orbit of radius r, > ro.
What is the minimum specific impulse required to reach the planet’s orbit
if the engine is again fired in a single rapid burst?

Suppose we want to use the ship’s engine to cause it to crash into the
star (assume the radius of the star to be negligible). Calculate the minimum
specific impulse for both of the following firing strategies:

(c) A single rapid burst at 8 = 180°.

(d) A single rapid burst at § = 0° and then a second burst at § = 180°
at a later time. The timing of the second burst and the strength of each
burst should be chosen to minimize the total specific impulse.

(MIT)

Solution:

(a) Let vp be the speed of the spaceship in the circular orbit of radius
ro, and vge be the escape velocity for the orbit. Then

mvj  GMm mv, GMm
ro  rg ' 2 rp
or
/GM [2GM
Vo =4/—""» Voe = .
7o To
As

vge = Vo + |Av|cosf = vg + AV cos b ,

the specific impulse required for escape is the least for § = 0, i.e., the initial
velocity of the spaceship and the impulse are in the same direction, and is
given by

GM
AV =vge —vp = ?(‘/5—1)-
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Fig. 1.43.

(b) After the first burst, the ship escapes from the circular orbit around
the star and moves along a parabolic orbit. When the ship reaches the
circular orbit » = rq of the planet, the engine is again fired in a single rapid
burst (see Fig. 1.43). For the ship to move along the circular orbit of radius
r1, its speed must be

GM
v =4/ — .
™
Let v be the speed of the ship as it arrives at r = r; and before the burst.
Conservation of angular momentum requires

VoeT0 = V1T COS Y

or
70V0e
Ve COS p = .
™
Conservation of energy gives
1 GMm
—muy, = )
2 le 1
or
2GM
Vie = .
™

Then the minimum specific impulse required is given by

AV = |V1 — Vlel
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or
(AV)? = 2, 4+ 1% — 2uievrcos
2GM GM
+ — — 2—voev1
™
3GM 2GM
7‘1
M 2
BN
1 1
Hence

M
AV=\/G (3 2,/ 2r0 ) .
LS LS
(c) For a single rapid burst at # = 180°, the minimum specific impulse

is that which makes the speed of the spaceship v/ = vg — AV =0, so that
it will fall onto the star. Hence the minimum impulse required is

AV=‘U0= Ci—M
0

(d) If after the first burst with § = 0°, the ship acquires the escape
velocity vge = +/2¢M je., AV, = \/%ﬁ—l(ﬁ — 1), it can escape from the

ro ?

orbit. The speed of the ship v is given by

1 , GMm
—2~mv - T = constant .

As r — 00, v — 0. The second burst can be fired when v ~ 0 at § = 180°
to turn the ship around toward the star with a specific impulse AV, & 0;
thereafter the ship falls down to the star. The total impulse required is

GM
AV = AV, = r—(\/§-1) .
0

That this is the minimum impulse can be seen from the following.
Suppose the first burst fired at § = 0° is

AVI < Yge — Vo
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then the ship will move along an elliptic orbit. The speed is then minimum
at the aphelion, at which point the second burst at # = 180° should be fired
to make AV, small. Suppose at the aphelion the ship is at distance ry from
the star and has speed v,, then AV] is given by the energy equation

1 , GMm 1 2 GMm
) - == A _
3 muv; v 3 m(vp + AV)) -

and the angular momentum equation
mnravy = m'f‘o(‘Uo + AV]) .

Eliminating r3 from the above, we have

. 2GMu, 2GM

_ - AV =0
V2 To(U0+AV1)+ ro (U0+ Vl) !

giving
GM GM
Vg = +
ro(vo + AVy) ro(vo + AWY)

—(vo+AW)| ,

where the lower sign corresponds to the speed at the perihelion and the
upper sign to the speed at the aphelion. At the aphelion,

2GM

V2= ro(vo + AW,)

has ('U() + AV]) .

The second burst must be such that Avy is equal to v; in magnitude but
opposite in direction in order that the ship can stop and fall down to the
star, i.e., vo + Avg = 0. Thus

2GM
AVo = 1A =vy=—————1— AW},
V2 = |Ava| = vz rolvo + AVA) Vg 1
or
2GM
AV, + AV = ~ 7% -

ro(vo + AWY)

From the above it can be seen that the larger the value of AV, the smaller
is the specific impulse AV = AV, + AV, under the condition

AV] < Vie — Vo .
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Hence in order to minimize the total specific impulse, the first burst should
carry impulse AV, = /GM/ro(v/2—1) and after an infinitely long period
of time, a second burst is fired with an infinitesimal impulse AV5;.

1064

“Interstellar bullets” are thought to be dense clumps of gas which
move like ballistic particles through lower-density interstellar gas clouds.
Consider a uniform spherical cloud of radius R, mass M, and a “bullet” of
radius < R and mass m < M. Ignore all non-gravitational interactions.

(a) Obtain expressions for the force F(r), 0 < r < oo, suffered by the
bullet in terms of the distance r from the cloud center, and for the potential
energy V(r), 0 < r < co. Sketch V(r).

(b) The bullet has angular momentum L = m(GMR/32)'/? about r = 0
and total energy £ = ~5GMm/4R. Find the orbit turning point(s). Is
the bullet always in the cloud, outside the cloud, or sometimes inside and
sometimes outside?

(c) For L and E as in (b), obtain an expression for the differential orbit
angle df in terms of dr, r and R.

(d) Obtain an orbit equation r(8, R) by integrating your answer to (c),
you may wish to use

/ dz . arcsin —2cz b c<O0
Vatbr+cz2 +—c¢ Vb2 —dac’ '

Find the turning points r; and sketch the orbit.
(MIT)

Solution:

(a) The force F acting on the bullet is

GMm
—Tl’ (0<7'_<_R),
F= c
- J\Zmr (R<r<oo).,
r

From the definition of potential energy V(r), F = —VV (r), we have
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V(r)z—fRF~dr—~/rF~dr (0<r<R),

oo R

V(r)z—]rF'dr (R<r<o00).

o0

Substituting in the appropriate expressions for F and integrating, we find

M
—G2R;n(3R2 -rY)  (0<r<R),
V(r) = oM
- rm (R<r <o0).

A sketch of V(r) is shown in Fig. 1.44.

vir)

al:]

Fig. 1.44. Fig. 1.45.

(b) As shown in Fig. 1.44, with total energy E = —5GMm/4R, the
bullet can only move inside the gas cloud in a region bounded by the turning
points. At the turning points, # = 0, v = vg. Hence

rmvg =m CMR

g — 32 ’
GMm , 4 o MW —5GMm
2R3 (r* —3R%) + s = ir -

Eliminating vg, we have for the turning distance r
ryd P2
2(%) -16(%) +1=0,

r\2 V2
(E) :Hs :,

which has solutions
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giving

2
ry = 2i8\/—R.

(c) Conservation of energy and of angular momentum give

2 | 242
E=V(r)+ '_n(r—';re_),
L =mr?é .

Substituting in the above

drd8 .dr L dr

Ul ik R o

we have
5GMm _GMm,, ., 1 |1 /d\® 1|GMR
ZT_TM(T“3R)+§m[r4(@) —}"‘3‘2—
or 2
dr\® _ r\4 T2
(d_e) —r [-32 (§> +16(§> -1] ,
ie.

9 = [—32 (%)4 +16 (%)2 - 1] 7 dr—’ .

(d) To integrate the last equation, let £ = (r/R)™2 and rewrite the
equation as

~2df = de :
V=32 + 16z — 22
Integrating, we obtain

. 2r—16
a — 20 = arcsin T\/i—

or

z =8+ 4v2sin(a — 20) = 8 + 4V2 cos(26 + 3) ,
i.e.

T\ 1
(E) 4[24+ v2c0s(26 + )]
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where [ is a constant of integration. By a suitable choice of the coordinate
axes, we can make § = 0. At a turning point, r is either maximum or
minimum, i.e. cos@ = +1. Hence the turning points are given by

ry 1 [2FV2
E“i\/zx(zi\/ﬁ)_i\/ 8

Thus there are a total of 4 turning points as shown in Fig. 1.45.

1065

A very broad parallel beam of small particles of mass m and charge zero
is fired from space towards the moon, with initial velocity V; relative to the
moon.

(a) What is the collision cross section for the particles to hit the moon?
Express the cross section ¢ in terms of the moon’s radius R, the escape
velocity Vese from the surface of the moon, and Vy. Neglect the existence
of the earth and of the sun.

(b) If you are unable to derive the formula, partial credit will be given
for a good formula guessed on the basis of dimensional analysis, and an
argument as to what should be the answer in the two limits that Vj goes
to zero and Vj goes to infinity.

(UC, Berkeley)

Solution:

(a) Let the maximum impact parameter be byax. The particles will hit
the moon if their distances of closest approach are by, or less. Conserva-
tion of energy and angular momentum give

mV02 _ sz _ GMm

5 = 7 (1)
From Eq. (1), we obtain
2GM
V2 =V02+ G =V02+‘/ezsc .

R
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Equation (2) then gives

V2. R?
b2 — — R2 e8C .
max V02 + ‘/02

Hence the collision cross section for the particles to hit the moon is

V2
o=nb,, =R (1+ £8c ) .
V¢

(b) For the two limiting cases we have

o — 00 for Vo — 0,

o — TR? for Vo — oo .

These results can be understood as follows. For very small Vp, all the
particles will be attracted to the moon as we have neglected the effects of
the earth and the sun. For very large velocities, only those aimed at the
moon will arrive there as the potential energy due to the moon’s attraction
is negligible compared with the kinetic energy.

To apply the method of dimensional analysis, we make a guess that the
cross section will be the geometrical cross section of the moon with some
dimensionless correction factor involving Vy and Vg :

o =nR? [1+b(VLV:—)] )

where a and b are unknown constants which cannot be determined by this
method alone. a however must be positive to satisfy our expectations for
the two limiting cases.

1066

Pretend that the sun is surrounded by a dust cloud extending out at
least as far as the radius of the earth. The sun produces the familiar
potential V = —~GMm/r, and the dust adds a small term V = kr2/2. The
earth revolves in a nearly circular ellipse of average radius r9. The effect of
the dust may cause the ellipse to precess slowly. Find an approximate
expression (to first order in k) for the rate of precession and its sense
compared to the direction of revolution.
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Hint: Consider small oscillations about rg.

(UC, Berkeley)

Solution:

In the equation for radial motion of a body under central force the
effective potential is

_ ~-GMm  kr? 12

e T T
The earth will move in a closed orbit of radius rq if U(rg) is an extreme
value, i.e.
dU(r)
— =0 1
(% ) =0, 1)
or
GM L?
=t krg— —5 =0,
7‘0 m'ro

from which rp can be determined,
Expand U(r) as a Taylor series:

00 =veo+ (%) -y (GE) _ oonree

1 (d2U )
~ve s (), -

as (%)r:ro = 0, retaining only the dominant terms. The energy equation
can then be written with r — rg = x as

L a'v2+1 U 2 = constant
2™ To\wr) T T '

Differentiating with respect to time gives

£ + dz—U z=0
mi = =0.

Hence there are small oscillations about ro with angular frequency

U”("'O)
r m ’
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where ) )
—-2GM 3L L
U"(ro) = —— g + k+ -5 =3k + — ,
7‘0 m'ro m'ro

using Eq. (1). For the near-circular orbit, L = mr3wg, and we find
U”(r) = 3k + mw} ,

wp being the angular velocity of revolution around the sun. Thus to first

order in k, we have
o 3k 3k
wr =\|wi+ — R wo+ ,
m 2muwy

and the rate of precession is

3k
w,, =wr——w0=2mwo .

As w, > wy, i.e. the period of radial oscillation is shorter than that of
revolution, the direction of precession is opposite to that of rotation.

1067
A particle of mass m is bound by a linear potential I/ = &r.

(a) For what energy and angular momentum will the orbit be a circle
of radius r about the origin?
(b) What is the frequency of this circular motion?
(c) If the particle is slightly disturbed from this circular motion, what
will be the frequency of small oscillations?
(UC, Berkeley)

Solution:

The force acting on the particle is

dUu
F=——1f=-—kt.
drr kr

(a) If the particle moves in a circle of radius r, we have

mwr =k
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ie.

The energy of the particle is then

mu? mw?r?  3kr
= _— k = —
E=kr+ = =kr+ —3 .

and its angular momentum about the origin is
2 2, [ K /I3
L =mwr® =mr‘y/— = vVmkrd .
mr

(b) The angular frequency of circular motion is w = 1/ £

mr
(c) The effective potential is
2

2mr?

Ueg = kr +

The radius ry of the stationary circular motion is given by

2
(dU_eﬁ) =k — L_3 =0,
dr )., mry

L2 1/3
o= (75)

d?U.g C L2 8L (mk\*° o (7K 13
ar? J ., ~ omrt T om \ L2 - L2 k
the angular frequency of small radial oscillations about rg, if it is slightly
disturbed from the stationary circular motion, is (Problem 10686)

o JL (B _ 3k (k)Y
T Am\ @ ), Vm \L?
= i:\/—jwo,
mro

where wp is the angular frequency of the stationary circular motion.

ie

r=rg
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1068

A planet has a circular orbit around a star of mass M. The star
explodes, ejecting its outer envelope at a velocity much greater than the
orbital motion of the planet, so that the mass loss may be considered
instantaneous. The remnant of the star has a mass M’ which is much
greater than the mass of the planet. What is the eccentricity of the
planetary orbit after the explosion? (Neglect the hydrodynamic force
exerted on the planet by the expanding shell. Recall that the eccentricity
is given in terms of the energy E and angular momentum L by

2EL?

2
=1 —_—
e +M,,K2’

where M, is the mass of the planet and where the magnitude of the
gravitational force between the star and planet is K/r3.)
(UC, Berkeley)

Solution:

Before the explosion the planet moves in a circle of radius R around
the star. As the eccentricity e of the orbit is zero, we have from the given
equation for e

_ 2
As
Mg”z = %, L= M,Rv,
we have 12
R= MK

Let L' and E’ be respectively the angular momentum and total energy of
the planet after the explosion. Then
L'=1L,
G(M — M')M,
R .

With K = GM M, and K’ = GM'M,, we have for the eccentricity e of the
orbit after the explosion

E =E+
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2
62 =1 + ﬁ
M,K”
L2 [~ 255" + 2 G(M - MM, | 12
=1+

M,K?

M\?2 oM’
= _- 1—
() (-57)

giving

1069

A satellite traveling in an elliptical orbit about the earth is acted on by
two perturbations:

(a) a non-central component to the earth’s gravitational field arising
from polar flattening,
(b) an atmospheric drag which, because of the rapid decrease in pressure
with altitude, is concentrated near the perigee.
Give qualitative arguments showing how these perturbations will alter
the shape and orientation of a Keplerian orbit.
(UC, Berkeley)

Solution:

(a) Owing to polar flattening of the earth (shaded area in Fig. 1.46), the
equipotential surface in the neighboring space is a flattened sphere (dashed
ellipsoid).

Suppose the orbital plane N of the satellite makes an angle § with the
equatorial plane M of the earth.

As the equipotential surface deviates from the spherical shape, the
earth’s gravitational force acting on the satellite, which is normal to the
equipotential surface, does not direct toward the center of the earth (e.g, the
forces on the satellite at A and B in Fig. 1.46). As the effect is quite small,
the orbit of the satellite can still be considered, to first approximation, as
circular. The effect of the non-radial component of the force cancels out
over one period, but its torque with respect to the center of the earth does
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equipotential surface

Fig. 1.46.

not. This “equivalent” torque is directed into the plane of the paper and is
perpendicular to the orbiting angular momentum L of the satellite, which
is perpendicular to the orbit plane N and is in the plane of the paper. It
will cause the total angular momentum vector to precess about L.

(b) Because the atmospheric drag is concentrated near the perigee, it
makes the satellite slow down at the perigee and reduces the energy and
angular momentum of the satellite every time it crosses the perigee. This
will make the apogee of the satellite’s orbit come closer and closer to the
earth and finally the orbit will become a circle with a radius equal to the
distance of the perigee to the center of the earth. Further action by the
drag will further reduce its distance to the earth until it falls to the earth.

1070

A particle of mass m moves under the influence of an attractive central

force f(r).

(a) Show that by a proper choice of initial conditions a circular orbit
can result.

The circular orbit is now subjected to a small radial perturbation.

(b) Determine the relation that must hold among f(r), r and 8f/9r for
this orbit to be stable.

Now assume that the force law is of the form f(r) = —K/r".

(c) Determine the maximum value of n for which the circular orbit can
be stable.

(Princeton)
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Solution:

(a) The effective potential of the particle is

.]2
V‘ = W + V("') )
where J is a constant and V is related to f by f = %, in terms of which
the total energy is
E = mTrz +V*.

The motion can then be treated as one-dimensional, along the radial
direction. The circular motion of the particle in the V field corresponds to
the particle being at rest in the equilibrium position in the V* field.

At the equilibrium position r = rq,

v

or 0,
or 9
171% J
o m M)

If the initial condition satisfies the above equality and E = V*(rg), the
orbit is a circular one.
(b) For the orbit to be stable, V* must be minimum at r = r. This

requires that
82‘/-:
( 87‘2 )r:ro > 0 '

—3J2 + _82V >0 or —3']2 - g >0
mrt  Or? ’ mrt  Or !

1.e.

at r =ry.
(c) If f=—K/r", then 8f/0r = nK/r**! and (1) gives

J?=mK/rg™® .
Hence the condition \

3J of

mrd " or 0

i.e.
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3K nK

,,-n+1 - pn+l >0 4

requires that n < 3 for the circular orbit to be stable.

1071

Consider a planet of mass m moving in a nearly circular orbit of radius

R around a star of mass M. There is, in addition to gravitation, a repulsive

force on the planet proportional to the distance r from the star, F = Ar.

Compute the angular velocity of precession of the periastron (point of
closest approach to the star).

(Princeton)

Solution:

The force on the planet is

_ ~GMm

+ Ar .
2

f
With u = 1, Binet’s formula (Problem 1055) gives the equation for the
orbit:

d? A

—mh2y? (a?uz‘ +u) = —-GMmu® + o

For nearly circular orbit we set u = up + éu, where §u is a small quan-
tity. The above equation then gives, retaining only the lowest-order small
quantities,

d?
mhz[ (i(;:)+uo+5u] =GMm————A—3
u%(l—%’;

~ GMm - (uig) (1 _f_:) W

If the orbit is exactly circular, u = ug, 6u = 0, the above becomes

A
2up = GMm - = .
mhuo = GMm 3 (2)
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Using this equation in (1) we obtain

d?(6u) 3A
2 —
mh [ 162 +6u] = a bu

M+(1_—&)6u=0. 3)

d62 mh2u}

Choosing suitable coordinate axes we can write its solution as

or

éu = Bsin(a8) ,

\/ 3AR3
mh2u0 GMm — AR3?

as h2ug = GM — A/mul, up = 1/R. Then if 8, and 6§, are the angles for
two successive periastrons, we have

where

af; —aby, =2m .

or

As a < 1, the angle of precession is

Af, = A9 ~ 27 2(1—51).

The time required for the line joining the periastron and the star to rotate

through an angle A6, is
A0 27

A
Hence the angular velocity of precession is

a0,
At
As the angular velocity of revolution of the planet is by the definition of h

At =

=(1-a)d.

Wp =

gL _ JGM A
" R2 VR m’

we have

GM A GM 4A
@V T VE  w
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1072
(a) A planet of mass m is orbiting a star of mass M. The planet
experiences a small drag force F = —av due to motion through the star’s

dense atmosphere. Assuming an essentially circular orbit with radius r = r
at t = 0, calculate the time dependence of the radius.

(b) Now ignore the drag force. Assume that in addition to the
Newtonian gravitational potential, the planet experiences a small additional
potential so that its potential energy is actually

GMm ¢
- +

"2

V("') - r r

where ¢ is a small constant.

Calculate the rate of precession of the planetary perihelion, to lowest
order in €. You may assume the orbit is almost circular. In other words,
you are to calculate the angle o sketched in Fig. 1.47.

(Princeton)

Solution:

(a) As the drag force F is small, it can be considered as a small
perturbation on the circular motion of the planet under the gravitational
force of the star. The unperturbed energy equation is

) . GM
E= Em(rz +7‘202) has —rnl .

If the orbit is circular with radius r, we have

2
. 2 mv* _ GMm
r —0, mré* = T = 2 s
and thus
E:-GMm
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The drag force causes energy loss at the rate

GM
—~F-v=av'v:av2=a .
r
This must be equal to
dE  GMm?¢
dt 2
giving rise to
. 2a
r=——r,
m
whose integration gives
— 2at
r=rge ™ ,

where we have used r = rg at t = 0.
(b) The planet is now moving in a central potential V(r) = — GAr‘ m 4
and its total energy is

1‘4 ™

1 ., 2
E=-mr
2™ Y omr
where J is the conserved angular momentum, J = mr2¢.
As

; +V(r),

drde
dy dt dp’
we have
J2 (2
d'r‘=\/2m(E-—V)—r—2'(7)d‘Ps
or

Jdr

‘p:

+ const.
.]2
1‘2\/2m(E had V) - 7‘_2

In the unperturbed field Vo = —~GMm/r, the orbit is in general an ellipse.
However, in the perturbed field V, the orbit is not closed. During the time
in which r varies from 7y, t0 rmax and back to ry;, again, the radius vector
has turned through an angle Ay given by

Tmax Jdr

fe=2J 72
e r2\/2m(E—V)—~2—

"
B 9 rmax\/7 J?
_ 267/% 2m(E~V) - S5 dr .
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Writing V = #’E + % = Vo + 6V, we expand the integrand as a Taylor
series in powers of 6V

=100+ 5 (55),_ v+ 5 (555),_, @+

The zero-order term gives 27 as the corresponding orbit is an ellipse. The
first-order term gives

2méVdr

p= )
.. T :
T'min E VO . J_

the angle shown in Fig. 1.47.
The variable over which the integration is to be carried out can be
changed in the following way. We have

Ll _ J dr
- ‘Pd<p T mr2dy’
ie.
72
om(E — Vp) — J_dr

2 mride

So the last integral can be written as

_6 2m 12
‘P_BJ[T/O réVd<p] .

With 6V = &/r? we obtain

__3_ 2_m/"d __27r6m
=17 ), )T T

1073

(a) Find the central force which results in the following orbit for a
particle:

r =a(l + cos®) .
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(b) A particle of mass m is acted on by attractive force whose potential
is given by U oc r~%. Find the total cross section for capture for the particle
coming from infinity with an initial velocity V.

Note: Parts (a) and (b) may refer to different forces.
(Princeton)
Solution:

(a) In the central force field, the equations of motion for the particle are

m@F —r6?) = F(r), (1)

r26 = const. = h, say .
Then

r3

o="1 g=i(£)=ﬂ,

With r» = a(1 + cos ), we also have

F = —afsind ,
¢ a(sing + 6% cosg) = 7 (2576
F = —a(fsinf + 6* cosf) = rd (1+cos€+0030
—ah?t r—da
= (2-0030)=h2( rd )

Using the above we can write (1) as

RAr—3a) ( h)z} _ _3mh%a

4

F(r)y=m I:
which 18 the central force required.

Uett

/

Fig. 1.48,
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(b) As U = — 7, the effective potential is

L? «a

2mr2  pt’

Ueﬁ'
where L = mbV,, is the angular momentum, which is conserved in a central
force field, b being the impact parameter. To find the maximum of Ueg ,

consider
dUer - L?  4a

== 4+ ==0,
dr mrd3 S
which gives
4mao
ro = Iz
as the distance where Ueg is maximum. Then
L4
(Uet Jmax = Uo = m .

The form of U.g is shown in Fig. 1.48. It is seen that only particles with
total energy E > Up will “fall” to the force center. Thus the maximum
impact parameter for capture is given by E = U, or

mibtvi 1,
Tomia 2"V

A 1/4.
mV2

Hence the total capture cross section is

giving

2
oc=mnb =27, —= .

1074

(a) A particle of mass m moves in a potential V(r) = k/r?, k > 0.
Consider motion in the X-Y plane, letting » and ¢ be the polar coordinates
in that plane, and solve for r as a function of ¢, angular momentum ! and
energy E (Fig. 1.49).

(b) Use the result of part (a) to discuss (classical) scattering in this
potential. Let # be the scattering angle. Relate the impact parameter to 6
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Fig. 1.49.

and F and thereby compute the differential cross section as a function of 6
and E.

(Princeton)

Solution:

(a) The force on the particle is

v
or r3’

Binet’s formula (Problem 1055) then becomes

2 F 2
h2y? (%; +u) = ——= -—ku3 ,

22,34_ 1+£
O¢? mht )

where h = r2¢, u = 1/r. Its solution is

F=

or

Il
=

u = Asin(we + ¥) ,

where w? = 1 + 2k/mh?, and A and ¥ are constants of integration to be
determined from the initial conditions.
It can be seen from Fig. 1.49 that for r — oo, 1.e. u — 0, ¢ — 0. Hence
% = 0. Also for r — o0, # — o given by E = Imr2 | ie. foo = —1/2E,
where the minus sign is chosen because for incidence r decreases with
increasing t. Then as
dr. drh du

r= @¢= dpr? :“hﬁ = —Ahw cos(w9) ,
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we have, with [ = hm,

A= -1— 2mE
lw
and hence
1 2mE |
=T sin(we) ,
where w is given by
9 2mk
we=1+ ——

(b) From the above result it can be seen that r is at a minimum when
wo = 3,i.e at ¢ = ¢ = 5. This is the distance of closest approach OC
shown in Fig. 1.49. Due to the symmetry of the scattering, the scattering
angle is

0=7l'-2¢0=7((1-1) .

w

Then as I? = m2b%/2 = 2b2mE, we have

1 )
0 2mk\ "2 E\¢®
1*;—(1+—lz—) =<1+ﬁ) ’

1e.
0> 20 _ k
™ x RE+k’
giving
b2 — _E (7( ~0)2
E(2r —0)0

as the relation between 8 and b.

Particles with impact parameters between b and b+ db will be scattered
into angles between § and @ + d#, i.e. into a solid angle dQ2 = 27 sin 8d§.
Hence the differential cross section at scattering angle § per unit solid angle
is

do | 2nbdb | | b db
dQ "~ |2xsingde| ~ |sin@ do
k. n%(r—6)

~ Esing (27 — 0)262
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1075

Derive formulas and calculate the values of (a) the gravitational accel-
eration at the surface of the moon, and (b) the escape velocity from the
moon.

(SUNY, Buffalo)

Solution:

(a) Let M and R be the mass and radius of the moon respectively.
Then by the law of universal gravitation and the definition of gravitational
acceleration at the surface of the moon we have

GMm
R2
where m 18 the mass of a body on the surface of the moon. The relation
gives the gravitational acceleration at the surface of the moon as

=mg,

= GM  6.67 x 107! x 7.35 x 10?2

_ 2
R~ (1.74 x 10°)2 =162 m/s".

(b) The potential energy of a projectile of mass m at infinite distance

from the moon p — oo is
GmM mgR?
— = - —0.
p p

Its kinetic energy, a positive quantity, is at least zero. Hence for the
projectile to reach infinity from the surface of the moon, its total mechanical
energy must be at least zero, by the conservation of energy.

At the surface of the moon, the projectile has total energy

E = %mvg——ng.

If v is the escape velocity, we require E = 0, or

vg = v/2gR = v/2 x 1.62 x 1.74 x 106 = 2.37 x 10° m/s .

1076
Consider the motion of a particle of mass m under the influence of a
force F = —Kr, where K is a positive constant and r is the position vector

of the particle.
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(a) Prove that the motion of the particle lies in a plane.

(b) Find the position of the particle as a function of time, assuming that
att=0,z=a,y=0,V,=0,V, =V.

(c) Show that the orbit is an ellipse.

(d) Find the period.

(e) Does the motion of the particle obey Kepler's laws of planetary
motion?

(SUNY, Buffalo)

Solution:
(a) For a central force field F = — K,

rxF=Krxr=0.

Then as F = mdV/dt we have

dv
£Y o
rx — ,

or

drxV) av
T—VXV+PX dt =0.

Integrating we obtain
rxV=h,

a constant vector.
It follows that

r-h=r.rxV=rxr-V=0,

which shows that r is perpendicular to the constant vector h, i.e. r lies in
a plane perpendicular to h. This proves that the motion of the particle is
confined to a plane. We shall choose the plane as the zy plane with the
origin at the center of the force.

(b) The equation of the motion of the particle is

my¥ = —Kr ,
or, in Cartesian coordinates,

& +wiz =0,

j+w’y=0,
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where w? = K/m. The general solution of the above set of equations is

z = A sin(wt + @) ,
y = Azsin(wt + ¢2) .

With the initial conditions given, i.e.

r= A;sin¢g; =a,
y = Azsing; =0,
T = Ajwcos¢g; =0,

y: Az&)COS¢2 = ‘/0 ’

we find ¢, = 7/2, ¢ =0, A1 = a, Az = Vo/w = /m/KV;,. Hence

! ( K ﬂ')
T = asin —t+ -],
m 2
fm__ | K
y= ?Vosln( at).

(c) The last set of equations describes an ellipse. Eliminating the
parameter t we obtain the standard equation for an ellipse:

with

m
b=4/=VW.
\/KVO

(d) (z,y) return to the same values when t increases by T such that

[K
—T=2r.
m

T:2n,/%.

(e) Kepler’s third law states that ratio of the square of the period of
revolution of a planet to the cube of the length of the semimajor axis of its
orbit is a constant. Hence we have

Hence the period is
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4r3m
— if b
(period)? ] K@ nezo
(length of semimajor axis)® | 4.2 /K
0

As this ratio depends on m and a or m and Vi, Kepler’s third law is not
obeyed.

1077

(a) A particle of mass m moves in a central field of potential energy U(r).
From the constants of the motion obtain the equation of the trajectory.
Express the polar angle ¢ in terms of r.

(b) If the particle moves in from infinitely far away with initial speed
V;,, impact parameter b, and is scattered to a particular direction 8, define
the differential cross section in terms of b.

(¢) Calculate the differential and total cross section for the scattering
from a hard sphere.

(SUNY, Buffalo)

Solution:

(a) If a particle of mass m moves in a central force field of potential
energy U(r), its mechanical energy E and angular momentum with respect
to the center of the force mh are conserved quantities. Thus

1
5m(f2 +r2) +U(r)=E,
r?p =h, or  p=—.

As we also have

podr_drdp dr _ hdr
T a4t dpdt Tdp ridp’

the energy equation becomes

1 h_2£2+2h_2
2™ | ¥4 \dg g
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i.e.

\/—[E U(r)] — h? ,

or

- f¢_w o

which express ¢ in terms of r.

(b) The orbit of the particle in the central force field is symmetrical
with respect to the line joining the center of the force to the point of closest
approach (OA in Fig. 1.50). The angle of scattering of the particle is then

0=m—2p

with g given by

$o _/ )
T'min \/_[E U ] _ h2
mh?

where rmin is given by 7 = 0 in the energy equation, or E = U(r) + Z5%-.
The conservation laws give

2
E= m;/O , mh = mbly ,
so that
/°° bdr
$o = 3 .
Tnin 7‘2 b 2U(’I‘)

r2 mV?

The scattering angle 6 can then be determined.
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Let dN denote the number of particles scatterred per unit time into the
solid angle corresponding to scattering angles 6 and 6 + d6, and n denote
the number of particles passing through unit cross sectional area of the
beam per unit time. The differential cross section is defined as

_aN

n

do

As the scattering angle 6 corresponds to a unique impact parameter b, we
have

dN = 2nnbdb ,
i.e.
do = 2wbdb .
We can write the above as
db b (db

where dQ? is the solid angle between two right circular cones of opening
angles ¢ and 0 + d@:

dQ) = 2nsin8d6 .

Note that %}’—l is known as the differential cross section per unit solid angle.

(c) A particle moves freely before it hits the hard sphere. Because
it cannot enter into the interior of the sphere, momentum conservation
requires that the incidence and reflected angles are equal as shown in
Fig. 1.51,

Fig. 1.51.
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b= asinyg = asin m—6 = acos g
- asnye = 2 )" 2]

do  ba i AN
dQ " 2sinf \2) 4
As this is independent of the scattering angle, the total scattering cross

section is 0 = 4”% = ma?, which is equal to the geometrical cross section
of the hard sphere.

Then

Hence

1078

When displaced and released, the 2 kg mass in Fig. 1.52 oscillates on
the frictionless horizontal surface with period m/6 seconds.

(a) How large a force is necessary to displace the mas 2 cm from
equilibrium?

(b) If a small mass is placed on the 2 kg block and the coefficient of
static friction between the small mass and the 2 kg block is 0.1, what is the
maximum amplitude of oscillation before the small mass slips?

(Assume the period is unaffected by adding the small mass.)

(Wisconsin )

Solution:
Let k be the spring constant. The equation of the motion of the mass
is
28 +kzx=0,

or
F+wiz=0,
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where z is the displacement of the block from its equilibrium postition, and

w? = &. The general solution is

z = Acos(wt + ¢) .

The period of oscillation is

2 2 e
T:——:2 —:—,
w ﬂ\/; 6

giving w = 128!, k=288 Nm~!. If z = zg at t = 0, then ¢ = 0, A = 7
and the solution is £ = xq cos(12t).
(a) The force needed is

f=kr=288x2x10"2=576 N .

(b) If the small mass moves together with the 2 kg block, it has the
same acceleration as the latter, i.e. & = —144xqco0s(12t). Let its mass be
m. When it starts to slip, the maximum horizontal force on it just exceeds
the static friction:

0.1 x mg = 144maxy ,
giving 0.8

_— = -3
0= Tma 6.8x 107" m .,

If x4 exceeds this value m will slip. Hence it gives the maximum amplitude
for no slipping.

1079

Two synchronous tuning forks of identical frequency and loudness pro-
duce zero net intensity at some point A. However if either one is sounded
alone, a loudness I is heard at A. Explain in detail, as to a sophomore,
what became of the law of conservation of energy.

(Wisconsin)

Solution:

Let s; and s; be the distances between a point in space and the two
tuning forks. Each of the forks alone produces oscillations at this point
represented by
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Yy = I sin [w (t— 3_61)] )

y2 = I3 sin [w (t—- 8_62)] ,

and

where c is the speed of sound.

If sy and s; are both much larger than the distance between the two
forks, we can regard I, and I as approximately the same, i.e. I} ~ I; ~ Iy.
Then the resultant oscillation is

=i ofon oo )] con oo )]
o) b(252)]

Hence y = 0 if

w(sz — 81)
2c

Thus the resultant oscillation is zero at points where s; — 31 is some odd
multiple of A\/2. This does not violate the law of conservation of energy
as is evident when we consider the energy stored in the whole wave field.
Although the amplitude and energy of oscillation are zero at the nodes, at
the antinodes, the amplitude of oscillation is twice and the energy is four
times that of the individual value. Detailed calculations will demonstrate
that the energy of the resultant oscillation is equal to the sum of that of
the individual oscillations.

:(2n+1)g, n=01,2,....

1080

A mass m moves in a plane in uniform circular motion with angular
frequency w. The centripetal force is provided by a spring whose force
constant is K (ignore gravity). A very small radial impulse is given to the
mass. Find the frequency of the resulting radial oscillation.

(Wisconsin)
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Solution:

In polar coordinates the equations of motion for the mass are

m(F — 7.9'2) =—-K(r-—-rq),
m(ré +2/0) =0 .

The second equation gives
720 = const.
Let R be the radius of the uniform circular motion of the mass. We have
mRw? = K(R — r¢), r?0 = R%w .

Let ' = r — R for departure from uniform circular motion. The radial
equation can be written as

Lorier Rw? K,
T—r—a—'f‘ '—m—_a("' +R“—7‘0) .
If the radial impulse is very small, r’ < R and the above becomes
# P (1_ 3_1-’) _ -Kr'  K(R—ro)

R m m

H

or
K
'r"+(3w2+—) '=0.
m

It follows that the frequency of radial oscillation is w’ = y/3w? + £,

1081

A particle of mass m moves under the action of a restoring force —Kz
and a resisting force —Rv, where z is the displacement from equilibrium
and v is the particle’s velocity. For fixed K and arbitrary initial conditions,
find the value of R = R, giving the most rapid approach to equilibrium.
Is it possible to pick initial conditions (other than z = v = 0) so that the
approach is more rapid for R > R. and R < R.? Explain.

{ Wisconsin)
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Solution:

The equation of motion is m# + Rt + Kz = 0. Assume z = Ae™, we
obtain the indicial equation ma? + Ra + K = 0, giving

o= —R+VR?2—4Km

2m

In general, if R = R, = 2v/ Km (critical damping), the mass approaches
equilibrium most rapidly. However, if R > R., the mass may approach
equilibrium even more rapidly under certain particular conditions. For
now the general solution is

—R+\/Rz—4xm) (—R—\/R?—4Km)
t + Bexp t

2m 2m

w:Aexp(

We can choose initial conditions so that A = 0. Then the remaining term
has a damping coefficient

_ R+VR?’-—4Km R+ /R*-R? S R,
N B 2m 2m

2m m

H

so that approach to equilibrium is even faster than for critical damping,.
If R < R, we have

,_ —RtiyRI_R?

2m !

so that the general solution is

Rt i/ RZ2 - R%t
z=Aexp|—— Jexp| ———
2m 2m
Rt —iy/R2 — R?t
+Bexp| —— Jexp| ——— ] .
2m 2m

Then the approach to equilibrium is oscillatory with a damping coefficient

R R,
<

2m  2m

The approach is always slower than for critical damping.
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1082

A freely running motor rests on a thick rubber pad to reduce vibration
(Fig. 1.53). The motor sinks 10 cm into the pad. Estimate the rotational
speed (revolutions per minute, i.e. RPM) at which the motor will exhibit
the largest vertical vibration.

(UC, Berkeley)

10cm

Fig. 1.53.

Solution:

Let the elastic coefficient of the rubber pad be k. Then kx = mg, where
m is the mass of the motor. As z = 0.1 m, £ = 2 =98 572, Then the
natural frequency of the system is

w= \/f =9.9s %
m

Hence when the motor is rotating at a rate
w  60x9.9
2r 2«
resonance will take place and the motor will exhibit the largest vertical
vibration.

=94.5 RPM ,

1083

A car is traveling in the z-direction and maintains constant horizontal
speed v. The car goes over a bump whose shape is described by yo =
A[l — cos(wz/l)] for 0 < z < 2I; Yo = O otherwise (Fig. 1.54). Determine
the motion of the center of mass of the car while passing over the bump.
Represent the car as a mass m attached to a massless spring of relaxed
length lp and spring constant k. Ignore friction and assume that the spring
is vertical at all times.

(MIT)
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Solution:

Let the location of the mass at time ¢t be (z,y). Choose the origin so
that z(0) = 0. Then xz(t) = vt. The equation of the motion of the mass in
the y-direction is

mij = —k(y — yo — o) —mg

— k(v Ao+ T2) ~kdcos () .

Putting Y =y — A — ly + mg/k, we can write the above equation as

mY + kY = —kAcos (ﬂTvt) .

This equation describes the motion of a driven harmonic oscillator. Trying

a particular solution of the form Y = B cos(™), we find

v

l)2+kB:—kA,

-mB (
i.e.
kA
mn2v? — k1?2

Hence, the general solution of the equation of motion for the mass is

B =

t
y = C) cos(wt) 4+ Ca sin(wt) + Bcos (”Tv) +A+1l— Tkﬁ )

; _ &
withw =4/:%.

The initial conditions are y(0) = lo — mg/k, ¥(0) = 0, giving C2 = 0,
Cy = —(B + A) = mn2v?A/(kl? — mn?v?). Therefore the motion of the
center of mass of the car is described by
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vt
y(t) = C, cos(wt) + Bcos <7rl ) + A+l - n;g
. m 2
with w = V %’ C = mw’wviv—kl!’ B= mw’ktlﬂﬂkl! :
1084

A thin ring of mass M and radius r lies flat on a frictionless table.
It is constrained by two extended identical springs with relaxed length Iy
(lo > r) and spring constant k as shown in Fig. 1.55.

(a) What are the normal modes of small oscillations and their frequen-
cies?

(b) What qualitative changes in the motion would occur if the relaxed
lengths of the springs were 2/47?

(MIT)

1 e N b
'n o :
p—zzg—.—l.k{.l.__ 20—

Fig. 1.55.

Solution:

(a) As lp > r, any rotation of the ring will cause a negligible change of

length in the springs, any elastic force so arising is also negligible. Newton’s
second law then gives

. 200+ x
Mz = ~k[\/(2lp +x)2 +y2 -1
V(o +2)" + 0]\/(2lo+w)2+y2
210—(1,‘
+ k[ (2 —x)2 +y2 -1 ,
(V@ —z)2+y o _w)2+y2
Mij = ~k[/(2lo + 2)2 + 42 — lo]

- k[\/ 210 — fL‘ + — lo]

(20 + w) + 92

210—(1,‘) +y2 ’
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where z, y give the displacement of the center of the ring from the equi-
librium position. Neglecting terms higher than the first order in the small
quantities x, y, we have

V(2 £ x)2 +y? ~ /AlE L4z =2 (1:t§) ~ 2y .

The above equations then become

mi = —2kx ,
= _ky ’

with solutions

T = Ay cos(wyt + @) ,
y = Aycos(wyt + ¢y) ,

where w, = \/%, Wy = \/%, and the constants A, A,, ¢, @, are
determined by the initial conditions. These are the two normal modes of
small oscillations.

(b) With the relaxed length increased to 2ly, during the motion, one
spring is extended while the other compressed. The latter will exert an
elastic force on the ring opposite to that when extended. Assuming that the
spring constant is the same for compression as for extension, the equations
of motion are now

. 20 +
Mz = —k[/(2lg + x)2 4 y2 — 2!
[ (2l ) Yy 0] (2lo+w)2+y2

k@l — 22 1 52 -2l 7

210 —w) +y?

~ —2kzx ,

= —k[v/(2lp + z)2 + y2 — 2lg]
+k[\/ 210—1‘ +y —210]

(2 + w) + 12

(2l — w) + 2

kxy

~ ——

ly ’
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retaining only the lowest order terms in the small qualities z, y. It can be
seen that the motion of the ring in the z-direction is similar to that in part
(a) while the motion in the y-direction, though quite complicated, is of a
higher order.

1085

Two particles are connected by a spring of spring constant K and zero
equilibrium length. Each particle has mass m and positive charge ¢q. A
constant horizontal electric field E = Fi is applied. Take into account
the particles’ Coulomb interaction but neglect magnetic effects, radiation,
relativistic effects, etc. Assume the particles do not collide.

(a) If the particles slide along a frictionless straight wire in the z
direction and the distance d between them is constant, find d.

(b) Find the acceleration of the center of mass in (a).

(c) In (a), suppose the distance d(t) undergoes small oscillations around
the equilibrium value you found. What is the frequency?

(d) Suppose the particles slide along a horizontal frictionless table
instead of the wire. Find the general solution of the equations of motion.
You may leave your answer in terms of integrals,

(MIT)
Solution:

(a) Considering the forces on the two particles as shown in Fig, 1.56,
we obtain the equations of motion

qE + k(z2 —x,) — Fo = mi, , 1

qE + k(z1 — x2) + F, = mi, )

where F, is the mutual Coulomb force between the particles

1 q?
A R—
€7 dmeg (z — x1)2

As 3 — zy = d, a constant, %3 = £;. Subtracting (2) from (1), we obtain
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E
e
xq x2
1 gE 2 gf
Fo w————a— F.
k(xg-x) Kixg-x)
Fig, 1.56.
or
1 q2 1/3
- (47(60 ~k—) )
(b) Adding (1) and (2) we have
2qE = m(:vl + 112) y
or
. 9E
Tg = —
m

where zq = 1(z) + 2) is the center of mass of the system.

(c) Subtracting (1) from (2) we obtain

q2

m(CDz —C.l:'l) +2k(fl)2 ’—fll']) = m .

Putting 3 — x; = d + Ad, where Ad < d, the above becomes

q2

where Ad = 4;—3‘—1. As d® = - 9,; and Ad < d, the above can be written
as
mAd + 6kAd =0

by retaining only the first order terms in %. It follows that the angular

frequency of small oscillations is
6k

w = —_ .
m
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(d) With ry,r2 and 6 as defined in Fig, 1.57, we can write the equations
of the two-dimensional motion as

mi"l = qu + k(l’2 - l‘l) - FC s (3)
miy = qEi + k(ry ~ r2) + F. (4)
with
F, = qz (ra—ry)

drmeg rp — 1y 3

Adding (3) and (4) we obtain
2
bt = (20)i,
m

which is equivalent to two scalar equations

W . 2qFE
Ty +TLyg = —,
m
r+32=0.
Integration gives
Et?

nta = 4 Cit+ G, (5)
n+yp=Dit+D;, (6)

where Cy, C3, D;, D, are constants of integration. Subtracting (3) from
(4) we obtain
m(l‘g — l‘l) = 2Fc - 2k(l‘2 — l’1) .

Put r; — r; = r and rewrite the above as

.17 ¢
r= = (27(501'2 2kr) e, .

In polar coordinates we have

£ = (¥ — r6%)e, + (r6 + 270)ey ,

so that 1d
i o= %029 0.
ré + 270 rdt(r =0
giving
r20 = constant = H, say.
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We also have ok
. S S
Forf 2meqmr? m
As dr dr 1d H?
., ar _"' 1a .3 2 7
Uil el ¥ miUB LR = i

d (2 ¢ 2H?  4kr
—(r —_— —
dr wegmr? rd m
Integrating we obtain
2_p_ O 2’ H
o wEgmr m r2 ’

T dr
/ F__¢& T t+W, (7)
\/ T Tegmr m r2

where W is a constant. Also, as

r=+v(z2— 1)+ (12 — n)?

we have
. d _
H=1r%=[(z3—2.)% + (y2 — yl)z]a [a.rcta.n (%z_—’;‘;)] ,
or

Ht+V = /[(wz —z)2 4 (y2 —)?)d [a.rcta.n (u)] , (8)

T2 — &y

where V is a constant.

The four equations (5)--(8) allow us to find x, x2, ¥, and ¥, as functions
of t. Note that the constants of integrations Cy,C3, Dy, D2, H,V,F and W
are to be determined from the initial conditions.

1086

A clockwork governor employs a vibrating weight on the end of a
horizontal flywheel-driven (i.e. uniformly rotating) shaft, as shown in
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Fig. 1.58. The flat spring has a spring constant K and can neither twist
nor bend except in a direction perpendicular to its (relaxed) flat side.
The angular velocity w of the shaft, externally driven, gradually increases
until a “resonance” occurs (“resonance” here means that the weight swings
in a circular orbit). Air friction (proportional to the velocity of the
weight) dissipates the input energy and this limits the resonance to a
finite amplitude. You may assume the spring deviation to be so small
that the spring is always in its linear regime. For this problem, you need
not explicitly include the air friction.

(a) Show that there are two different angular frequencies at which a
“resonance” can occur. What are the frequencies?

(b) Describe the orbit of the weight for each of the two resonant
frequencies (i.e. draw a picture of what the problem looks like).

(c) At the lower frequency resonance, write down an equation for the
steady-state shaft torque as a function of w and time.

(d) Show that there is an upper bound on the shaft torque at the lower
resonance. What happens if the driving clock spring yields a torque greater
than this upper bound?

(UC, Berkeley)

tlat spring

gravity

Fig. 1.58.

Solution:

(a) When the flywheel rotates with angular velocity w, the mass m
undergoes three-dimensional motion. However, as the longitudinal oscilla-
tion of the spring is small, we can consider the mass as not moving in the
direction of the axis. As the spring can only bend in one direction, let r
be the displacement of m in that direction, as shown in Fig. 1.59. The
angular velocity is constant when “resonance” occurs and we shall consider
the equation of the motion at resonance.
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Fig. 1.59.

As the elastic force is —Kr and the component of the gravitational force
in the direction of r is mgcos(wt), we can, neglecting the air friction, write
the equation of the motion of the vibrating weight as

mg cos(wt) — Kr = m(¥ — rw?) ,

ie.
# 4+ X2y = gcos(wt) ,
where
A= I—{ —w?.
m

Trying a particular solution r = Acos(wt), we find A = 5yZ-;. The
homogeneous equation # + A2r = 0 has general solution

r = Bcos(At) + Csin(At) .

Then assuming the initial conditions r(0) = a, #(0) = b, we obtain the
general solution

b
r = acos(At) + - sin(M) + ———[cos(At) — cos(wt)] . (1)
A w2 — X2
A circle of radius R can be described by an equation in polar coordinates
of the form
r =2Rcosf .

Equation (1) can be written in this form under certain particular conditions
as follows. If we let X in (1) to go to zero, we shall obtain
g

(

r=a+bt+ (1~ coswt) .
w
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If we then put
a+ bt + g 0,

w?

we obtain the equation of a circular orbit:

r=— % cos(wt) .
w
This solution can be realized under the initial conditions @ = —%, b =0,

and with the angular velocity w satisfying A = 0, or

K
w=w =y~

which is one of the resonant frequencies.
Another resonance is obtained if we put A = w in (1), which then
becomes

b
r = acos(wt) + — sin(wt) + gt sin(wt) .
w 2w

The last term on the right-hand side has an amplitude which diverges as
time goes on. However, the air friction will dissipate the input energy and
limit the resonance to a finite amplitude. Thus this term can be set to zero
(which can be seen by inserting a damping term — g% in the equation). We
therefore neglect the last term and obtain

b
r = acos(wt) + — sin(wt) = Acos(wt — o) ,
w
which again describes a circular orbit. The corresponding resonant fre-
quency is given by A = w, or
K
w2 =4[5 -

(b) The orbits corresponding to the resonances are shown in Fig. 1.60.
For the resonance at w, the initial conditions must be chosen properly. On
the other hand, the resonance at w, can occur under any initial conditions
which, however, determine the amplitude A and the angle a. w; is therefore
the practical resonance frequency.

(¢) Consider the equation of the transverse motion of the mass

F — mgsin(wt) = m(rw + 2wr) .
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(0
X
Wy = X Wy =
m
Fig. 1.60.
At the lower resonance, r = A cos(wt—a), we have w = 0, 7 = —wAsin(wt—

a), so that
F = m[—2Aw?sin(wt — @) + gsin(wt)] ,

giving the torque as
7 = Fr = mAcos(wt — a)[—2Aw? sin(wt — @) + gsin(wt)] .
(d) There is no loss of generality in putting & = 0. Then
_ 9 _ A2
T=mA (2 Aw ) sin(2wt) .

Hence 7 < mA(% - Aw?) for the lower resonance. If the torque yielded by
the driving clock spring is greater than this upper bound, w will increase
and the resonant state will no longer hold.

1087

A mass m; moves around a hole on a frictionless horizontal table. The
mass is tied to a string which passes through the hole. A mass m; is tied
to the other end of the string (Fig. 1.61).

(a) Given the initial position Rg and velocity Vg in the plane of the
table and the masses m; and mg, find the equation that determines the
maximum and minimum radial distances of the orbit. (Do not bother to
solve it!)
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~/
I

ma

Fig. 1.61.

(b) Find the frequency of oscillation of the radius of the orbit when the
orbit is only sightly different from circular.

(Princeton)
Solution:
(a) The equations of motion of m, and m are
my (7 — %) = =T, (1)
mlrzé =myh, (2)
T — mog = mof , 3)

where m, h is the angular momentum, a constant. Eliminating T from (1)
and (3), we obtain

(my + ma)¥ — myr6® + mag =0 4)
Equations (2) and (4) give

. mhk?
(my + ma)F — %— = —mag . (5)

. .2 . . .
As # =174 = 1 9= the above can be readily integrated to give
2

1 . myh
§(m1 +mo)r? 4 2;_2 = —mqgr+C . (6)

Att=0,r = Ry, 7 = Vycos, r@ = Vysin¢, so that h = RyVysin ¢, where
¢ is the angle between Ry and V. Then the constant of integration C can
be evaluated as

1
C= 5[(ml + ma)VZ cos? ¢ + m, Vi sin? ¢] + mygRy .
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For r to be an extremum, 7 = 0, with which (6) becomes
2magrd — 2Cr2 + mh2 =0,

whose solution gives the maximum and minimum radial distances of r.
(b) When the orbit of m, is circular, # = 0, and (5) gives

3
magr
h2 — 29"q , (7)
my
where 7 is the radius of the circular orbit. When the orbit is slightly
different from circular, let r = rg 4 x, where z < ro. Equation (5) then
becomes

(my 4+ m2)E — myh?/(ro + )3 = —myg .

-3
- s - 3
(ro+x)3=rod(1+£) zroa(l——x),
To To

the above becomes

As

(my +m2)E ~ myh3(rg® — 3zry*) = —mag .

Then using (7) we have
3magzx
(m; +m2):'t+-i =0.
To
This shows that z oscillates simple-harmonically with frequency
w 1 3mag
2 2n\[ (my+m2)rg

1088

(a) Consider a damped, driven harmonic oscillator (in one dimension)
with equation of motion

mi = ~mwiz — v& + Acos(wt) .

What is the time-averaged rate of energy dissipation?
(b) Consider an anharmonic oscillator with equation of motion

m# = —mwiz + az® + Acos(wt) ,

where o is a small constant,
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At time t = 0, £ = 0 and & = 0. Solve for the subsequent motion,
including terms of first order in a.
(Princeton)
Solution:

(a) The equation of motion is the real part of
mi + mwiz 4+ vz = Ae™t .

For the steady-state solution we try z = zpe**t. Substitution gives
A _ —i¢

—— = Be
m(w§ — w?) + iyw

bl

with

A Yw
= = arctan ——s——~ .
VM2 — w?)? + 22’ ¢ m(wg — w?)

The rate of work done by the force F = Re(Aei“?) is

B

1
P = ReF - Rez = Z(F +F*)(2+2%)
1 3 2% * > 2% 1 * ! s *
= Z(Fz-}-F‘z +F*2+ F#*) = Z(F :+Fz*),
when averaged over one period as Fz and F*z* each carries a time factor
et?wt which vanishes on integration over one period. Thus the average
work done is

e Ay,
_WwABB _ qwB? _ 7 A"
T T2 AT T2 T oamiWE - o) 1)

In steady state, this is equal to the rate of energy dissipation of the

oscillator, which is given by the work done against the dissipative term,

i.e.

22" w?B?

2 T2

As noted, the two approaches give the same result.
(b) The equation of motion is now

(P") =7(Re)? =

mi 4+ mwiz — Acos(wt) = az® . (1)
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As « is a small number, we can write the solution as
T = Ty + ar, +a2x2+---z:vo+axl
in first approximation. xg is the solution for a = 0, i.e. of
mio 4+ mwize = Acos(wt) .

A particular solution is obtained by putting o = B’ cos(wt). Substitution

gives B’ = m(w"_w,). The general solution of the homogeneous part of the
o

equation is harmonic. Hence the complete general solution is
zo = C cos(wet + 1) + B’ cos(wt) .
The initial condition g = £9 = 0 at t = 0 then gives ¥ =0, C = —B’, or
zo = B'[cos(wt) — cos(wpt)] .

Substituting £ = x¢ + azx; in (1) and neglecting powers of a higher than
one, we have
2
.. T
I + ngl ~ =2
m
BI2
= ——[cos(wt) — cos(wot)]?
m

12 1 1
= % {1 +3 cos(2wt) + 2 cos(2wpt) — cos|(wp — w)t] — cos[(wo + w)t]} ,
or, in complex form,

12 1. 1 . . .
H +wiz ~ — [1 + 5e'”‘"‘ + Ee”‘"ot — etlwow)t _ e'(“""“")t} . (2)

For a particular solution try
n=a+ bei2wt +Oei2wot +dei(wo—w)t + fei(wo+w)t .
Substitution gives

BI2 BI2 BI2
= — b= —— =——,
T 2m(wg — 4w?)’ €T T bmei
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The general solution of (1), to first order in a, is then
T =z + Ty
= B'[cos(wt) — cos(wot)]
+ af D cos(wot + 0) 4+ a + bcos(2wt) + ccos(2wpt)
+ dcos{(wp — w)t] + f cos{(wo + w)t]} .
The initial conditions £ = £ = 0 at ¢t = 0 then give § = 0 and
10B"2(wg — w?)?

3mwj(w? — dwd) (wf — 4w?)
Hence the motion of the anharmonic oscillator is described approximately
by

D=—(a+b+c+d+f)=

o~ Alcos(wt) — cos(wot)) 10 A2 cos(wot) + aA?
~ m(wé — w?) Imdwi(w? — 4wd)(wg — 4w?) = m3(wE - w?)?
« 1 + cos(2wt)  cos(2wpt) | cos{(wo —w)t]  cosf(wo 4+ w)i]
w2 2wd - 4w?) 6uw? w? — 2wwp w? + 2wwo '
1089

It is well known that if you drill a small tunnel through the solid,
non-rotating earth of uniform density from Buffalo through the earth’s
center and to Olaffub on the other side, and drop a small stone into the
hole, it will be seen at Olaffub after a time T, = i, where wp is a constant.
Now, instead of just dropping the stone, you throw it into the hole with an
initial velocity vo. How big should vg be, so that it now appears at Olaffub
after a time T, = T1/2? Your answer should be given in terms of wg and
R, the radius of the earth.

(Princeton)

Solution:
Let » be the distance of the stone, of mass m, from the center of the

3
earth. The gravitational force on it is F = —-GL;:ET—E = —wimr, where

3 y

wp = \/—4"—63 p being the density of the uniform earth. The equation of
the motion of the stone is then
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F= —wgr .
Thus the stone executes simple harmonic motion with a period T = ;,l'
Then if the stone starts from rest at Buffalo, it will reach Olaffub after a
time Tl =1 = ;‘J’L.
The solutlon of the equation of motion is

r = Acos(wt + ) .

Suppose now the stone starts at » = R with initial velocity # = —vy. We
have

R = Acosy, —vg = —Awpsing ,
giving

2
¢ = arctan ( ) R2 (UO )
wo
=
2us

To reach Olaffub at t = —21 = , We require
vo\ 2 T vo\?
—R=4/R2+ (—0) cos(— +<p) =—/R? + (—0) sinyp .
wo 2 wO
As sin? ¢ + cos? p = 1, we have
R? R?
7+ PN =1,
R2 Yo R2 ( 0)
Wo w
giving
Vg = Rwo .
1090

(a) A particle of mass m moves under a conservative force with potential
energy V(z) = cz/(z% + a?), where c and a are positive constants. Find the
position of stable equilibrium and the period of small oscillations about it.

(b) If the particle starts from this point with velocity v, find the range
of values of v for which it (1) oscillates, (2) escapes to —oo, (3) escapes to
+00.

(Princeton)
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Solution:
(a) At the equilibrium position, F' = —dV/dz =0, i.e.

av _ c(a® —2?) —0
dr ~ (z2+a2)?

Thus there are two equilibrium positions, z; = a, £ = —a. Consider

d*V _ 2cx(z® — 3a?)

dz? (22 +a2)3
We have
d2v d2v
@l <Y @l

It follows that x, is a position of unstable equilibrium and x3 is a position
of stable equilibrium.

For small oscillations about the position of stable equilibrium, let £ =
—a + ', where ' < a. Then the equation of motion becomes

mdzx’ _ cx(a-z) o
dt? [z’ —a)2+a?2 " 24°
Hence the period of small oscillations about £ = —a is

[9mna3
T= ?—75 =27 ma _ 2mra _2ma .
w c c

(b) The total energy of the particle is

2
E=%;+VE@:EL——m

(1) For the particle to be confined in a region, we require E < @, i.e.

c
vy — .
ma
(2) As E = '"ng + V(z), for the particle to reach £ = —oo, we require
E > V(—00) =0, i.e.
c
v >4/ —
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(3) To escape to +00, the particle must pass through the point 2 = +a

at which the potential energy is maximum. Hence we require E > V(a) =
£

25 1€
2c
V> — .
ma
1091

A 3-4-5 inclined plane is fixed to a rotating turntable. A block rests on
the inclined plane and the coefficient of static friction between the inclined
plane and the block is u; = 1/4. The block is to remain at a position
40 cm from the center of rotation of the turntable (see Fig. 1.62). Find the
minimum angular velocity w to keep the block from sliding down the plane
(toward the center).

(SUNY, Buffalo)

L0cm
o

!
i 0 N

BN 3¢

Fig. 1.62. Fig. 1.63.

Solution:

As shown in Fig. 1.63, the forces acting on the block are the gravitational
force mg, the normal reaction N, the static friction f, and the centrifugal
force with f = N, P = mw?r. Thus the conditions for equilibrium are

mgsing = Pcos@ + u;N
N =mgcosf + Psin@ .

Hence
mgsinf = Pcosf + u;mgcosd + p;Psing



Newtonian Mechanics 151

giving
_ (sin@ — p, cos@ e =
~ \cosf + pssind 9= T
or
2 sinf — pgcos8Y g %—i'g 9.8
w* = B S - = ——4 1 3 '—:10.3,
cos@ + pssinf / r s+4i% 0.4
ie,
w=32rad/s.
1092

A mass m hangs in equilibrium by a spring which exerts a force F' =
—K(z — 1), where z is the length of the spring and ! is its length when
relaxed. At t = 0 the point of support to which the upper end of the spring
is attached begins to oscillate sinusoidally up and down with amplitude A,
angular frequency w as shown in Fig. 1.64. Set up and solve the equation
of motion for z(¢).

(SUNY, Buffalo)

il

|

Fig. 1.64.

Solution:

Take the upper end of the spring, P, as the origin of the = coordinate
of the mass m., At t = 0, P starts to oscillate sinusoidally, so the distance
of P from the fixed support is A sin(wt). Then the mass m has equation of

motion )

d .
md—tz[x + Asin(wt)] =mg - K(z - 1) .
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Let y=z—1— 22, w3 = £, The above can be written as
i+ wiy = w?Asin(wt) .

Try a particular solution y = B sin(wt). Substitution gives

2A
po 4
Wy — w
Hence the general solution is
2 Asin(wt
y = C cos(wgt) + D sin(wot) + &)——2921(—;)—)—
wO — W
Using the initial condition
mg=K(z-1), ie. z= %2-}-1, ory=0
and y = 0, we have
3A
c=0, D=4 _
wo(wi — w?)
and hence
WA

(L‘(t) = w2
0

. w o, mg
— sin(wt) — o sm(wot)] + 7a +1.

1093

A block of mass m slides without friction on an inclined plane of mass
M which in turn is free to slide without friction on a horizontal table
(Fig. 1.65). Write sufficient equations to find the motion of the block and
the inclined plane. You do not need to solve these equations.

(Wisconsin)
Solution:

As shown in Fig. 1.65, let z,y be a coordinate frame attached to
the inclined plane, whose horizontal coordinate in the laboratory frame
is denoted by X. The forces on the block and the inclined plane are as
shown in the diagram.
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Fig. 1.65.

We have for the inclined plane
MX = Nsina,
for the motion of the block along the = direction
m(E + X cosa) = —mgsina
and for the motion of the block along the y direction
-mXsina=N—mgcosa .

These three equations for the three unknowns N, z and X can be solved to
find the motion of the system.

1094

A merry-go-round (carousel) starts from rest and accelerates with a
constant angular acceleration of 0.02 revolution per second per second. A
woman sitting on a chair 6 meters from the axis of revolution holds a 2 kg
ball (see Fig. 1.66). Calculate the magnitude and direction of the force
she must exert to hold the ball 5 seconds after the merry-go-round begins
to rotate. Specify the direction with respect to the radius of the chair on
which she is sitting.

(Wisconsin)

Solution:

Consider two coordinate frames L, R with the same origin. L is fixed to
the laboratory and R rotates with angular velocity w. The time derivatives
of a vector A in the two frames are related by
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p

Fig. 1.66.

Ay _ A +wxA
dt ), \dt)g '

Then for a point of radius vector r from the origin we have

Y () L
dt), \dt)g ’

and
(&), (@), (&), @), (@)~
dez ), ~ \dt), \dt/)g ), " \dt/,
As
d dr d*r r
(@), (@), (@), (&),
wx(éz) —wx(dr) +wx(wxr).
dt ), dt Jn
Putting
d*r , dr , dw .
(@), (@), (@),
we have

d2r ' ' .
— ) = +2wxV+wx(wxr)+wxr.
dt? J,
In the rotating frame attached to the carousel, the equation of .the
motion of the ball F =m (%f—) then gives
L

2

ma =F + mw?r —mw xr—2mw x v,
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as wlr so that r x (w x r) = —w?r. As the ball is held stationary with
respect to the carousel, a’ =0, v/ =0, and

F=-—-muwr+mwxr,

For the rotating frame R, take the z-axis along the axis of rotation and the
z-axis from the center toward the chair. Then

The force F acting on the ball is the resultant of the holding force f exerted
by the woman and the gravity of the earth:

F=f-mgk.

Hence
f = —mw?ri + marj + mgk .

With w = 0.02 x 27 rad/s?, w = 5w, m = 2 kg, r = 6 m, we have
f=-4.74i + 1.51j + 19.6k N ,

of magnitude = 20.2 N.

1095

A planet of uniform density spins about a fixed axis with angular
velocity w. Due to the spin the planet’s equatorial radius Rg is slightly
larger than its polar radius Rp as described by the parameter ¢ = (Rp —
Ep)/Rg. The contribution to the gravitational potential resulting from
this distortion is

_ 2GM.,eR% Py(cos )
B(R,0) = = :
where 6 is the polar angle and P;(cos8) = %ﬁ ~ 3. State a reasonable

condition for equilibrium of the planet’s surface and compute the value
of ¢ in terms of the parameter \ = “42?’31‘1, where g is the gravitational
acceleration. Make a numerical estimate of ¢ for the earth.

(Wisconsin)



156 Problems €4 Solutions on Mechanics

F4
4

w
k) eR
Am
0 R eg
—> X
Fig. 1.67.

Solution:

The forces acting on a mass element Am on the surface of the planet
are gravity, centrifugal force, and the constraint exerted by the rest of the
planet. The condition for equilibrium of the surface is that the resultant of
gravity and centrifugal force is perpendicular to the surface, i.e. it has no
tangential component.

Suppose the surface of the planet is an ellipsoid of revolution with the
z-axis as its axis of symmetry as shown in Fig. 1.67. The line of intersection
of the ellipsoid with the zz-plane is an ellipse:

z=Rpcosa, z = Rpsina

where « is a parameter. The polar angle 6 of a point on the ellipse is given
by

ta.nezgzﬁgta.na.

z P
The unit tangent T to the ellipse at this point is
d
T idz + kdz = i—x-i-kE da
da da

co8 &

= (iRgcosa — kRpsina)da = iR% — kR% tan6)da .
E P

E

The centrifugal force f; on Am is

f, = iAmRuw?sin 6
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and the gravitational force on it is

GM.Am  2GM.eRLAm
R 5R3

f,=-VV=V { Pz(cose)]

1 GER
—GMAm( = ERt

M 2
Ep(c 030)) e, — 9—0%#@ sin @ cosfeg .

As

e, —isinf + kcosé ,

ep =icosf — ksiné ,

6 2 R2
3111212 6;:11;,3 sin P, (cos §) — 6;R4E sin 6 cos? 0] i

fz—GMAm[

cosd  6eR: 6e R,
7 T o 0 6P;(cos ) + TR

+GM.Am [— sin? 6 cos 0} k

1 3 1 .
:GMeAm{ [_ﬁ—b( cos? 0—§+cos 0)}31110

1 3 2 1 2
+k[ Rz—b(é—cos 0—§—sm 0)] 0039} »

with b = 6 R%,/5R1.
The condition for equilibrium of the surface is

fi+£f)- =0,
which gives for R~ Rp =~ Rg
RYwsinf — RLbG M, sinb ~ 0 .

Hence
_ SR%b N 5R1}3w2 B 5Rpw? _ @

6  6GM.,  6g 6

as g = %’%ﬂ. For earth, Rp = 6378 x 103 m, w = 24)(2% rad/s, g =
9.8 m/s?, we have
e~29x1073
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1096

A satellite moves in a circular orbit around the earth. Inside, an
astronaut takes a small object and lowers it a distance Ar from the center
of mass of the satellite towards the earth. If the object is released from rest
(as seen by the astronaut), describe the subsequent motion as seen by the
astronaut in the satellite’s frame of reference.

(Wisconsin)

Solution:

The satellite revolves around the earth with an angular velocity w. We
assume that one side of the satellite always faces the earth, i.e. its spin
angular velocity is also w. Choose a coordinate frame attached to the
satellite such that the origin is at the center of mass of the satellite and the
center of the earth is on the y-axis as shown in Fig. 1.68, where R is the
distance of the satellite from the center of the earth.

Y
w
Earth
R m
r
0 X
Fig. 1.68.

The equation of the motion of the small object of mass m in the satellite
frame is given by (Problem 1094)

F=mf+mwx (wxr)+2mwxE+mwXr

= mi — mw?r 4+ 2mw X T,
since w =0, w-r =0. Thus
mit = F + mw?r — 2mw x T .

In the above, F is the gravitational force exerted by the earth:
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M GM -~
P G ma(R—r)’k: 3m (R l‘)3
IR~ Bo(-58)

GMm 3y
= i <1+ _E) (R—l‘)

. GMm GMm 3GMmy
N3 R- E r+ JiE e, ,

where mw?r is the centrifugal force and

—2mw x I = —2mwe, X (te; + ye, + Ze;)

= —2mw(ze, — ye;)

is the Coriolis force.

As initially, r = Are,, and all the forces are in the zy-plane, the object
always moves in this plane. Then r = ze, + ye,. If the satellite has mass
m’, we have

GMm/’
R?
or w? = %Aai. Then the second term of F cancels out the centrifugal force.
The first term of F acts on the satellite as a whole and is of no interest to
us. Hence the equation of motion becomes

=m'Rw? ,

ie, + je, = 3wiye, — 2w(ie, — Je,)
or, in component form,

i = 3wy — 2wi (1)
T =2wy. (2)

Integrating (2) and making use of the initial conditions £ = 0, y = Ar at
t =0, we find
T =2w(y— Ar). (3)

Substitution in (1) gives
i = —wly + 4 Ar

whose general solution is y = Acos(wt) + Bsin(wt) + 4Ar, A, B being
constants. With the initial conditions y = Ar, § =0 at t = 0, we find

y = —3Ar cos(wt) + 4Ar .
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Equation (3) now becomes
Z = 6wAr[l — cos(wt)] .

Integrating and applying the initial condition z = 0 at ¢t = 0, we obtain
z = 6Ar|wt — sin(wt)] ,

Hence, the subsequent motion as seen by the astronaut in the satellite’s
frame of reference is described by

T = 6Ar[wt — sin(wt)] ,
y = Ar[4 — 3cos(wt)] .

1097
Consider a hoop of radius a in a vertical plane rotating with angular
velocity w about a vertical diameter. Consider a bead of mass m which
slides without friction on the hoop as indicated in Fig. 1.69.

m
mg
Fig. 1.69.

(a) Under what specific condition will the equilibrium of the bead at
6 = 0 be stable?

(b) Find another value of 6 for which, in certain circumstances, the bead
will be in stable equilibrium. Indicate the values of w for which this stable
equilibrium takes place.
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(c¢) Explain your answer with the aid of appropriate graphs of the
potential energy versus § as measured in the rotating frame.
(Wisconsin)

Solution:

Consider a coordinate frame (r,0) attached to the hoop and use the
derivation in Problem 1094. As w is constant, we have in the rotating
frame

E=F+2wxF+wx (wxr).

As
g = —ge, = gcosfe, — gsinfbey ,
f = —af’e, + afey
w =we, = —wcosfe, + wsinfey ,
r =ae,,

we have the equation of the motion of the bead in the ey direction in the
rotating frame as
af = —gsin6 + aw?sin G cos b . 1)

To find the equilibrium positions, let § = 0. The above then gives, for
equilibrium, 6 = 0 and cos 6 = _Z;.

(a) When 6 is in the neighborhood of zero,

02
sinf ~ 6, cosf~1——.
2
We can approximate (1) to
509 2\, _ e 9 2
0((1 w)G_O if " w#0,
.. 2
§+263=0 if -uw2=0
2 a

It is evident that if and only if w? < g/a, in which case the resultant force
acting on the bead is always directed toward the equilibrium position, will
the equilibrium of the bead at § = 0 be stable.

(b) The other value of 6 for which the bead will be in equilibrium is

6y = arccos (ﬁ) .
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Let 8 = 8¢ + 60, where 60 < 6y. Then

sin @ = sin(fp + 66) = sin 6y + cos Gy ,
cos 6 = cos(fp + 60) ~ cos 6y — sin 8 .

Substitution in (1) gives

2 2
@+(1— g >w250:0.

dt? alwt

Hence the condition of stable equilibrium is

2
1—g4>0, or w>\/§.
a?w a

(c) The potential energy of the bead in the rotating frame consists of
two parts, i.e. gravitational potential energy V) and centrifugal potential
energy Vo, given by

o
e g,
i.e.
Vl — mgz = mga(l — 0030) 3
—% = mrw?
or '
i.e. 1
Vo = —Emwzrz = —Emazwz sin®6 .
Thus

1
V =Vi + Vo = mga(l — cosd) — §ma2wzsin20 .

The two equilibrium positions are given by %—‘g =0

sinfd = 0, or =0,

or 6 = arccos (L> .
[478%}

cost9=i 3
[478%}

2!

Figures 1.70 (a), (b), and (c) are the graphs of the potential energy versus ¢

as measured in the rotating frame for w < v/g/a,w = y/g/aand w > /g/a
respectively.
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v v 2
arc cos (g/aw<)
| 1
1 ! ! 1 \ 1
: l l | | .
' ' | e '
L ! >0 L >0 T >
T | T -n ] n - | T
g 3 \/I\J\Zcrc cos(g/aw?)

(a) (b) (c)
Fig. 1.70.

The potential energy V must be a minimum for the equilibrium to be
stable. This is the case for 6 = 0 in Figs. (a) and (b) and for § = arccos(Zy)
in Fig. (c). The point 8 = 0 in Fig. (c) is an equilibrium position but the
equilibrium is unstable as V is a maximum there.

1098

A perfectly smooth horizontal disk is rotating with an angular velocity
w about a vertical axis passing through its center. A person on the disk at
a distance R from the origin gives a perfectly smooth coin (negligible size)
of mass m a push toward the origin. This push gives it an initial velocity V'
relative to the disk. Show that the motion for a time ¢, which is such that
(wt)? is neglegible, appears to the person on the disk to be a parabola, and
give the equation of the parabola.
(Wisconsin)

Solution:

Use a Cartesian coordinate frame attached to the disk such that the
z-axis is along the axis of rotation and the z-axis is opposite to the initial
velocity V of the coin, both «, y-axis being on the plane of the digk. In this
rotating frame, we have (Problem 1094),

mdv _ mdwxr mw x (WXr)—2mwXv
dt dt “ m '
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As there is no horizontal force on the coin after the initial push and w = wk,
w = 0, the above gives

= wiz 4 2wy, (1)
i = wly — 2wz . (2)

Let z = z +ty. Then (1) + (2) X i gives
342wz —w?z=0. 3)
With z = e, we have the characteristic equation
Y2 42wy — W= (v+iw)?=0.
This has a double root v = —iw, so that the general solution of (3) is
z=(A+iB)e™ ™'+ (C +iD)te ™" .

The initial conditionsare z = R,y =0, 2 = -V,y=0,or2=R, 2= -V,
at t = 0, which give

R=A+iB, -V =wB+C+iD-wA),
or
A=R, B=0, C=-V, D=uwR.
Hence
z=[(R - Vt) + iRwtle ** |
or

z = (R — Vt) cos(wt) + Ruwtsin(wt) ,
y = —(R — Vi) sin(wt) + Rwtcos(wt) .

Neglecting the (wt)? terms, the above become

r~R-Vt,
y~ —(R—Vt)wt + Rwt = Vwt? .

Hence the trajectory is approximately a parabola y = & (R — z)°.
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1099

A body is dropped from rest at a height h above the surface of the earth
and at a latitude 40°N. For h = 100 m, calculate the lateral displacement
of the point of impact due to the Coriolis force.

(Columbia)

Solution:

If the body has mass m, in the rotating frame of the earth, a Coriolis
force —2muw x I is seen to act on the body. We choose a frame with origin at
the point on the earth’s surface below the starting point of the body, with
T-axis pointing south, y-axis pointing east and z-axis pointing vertically up
(Fig. 1.71), Then the equation of the motion of the body in the earth frame

18

mi = —mgk — 2mw x I
i j k
=-mgk — 2m | —wcos40° 0 wsin40°
T ] z

Fig. 1.71.

From the above, expressions for &, §j and Z, can be obtained, which are
readily integrated to give &, § and 2. These results are then used in the
expressions for #, ¢ and Z. As the time of the drop of the body is short
compared with the period of rotation of the earth, we can ignore terms of
order w? and write the following:
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=0,

4§ = 2gtw cos 40° |

Z=-—g.

Integrating the above twice and using the initial conditions, we obtain

z=0,
1 2 o
y = —glt“wcos40°® ,
gt?
—h=-2_
* 2

The last equation gives the time of arrival of the body at the earth’s surface
z=0

|2k
t=,/—=.
9

Then the lateral displacement of the body at impact is

1 3
Y= &wcos40° =0.017m .
3\/ 9

1100

(a) What are the magnitude and direction of the deflection caused by
the earth’s rotation to the bob of a plumb-line hung from the top to the
bottom of the Sather Tower (Companile).

(b) What is the point of impact of a body dropped from the top?

Assume that Berkeley is situated at ° north latitude and that the
tower is L meters tall. Give numerical values for (a) and (b) based on your
estimates of L and 6.

(Columbia)

Solution:

(a) In Fig. 1.72, F, is the fictitious centrifugal force, « is the angle that
mg, the apparent gravity, makes with the direction pointing to the center
of the earth. The gravity mgy for a non-rotating earth is related to the
above quantities by

mg = mgo + Fe .
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F

a. ¢
~\8_mg

Fig. 1.72,

Then by the force triangle, we have

F, mg
sina  sing’
or
F.sinf mRw?cosfsind  Rw?sin26

mg mg 29

sing =

Hence the magnitude of the deflection of the bob is

Rw?sin 20)

Lo = L arcsin (
29

(b) The lateral displacement of a body falling from rest at height L in
the northern hemisphere due to the Coriolis force is to the east and has
magnitude (Problem 1099)

1101

Under especially favorable conditions, an ocean current circulating
counter-clockwise when viewed from directly overhead was discovered in a
well-isolated layer beneath the surface. The period of rotation was 14 hours.
At what latitude and in which hemisphere was the current detected?

(Columbia)
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Solution:

We choose a coordinate frame attached to the earth with origin at the
point on the earth’s surface where the ocean current is, z-axis pointing
south, y-axis pointing east and z-axis pointing vertically upward. The cir-
culation in the ocean is due to the Coriolis force which causes an additional
acceleration (Problem 1094)

a=—-2wxv,

where w = wcos 6i + wsin Gk is the earth’s rotational angular velocity, 6 is
the latitude, and v is the velocity of ocean current. Thus

i J k
a=—-2w|—cosd@ 0 sind
Vg vy 0

The horizontal component of the acceleration which affects the circulation
of the ocean current is

ag = —2wsinO(—v,i + v;j) = 2w,k x v.

As ay is always normal to v, it does not change the magnitude of the latter
but only its direction. It causes the current to circulate in a circular path.
Let © be the angular velocity of the circular motion. Then

2
|ag| = 2wvsing = U? =vQ?,

where r is the radius of the circular path. Hence

o= 2 _In 24
T 2w 14 4r  T°
or

6=159°.

If the ocean current is on the northern hemisphere, w,k points toward
the north pole and ay always points to the right of the velocity v. This
makes v turn right and gives rise to clockwise circulation. In a similar
way, in the southern hemisphere, the Coriolis force causes counter-clockwise
circulation. Hence the circulating ocean current was detected at a latitude
of 59°8S.
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1102

A small celestial object, held together only by its self-gravitation, can be
disrupted by the tidal forces produced by another massive body, if it comes
near enough to that body. For an object of diameter 1 km and density
2 g/cm3, find the critical distance from the earth (Roche limit).

(UC, Berkeley)

Solution:

Suppose the earth is fixed in space and the small celestial object orbits
around it at a distance ! away as shown in Fig. 1.73. Let M be the mass
of the earth, m the mass and p the density of the small celestial object.
Consider a unit mass of the object on the line OC at distance = from C.
We have from the balance of forces on it
2 GM G (g)ﬂ'xsp

(I —z)w* = I—ap - 2

We also have for the celestial body

mlw2 = T y

which gives w? to be used in the above. Then as § < 1, retaining only the
lowest order in §, we have
()’
1= (22 .
4mp

With M =6 x 10%7 g, p = 2 g/cm3, we find
I1=1.29%x10°cm = 1.29 x 10* km .

If | is less than this value, the earth’s attraction becomes too large for
the unit mass to be held by the celestial body and disruption of the latter
occurs,

If the unit mass is located to the right of C on the extended line of OC,
z is negative but the above conclusion still holds true. We may also consider
a unit mass located off the line OC such as the point P in Fig. 1.74. We
now have

GM 4
(I —2)? + y2w? cos§ = (—lm cos 6 — gan\/wz +y2cosy ,
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P
8 4
0 e
—

Fig. 1.73. Fig. 1.74.
with
cosf = -2 cos8 Y = z
T—op +y Vi

As z/l € 1, y/l <« 1, and retaining only the first-order terms we would
obtain the same result.

1103

A merry-go-round (MGR) has two orthogonal axes (x, y) painted on it,
and is rotating on the earth (assume to be an inertial frame zq, yo, 20)
with constant angular velocity w about a vertical axis. A bug of mass m is
crawling outward without slipping along the z-axis with constant velocity
vg (Fig. 1.75). What is the total force F;, exerted by the MGR on the bug?
Give all components of Fy, in the earth-frame coordinates xq, yo, 2o of the
bug.

(UC, Berkeley)

Solution:

In the rotating coordinate system (x,y, z), the bug, which crawls with
constant velocity vy along the z-axis, has no acceleration, so that the
horizontal force acting on it by the MGR is (Problem 1094)
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F=2mwx v +mwx (wxr),

where w = we,, v/ = vge,, r = re,. The bug has a weight —mge,, so that
the MGR exerts a reaction force mge, on the bug. Hence the total force
exerted by the MGR on the bug is

F}, = 2muowe, — mwire, + mge, .

Choose the earth frame (xq, yo, 20) such that at ¢ = 0, the corresponding
axes coincide with those of the rotating frame. Then, denoting the unit
vectors along the xq-, ¥g-, 29-axes by i, j, k respectively, we have

e, = cos(wt)i + sin(wt)j ,
e, = —sin(wt)i + cos(wt)j ,

e, = k.

For simplicity, assume that the bug was at the origin at t = 0, then z = vgt.
In the earth frame, F}, can thus be written as

Fj, = —mugw(2sin(wt) + wt cos(wt)]i

+ mygw(2 cos(wt) — wtsin(wt)]j + mgk .

1104

Consider a collection of charged particles, all with the same
charge /mass ratio (e/m), interacting via conservative central forces. Prove
that the motion of the particles in a small magnetic field B is identical with
that in the absence of the field, when viewed in a coordinate system rotating
with an appropriately chosen angular velocity w (Larmor’s theorem). What
is the appropriate value of w and what is meant by “small”?

(Chicago)

Solution:

Assume the magnetic field to be uniform and let the central force on
a particle be F(r). Consider two coordinate frames L and R with origins
at the force center such that R rotates with angular velocity w about the
common origin. Problem 1094 gives the equation of motion (in SI units)
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F(r)+evx B =ma (1)
in L and
F(r) + ev x B =ma’ + 2mw x v/ + mw x (w x r) (2)

in R. As v =v'+w xr, (2) can be written as

ma' =F(r) +evxB —2mw X (v ~w Xr) —mw X (w X T)

=F(r)+ v X (eB + 2mw) + mw X (w xT) .

If R is chosen with
eB

T 2m

and if the centrifugal term mw X (wxr) can be neglected, the above becomes

F(r) = ma’,

i.e. the motion of the particle when viewed in the rotating frame is the
same as that in the absence of the magnetic field.

This conclusion applies to a system of particles with the same e/m and
subject to central forces with the same center. The particles will move as if
the magnetic field were absent but the system as a whole precesses in the
laboratory frame with angular velocity w.

We have assumed that for every particle in the system,

mlw X (w x r)| € 2mjw x v| ,

i.e.
2v
wL —,
r
or
4dmu
B« ,
er

which limits the strength of the field.

1105

The pivot point of a rigid pendulum is in forced vertical oscillation,
given by 7(t) = mgcos(wt). The pendulum consists of a massless rod of
length L with a mass m attached at the end.
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(a) Derive an equation of motion for @, where 8 is the pendulum angle
indicated in Fig. 1.76. Assume 8 < 1 and 7 < L.
(b) Solve the equation to first order in 7 for the initial conditions

() 6=a, =0,

. 5 g

0= = =,

and  (ii) 0, f6=a T

(c) Evaluate the solutions for (i) and (ii) at resonance and describe the
difference in the two motions.

(MIT)

Solution:

(a) Use Cartesian coordinates with origin at point O in Fig. 1.76, z-axis
horizontal and y-axis vertically downward. We have

z = Lsiné, y = Lcos6 + mo[1 — cos(wt)] ,

mi = —F'siné, mij =mg— Fcos@ .

As 6 < 1 rad, we can omit terms involving §2 and take the approximation
cosf =~ 1, sinf = §. Then

& =~ —~L86% + L6, §j ~ —L66 + now? cos(wt) ,

and the equation of motion for @ is

g+ %[g — now? cos(wt))d =0 . (1)
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b) For an approximate solution to first order in oo = 22, let
PP L
0=+ a(t),

where ¢ satisfies the equation ¢ + wlp = 0, with w§ = £, as well as the
initial conditions for 6.
(1) For initial conditions 6 = a, 8 = 0, we have
¢ = acos(wqt) ,
6 = acos(wot) + af(t) .
Substitution of the above in (1) gives, retaining only first order terms of o,
2

£ + Wit = aw? cos(wgt) cos(wt) = % {cos[(wg + w)t] + cos[(wg — w)t]} .

This has a particular solution

- aw {_cos[(wo + w)t] + cos(wg — w)t] } ’

2 2w + w 2wg — w
so that the general solution is

aw cos[(wg + w)t]  aw cos[(wy — w)i]
22wy + w) 22wy — w)

f = Cl COS(wot) + Cz Sin(wot) b

The initial conditions £ = 0, £ = 0 at ¢t = 0 then give

—aw2

C, = C, =
T Qo + w) (2w — w)’ 2=0,

and

6 = a cos(wgt)

o {~ aw? cos(wot) aw cos[(wg + w)t]  aw cos[(wg — w)t] }
( .

tr

2wg + W) 2wy — w) 22w + w) 2(2wq — w)
(i) For initial conditions § = 0, § = a/{ = awp, let

¢ = asin(wgt) ,

6 = asin(wot) + aé(t) .
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Substitution in (1) gives

€ + wié = aw? cos(wt) sin(wot)
= (—l—wj{sm[(wo + w)t] + sin[(wo — w)t]} ,

which has general solution

awsin[(wo + w)t]  awsin{(wy ~ w)t]

=D D, si -
£ 1 cos(wot) + Dq sin(wo?) 2(2wq + w) 22wy — w)

The initial conditions & = 0, £ =0at t =0 then give

2

aw
D, = D, =
! 0, 2 (2&)0 + w) (2&)0 - w)
and hence
6 = asin(wot)
LT aw’sin(wot)  awsin[(wy + w)t] = awsin[(wy — w)t]
L | (2w + w)(2wg — w) 2(2wq + w) 22w — w) :

(c) Resonance occurs at w = 2wg. As w & 2wg, we have for case (i)

3
6 = acos(wgt) — E oos(3wot) 1 + % - % cos (wot)} cos(wgt) ,
and for case (ii)
. a . 3 . .
6 = asin(wgt) - % sin(3wgt) = 1 - % + % sin (wot)] sin(wqt) .

It is seen that the amplitude at resonance is limited to =~ a in both cases.
However, the two resonances occur at phases differing by %

1106

A hemispherical bowl of radius R rotates around a vertical axis with
constant angular speed . A particle of mass M moves on the interior
surface of the bow!l under the influence of gravity (Fig. 1.77). In addition,
this particle is subjected to a frictional force F = —kV ¢ , where k is a
constant and V. is the velocity of the particle relative to the bowl.
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(a) If the particle is at the bottom of the bowl (§ = 0), it is clearly in
equilibrium. Show that if Q > \/% , there is a second equilibrium value of
@ and determine its value.

(b) Suppose the particle is in equilibrium at the bottom of the bowl.
To describe the motion of the particle in the vicinity of the equilibrium
point, we construct a local inertial Cartesian coordinate system (x,y, z) and
neglect the curvature of the bowl except in calculating the gravitational
restoring force. Show that for |z| « R, |y| < R, the particle position
satisfies £ = Re(xzge™), y = Re(yoe™), where

. kA g\? K\ o
(A +M+E) +(ﬁ) 2P =0.

(c) Find the angular speed of the bowl, g, for which the particle’s
motion is periodic.

(d) There is a transition from stable to unstable at = . By
considering behavior of frequencies in the vicinity of g, prove that the
motion is stable for < £y and unstable for > Q.

(MIT)

Solution:

In a frame rotating with angular velocity €2, the equation of motion of
a particle of mass M is by Problem 1094

F=Ma +2MQ xv' + MQx (2 xr)+MQxr,

where a’, v/ are the acceleration and velocity in the rotating frame.
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For the rotating frame, choose a spherical frame (r, 8, ¢) attached to the
bowl with origin O at the center of the bowl, then €2 = 0. In the spherical
coordinate frame, we have

é, = Beg + psin60,, ,

€y = —éer + pcosfe, ,

é, = —ypsinfe, — pcosleg .
Then for a particle at r = re,, the velocity is

v = e, + rfeg + r¢sin e, ,
and the acceleration is

a = (# — rf? — ry?sin? f)e,
+ (rf + 270 — r? 8in 6 cos B)ey
+ (r@sin @ + 27@sin 6 + 2rép cosb)e,, .

(a) For the particle in the rotating bowl, we have

= —Q cosfe, + Nsinfey ,
r=Re,, +=7=0, Vo =R0ey+ Rpsinbe, ,

F=Mg+N—kV
where
Mg = Mgcosfe, — Mgsinfey ,
= —Ne,. .

Hence the equations of the motion of the particle in the rotating frame
in the e4 and e, directions are respectively

MR — MR¢*? sinfcos §
= —~Mgsin@ — kRS — 2MRQsin 8 cos 8 + MRQ?sinf cos b ,

and
MR@sin8 + 2MROp cos§ = —kR¢psin 6 + 2MRQ0 cos 6 .
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At equilibrium, § = 0, » =0, § = 0, % = 0, and we obtain
—Mgsin8 + MRQ?sinfcosd =0 ,

which gives

9

RO

Hence 6 = 0 is an equilibrium position. If Q@ > /% there is another
equilibrium position

sinfd = 0, or cosf =

@ = arccos <R_£;25) .

(b) Use Cartesian coordinates (x,y, z) for the local inertial frame with
origin at 8 = 0 at the bottom of the bowl and the z-axis along the axis of
rotation. In this frame, the position vector of the particle, which is near
the bottom of the bowl, is

v'=zit+yj+zk=zi+yj,
neglecting the curvature of gthe bowl, and its equation of motion is

Mi = Mg —kV.q +N .

Fig. 1.78.

As shown in Fig. 1.78, the component of the force N along r is approx-
imately zero and the component of Mg along r is
Mgz, Mgy,
i——=J

R R

—~Mgsin@cospi — Mgsinfsinpj =~ —
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. / » .
assind~ %, cosp~ S, sinp~ % Alsoas i’ =V, +2 %1/,

~kVie =kt + kR x 1’
= k(& + yQ)i — k(@ — 2Q)j .

Let £ = zge*t, y = yoet and the above becomes

k kQ
(A2+ A+£)wo+ﬁy0:0,

M~ R
kQ k
For a non-zero solution, we require
k g kQ
2 — — —
_@ }\2+k_>‘+£ M R M '
M M R

Hence if this condition holds, we can describe the particle’s position by

/\t)’

z = Re(xge y = Re(yoe™) .

This conclusion is valid only for |z| < R, |y| < R since we have neglected
the curvature and considered the particle as moving in a horizontal plane.
(c) The left-hand side of (1) can be factorized and shown to have
solutions
kX g kQ

2 kA g9 _ R
A+M+R :}:zM.

For periodic motion, A must be imaginary, A = iw, where w is real. Equating
the real and imaginary parts on both sides, we have

we == and w==x0.

To satisfy these we require that

g
=4,/ =30
0 VR 0

for the motion to be periodic. Note that the ‘+’ and ‘-’ signs correspond
to two opposite directions of rotation.

(d) As has been shown in (a), if Q < g, there is only one equilibrium
position 8 = 0. The equilibrium at this point is stable. For € > ,
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there are two equilibrium positions § = 0 and 6 = a.rcoos(%a). However
the equilibrium at the former position is now unstable, so that the stable
equilibrium is shifted to the latter position if Q > €. Hence for § = 0,
there is a transition from stable to unstable at Q = Qq.

1107

A particle of mass m can slide without friction on the inside of a small
tube bent in the form of a circle of radius a. The tube rotates about a
vertical diameter at a constant rate of w rad /sec as shown in Fig. 1.79. Write
the differential equation of motion. If the particle is disturbed slightly from
its unstable equilibrium position at § = 0, find the position of maximum
kinetic energy.

(SUNY, Buffalo)

mg

Fig. 1.79.

Solution:

In a rotating coordinate frame (r, 8, ) attached to the circular tube, we
have (Problem 1094)

F =ma’'+ 2mw x v/ + mw x (w xr) ,

with
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F=mg+N
= —mgcosfe, + mgsinfey + Ne, ,

w = wcosfe, —wsinbey ,
a’ = —af%e, + afeg ,
v = afey, r = ae, .

The equation for the motion in the ey direction is then
maf = mgsin8 + maw® sin cos 6 .

§ — dode _ 1
As 0 = Z%E = 2

t =0 gives

d—a the above with the initial condition § = 6 =0 at

ad? = aw?sin® 0 + 2g(1 — cos ) .

In an inertial frame that instantaneously coincides with the rotating frame,
the velocity of the particle is

v=v' +w xr = afey + awsinfe, ,

and its kinetic energy is

E=; m(a%6? + a®w? sin? 6)

1
2m[w a?sin? @ + 2ga(1 - cosh) + wa? sin’ 6]

= malw?asin® 6 + g(1 — cosf)] .

For E to be a maximum at 6y, we require

dFE d’E
(zo?)go =0 («Tef)go <0

As
%gj— = ma[2w®asindcosd + gsing] =0,
%f— = maldw?acos? § + gcosf — 2u%a) ,

we have for the position of maximum kinetic energy
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Gg=m f W< =

g
a

6y = arccos (—_g) i Wws>2
W 2a

1108

Let S be a set of axes centered at the earth’s center, with the z-axis
pointing north, forming an inertial frame. Let S’ be similarly placed, but
rotating with the earth.

(a) Write down the non-relativistic equation giving the transformation
of the time derivative of any vector from S’ to S. Use this to derive an
expression for the Coriolis force experienced by a body moving in §’. Define
all symbols.

(b) In the northern hemisphere, find the direction of the Coriolis force
on a body moving eastward and on one moving vertically upward.

(c) Consider a body dropped from a height of 10 feet at a latitude of
30°N. Find, approximately, the horizontal deflection due to the Coriolis
effect when it reaches the ground. Neglect air resistance.

(SUNY, Buffalo)
Solution:

(a) Let XY Z be the inertial reference frame S and X'Y’Z’ the rotating
frame S’ fixed to the earth which rotates with angular velocity w. In §’,
an arbitrary vector A can be written as

A=A+ Aj+Ak.

In 9, the time derivative of A is

dA _ (dA;;  dAy,  dA, i dj | dk
E‘(dt' @t )+(Adt+Aydt+AE)'

Let d*/dt denote time derivative in S’, then

d*A dA dA dA,
@ at @l d

The kinematics of a rigid body gives
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di . dj .
— =wxi — =w X},

ﬁ—c..v><k
dt ' dt dt '
Hence
dA d*A . . d*A
Pl +w X (Agi+ Ajj+ Ak) = 7 +wxA.
Thus for the radius vector r to a point P, we have
dr d‘r
E‘:—E'{war,
d?r d* (d*r d*r
W—E(E—war)—kwx(dt +w><r)
_d*2r+2 xd*r+w (wxr)+d*wx
T e T % a
Note that in the above
d‘tw—ﬂ—cﬁvxcﬁv—E
dt ~ dt T odt

Newton’s second law applies to the inertial fraine, so for a particle of
mass m at P acted on by a force F, we have
d*r d*r d*r d*w
F=m— = 2 X wX (wxr
maE = Mg e x g tme x (wxr) +meg
Denoting % by a dot and noting that for the earth w = 0, we write the
above as

Xr.

mi=F — 2mw X F— mw x (w Xr)

for the rotating frame. This shows that Newton’s second law can still be
considered valid if, in addition to F, we introduce two fictitious forces:
—~2mw x ¥, the Coriolis force, and —mw x (w x r), the centrifugal force.
Thus a body of mass m moving on earth with a velocity v’ is seen by an
observer on the earth to suffer a Coriolis force —2mw x v'.

(b) Choose for S’ a frame fixed at a point on the surface of the earth at
latitude X and let its orthogonal unit vectors i, j, k be directed toward the
south, the east and vertically upward respectively. Then

w= —wcosAi+wsin Ak .
(1) When the body moves eastward, v/ = gjj, the Coriolis force is

F, = —2mw x v/ = 2muwysin M + 2mwij cos Ak
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which has magnitude

|F.| = v/(2mwysin A\)2 + (2mwy cos M)2 = 2mwy

and is pointing south at an inclination angle ¢ given by

]

(2) When the body moves upward, v’ = zk, the Coriolis force is

F.= —2mw x v = —2mwzcos \j ,
which has magnitude 2mwzcos A and direction toward the west.
(c) The equations of motion for the free-fall body in S’ are

m& = 2mwysin A ,
mjj = —2mw(Esin A + 2cos A) ,
mZ = —mg + 2mwycos A ,
with initial conditions z =y =0,z =h=10ft,z =9 =2=0at ¢t = 0.
Integrating and using the initial conditions, we obtain
Z =2wysin A,
y = —2w[zsinX + (z — h)cos |,
2= —gt+2wycosA .
Substituting these into the original set of equations, we obtain
% = —4w?[zsin A + (2 — h)cos \]sin X ,
i = 2gtw cos X — 4wy ,
2=—g—4w?[zsin A+ (z — h)cos N cos X .

Neglecting the terms involving w?, we have approximatel
€g y

=0,
i = 2gtw cos Ay ,
Z=—g.

Integrating, applying the initial conditions and eliminating t, we obtain

8w? cos? A
2 _ 3
Y —( 99 )(h o
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When the body reaches the ground, z = 0,

(2wcos>\) 2h3
y= TRt
3 9

With A = 10 ft = 3.05 m, A = 30°, we find y = 1.01 x 10~% m. Hence the
deflection due to the Coriolis effect is toward the east and has a magnitude
0.01 cm.

2. DYNAMICS OF A SYSTEM OF POINT MASSES
(1109-1144)

1109

A cart of mass M has a pole on it from which a ball of mass y hangs from

a thin string attached at point P. The cart and ball have initial velocity V.

The cart crashes onto another cart of mass m and sticks to it (Fig. 1.80).

If the length of the string is R, show that the smallest initial velocity for

which the ball can go in circles around point P is V = [(m+ M)/m|/5gR.
Neglect friction and assume M, m > u.

(Wisconsin)

P
R
W
M m
v
Ve
Fig. 1.80.

Solution:

As 4 <« m, M, momentum conservation
MV = (M +m)V’

gives for the velocity of the two carts after collision,
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, MV
V= e

Consider the circular motion of the ball atop the cart M if it were
stationary. If at the lowest and highest points the ball has speeds V) and
V2 respectively, we have

1 1
AV = SuVy + 2u9R

pvs
=22 7
R +ug,

where T is the tension in the string when the ball is at the highest point.
The smallest V; is given by T = 0. Hence the smallest V) is given by

1 1
AV = SHgR + 2u9R

ie.
Vi =+v59R .

With the cart moving, V; is the velocity of the ball relative to the cart.
As the ball has initial velocity V and the cart has velocity V' after the
collision, the velocity of the ball relative to the cart after the collision is
V — V’. Hence the smallest V for the ball to go round in a circle after the
collision is given by

., MV
V-V=V - — = VER,

i.e.

V:M;m\/sgm

1110

A cart of mass m moves with speed v as it approaches a cart of mass
3m that is initially at rest. The spring is compressed during the head-on
collision (Fig. 1.81).

(a) What is the speed of the cart with mass 3m at the instant of
maximum spring compression assuming conservation of energy?

(b) How would your answer differ if energy is not conserved?
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(c) What is the final velocity of the heavier cart after a long time has
passed, if energy is conserved?
(d) Give the final velocity of the heavier cart in a completely inelastic
collision.
(Wisconsin)

Solution:

(a) When the spring is at maximum compression, the two carts are near-
est each other and at that instant move with a velocity v, say. Conservation
of momentum gives

mv = (m+ 3m)v’

i.e.

Thus the heavier cart has speed ¥ at that instant.

(b) Even if mechanical energy is not conserved, the above result still
holds since it has been derived from conservation of momentum which holds
as long as no external force is acting.

T p ]
77'97'277?’7777779777977'
Fig. 1.81.

(c) Conservation of energy and of momentum give

mv?  muvl 3muf?
2 2 2
mv = mu, +3muv} ,

where v}, v} are respectively the velocities after collision of the lighter and
heavier carts. Hence the heavier cart has final velocity
o = 2my v
2" m+3m 27
(d) If the collision is completely inelastic, the two carts will move
together after collision. Their velocity is then % as given in (a).
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1111
In terms of G, L and the masses:

(a) What is the rotational period of an equal-mass (M; = M2 = M)
double star of separation L7

(b) What is the period of an unequal-mass (M, # M;) double star of
separation L7

(c) What is the period of an equal-mass equilateral-triangle (side L)
triple star?

(d) What is the period of an unequal-mass (M) # M, # M,3) equilateral
triple star?

(Wisconsin)

Solution:

(a) Equal-mass double star
The gravitational force on each star is f = GM?/L2. The radius of circular
orbit of each star with respect to the center of mass frame of the double
star is R = L/2. The centripetal acceleration of each star is a = v?/R,
where v is the speed of each star in the cms frame. Using these, we have

M'uz_GM2
R L2’

or
, GMR GM
Vo= — = .
L2 2L

Hence the period of the double star is

27R L 2L
T=——= =aly/ =—— .
v GM i GM
2L
M M2

Fig. 1.82.
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(b) Unequal-mass double star
Let O be the center of mass of the double star. Then, as in Fig. 1.82,

M,L M,L

o= 2 =
YT M+ M, 2T M ¥ M

For My, f = GM1M,/L?, the radius of circular motion is I, and the
centripetal acceleration is a, = v/l,. Hence

Mp?  GM\M;
L Lz

giving
02 — GM: L, GM, M,
1 = -_ =

L L L My +M;’

The rotational period of M, is then

L ML /L M1+M2
Ty =2n— =2 = 2nL
pEer " M1+M2

v M, + M, MG

Interchange of the subscripts 1 and 2 shows that this is also the period T3
of M. 2.

My

Fig. 1.83.

(c) Equal-mass equilateral-triangle triple star
Let O be the center of mass of the triple star (Fig. 1.83). Geometry gives
L = \/§L/3. For M), the resultant of the gravitational forces due to the
other two stars points towards O and has magnitude (2GM?2/L?) cos 30° =
VBGM? /L2 If its speed is v, we have

Mv?  V3GM?
W L2
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or
2 V3GML GM
L A A A

so the period of the triple star is

_ 2

._%L,/L
v 3 "“Vem-

My

T

Fig. 1.84.

(d) Unequal-mass equilateral triple star
Use coordinates as shown in Fig. 1.84. The coordinates of M, M; and Mj
are (0,0), (L,0) and (L/2, @) respectively, and the radius vector of the
center of mass C i

2. Mixs L ( 1 V3 )

_ _ sy Lap V3,
Y M; M, + My + M3 Mai+ st 3
3

Te 2 2

L 1 V3
=——+ — || M2+ M3 )i+ —M;3j| .
My + My + M; [( 2t 3 3)” 2 “}
The attractive forces exerted by M,y and M3 on M, are respectively

£ GM\, M,
2= 777 !

and
GM\M; [ 1, 3.
fl3 = s <§1+ %‘]) ,

so that the resultant force on M, is
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fi =fi2 +fi3
_ GM, M;\, V3 .
=TIz |:<M2+T)I+TM3J .

This shows that f, is parallel to r.. Its magnitude is

GM My+M3\?  3MZ GM
h= L21\/( B 3) PG = T MR+ MG+ MM

The radius of the circular orbit about the center of mass in which M,
moves is

L

Ri=rp= oo
! My + My + M;

\/Mz2 + M2 + Mo M .

Then the equation of the motion of M, is

Ml’U? _ GM]
R,

= )\/17\42+M3+M2M37
giving for the speed v, of M,,

G R
P = Z\/M22 + M2 + My M, (—‘)

L

_ G (M} +M;+ MM,
L M, + My + M3
Hence the rotational period of M, is

27(R1

()1

T1 =

L
=2rL ,
" \/G(Ml + Mz + Mj)

which is obviously also the period of M; and Mj.

1112

A particle of mass m, charge ¢, and initial velocity v collides head-on
with an identical particle initially at rest. What is the distance of closest
approach between the two particles (in classical mechanics)? What is the
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velocity of each particle at the instant of closest approach? What is the
final velocity of each particle? Justify your answers.
(Wisconsin)

Solution:

The relative velocity is zero when the two particles are at closest
approach. Conservation of momentum then gives mv = 2mv’ and v/ =
v/2 as the velocity of each particle at the instant of closest approach.
Conservation of energy gives

mv? _ mu'? + muv'? + gi
2 2 2 r
and thus
_ A
T ma?

as the distance of closest approach. The final velocity of the incident particle
is zero and that of the particle initially at rest is v. This can be seen from
the symmetry of the problem.

1113

Two steel spheres, the lower of radius 2a and the upper of radius a, are
dropped from a height h (measured from the center of the large sphere)
above a steel plate as shown in Fig. 1.85. Assuming the centers of the
spheres always lie on a vertical line and all collisions are elastic, what is the
maximum height the upper sphere will reach?

Hint: Assume the larger sphere collides with the plate and recoils before it
collides with the small sphere.
(Wisconsin)

Solution:

Let the mass of the smaller sphere be m; and that of the larger one
mo. Then my = 8m,;. The landing velocity of the larger sphere is vo =
2g(h — 2a) and its velocity immediately after bouncing back from the
steel plate is still v in magnitude. At this point, the descending velocity
of the smaller sphere is v; = /2g(h — 2a) = va2. Let the velocities of the
larger and smaller spheres after elastic collision be v5 and v] respectively
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i

(9

St

I
|
I
{

e

Fig. 1.85.

and take the upward direction as positive. Conservation of momentum and
of mechanical energy give

7 !
Mava — MV, = Mavy +Myvy ,

mv:  mav:  mavE  myvi?

2 2 2 2 ’

whose solution is

Sv 5
vy = “9—2= §V29(h_2a) ’

Conservation of the mechanical energy of the smaller sphere thus gives the
maximum height (measured from the steel plate) of the smaller sphere as
o 529

3a+-—(h—2a).

H=3a+5 =3a+5

1114

A railroad flatcar of mass M can roll without friction along a straight
horizontal track as shown in Fig. 1.86. /N men, each of mass m, are initially
standing on the car which is at rest.
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(a) The N men run to one end of the car in unison; their speed relative
to the car is V,. just before they jump off (all at the same time). Calculate
the velocity of the car after the imnen have jumped off.

(b) The N men run off the car, one after the other (only one man
running at a time), each reaching a speed V. relative to the car just before
jumping off. Find an expression for the final velocity of the car.

(c) In which case, (a) or (b), does the car attain the greater velocity?

(CUSPEA)
N
ol —
[®] 1 O]
7 ‘7 77 rr77 //7’177
Fig. 1.86.

Solution:

(a) As there is no horizontal external force acting, the center of mass of
the system consisting of the flatcar and N men remains stationary. Taking
the r-axis along the track, we have for the center of mass,

z - Mz + NmTman
cm M+Nm 3
Tem = 0= Mz, + Nmi‘man 3

where Z.,. and Z,,,, are respectively the velocities of the car and each
man after the men have jumped off. Writing #.a; = Viar and noting that
Zman = Vear — Vi, we have

M‘/car‘*'Nm(‘/car _Vr):o 3

giving
NmV,
M+Nm'

(b) Consider the transition from n men to (n—1) men on the car. Let V,,
be the velocity of the car when n men are left on it. The total momentum
of the car with the n men is

Vear =

P, =MV, +nmV, .
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When the nth man jumps off the car with a speed Vi, relative to the car,
the momentum of the system consisting of the car and n men is

P, y,=MV,_y+(n— mV, +m(Vpo1 — Vi) .
Momentum conservation P, , = P, gives
(M +nm)V, = (M +nm)Vp_, —mV,

or

mV,
Vo1 = —r
nol Vn+M+nm

Hence
s m‘/r
Vis = Vn+§M+(n-i+1)m :

As n = N, Vi =0 initially, we have for s = N,

mV, N mV,

N
Vo= = —_— .
0 ;M-&-(N—i-&-l)m & M +nm

(c) As

= M +nm M+ Nm’

the car in case (b) attains a greater final velocity.

1115

A projectile of mass m is shot (at velocity V) at a target of mass M,
with a hole containing a spring of constant k. The target is initially at rest
and can slide without friction on a horizontal surface (Fig. 1.87) . Find the
distance Az that the spring compresses at maximum.

(CUSPEA)

14 m
-

7277727777777 77T777777rr7rr7r777777

Fig. 1.87.
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Solution:

At the instant the spring compresses at maximum, the projectile m and
the target M move with the same velocity V.. Conservation of energy

mV? mV? MV? + k(Ax)?

2 2 2 2

and conservation of momentum

mV = (m + M)V,

give
mM

Az = mv

1116

A heavy star of mass M and radius R moves with velocity V through
a very dilute gas of mass density p. It pulls particles toward itself by its
gravitational field and captures all of the atoms that strike its surface.
Find the drag force on the star with the approximation that the thermal
velocities of the atoms are negligible relative to |V| and the interactions of

atoms with each other can be neglected.
(CUSPEA)

<

k]
A U//\/L\\
o

Fig. 1.88.

Solution:

In a frame moving with the star, gas atoms move with velocity —V
toward the star from infinity. Under the influence of the star’s gravitational
field, the trajectories of the gas atoms are as shown in Fig. 1.88.
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Let b be the largest impact parameter for which a gas atom can just
be captured by the star and v the velocity of the gas atom just before
capturing. Conservation of angular momentum gives

vR=0bV,

and conservation of energy gives

y

2 _au_v
2 R 2
from which we obtain

R? 2GM

= (VvigeT—— ).

V2 (V *R )
The drag force on the star is equal to the momentum absorbed per unit
time:

dP I nb?V At - p(—V)

F= dat A:I—I}o At
= —7mb*pVV = v (V +———R V.
1117

Consider a collection of point particles of mass m moving in circular
orbits about a common center each with the same kinetic energy. If the
only force present is the mutual (Newtonian) gravitational force, what is
the particle density as a function of radius r from the center in order that
the density remains constant in time?

(Assume that the density is spherically symmetric.)
(Columbia)
Solution:

Let T be the kinetic energy of each particle. As it moves in a circular
orbit of radius » under the action of the mutual gravitational forces, we
have

muv? _ GMm
r r2
Thus ) oM
L S m
T= 2mv oy
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giving
_2Tr

Gm

as the total mass of the particles which move in a sphere of radius r at the
common center. As

M(r)

dM = 4xr?p(r)dr ,

we have
1 dM T

P = G dr = 3er2Gm
from which we obtain the particle density
P T

i Te

1118

Given a system of N point-masses with pairwise additive central forces,
use Newton’s second and third laws to demonstrate that the total angular
momentum of this system is a constant. Does this calculation depend upon
what point is chosen as the origin of coordinates?

(UC, Berkeley)
Solution:

The angular momentum of a system of N point-masses about a fixed
origin is by definition
L= Z r, Xp;.
i

Newton’s second law F; = % then gives
dL
EEDSPERD SRS L 3 2P
B i i i g

where f;; 18 the force the jth mass exerts on the ith mass. For two masses
¢ and j, Newton’s third law gives

fi; = —f5,

and so
r,-xfij-i-rjxfj,-:(r,-—rj)xf,-]-::O,
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since r; —r; is parallel to f;;. As thesum ), Z#i(l’i x fi;) is due to pairs
of forces like f;; and f;;, we have

dL
— =0,
dt
i.e
= constant .

As the origin in this proof is arbitrary, the conclusion is independent of the
choice of the origin of coordinates.

1119

Two stars with masses M and m separated by a distance d are in circular
orbits around the stationary center of mass. The stars may be approximated
by point masses. In a supernova explosion, the star of mass M loses a mass
AM. The explosion is instantaneous, spherically symmetric, and exerts no
reaction force on the remnant. It also has no direct effect on the other star.
Show that the remaining binary system is bound when AM < (M +m)/2.

(MIT)

r.‘w

centre of mass

N

v

rzw
Fig. 1.89.

Solution:

Take the center of mass as the origin of a fixed frame and let ry, 72
be the distance from the center of mass to M, m respectively before the
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explosion, We have

md = Md
M+m’ 2T Mym

n+rz=d, rn=

The angular velocity w of the circular motion of M satisfies

GM ., GM
Mriw? = Tm, mrow? = d2m )
or
G(M +m)
2 __
w -— —__(13— .

After M explodes a mass AM leaves the star. As the explosion exerts no
reaction force on the remnant and has no direct effect on the other star,
the total potential and kinetic energies of the two stars in a frame attached
to the new center of mass are

— 2 2
e (M A12VI)(rlw) + m(r;w) T

where Tp is the kinetic energy of the new system in the fixed frame if its
total mass were concentrated at the center of mass. The momentum of the
new system in the fixed frame (Fig. 1.89) is

(M —AM +m)v =mrow — (M - AM)riw =riwAM ,

where v is the velocity of the center of mass of the new system, as the
momentum of the original system mrow — Mryw = 0. Therefore, the total
energy of the new system in the new center of mass frame is
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G(M—AM) 1

T+V=-— y m+ 5 (M - AM)(rw)? + ém(rzw)z
- %(M ~AM +m)- _(211\\44)1 m)z(nw)z
= U M) 4 gm(raw)? +
B %AM(““’)z B 2((131\—4);?\?411);)
N _Ggfim * GmdA - %AM (o) = 51 (—AAWA);qL (1)’
(AM)3(r1w)?

1 2 2 1 2
= — ZAM -
Mdr\w* + driw*AM AM(rw) (M i )

_ 1 2 Tl(AM)z
= 57‘1&) Md 2dAM+'P1AM+ M — AM+m

=~ driw” (2AM — M —m)(AM — M)
T 2(M - AM +m) '

The condition for the new two-star system to be bound is T+ V < 0,
i.e
2AM < M +m, AM< M,

or
2AM >M+m, AM> M.

As AM < M, the required condition is

M+m

M
AM < 2

1120

The captain of a small boat becalmed in the equatorial doldrums decides
to resort to the expedience of raising the anchor (m = 200 kg) to the top
of the mast (s = 20 m). The rest of the boat has a mass of M = 1000 kg.

(a) Why will the boat begin to move?
(b) In which direction will it move?
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(c) How fast will it move?

(Chicago)
Solution:

(a) The vertical motion of the anchor causes a Coriolis force —2mw x v,
where v is the velocity of the anchor and w the angular velocity of the
earth, and so the boat moves.

(b) As w points to the north and v is vertically upward, the Coriolis
force points toward the west. Hence the boat will move westward.

(c) As the total angular momentum of the boat and anchor with respect
to the center of mass of the earth in an inertial frame is conserved, we have

(M +m)riwy = [Mr? + m(r + 38)*|w ,
where wp and w are the angular velocities of the earth and the boat
respectively, r is the radius of the earth, giving

"N (M + m)r?

wo (M+m)r2+2mrs’

or
w—wp —2ms —2ms

wo  (M+m)hr+2ms (M+m)r'

Hence the relative velocity of the boat with respect to the earth is

—-2ms wWo

=-49x 10™* .
M+ m 9% 107 m/s

u=r(w—wy) =

The negative sign indicates that the boat moves westward.

1121

A simple classical model of the CO3 molecule would be a linear structure
of three masses with the electrical forces between the ions represented by
two identical springs of equilibrium length | and force constant k, as shown
in Fig. 1.90. Assume that only motion along the original equilibrium line
is possible, i.e. ignore rotations. Let m be the mass of O~ and M be the
mass of Ct+,

(a) How many vibrational degrees of freedom does this system have?
(b) Define suitable coordinates and determine the equation of motion
of the masses.
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(c) Seek a solution to the equations of motion in which all particles os-
cillate with a common frequency (normal modes) and calculate the possible
frequencies.

(d) Calculate the relative amplitudes of the displacements of the parti-
cles for each of these modes and describe the nature of the motion for each
mode. You may use a sketch as part of your description.

(e) Which modes would you expect to radiate electromagnetically and
what is the multipole order of each?

(MIT)
m M m X9 X2 X3
P et ]
i1 1122222 )
o c* o o c*- 0"
Fig. 1.90. Fig. 191,
Solution:

(a) The system has two vibrational degrees of freedom.

(b) Let z;,z2 and z3 be the displacements of O~, C*t, and O~
from their equilibrium positions respectively, as shown in Fig. 1.91. The
equations of motion are

mé, = k(zz — ) ,
Miy = k(x3 — z2) — k(z2 — 1) = k() — 222 + z3)
m:i;; = —k(IL’3 - (L‘z) .
(c) Let £y = Ajcoswt, £ = Aycoswt and z3 = Azcoswt in the
equations above. We have
(k —7nw2)A1 e kAz =0 Iy
—kAl + (2k e sz)Az - kA3 =0 3
—kA, 4+ (k—mw?A3=0.

For A, Az, A3 not to be identically zero, we require

k — mw? —k 0
-k 2% — Mw? -k =0,
0 -k k— nmuw?
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which has solutions

[k /(2 M)k
W = m’ w2 = (mm+M ) » and wg=0.

Angular frequencies w, and wy correspond to possible vibrations, while ws
corresponds to the translational oscillations of the molecule as a whole.
(d) Substituting w; and wsy into the equations for A,, A; and Az, we

1 1
find that relative amplitudes are | 0 | for wy and | =22 | for wy, as
-1 1
depicted in Fig. 1.92.
0- C‘. O-
*—> [ ] <o
Wy
o c” o
—> <o —>
w2
Fig. 1.92.

(e) The w, mode will not give rise to radiation because the center of
the charges remains stationary in the oscillations. The w; mode can give
rise to dipole radiation, while quadruple and higher multipole radiations
are possible for both wy and w3 modes.

1122

Take a very long chain of beads connected by identical springs of spring
constant K and equilibrium length a, as shown in Fig. 1.93. Each bead is
free to oscillate along the z direction. All beads have mass m except for
one which has mass mp < m. The mass of the spring is negligibly small.

(a) Far from the “special” bead, what is the relation between the wave
vector and the frequency of the resulting oscillation?

(b) For a wave of wave vector k, what is the reflection probability when
the wave hits the special bead?
Hint for part (b): Try a solution of the form
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m Mo I'g—-i
o @@ rrr@vv@rr@rn® —— X

N O O T O O

n= -4 -3 -2 -1 0
Fig. 1.93.

T, = Aetkom 4 Be~ikan for n<0,
z, = Ce'kn for n>0,

where A, B, and C are functions of time.

(Chicago)
Solution:
(a) For n £ 0,
K

= ——[ — Zn—1) + (Tn — Tuy1)] = ——n;(%n ~ Tptl — Tn-1) .

Setting z, = Ae'(ken—wt) in the above, we obtain
K ) . 2K
2 = _2(2 _ ¢tka _ o—ika n=——|[1— k .
W Ty, m( e e Nz - [1 — cos(ka)]z

or

w? = %[l — cos(ka)] .

(b) Tty a solution of the form

Tp = (Aez'kan + Be—z’kan)e—z’wt for n<o0,
z, = Cetlkan—wt) for n>0.

For n = 0, the above implies C = A + B. Substituting the solution into the
equation of the motion of the n = 0 bead,

N K
g =——2x9— 71 —21) ,
mo

we find

w2m0

LA+ B) = %A+ B) - (A+ B)ee — Ae™e — pette
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or

_ pika
A:[ mo m 1-¢ ]B

m—mo_m—mol—cos(ka)

_ {—1+( im sin(ka) }B

m — mp)[1 = cos(ka)]

Hence the reflection probability is

Ll () [ Y

A

‘ B

1123

Three bodies of equal mass m and indicated by i = 1, 2, 3 are constrained
to perform small oscillations along different coplanar axes forming 120°
angles at their common intersection, as shown in Fig. 1.94. Identical
coupling springs hold these bodies near equilibrium positions which are
at a distance ! from the intersection on each axis, that is, the equilibrium
length of each spring is v/3l. The following questions can be answered
without resorting to general analytic procedures.

X3

Xy

Fig. 1.94.

(a) Show that the equations of motion of the three bodies are represented
by the coupled system
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md?z;
dt?
where z;(t) + ! indicates their respective distances from the intersection.
(Specifically, both K and k equal 3/4 of each spring constant.)
(b) Verify that one normal mode is totally symmetric:

= —Kz; — k(zy + 2 + x3) ,

Ty (t) = z2(t) = z3(t) ,

and determine its frequency.

(c) Show that the remaining normal modes are degenerate and deter-
mine their frequency.

(d) Find a pair of real solutions {z,(t),z2(t),z3(t)} that represent
orthogonal degenerate normal modes.

(e) Find an alternative pair of complex conjugate solutions that repre-
sent orthogonal degenerate normal modes.

(Chicago)

Solution:

(a) Let the constant of each spring be 1 and consider particles ¢ and j
which are located at z; and z; from their respective equilibrium positions.

The stretch of the spring between the two particles is (z; + z;) cos 30°, so
the potential energy of the system is

3
U= ?n[(:vl +32)2 + (22 + 23)% + (23 + 71)?) .

The force acting on the ith particle is then

ou 3y
TEm T2 \BTLE )

giving its equation of motion as
mi; = —Kz; — k(z, + 12 + 73)

with K =k = %’l.
(b) If z, = x3 = x3, all the three equations reduce to the uncoupled
form
mi; = —(K + 3k)z; .

The solution is
z; = acos(wt + )
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with
K + 3k
w= .
m

(c) The remaining two normal modes are orthogonal to the above
symmetric mode. They satisfy the condition

Zy+z2+23=0,
for which the equations of motion reduce to the uncoupled form
m:v, = —K(L‘i .

Setting z; = b; cos(w't + ¢'), we have

K
;b,-:o, W=

The frequency is the same for both modes, and hence they are degenerate.
(d) The two orthogonal degenerate normal modes have amplitudes by,
by, bs satisfying ) . b; = 0. Hence

b1:0, b2=—b3:C,
Cc

blzc, b2:b3=—§

give a pair of real solutions, where c is an arbitrary real number.
(e) Alternatively, allowing complex amplitudes,

i2w

by=d, by =det'¥,  b3=detH,

where d is a real number, give a pair of orthogonal degenerate normal mode
solutions.

1124

Three identical objects, each of mass m, are connected by springs of
spring constant K, as shown in Fig. 1.95. The motion is confined to one
dimension.

At t = 0, the masses are at rest at their equilibrium positions. Mass
A i then subjected to an external time-dependent driving force F(t) =
f cos(wt), t > 0. Calculate the motion of mass C.

(Princeton)
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Fig. 1.95,

Solution:
Let x4, B, ¢ be the coordinates of the three masses and a the relaxed
length of each spring. The equations of motion are
feos(wt) + K(zp — x4 —a) =miy ,
K(zc—zp—a)— K(zg — 14 —a) =mip,

—K(zc —rp —a) = mic .
The above set of equations can be written as

fcos(wt) = m(i4 + Ep + &c) ,
feos(wt) —2aK = m(E4 — &c) + K(za — zc) ,
fCOS(wt) =m(Zs — 2EB +&c) +3K(xs — 225 + zc) ,

or
f cos(wt) = mi , (1)
fcos(wt) —2aK = mijp + Kyz , (2)
f cos(wt) = mijs + 3Kys , (3)

withy, =4+ 2B +2Zc, Y2 = T4 —Tc, Y3 = Ta — 225 + z¢. It can be
seen that y,, y2 and y3 are the three normal coordinates of this vibrational
system. The initial conditions are that at t = 0,

T4 =0, g =a, zc = 2a, tpa=tp=a2c=0,

or
Y1 = 3a, y2 = —2a, Y3 =0, Y1=9=93=0.

Equation (1) can be integrated, with the use of initial conditions, to give

Y= wa—z[l — cos(wt)] + 3a .
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To solve (2), we try a particular solution

Y2 = As cos(wt) + By
and obtain Ay = K%g, B; = —2a. The general solution is

cos(wt .
Yo = {(——fnw)z — 2a + O3 cos(wat) + Dy sin(wst) ,

where w; = ‘/g. Initial conditions then give

f
=-—2 _  Dy=0.
G = g 2

To solve (3), we try a particular solution

ys = Az cos(wt)
and obtain A3 = f/(3K — mw?). The general solution is

_ fcos(wt)

Yz = 3K — mw? + C3 cos(w;;t) + D3 sin(w;;t) y

where w3 = % Initial conditions then give

_ f _
Cs = 3K — mw?’ D3 =0.

Therefore the solutions are as follows:

( Y= —mez—[l - cos(wt)] + 3a ,
{ 2= E_f—mwz[cos(wt) — cos(wat)] — 2a
f
Ys

\

= 3 =g lcos(wt) — cos(wst)] .

The motion of C is a linear combination of y1, ¥2 and y3:
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W Y2, Y3 f

Te=T -5 +E = 2a + 3W2[1_C°3(“Jt)]
+ m—;_—wz-)-[cos(wt) — cos(wat)]
f [cos(wt) — cos(wst)]
6m(w? — w?) sl

Note that w, and w3 are the normal frequencies of the system.

1125

A model of benzene ring useful for some purposes is a wire ring strung
with 6 frictionless beads, with springs taut between the beads, as shown
in Fig. 1.96. The beads each has mass m and the springs all have spring
constant K. The masses have been numbered for the grader’s convenience.
The ring is fixed in space.

(a) Calculate, or write down by intuition, the eigenfrequencies of the
normal modes, indicating any degeneracies. In Fig. 1.97, picture each mode
by drawing an arrow near each mass indicating the direction of motion and
shading those masses at rest.

(b) With what frequencies can the center of mass oscillate?

(c) Which modes could be related to the modes of the real benzene
molecule?

Hint: Much algebra can be eliminated by considering the symmetries of the
problem.
(Princeton)

YR ACAS)
ARG RGRG]

Fig. 1.96. Fig, 1.97.

A’
D
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Solution:
(a) Let v, be the displacement of the nth bead. Its equation of motion
is
m¥n = K1 —¥n) = K — Yn-1)
= K(wn—l + wn-H - 27/)11) .

Setting 1, = A,e*?, we obtain

—muw?A, = K(Ap_1 + Anp1 — 24,) ,

or

A 1+€eA+ A =0, n=12,...,6,

where

mw?

=W g,
S e

For the set of linear homogeneous equations to have a non-zero solution,
the following determinant must vanish, i.e.

e 1 0001

1 1000
01z-:100_0
00110 ’
0001¢1

1 0001 ¢

or
e —6et+9e2 —4=(c+1)%(-1)3e+2)(c-2)=0.
Thus the solutions are
gy =2, £€9 = —2, €3 =1,
€4 =1, e5 = —1, g = —1.
The corresponding eigenfrequencies are given by

_ 4K

3K

2 2 _ 2 _
wi , ws =0, wi = ,
m m
., 3K , K , K
wi=—, wf=—, wi=—.
m m m
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It can be seen that modes 3 and 4 as well as modes 5 and 6 are degenerate.
Substituting €1, €2, ... , € one by one into the set of equations A,,_,+cA4, +
Apy1 =0, we can find the ratios of amplitudes for each normal mode. The
results are depicted in Fig. 1.98. The displacements of the six beads have
the same magnitude in modes 1, 2, 3, and 5 except in modes 3 and 5 the first
and fourth beads are stationary. Their directions are shown in the figure.
Mode 2 corresponds to rotation of the system as a whole. In mode 4, the
displacements of the second bead and the fifth bead are twice as large as
those of the others, and in mode 6, the displacements of the third bead
and the sixth bead are also twice as large as those of the others. These
larger displacements are indicated by two arrows in the same direction in

the figures.
SWz, Sleold
2

W = Lﬁk “’323?,(
Q
0 P
S S S
2 g w2 _Ig Wik
W, *'m s * m 6~ m
Fig. 1.98.

(b) It is seen from Fig. 1.98 that only in modes 5 and 6 can the center
of mass oscillate with a frequency /k/m.

(c) As the center of mass of a real benzene molecule cannot oscillate,
only modes 1, 2, 3, and 4 can be related to the real benzene molecule.

1126
Consider a classical system of point masses m; with position vectors r;,
each experiencing a net applied force F;.

(a) Consider the quantity > . m;r; - r;, assumed to remain finite at all
times, and prove the virial theorem
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1
T= _52 Fi ‘T,

where T is the total kinetic energy of the system and the bar denotes time
average.

(b) In the case of a single particle acted on by a central inverse-square
law force, show that

where V is the potential energy.
(SUNY, Buffalo)

Solution:
(a) Let Q(t) = >, myf; - r;. We have

Q@t) = Zmii‘i B+ Zmii;i ‘T
i i
=Zm,r?+ZF, “r;.
i i
The time average of Q(t) is

1 T . 1 T .5 1 T
;A Q(t)dt—;/o ;miridt+;A ;F,"!’idt,

ie.

1) - QO = 2T+ 3 Fi xi,

where 7 is the period if the motions are periodic with the same period, or
T — oo otherwise. In both cases, the left-hand side of the equation is equal
to zero and we have

2T+ZF,"I‘,‘=0

as stated.
(b) For a single particle acted on by a central inverse-square law force,

c c

F=X<
r2’ r
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where C is a constant. The virial theorem then gives

= 1C 1/C 1%
T=-~——rr=——|—)=——.
273 2\ r 2

1127

Three masses my, m2 and mg, placed at the corners of an equilateral
triangle of side s, attract each other according to Newton’s law of gravita-
tion. Determine the rotational motion which leaves the relative separation
of each mass unchanged.

Hint: Write down the force in c.m. system on one of the particles.

(Wisconsin)

Fig. 1,99,

Solution:

In the Cartesian frame shown in Fig. 1.99, the three mass m;, mqy, my
have coordinates (0,0), (s,0) and (3, 3@) respectively. The position of the
center of mass C is

2 M
— 1
ro Z e

i

=—37 [(mz-i-%)i-i-?m;;j]

my + mq + m3

Now consider the forces acting on m;. There are two attractive forces
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fia =

Gmlmz, Gm1m3 i \/5.
e = ma gty

due to mg and mg respectively. Their resultant is

Gm . V3,
f1=f12+f13= 821 {(m2+%)l+—2—m3jjl

As f; is parallel to rg and both originate from the same point O, f, passes
through the center of mass C. Thus m, is acted upon by a central force
with center at C and hence m,; moves in a circle about the center of mass
C. The radius of this circular orbit is

Ry = |rg| =(

8

2 2
_— m5 + ms5 + mams .
m1+m2+m3)\/ 2 3 28

2
The linear velocity of m is vy given by 7+ = |fi|, or

R
v = e =
my

G m3 + m3 + mams
s my +mg +mg3 ’
By permutation of the indices, the above result applies also to m, and m3.

Hence the rotational motion which leaves the separation of each pair of
masses unchanged is a circular motion of period

2R, s
vy G(my +mg +m3)’

which is the same for all three masses.

1128

Two non-relativistic particles of equal energy and equal mass as shown
in Fig. 1.100 collide almost head-on. In a coordinate frame (the center
of mass frame) moving with velocity V, the particles appear to collide
head-on.

(a) Find V, the velocity of the center of mass frame.
(b) Compare the total energy in the center of mass system to the original
total energy.



Newtonian Mechanics 217

3
~N

- — g X

Q)

3

L
———?;———ﬂ\:

2

Fig, 1.100.

Express your answers in terms of the velocity u and the collision angle
8o.
( Wisconsin)
Solution:

Use the laboratory frame as shown in Fig. 1.100 and take the instant of
the collision to be ¢ = 0. The position vectors of m, and m, at £ < 0 are

ry = uti y
ro = ~ut(cos fgi + sin bgj) -

Then the position vector of the center of mass is

_ mr + mara _n + ro
¢ = =
my + mo 2

1
= iut[(l — cos )i — sin bgj]

as m; = mg = m, say.

(a) The velocity of the center of mass, i.e. of the center of mass frame,
is

V=i= %[(1 — cos8o)i — sin fgj) .
(b) In the center of mass frame, the velocity of m, is
Vi=fF —t.=ui— g[(l — cosfp)i — sin by

= g[u + cos 6p)i + sin fgj] |

and the velocity of m; is
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Vi, =#y — £, = —u[cos fpi + sin bgj] — g[(l — c086)p)i — sin Ogj]
= —5[(1 + cos fp)i + sinboj] .

The total energy of m; and mg is then

12 12 1
E = m‘2/, + m‘2/2 = §mu2(1 + cosfp) .

As the original total energy is

2 2

B m12u m22u —y
the ratio of the two energies is
g’ _ 1+4+cosby
E 2 ‘
1129

A rocket is projected straight up and explodes into three equally massive
fragments just as it reaches the top of its flight (Fig. 1.101). One of the
fragments is observed to come straight down in a time ¢,, while the other
two land at a time t,, after the burst. Find the height h(ty,t2) at which

the fragmentation occurred.
(Wisconsin)

Yy

K —————e

Fig. 1.101.

Solution:
The velocity and momentum of the rocket are zero when it reaches the
top of its flight. Conservation of momentum gives, after the burst,
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mivi +mava + mavy =0.

As

my = mg = mg, n+uva+v3=0.

As the second and third fragments land at the same time, the vertical
components of v, and v3 are the same. As v, is vertically downward the
vertical components of vy and v; are each —v;/2. Hence for the first and
second fragments we have

t2
h=ut+ 9—21 )
~uity | gt}
h=—>=+4+=Z=
2 + 2’
giving
_9(t3—t])
v = ===~
2t +to
h= gtltz . tl + 2t2
2 2t + o '
1130

A satellite of mass m moves in a circular orbit of radius R with speed v
about the earth. It abruptly absorbs a small mass ém which was stationary
prior to the collision. Find the change in the total energy of the satellite
and, assuming the new orbit is roughly circular, find the radius of the new
orbit,

(Wisconsin)

Solution:

Before picking up the small mass, the satellite moves in a circular orbit

so that
mv?  GMm
R R’
giving Rv? = GM, where M is the mass of the earth. Hence its total energy

18
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After absorbing the stationary small mass ém, the speed of the satellite
changes to (considering the new orbit as roughly circular, although it is

actually elliptic)
p mu

T mtoém’
and its total energy becomes
1 m??

1
E=—- no - MY
2(m-HSm)'u 2m T om

Hence the energy loss due to the collision is

1 m 1 ém
E-E=-m»r{1—- — )= —me?
2™ ( m+6m) 2™ ¥ ém

= %vzém .

If the new radius is R’ we also have
R'v'? = GM = Rv?

giving
2 2
RI=(£> R— (Mﬂ) R~ (H%@)R,

m m

1131
For the system of 2 identical masses and massless springs shown in
Fig. 1.102, calculate the period of oscillation if the masses are released
from the initial symmetrical configuration shown.
( Wisconsin)

Fig. 1.102.
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Solution:

Due to symmetry, the oscillations of the two masses are the same.
Consider one of them and write down the equation of motion

mi=—-Kr— K'(z+z)=—(K+2K')z,

where z is the displacement from the respective equilibrium position. Then
the angular frequency of oscillation is

/K + 2K’
W= _—,
m

and the period of oscillation is

m
T=2my/—— .
LY aney-

Note that generally speaking, there are two modes of linear vibration for this
system corresponding to two normal modes. But the symmetrical initial
condition determines that only one mode is excited.

1132

Consider the earth-moon system and for simplicity assume that any
interaction with other objects can be ignored. The moon, which moves
around the earth more slowly than the earth rotates, creates tides on the
earth. A similar situation exists on Mars, but with the difference that one
of its moons revolves about Mars faster than the planet rotates. Show that
one consequence of tidal friction is that in one system the moon-planet
distance is increasing, and in the other it is decreasing. In which one is it
decreasing?

( Wisconsin)

Solution:

For the earth-moon system, the frictional force caused by the tides
slows down the rotational speed of the earth. However, the total angular
momentum of the earth-moon system is conserved because the interaction
between this system and other objects can be ignored. The decrease in the
earth’s rotational angular momentum will lead to an increase in the angular
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momentum of the moon about the earth (to be exact, about the center of
mass of the system). The angular momentum of the moon is J = mR%w.

As
GMm

Rz’

J=mR2\/gR—JZI =mvVGMR .

Here we consider the center of the earth to be approximately fixed, so
that R is the earth-moon distance. Then as J increases, R will increase
also. Thus for the earth-moon system, the effect of tides is to increase the
distance between the moon and the earth.

mRuw? =

we have

For the Mars-moon system, the moon revolves about Mars faster than
the latter rotates, so the frictional force caused by tides will speed up
the rotation of Mars, whose rotational angular momentum consequently
increases. As the total angular momentum is conserved, the angular
momentum of the moon will decrease. The argument abovz then shows
that the distance between Mars and its moon will decrease.

1133

Two mass points, each of mass m, are at rest on a frictionless horizontal
surface. They are connected by a spring of equilibrium length [ and constant
K. An impulse I is given at time ¢ = 0 to one of the mass points in a
direction perpendicular to the spring. Assume that the spring always lines
up along the connecting length [, i.e. there is no bending.

(a) After a time ¢, what will be the total energy and total momentum
of the two mass points?

(b) What will be the velocity of the center of mass (including direction)
and the total angular momentum about the center of mass?

(c) What will be the maximum separation between the two mass points
during the motion that follows the impulse?

(d) What will be the maximum instantaneous speed achieved by either
particle? Explain your answer.

(UC, Berkeley)



Newtonian Mechanics 223

Solution:

(a) On account of the conservation of momentum and of mechanical
energy, the total momentum and total energy of the two mass points at
time ¢ are the same as those at time ¢t = 0 just after the impulse is applied:

P 12

P=L ==

(b) The system has total mass 2m, total momentum I, so that the center

of mass has velocity
I

Vo= — .
2m

Just after the impulse is given, the angular momentum of the system about
the center of mass is L = % By the conservation of angular momentum in
the center of mass frame, L is the angular momentum about the center of
mass at all later times.

(c) Let Ips denote the maximum separation required. Conservation of
angular momentum and of mechanical energy

om ()} 5 2 11
m 2 ‘P_21

e \? I\* 1 , I?
m(—2—<p) +m(2—7;) +§K(1M—l) = om

give
2mKly, — AmKI3, + 2mKI? — I3, + 22 =0,

whose positive real root is the maximum distance between the two mass
points during the motion that follows the impulse.

(d) Let z denote the distance between the two masses. Conservation of
mechanical energy gives

1 z N2 2\ 1 I\* 1 , I?
5'2"‘[(?) +(§)]+5‘2m(%) +oKE-0T=50
or

1
%(xzqéz + &%) + EK((B —1)? = constant ,
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shows that when z = I, the kinetic energy of the two mass points, given
by the first term on the left-hand side, is maximum. This is the case at
t = 0. Also, at t = 0, only the mass that had been given the impulse has a
velocity while the other mass is still instantaneously at rest. Thus the first
mass achieves a maximum speed

I

VM = —
m

at time t = 0.

The condition that £ = ! can be satisfied again from time to time.
However, as the speed of the first mass will not be zero, the second mass
cannot achieve this maximum speed. Therefore the maximum speed that
can be achieved by the second mass is less than vy,.

1134

A chain with mass/length = » hanging vertically from one end, where
an upward force F is applied to it, is lowered onto a table as shown in
Fig. 1.103. Find the equation of motion for h, the height of the end above
the table (h is the length of chain hanging freely).

(Wisconsin)

Fig. 1.103.

Solution:

As this problem involves variable mass it is more convenient to work
with momentum. Consider the change of momentum of the chain during a
time interval ¢ to ¢t + At. If h and v are respectively the height and velocity
of the freely-hanging portion of the chain at time ¢, its momentum is phv
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at t and u(h — Ah)(v + Av) at t + At (see Fig. 1.104). As a portion Ah of
the chain has reached the table and transferred a momentum = pAhv to
the latter during the interval, the momentum theorem gives

u(h ~ AR)(v + Av) + uAhv — phv = (uhg — F)At |
or, retaining only the first-order terms,
uhAv = (uhg — F)At .

With At — 0, the above becomes

pht = phg—F .
As v = —h, we have the equation of motion
o F
uh

h-Ah lVOAV

teAt

Fig. 1.104.

1135
Use the rocket equation to find the rocket residual mass m (in terms of
the initial mass) at which the momentum of the rocket is a maximum, for
a rocket of mass m starting at rest in free space. The exhaust velocity is a
constant vg.

(Wisconsin)
Solution:
The equation of motion for a rocket, velocity v, in free space is

mdv  —vodm
- ¥

dt dt
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i.e,
—vodm

dv =

m

m
v=—7gln (~—) ,
mo

where myg is the rocket mass at firing. The momentum of the rocket is

Integrating, we obtain

P=mv=—-myln (ﬂ) .
mo

For it to be a maximum, we require
dP
_— = -—‘Uoln (ﬂ) —-‘U0=0 .
dm mo

Hence the rocket has maximum momentum when its residual mass is

my
e

1136

A rocket is fired straight up with no initial velocity. It is propelled by
ejection of mass with a constant velocity of ejection u relative to the rocket
and at a constant rate so determined that the initial acceleration is zero.

Assuming constant acceleration due to gravity,

(a) find the acceleration of the rocket as a function of time;

(b) show how you would find the height of the rocket as a function of

time.
(It is not necessary to do the integrals.)

(Wisconsin)

Solution:

(a) Let v be the velocity of the rocket. The equation of motion is

mdv _ udm

dt — dt
As dm/dt = constant and m = myg, dv/dt =0 at ¢t = 0, the above gives

—-mg .

dm _ _mog

dt u
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at any time t after firing. Integrating we obtain

m=m0(1—g—t) .
U

The equation of motion now becomes

gt\ dv mog?t
1-Z) 2 = (o —m)g =
mo( u) dt (mo —m)g u
or
dv gt
dt  u-—gt’

which expresses the acceleration of the rocket as a function of time.
(b) The velocity at time ¢ is

t !
gt ! U
= — — | dt' = —gt +ul .
v /og(u—gt’)d g+un(u_gt)

Further integration gives the height of the rocket as a function of time:

t t
u 1 u
h= —gt' +uln —— | dt' = —_gt? /1 dt’ .
/0 ( gt +u nu—gt’) 2g +u A nu—gt’

1137

A bucket of mass M (when empty) initially at rest and containing a
mass of water is being pulled up a well by a rope exerting a steady force P.
The water is leaking out of the bucket at a steady rate such that the bucket
is empty after a time T. Find the velocity of the bucket at the instant it
becomes empty.

(Wisconsin)

Solution:
Let the total mass of the bucket and water be M’. Then
mi

MI=M+m——T—1,
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where m is the initial mass of the water. As the leaking water has zero
velocity relative to the bucket, the equation of motion is

dv

M—=P-M
dt g’
or
P- My P
d”—T‘“—(m—g)d‘-

The velocity of the bucket at the instant it becomes empty is

T
Pdt PT M+m
v= [ sremeg = (M) o

1138

A rocket ship with mass My and loaded with fuel of mass mq takes off
vertically in a uniform gravitational field as shown in Fig. 1.105. It ejects
fuel with velocity Uy with respect to the rocket ship. The fuel is completely
ejected during a time Tp.

(a) Find the equation of motion of the rocket in terms of dM/dt, Uy, g,
and M, where M is the mass of the rocket at time ¢.
(b) What is the velocity of the vehicle at the instant ¢y when all the fuel
has been ejected, in terms of My, mg, g and to?
(MIT)

s

Yo
Wi

Fig. 1.105.
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Solution:

(a) Consider a rocket, having mass M and velocity V, in time interval
At ejecting a mass AM at a velocity Uy relative to the rocket and gaining
an additional velocity AV. Taking the vertical upward direction as positive,
we have by the momentum theorem

(M ~ AMY(V + AV) + (V + Up)AM — MV = —MgAt,

ie.
AV AM
M—=-Uy——-M
At °"At 9
or, in the limit At — 0,
dv dM
M— =-Uy— - Mg.
dt o ~ M9
(b) The equation can be rewritten as
dM

dv = —Uoﬁ — gdt .
Integrating we obtain
V=-UhM-gt+ K.
AsM=My+mg,V=0att=0,
K =UpIn(Mg+ myg) .

Hence when M = M at t = ty, we have

My +mo
00N gt .

V=Uoln( M,

1139

A droplet nucleates in uniform quiescent fog. It then falls, sweeping
up the fog which lies in its path. Assume that it retains all the fog
which it collects, that it remains spherical and experiences no viscous drag.
Asymptotically, it falls with a uniform acceleration a:

V() — at, for large t.

Find a.
(MIT)
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Solution:

Let p;, p2 be the densities of the droplet and fog respectively, R(t)
be the radius and V(¢) the velocity of the droplet, and assume that the
buoyancy of the air can be neglected. Making use of the “rocket equation”
in Problem 1138, with

M= %ﬂ'Rapl, Up=0—(-V)=V,

and the replacement

V - -V,

dM dM

2=, =

dt dt ’
we have 4 o Y A

‘T(Rspl it +V— (gﬂ'Rapl) = §T(R3plg y
or dv dR
RTli— + 3V71? = Rg .

The droplet sweeps out a cylinder 7R2V in unit time so the rate of change
of its mass m is

dm d

dR
E a ( T(Rapl) = 47(p1R2E = 7(R2Vp2 N

giving ]
V=4R,
where 7 = p1/p2. We thus have
4nRR + 12nR* = Ry .

Asfor larget, V = ator R= n we set R = bt?+ ¢, where b, ¢ are constants,
and substitute it in the differential equation. Equating the coeflicients of
t2 and t° separately on the two sides of the equation, we have

56nb - g = 0, (8nb—g)c=0.
For a consistent solution, we take

g
= = =0.
56n’ ¢
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Hence V = 4nR = 8nbt = ¢, i.e. the asymptotic acceleration is

a=12
7"

1140

An hour glass sits on a scale. Initially all the sand (mass m) in the glass
(mass M) is held in the upper reservoir. At t =0, the sand is released. If
it exits the upper reservoir at a constant rate dm/dt = A\, draw (and label
quantitatively) a graph showing the reading of the scale at all times ¢ > 0.

(MIT)
w
wp W,
(M'm)g —W| I[ —_—— :
(M0m)g-)\JZ_g.l:)- - I| I|
: | |
1 - | \
0 Y t f‘ofz
Fig. 1.106. Fig. 1.107.

Solution:

Suppose all the sand falls to the bottom of the lower reservoir so that
for all grains the falling height is h. A grain falling through this distance
will acquire a velocity V = +/2gh when it reaches the bottom and the whole
trip takes a time ¢; = %.

For the reading of the scale, consider the following four periods of time:

Period 1: The time ¢t = 0 when the sand is released, to the time ¢; when
the sand begins to arrive at the bottom of the lower reservoir. The reading

of the scale in this period is
W1=(M+m)g——/\tg, 0<t<t1,

where t; = /2 k.
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Period 2: The time ¢; when the sand begins to arrive at the bottom, to
the time ¢ when all the sand has left the upper reservoir. In this period,
the force on the scale consists of two parts: weight of the sand as given by
the above equation with ¢ = t; and a part due to the impulse of the sand
on the bottom of the reservoir with magnitude

VdLn = Av/2¢gh .

dt
Hence the scale reads

Wo = [(M +m)g — At1g) + A/2gh = (M +m)g, ty <t<ta,

where t; = m/A.
Period 3: The time ¢, when all the sand has left the upper reservoir to
the time t; when all sand has reached the bottom. The scale reads

W3=W2+A(t—t2)g, to <t <ty

where t3 =t 4+ t,.
Period 4: The time after all the sand has reached the bottom. The
reading of the scale is constant at

Wy = (M + m)g, t>t;.

The reading of the scale is depicted in Fig. 1.107.

1141

A rocket of instantaneous mass m achieves a constant thrust F' by
emitting propellant at a low rate with high relative speed. The rocket
directs its thrust always along the direction of its instantaneous velocity u.
By so doing it moves from an initial radius r, (measured from the center of
the earth) to a larger radius r, remaining in the same plane and following
a path roughly like a spiral. The starting radius r, is close to the earth’s
radius ry, where the gravitational acceleration is g, while ro > ro. The
angular coordinate from the earth’s center is ¢.

(a) Is the angular momentum of the rocket per unit mass a constant of
the motion? Discuss.
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(b) In terms of r, g, 7, and gb, derive expressions for the instantaneous

velocity u and the gravitational acceleration g.
(c) Derive expressions for # and ¢ in terms of the quantities listed above.
(Princeton)

Solution:

(a) Use polar coordinates (r, ¢) as given. The angular momentum of
the rocket per unit mass is j = r2d>. Although gravity is a central force,
the rocket thrust is not. Hence the angular momentum is not a conserved
quantity.

(b) The instantaneous velocity of the rocket is

u = ure, + Uye, = e, + roe,

with magnitude
u= 124 r2p2 .

The gravitational acceleration g is

GM
g:: 7‘2 N
As g9 = %M, it can be written as
o
2
= aqn 0
g"‘gorz .

(c) The equation of the motion of the rocket is

f=m—
™t
where f = F + mg, m = m(t), terms involving %’—t"— having been neglected.
As the thrust F is always parallel to u, its components are F,, = FL,
F, = F2. The gravitational acceleration is g = —ge,. Hence the equation
of motion has component equations

. F? mgoré
m(# —r¢?) = fr = _ igO
/724 r2g?
Frq.b

m(r¢+ ’f'¢) f¢ \/ma

from which the expressions for # and ¢ can be obtained.
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1142

A rocket ship far from any gravitational field has a source of energy E
on board. The ship has initial mass m; and final mass ma.

(a) Find the maximum velocity v that the ship can achieve starting from
rest. E, m;, and my are fixed, but the exhaust velocity w (relative to the
ship) may vary as a function of the instantaneous mass m of the ship.

(b) What is the maximum velocity v that can be obtained if the exhaust
velocity w is constrained to be constant?

(Princeton)

Solution:

(a) Integrating the equation of motion for the rocket ship
(Problem 1138)

dv w (m)dm
m— = — —_,
dt dt
and taking account of the initial conditions v = 0, m = m,; at t = 0, we
have m
v=— / __w(m) dm
m m

Hence the maximum velocity is

Umax = ~—/ mdm

my m
(b) If w is constant, the maximum velocity is

my
Umax = win — .
ma

1143

A spherical dust particle falls through a water mist cloud of uniform
density such that the rate of accretion onto the droplet is proportional to
the volume of the mist cloud swept out by the droplet per unit time. If the
droplet starts from rest in the cloud, find the value of the acceleration of
the drop for large times.

(Princeton)
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Solution:

Suppose the spherical dust particle initially has mass My and radius Rp.
Take the initial position of the dust particle as the origin and the z-axis
along the downward vertical. Let M(¢) and R(t) be the mass and radius of
the droplet at time ¢ respectively. Then

M(5) = My + 3n(R® ~ R)p

where p is the density of the water mist, giving

dM ,dR
= = pnR*— .

dt
The droplet has a cross section 7R? and sweeps out a cylinder of volume
wR2% in unit time, where & is its velocity. As the rate of accretion is
proportional to this volume, we have

dM .
? =an sz y
a being a positive constant. Hence
4p -
i=-"LR
a

The momentum theorem gives
M(t + dt)z(t + dt) ~ M(t)&(t) = Mgdt .

Using Taylor’s theorem to expand M(t + dt) and #(t + dt) and retaining
only the lowest-order terms, we obtain

dM
i— + Mi=Mg.
T +M3i g

For large t, M(t) ~ §7rR3p, dM /dt ~ 3M R/ R, and the above becomes

. 3R? ag
R+7_Z;'

For a particular solution valid for large ¢, setting

R(t) = at? |
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where a is a constant, in the above we obtain

-9
a 56, °

Thus for large ¢,
4
=L 21¢= gt .
7

Hence the acceleration for large times is g/7.

1144

Suppose a spacecraft of mass mg and cross-sectional area A is coasting
with velocity vy when it encounters a stationary dust cloud of density p
as shown in Fig. 1.108. If the dust sticks to the spacecraft, solve for the
subsequent motion of the spacecraft. Assume A is constant over time.

-
e—————

Fig. 1.108.

Solution:

(Princeton)

Suppose the dust offers no resistance to the spacecraft. Newton’s second

law d(mo)
mv
@ =0
or
d_v + vdm 0
dt dt ’
implies that mv = mgvg. Then as
dm = poAdt, = pav,

dt
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we have
d dt
b, pddt .
v molo
Integrating, we obtain
1 2pAt
= +C
v mMoVg

where C is a constant. If we measure time from the instant the spacecraft
first encounters the dust, then v = vp at t = 0, giving C = vy 2, Hence the
motion of the spacecraft can be described by

1 1 2pAt

v? v mouy

3. DYNAMICS OF RIGID BODIES (1145-1223)

1145

Two circular metal disks have the same mass M and the same thickness

t. Disk 1 has a uniform density p, which is less than p,, the uniform density
of disk 2. Which disk, if either, has the larger moment of inertia?

(Wisconsin)

Solution:

Let the radii of the disks be R, and R; respectively.

Since the disks have the same mass and thickness, we have p; R3 = paR3,
or

R _p;m
R} m
The moments of inertia of the disks are
MR? MR?
I = 1 I =
1 D) ) 2 D) ]
S0
L_R _p
I, R: pm

As p; < pa, Iy > I2. Hence disk 1 has the larger moment of inertia.
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1146

Given that the moment of inertia of a cube about an axis that passes
through the center of mass and the center of one face is Iy, find the moment
of inertia about an axis through the center of mass and one corner of the
cube.

(UC, Berkeley)
Solution:

Use Cartesian coordinates with origin at the center of mass and the axes
through the centers of the three pairs of faces of the cube. We have

I, = Iyy =I.,=1,
IL,=1,=1,=0,
The moment of inertia about an axis having direction cosines A, u, v is
I=M1py + p2L, + V21, — 2pvl,, — 2001, — 2\pl,,
=4+t 030 .

To find the direction cosines of a radius vector r from the origin to one
corner of the cube, without loss of generality, we can just consider the
corner with its z,y, z coordinates all positive. Then

r = ai+aj+ak,

where we have taken 2a as the length of a side of the cube. As |r| = v/3a
we have

1
A: =U=—’
# V3
so that
I=1I.
1147

A thin disk of radius R and mass M lying in the zy-plane has a point
mass m = 5M /4 attached on its edge (as shown in Fig. 1.109). The moment
of inertia of the disk about its center of mass is (the z-axis is out of the

paper)
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_ MR?

I
4

SO

0
1
0

N oo

Fig. 1.109.

(a) Find the moment of inertia tensor of the combination of disk and
point mass about point A in the coordinate system shown.

(b) Find the principal moments and the principal axes about point A.

(c) The disk is constrained to rotate about the y-axis with angular

velocity w by pivots at A and B. Describe the angular momentum about A

as a function of time and find the vector force applied at B (ignore gravity).

(UC, Berkeley)

Solution:

(a) The contribution of a mass element Am at radius vector r = (z,, z2,
x3) to the moments and products of inertia about the origin is

I,'j = Am(r25,-j - (L‘i:l!j) )

where §;; = 1 if i = 4, 6;; = 0 if 1 # j. Thus the moment of inertia tensor
of the point mass about A is

s f 1 -1 0
e (71 g
0O 0 2

The moment of inertia tensor of the disk about A, according to the
theorem of parallel axes, is

MR?

(
T\

(= =]

0
1
0

oo
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Hence the moment of inertia tensor of the disk and point mass about A
is

10 -5 0

MR?
f -5 6 0
0 0 16

(b) To find the principal axes and moments of inertia, solve the secular
equation
MR2 10 — Y -5 0

4

or

(16 —y)(y* — 16y +35) =0 .
The solutions are
T = 16, Y2 = 8- V29, v3 =8+ V29 .

Hence the three principal moments of inertia about A are

I, = 4MR?, I, = (2 - %2—3) MR2, I3 = (2 + %2—3) MR? .

The direction cosines (A, u, V) of the principal axes corresponding to I, are
given by
-6 -5 0 A
-5 =10 O p]l =0,
0 00 v

i.e.
_6A'—5/‘l’=0a
—-5A—10u =0,
Oovr=0.

The solution is A = p = 0, v = arbitrary. As
Naptrt=1,
by definition, the direction cosines are

0, v=1.

A=0, ©
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The principal axes for I and I3 have direction cosines given by
2++/29 -5 0 A
-5 —2++29 0 pl=0,
0 0 8+v29) \v
i.e.

(24 V29)A-5u=0,
~BA+ (=2£vV29)u =0,
(8+v29)r =0,

where the top sign is for I; and the bottom sign, I3.
The solutions are

A_ 2429 { 0.677

P ~1.477"°

Then as A2 + p2 + 12 = A2 + 42 = 1, we have

= (,\2 H)‘* {0828

H=\02 ~ o561
0.561

=(1-u)t = .

vl =(1-#%) {0.828

We also require that the principal axes for I3 and I3 be orthogonal:
A2z + pops +vavg3 =0.
We therefore take the principal axes as
(0,0,1) ,

(0.561,0.828,0) ,
(—0.828,0.561,0) .
(c) The moment of inertia tensor I of the system of disk and mass
point about the origin A found in (a) refers to a coordinate frame (z,y, 2)

attached to the disk. In this frame the angular momentum of the system
rotating with angular velocity w is

L=1Ivw,
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or
L, 2 (10 =5 0\ /0 2, {5
L, =M4R 5 6 0w =M}1w 6
L o o0 16/ \o 0

&

Consider a laboratory frame (z',y',2') having the same y-axis as the
rotating frame (z,y, 2) such that the respective axes coincide at t = 0,
as shown in Fig. 1.110.

Y.y

wi ]

wt

Fig. 1.110,

As

z’ = zcos(wt) + zsin(wt), v =y,

2 = —zsin(wt) + zcos(wt) ,

we can define a transformation tensor

cos(wt) 0 sin(wt)
S = 0 1 0
—sin(wt) 0 cos(wt)

so that a vector V is transformed according to
Vi=8Vv.

Applying the above to the angular momentum vector, we find the angular
momentum about A in the laboratory frame:

L, 2 —5 cos(wt)

M,
L, | =8L= }I “ 6 ,
L, 5sin(wt)
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i.e.

—5MR2 2
L, = MR cos(wt), L, = SMRw

5MR2y
T 4 v 2 -

L, 1 sin(wt)

considering the disk alone. The y-axis is a principal axis of inertia and
so rotation about it will not cause any force to be exerted on the pivots.
Hence the forces on the pivots are due entirely to the rotating mass point.
In the rotating frame the mass point suffers a centrifugal force of magnitude
§M4;R“’2, which is balanced by forces exerted on the disk by the pivots. The
forces on the pivots are reactions to these forces. Hence pivot B suffers
a force of magnitude §M8;R“’z in the same direction as the centrifugal force
on the mass point. In the laboratory frame this force rotates with angular
velocity w.

1148

Four masses, all of value m, lie in the zy-plane at positions (z,y) =
(a,0),(—a,0),(0,+2a), (0, —2a). These are joined by massless rods to form
a rigid body.

(a) Find the inertial tensor, using the z-, y-, z-axes as reference system.
Exhibit the tensor as a matrix.

(b) Consider a direction given by unit vector fi that lies “equally
between” the positive z-, y-, z-axes, i.e. it makes equal angles with these
three directions. Find the moment of inertia for rotation about this axis.

(c) Given that at a certain time ¢ the angular velocity vector lies along
the above direction fi, find, for that instant, the angle between the angular
momentum vector and n.

(UC, Berkeley)

Solution:

(a) The elements I;; of the inertial tensor are given by
Iij = E Mp (rfzéij - x"in’ﬂj)
n

where

2 _ .2 2 2
Tn = Zp, + T, + Tn, -
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As at least one of the coordinates of each mass is zero, z;z; = 0 so that
I;; = 0 for all i # j. For ¢ = j, because of symmetry we have

I, = 2m(a2 - az) + 2m(4a2 —0) = 8ma?

Iz = 2m(a® - 0) 4 2m(4a® — 4a?) = 2ma® ,

I3 = 2m(a® - 0) + 2m(4a® - 0) = 10ma? .

Hence the inertial tensor is given by the matrix

8ma? 0 0
0 2ma? 0
0 0 10ma?

(b) As the given direction makes the same angle with the axes, its
direction cosines A, u,v are equal. The moment of inertia about this
direction is then

I = X1y + pPIny 4 Va3 — 2uvlys — 2vAI5, — 20ulyy
= (8ma? + 2mw? + 10ma?)A\?

= 20ma®)? .
The direction cosines are subject to the condition
M4pterr=322=1,

giving A2 = 1. Hence

20
I = ?maz .
(c) The direction n is given by

A 1

n=pul=Al1

v 1

At time T, w is parallel to n:

1

w=wi=)w{l

1

The angular momentum at this instant is given by

L=1w,
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or

L= md®w| 2 |,
10

with magnitude

L = dma?w+/82 + 22 + 102 = V168 \ma’w .

The angle ¢ between L and i is then given by

L-a  Mma?w(8+2+10) 1 20
CQS¢= = =

—_ =0.891,
L Ama?wv/168 V3

3

i.e.
¢ =27°.

1149

Due to polar flattening, the earth has a slightly larger moment of inertia
about its polar axis than about its equatorial axis. Assume axial symmetry
about the polar axis.

(a) Show that the dominant terms of the gravitational potential above
the surface of the earth can be expressed as

1= _GM [1 _C-A (2)2 (300320— 1)]
r Ma?2 \r 2 !

where C and A are the moments of inertia about the polar and equatorial
axes respectively, M is the earth’s mass, a is the mean earth radius and r is
the distance to the center of mass of the earth. The coefficient (C—A)/Ma?
is about 103,

(b) What secular effect will the second term have upon a satellite tra-
veling in a circular orbit around the earth?

(c) If the normal to the plane of the satellite is inclined at an angle « to
the polar axis of the earth, derive an expression for the magnitude of this
effect by taking a time average over the circular orbit.

(UC, Berkeley)
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Solution:

(a) Choose the polar axis as the z-axis and the equatorial plane as
the zy plane. Let a mass element dM of the earth have position vector
r' = (2/,v, Z’) and let a satellite above the surface of the earth have position
vector r = (z,y, z). Then the gravitational potential energy per unit mass
of the satellite is

/ GdM GdM
I

l‘—l"l [r2—2r-r + 23

GdM[ or - r’ '2]'5
=[S

integrating over the entire earth. Taylor expansion gives, neglecting terms
of order higher than (’7')2,

= /2 AV
—/GdM[l_*_rr r 3(r r)]
r

r2 2r2 2 4

As r is a constant vector and the earth is assumed to be a symmetrical

ellipsoid,
/r-r'dM:r‘/r'dM=0.
Hence
_ GM G (r-r)? o2
V=-="-5 [2 a g | M
__GM
T r

dM .

G 3(2:2:/ +yy/ + 221)2 _ (2!2 +y2 + 22)(1"2 + y/2 + z/2)
r3 2r2

Due to the symmetry of the earth, the integrals of z'y/, ¥'2’ and 2’2z’ are

all zero and we have
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v=-SM

r
G 2,02, .2.42 , .2.12
~ 3 [2(z*z"* + y*y'“ + 2°2'%)

daM

_ ($2y'2 +:z:2z'2 +y2z'2 +y2zl2 + 22.’12,2 +z2yl2)]_2_r_2 .

Now, the choice of the z- and y-axes is arbitrary (as long as they are in the
equatorial plane), so that the integral of ' is equal to that of y’. Thus

GM G [[22%? + 12y + 2222 — 222" — 425 — 224"
U=-—"~-5 [ o3 ] dM
_ _GM G [[(z?+¢%)z® — 225" 4 (227 — 2% — )27 Y
T r3 22
GM G [ (322 —r2)(s? — z%)
T Ty T8 272 aM
GM G (3.2 1
=-S5 (G 3) fer - @ ian
GM G (322 1
T ‘T—a(m—g)(frfy)- (1)

AsI; =1,= A, I, = C, z = rcosf, where 8 is the angle between r and
the polar axis, the above can be written as

GM C—A sa\2 {3cos?9—1
U=- r [1_ Ma? (;) ( 2 )]
(b) Equation (1) can be written as U = Uy + Us. Uy = —GTM is the
potential energy per unit mass the satellite would have if the earth were a
perfect sphere. U arises from polar flattening. It gives rise to an additional

force per unit mass of the satellite of F = —VU,. As Vr = I, V=% = =§¢,
Vr=3 = =, V22 = 22k,

SECTELY [ S

2r5

Note that the first part in the square brackets is still a central force, albeit
not of the inverse-square type. It does not change the magnitude and
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direction of the angular momentum about the center of the earth; hence
it has no effect on the plane of orbit, but only makes the satellite deviate
from circular orbit slightly. The second part,

_3G(A-C)

F,
5

zk ,

is not a central force; it makes the orbit plane precess about the z-axis.
(c) As the motion of the satellite is very nearly a uniform circular motion

with center at the origin, because of symmetry the integral of Fadt over a

period of the circular motion is equal to zero, so that its average effect on

the motion is zero. The torque caused by F with respect to the center of

the earth is

3G(C - A)

M=rxF;= 5 (—yzi + z2)) .

Let the intersection of the orbital plane and the equatorial plane of the
earth be the z-axis (Fig. 1.111). In the course of rotation, yz is always
positive while the average value of zx is zero. So over one period, the
average torque is directed in the —z direction. As the angulai momentum
vector lies in the yz-plane and is thus perpendicular to the average torque,
the latter does not change the magnitude of the angular momentum.

Fig. 1.111.

The angular momentum vector L has two components L, and L,. As
the average torque, which is in the —z direction, is perpendicular to L, it
does not affect the latter. Hence it does not change the angle o between L
and the z-axis. The result is that L will precess about the z-axis, describing
a cone of semivertex angle a in a frame fixed to a distant star. As the
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(z,y, 2) frame is fixed with respect to the orbit, the z-axis will rotate around
the center of the earth in the equatorial plane.

Let 6 be the angle between the position vector of the satellite and the
z-axis. Setting & = 0 at time ¢ = 0, we have § = wt, w being the angular
velocity of the satellite. As y = rsin@sina, z = rsinf cosa, the average of
M over one period T = 2% is

_{36(C- A) [T

(M) r5T

—yzdt

_ i3G(C — A)sin(2a) T
=— 53T /9 sin“{wt)dt

_ i3G’(C’ — A)sin(2a)

B 4r3 )
As (M) is perpendicular to the angular momentum L, this will cause the
angular momentum vector to precess about the z-axis with angular velocity

(M)] _ 3G(C — A)sin(2a) |

riw 4rdw

b=

1150
A flywheel in the form of a uniformly thick disk 4 ft in diameter weighs
600 lbs and rotates at 1200 rpm. Calculate the constant torque necessary
to stop it in 2.0 min.
(Wisconsin)
Solution:

The equation of motion for the flywheel is
=-M,

where I is the moment of inertia and M is the stopping torque. Hence

; t
9=UJ0—-MT .

When the flywheel stops at time ¢, 6 =0 and
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M= 1w
t

With I = ME — 1900 Ib £t?, wo = 40r rad/s, t = 120 s,

M = 4007 pdl ft = 39 1b ft.

1151

A structure is made of equal-length beams, 1 to 11, as shown in
Fig. 1.112, hinged at the joints A, B,... ,G. Point A is supported rigidly
while G is only supported vertically. Neglect the beam weights. A weight
w is placed at E. Each member is under pure tension T' or compression C.
Solve for the vertical support forces at A and G and find the tension T or
compression C in each member.

(Columbia)

g B

Fig. 1.112. Fig. 1.113.

Solution:

Consider the structure as a whole. The equilibrium conditions for forces
at A and G and for torques about A give

NAX=0)
Nay +Ngy —-W =0,
AE-W - AG -Ngy =0,

whence

w 2w
Nax =0, Nayr=-=5, Nov=-3-
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Then let the tensions and compressions in the rods be as shown in
Fig. 1.113. Considering the equilibrium conditions for joint A we have

NAy ——Tlsin60° =0,
Cy, —Tycos60° =0,

yielding

Consider the balance of vertical forces at B,C,D,G,F. We obtain by
inspection of Fig. 1.113

w.

2v3 23 2./3
Ca:leT\/—VV, T5=03=T\/—W’ C7=T5=—9\/——W,
_ Nov __4V§ _ __4V§
Tll—sin60°— 9 VV, Cg—-Tll— 9 W .

Then considering the balance of horizontal forces at B, C, E, F' we have

Ty — (T) + C3)cos60° =0,

Cs — (C3 + T5)c0s60° —C; =0,
Cio — (Co — Cr) c0s60° —Cs =0,
Ts — (Tu + Cg) c0s60° =0,

yielding

3 44/3
MW, Ts=—\/——W.

Ti=—W, Co=—W  Co=-5

1152

A uniform thin rigid rod of mass M is supported by two rapidly rotating
rollers, whose axes are separated by a fixed distance a. The rod is initially
placed at rest asymmetrically, as shown in Fig. 1.114.

(a) Assume that the rollers rotate in opposite directions as shown in the
figure. The coefficient of kinetic friction between the bar and the rollers is 4.
Write down the equation of motion of the bar and solve for the displacement
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Fr

EOBNCN BORENCH
-

a—d

Fig. 1.114, Fig. 1.115.

z(t) of the center C of the bar from roller 1 assuming z(0) = z, and
z(0) = 0.

(b) Now consider the case in which the directions of rotation of the
rollers are reversed, as shown in Fig. 1.115. Calculate the displacement
z(t), again assuming z(0) = z¢ and £(0) = 0.

(Princeton)

a
F ¥
N Ny
f fa
mg
1 2

Fig. 1.116.

Solution:

(a) The forces exerted by the rollers on the rod are as shown in Fig. 1.116.
For equilibrium along the vertical direction we require

N1+N2=Mg, aN2=:z:Mg,
giving
N1=(1—£)Mg, No=2ZMg.
a a
The kinetic friction forces are
f1 = uNy, fa=uNy,

with directions as shown in the figure. Note that as the rollers rotate
rapidly, a change in the direction of motion of the rod will not affect the
directions of these forces. Newton’s second law then gives



Newtonian Mechanics 253

uMg
4]

Mi=fHh—-f2=

(a —2z) .
With ¢ = 2z — a, the above becomes

. 2 g

E=-2

- 4%

a

which is the equation of motion of a harmonic oscillator. With the initial
conditions £ = 2z¢ — a, £ = 0 at t = 0, the solution is

€ = (229 — a) cos(wt) ,

where

?ﬁg_
pal

Hence

z = (:1:0 - g—) cos{wt) + -g— .

(b) With the directions of rotation of the rollers reversed, the friction
forces also reverse directions and we have

Mi=f—f,
or 9
€='_#g ’
a

where £ = 2z —a as before. The motion is no longer simple harmonic. With
the same initial conditions, the solution is

£= (:1;0 - %) (e™* + e“*) = (2z9 — a) cosh(wt) ,

i.e.
a a
z= (:z:o - 5) cosh(wt) + 3

where w = 4/ 2‘:-‘1 Note that if zo # %, the rod will move in one direction
until it loses contact with one roller, at which time the equation ceases to

apply.

1153

A torsion pendulum consists of a vertical wire attached to a mass which
may rotate about the vertical. Consider three torsion pendulums which
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consist of identical wires from which identical homogeneous solid cubes are
hung. One cube is hung from a corner, one from midway along an edge,
and one from the middle of a face, as shown in Fig. 1.117. What are the
ratios of the periods of the three pendulums?

(MIT)

Fig. 1.117.

Solution:

In all the three cases, the vertical wire passes through the center of
mass of the solid cube. As the ellipsoid of inertia of a homogeneous solid
cube is a sphere, the rotational inertia about any direction passing through
the center of mass is the same. Hence the periods of the three torsion
pendulums are equal.

1154

Figure 1.118 shows a simple-minded abstraction of a camshaft with
point masses m and 2m fixed on massless rods, all in a plane. It rotates
with constant angular velocity w around the axis OO’ through the long
shaft, held by frictionless bearings at O and O’.

{(a) What is the torque with respect to the mid-point of the long shaft
exerted by the bearings? (Give magnitude and direction.)

{b) Locate an axis, fixed in the plane of the masses, around which the
thing could rotate with zero torque when the angular velocity is constant.

(UC, Berkeley)

Solution:

Choose a coordinate system attached to the shaft with origin at the
mid-point C of the long shaft, the z-axis along the axis OO’ and the z-axis
in the plane of the point masses, as shown in Fig. 1.119.
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Fig. 1.119.

The inertia tensor with respect to C is calculated using the formula

Lij = Y mn(r28ij — TniTn;), where r2 = z2, + 22, + 225. As the masses

n
have coordinates

2m : (0,0,1), m:(,0-1),
2m : (0,0, —1), m: (-1,0,1),

we have
6mli2 0 2mi?

I= 0 8&ml®2 0
2mi2 0 2mi?

Considering the angular momentum J and torque M about C, we have

da dJ
M=—-=
dt dt
where the star denotes differentiation with respect to the rotating coordi-
nate system (z,y, z), as the angular velocity is constant. As

+wxJ=wxJ,

0 1
J=Ilw=I}[0]|=2ml?w}|o0] ,
w 1
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we find
i j k
M=wxJ=| 0 0 w |=2md.%.
2mli%w 0 2mi’w
The torque with respect to the mid-point of the shaft exerted by the
bearings has magnitude 2ml?w? and is in the y direction.

(b) Denote the axis in the zz-plane about which the torque is zero as
the z'-axis and suppose it makes an angle § with the z-axis. As shown
in Fig. 1.119, the z’-, y'- and 2’-axes form a Cartesian frame, where the
z'-axis is also in the zz-plane. In this frame, the angular velocity w is

wsin@
w= 0
wcos @
and
6ml?wsin @ + 2mi?w cos
J=Iw= 0
2mi?wsin 6 + 2mi%wcos
Hence
M=wxlJ
i j k
= wsin@ 0 wcosf
ml2w(6sin + 2cosd) 0 2mi%w(cos@ + sinb)
= 2ml%w?(sin 20 + cos 20)j
For M = 0, we require that
tan20 = -1,

i.e. 8 = —22.5° or 67.5°. Note that the z’-axis, about which the torque
vanishes, is a principal axis of inertia. As such it can also be found by the
method of Problem 1147.
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1155

A coin with its plane vertical and spinning with angular velocity w in
its plane as shown in Fig. 1.120 is set down on a flat surface. What is the
final angular velocity of the coin? (Assume the coin stays vertical; neglect
rolling friction.)

(Wisconsin)

Fig. 1.120.

Solution:

The spinning coin is on a horizontal plane. As the forces acting on the
coin, namely, the supporting force F and gravity P, both pass through the
center of mass, the angular momentum of the coin about its center of mass
is conserved. Hence the angular velocity is still w after it is set down on
the surface.

1156

Human legs are such that a person of normal size finds it comfortable
to walk at a natural, swinging pace of about one step per second, but
uncomfortable to force a pace substantially faster or slower. Neglecting the
effect of the knee joint, use the simplest model you can to estimate the
frequency which determines this pace, and to find what characteristic of
the leg it depends on.

(Wisconsin )

Solution:

Consider the human leg to be a uniform pole of length I. In the
simplest model, the swinging frequency of the leg should be equal to the
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characteristic frequency of the pole when it swings about its end as a fixed
point. The motion is that of a compound pendulum described by

1 o 1 .
—émle— Emglsme,

or

9+§9—0,

for § small. Then the frequency of swing is v = 717; %-‘ll If we take

l~04mrv=1s?,

1157

Cylinder C (mass 10.0 kg and radius 0.070 m) rolls without slipping on
hill H as shown in Fig. 1.121. The string does not stretch and is wrapped
around the cylinder C.

(a) How far vertically upward does C move when the 2 kg mass moves
down one meter?

(b) What are the magnitude and direction of the acceleration?

(c) What are the magnitude and direction of the force of static friction
at the contact point P?
( Wisconsin )

Fig. 1.121.
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Solution:

(a) As the string is unstretchable, when the center of C moves up the
inclined plane a distance Az, the 2 kg mass will also drop Az. However,
as an additional length Az of the string is also released in the process,
the 2 kg mass will actually drop 2Az. Thus when the 2 kg mass moves
down one meter, C will move up the inclined plane 0.5 m, or vertically up
0.5sin30° = 0.25 m.

(b) The forces involved are shown in Fig. 1.121. The above effect means
that for the 2 kg mass we have

2mi =mg— F .
For the cylinder we have

Mi=F+ f—- Mgsin30°,
16 =(F - f)R,

where [ = ,%,MR2 . Furthermore, as the cylinder rolls without slipping we
also have

£=R0O.
The above equations give

. (4m—M

m) g = —00435g = -0.426 ms_2 .

Thus the acceleration has magnitude 0.426 ms~? and acts downward along
the inclined plane.

(c) f =4M(Z+g) = 40x 0.574g = 23.0 N. Its direction is upward along
the inclined plane.

1158

A uniform hoop of mass M and radius R hangs in a vertical plane sup-
ported by a knife edge at one point on the inside circumference. Calculate
the natural frequency of small oscillations.

(Wisconsin)
Solution:

The moment of inertia of the hoop about the supporting knife edge is

I = MR? + MR? = 2MR? .
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mg

Fig. 1.122.

Referring to Fig. 1.122, we have the equation of motion
16 = —MgRsin# ,

or

1§ = —MgR®

for small oscillations. Hence the frequency is

y_w _1 /MR _1 [g
T2 2w I ~2rV2R~

1159

An ultra-high speed rotor consists of a homogeneous disc of mass M,
radius R and width 2{. It is mounted on a shaft supported on bearings
separated by a distance 2d as shown in Fig. 1.123. The two additional
masses, of equal mass m, are arranged symmetrically so that the rotor
remains in “static” balance. Find the time-varying force on the bearings if
the rotor turns at angular velocity w.

(Wisconsin)

Fig. 1.123.
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Solution:

In the rotating frame attached to the disk, the additional masses each
suffers a centrifugal force mRw?, resulting in a torque T = 2mRw?l. This
torque is balanced by a torque of the same magnitude but opposite in
direction, supplied by the bearings which are separated by a distance 2d.
Hence the bearings each suffers a force 5% = "‘R‘d"zl in the same direction
as that of the centrifugal force on the nearer mass. In the fixed frame these

rotate with angular velocity w.

1160

A 100 m? solar panel is coupled to a flywheel such that it converts
incident sunlight into mechanical energy of rotation with 1% efficiency.

(a) With what angular velocity would a solid cylindrical flywheel of
mass 500 kg and radius 50 cm be rotating (if it started from rest) at the
end of 8 hours of exposure of the solar panel?

Take the solar constant to be 2 cal/cm?/min, for the full time interval.
(1 cal = 4.2 Joules)

(b) Suppose the flywheel, whose axle is horizontal, were suddenly re-
leased from its stationary bearings and allowed to start rolling along a
horizontal surface with kinetic coefficient of friction 4 = 0.1. How far will
it roll before it stops slipping?

(c) With what speed is the center of mass moving at that moment?

(d) How much energy was dissipated in heat?

(UC, Berkeley)

Solution:

(a) The kinetic energy of rotation of the flywheel is E = 1Jw§, where
I = imR?, giving

= 2E  [2x0.01 x 100 x 10% x 8 x 60 x 2 x 4.2
VT~ 15500 x 0.52

= 1136 rad/s .

(b) Measure time from the instant the flywheel is released, when it is
rotating with angular velocity wg. After its release the only horizontal force
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Fig. 1.124.

on the flywheel is the frictional force as shown in Fig. 1.124. The equations
of motion are

Iw = —fR, mo=f.
At time ¢; when the flywheel stops slipping, let its angular velocity be w;.
The boundary conditions are w = wp, v =0 at t =0, w = wy, v = v; = R
at t = t;. The above equations integrate to give
I(wl —UJ()) = —fRt, ,
mv = mRw, = ft, .
Note that these equations can also be obtained directly by an impulse
consideration. Solving these we have
wy =0 _ woR
1 3 1 1 3#g 1

as I = lmR?, f = umg. The distance covered by the flywheel before it
stops slipping is

—_1 f 2_1 uJoR 2_(UJ0R)2_
5—2(m)t1—2#g(3pg) = T8ug = 18290 m .

(c) At t; the speed of the center of mass is

(d) At time 0 < t < t;, the equation of motion integrates to
I{w—wp) =—fRt,
ft.

At 0 < t < t;, the flywheel both slips and rolls. Only the slipping part of
the motion causes dissipation of energy into heat. The slipping velocity is

muv
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and the total dissipation of energy into heat is

Q= [ (- Ro)fat
0

3f2¢t2
) L + Rwofta
2m
2, .2
=m12“’° = 2688 x 107 J .

This can also be obtained by considering the change in the kinetic energy
of the flywheel:

1 1 1
_mR®> 8w m(Rw)®> mRw§
4 9 2 9 6
same as the above.
1161

A man wishes to break a long rod by hitting it on a rock. The end
of the rod which is in his hand rotates without displacement as shown in
Fig. 1.125. The man wishes to avoid having a large force act on his hand
at the time the rod hits the rock. Which point on the rod should hit the

rock? (Ignore gravity).

’mw

(CUSPEA)

0o Q rock F

Fig. 1.125. Fig. 1.126.
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Solution:

Let the point of impact be at distance z from the end O held by the
hand and the reaction to the force acting on the hand as a result of the
application of F be F', as shown in Fig. 1.126. Considering the motion of
the center of mass C, we have

/(F—F’)dt p—

[lo(e-)-riar

where v is the velocity of C', w the angular velocity about C' immediately
after the application of F, and I = '—'1‘17, m being the mass of the rod. As
O is to remain stationary, we require

or

We also require F’ =~ 0, so that

/thzmv, (:z:—~%)/th=Iw,

which give

w2

D~
D~

1162

The two flywheels in Fig. 1.127 are on parallel frictionless shafts but
initially do not touch. The larger wheel has f = 2000 rev/min while the
smaller is at rest. If the two parallel shafts are moved until contact occurs,
find the angular velocity of the second wheel after equilibrium occurs (i.e.
no further sliding at the point of contact), given that Ry = 2Ry, I) = 1615.

(Wisconsin)
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Fig. 1.127.

/‘—5

Solution:

Suppose the impulse of the interacting force between the two wheels
from contact to equilibrium is J. Then the torque of the impulse acting on
the larger wheel is JR) and that on the smaller wheel is JRj.

We have I)(w; — wi) = JRy, lw) = JR;, where w, and w| are the
angular velocities of the larger wheel before contact and after equilibrium
respectively, and wj is the angular velocity of the smaller wheel after
equilibrium. As there is no sliding between the wheels when equilibrium is
reached,

w; R] = w'2R2 .
The above equations give

I]R1R2w; .
w; = m = 16(01 = 3200 rev/mln .

1163

Two uniform cylinders are spinning independently about their axes,
which are parallel. One has radius R; and mass M, the other Ry and
M,. Initially they rotate in the same sense with angular speeds §; and
1, respectively as shown in Fig. 1.128. They are then displaced until they
touch along a common tangent. After a steady state is reached, what is the
final angular velocity of each cylinder?

(CUSPEA)

Solution:

Let wy, wy be the final angular velocities of the two cylinders respectively
after steady state is reached. Then
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Fig. 1.128,

wR) = —waRy .
Let J;, and J, be the time-integrated torque 2 exerts on 1 and 1 on 2, then
N _ R
Ri Ry’
J = hi{w — ), Jo = Ip(wy — S22) 5

or
I (w1 — ) _ (w2 — Q)

Ry R,

As I o MR?, the last equation becomes

M]R](wl - Q]) = M2R2(UJ2 - 92) N

i.e.
Mllel - M2R2w2 = M]R]Q] — M2R292 .
Hence
= MRt — M2 Ry
! R](M] + Mz) !
o = MRy — MR Y
2 Ry (M) + My)
1164

Three identical cylinders rotate with the same angular velocity §2 about
parallel central axes. They are brought together until they touch, keeping
the axes parallel. A new steady state is achieved when, at each contact line,
a cylinder does not slip with respect to its neighbor as shown in Fig. 1.129.
How much of the original spin kinetic energy is now left?
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(The precise order in which the first and second touch, and the second and

third touch, is irrelevant.)

(CUSPEA)

®E G- OB

Fig. 1.129.

Solution:

As there is no slipping, if ' is the final angular velocity of cylinder 1,
then cylinders 2 and 3 have final angular velocities —§¥ and €' respectively.
Let I be the moment of inertia of each cylinder about its axis of rotation,
M;; be the angular impulse imparted to the ith cylinder with respect to its
axis of rotation by the jth cylinder. Newton’s third law requires that, as

the cylinders have the same radius,
Mij=Mji~ (i1j=11213; 1‘7"..7)
Dynamical considerations give

I - Q) = M2,
I(— — Q) = My + Mas

QY ~ Q) = Mss .
(1) + (3) — (2) gives
I3 - 9) =0,
, Q

The ratio of the spin kinetic energies after and before touching is

2'_%<3m'2>,(&' Pl
T 1@roz) Q) T 9

1)
(2
®3)
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1165
Find the ratio of the periods of the two torsion pendula shown in
Fig. 1.130. The two differ only by the addition of cylindrical masses as
shown in the figure. The radius of each additional mass is 1/4 the radius
of the disc. Each cylinder and disc have equal mass.
(Wisconsin)

LLLLL LLLLLLLL, Z

Fig. 1.130,

Solution:

Let I} and I; be the moments of inertia of the two torsion pendula
respectively. If A is the restoring coefficient of each wire, then the equations
of motion are I,§ + A = 0, I,6+ A6 = 0. Hence the angular frequencies of
oscillation of the torsion pendula are wy = /A/I) and wy = /A/I,. For
the first pendulum, I; = MR?/2, and for the second,

MR? M (R\? 3R\?| 27 .,
I, = 2 +2[—2—('4—) +M(T) —1—6MR .

Hence the ratio of the periods is

T _w _ [ _(2)\}
Tz_wl— 12_ 3 )
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1166

A long thin uniform bar of mass M and length L is hung from a fixed
(assumed frictionless) axis at A as shown in Fig. 1.131. The moment of
inertia about A is ML?/3.

A

-

a

L’J

Fig. 1.131.

(a) An instantaneous horizontal impulse J is delivered at B, a distance
a below A. What is the initial angular velocity of the bar?
(b) In general, as a result of J, there will be an impulse J' on the bar
from the axis at A. What is J'?
(c) Where should the impulse J be delivered in order that J' be zero?
( Wisconsin )

Solution:

(a) Ja = I{w — wp), where wo is the angular velocity of the bar before
the impulse is delivered. As wy = 0, the initial angular velocity is

__ﬁ_.'iJa
I~ ML

(b) The initial velocity of the center of mass of the bar is v = wL/2. So
the change in the momentum of the bar is Mv = MwL/2. As this is equal
to the total impulse on the bar, we have

J+J’=M_
2
Hence Mol 3
1 MWL g (28
J = 3 J J(2L 1).
c
(c) oL

J' =0, if a=—.
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Hence there will be no impulse from the axis if J is delivered at a point
2L/3 below A.

1167

The crankshaft shown in Fig. 1.132 rotates with constant angular veloc-
ity w. Calculate the resultant forces on the bearings. In a sketch show the
directions of these reactions and the direction of the angular momentum.

(Assume the crankshaft is made of thin rods with uniform density).

(UC, Berkeley)

— y
a N
T_I:““ “““ L::—L{-w 0 —> X > w
1 Y \N
"L_ L
Fig. 1.132. Fig. 1.133.

Solution:

Consider the motion in a frame attached to the crankshaft as shown
in Fig. 1.133. As the rods are either parallel or perpendicular to the axis
of rotation, the centrifugal force on each rod can be considered as that
on a point of the same mass located at its center of mass. Let N denote
the constraint force exerted by the bearing on each shaft. As there is no
rotation about the z-axis, we require that the moments of the forces about
O should balance:

b b
W N+2 phaw? =2 pbeaw?+2-pa- Cuw? |
2 2 2
giving
paw?
2
where p is the mass per unit length of the rods. The reactions on the

bearings are equal and opposite to N as shown in Fig. 1.131. In a fixed
frame these forces are rotating, together with the crankshaft, with angular

N =

(a+b),
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velocity w about the axle. The angular momentum of the crankshaft is
given by

L, w I.w
L, =110 = Lew],
Lz 0 Inw

where I is the moment of inertia tensor about O with elements
Iij = Z Amn(r26,-j - .’L‘,‘.’L‘j) .
n

As all 2 =0, I,; = 0. Furthermore it can be seen that I, > 0, I, < 0.
Hence the angular momentum L has direction in the rotating coordinate
frame as shown in Fig. 1.133. Note that gravity has been neglected in the
calculation, otherwise there is an additional constant force acting on each
bearing, (2a + b)pg in magnitude and vertically downward in direction in
the fixed frame.

1168

Two equal point masses M are connected by a massless rigid rod of
length 2A (a dumbbell) which is constrained to rotate about an axle fixed
to the center of the rod at an angle 6 (Fig. 1.134). The center of the rod
is at the origin of coordinates, the axle along the z-axis, and the dumbbell
lies in the zz-plane at t = 0. The angular velocity w is a constant in time
and is directed along the z-axis.

(a) Calculate all elements of the inertia tensor. (Be sure to specify the
coordinate system you use.)

(b) Using the elements just calculated, find the angular momentum of
the dumbbell in the laboratory frame as a function of time.

(c) Using the equation L = r x p, calculate the angular momentum and
show that it is equal to the answer for part (b).

(d) Calculate the torque on the axle as a function of time.

(e) Calculate the kinetic energy of the dumbbell.

(UC, Berkeley)
Solution:

(a) Use a coordinate frame zyz attached to the dumbbell such that the
two point masses are in the xz-plane. The elements of the inertia tensor
about O, given by I;; = Y., ma(r?é;; — z:x;), are
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Fig. 1.134.

I, =2MA%?cos’0, I,,=2MA?  I,,=2MA%sin’0,
I, =1I,=0, I, =—-2MA?cosfsind = —MA%sin’6 .
Thus
2MA%cos’9 0  ~MAZ%sin26
I= 0 2M A? 0
—~M A?sin 20 0 2M A2 sin? 9
(b) Use a laboratory frame z'y'z’ such that the 2’-axis coincides with
the z-axis of the rotating frame in {a) and that all the respective axes of

the two frames coincide at £ = 0. The unit vectors along the axes of the
two frames are related by

e coswt sinwt 0 e}
e; | = | —sinwt coswt O A
es 0 0 1 €4

Then the inertia tensor in the laboratory frame is

coswt —sinwt 0
I'=81S = { sinwt coswt 0

0 0 1
2M A2 cos? 6 0 —M A?5in 26 coswt sinwt 0
X 0 2M A? 0 —sinwt coswt 0
—MA%sin20 0 2M A?sin? 0 0 0 1

Hence the angular momentum of the dumbbell in the laboratory frame is

0 —sin 20 cos wt
L=0{0 ] =MA>w | —sin20sinwt
w 2sin? 0
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(c) The radius vectors of M, and M, from O are respectively
r; = A(sin 6,0, cos 8) ,
ro = A(—sin6,0, — cos )

in the rotating frame. Using the transformation for the unit vectors we
have

r, = Afsin6(e] coswt + e} sin wt) + e cos 6]
= A(sin 8 coswt, sin@sinwt, cosb) ,
r; = A(—sin @ cos wt, — sin @ sin wt, — cos §)

in the laboratory frame. The angular momentum of the system in the
laboratory frame is

L=Zr xp=ZMr>< (wxr) =ZM[r2w—(r~w)r]
=2MA%ue}
— M A?wcos 0(€] sinf coswt + €} sin sin wt + e3 cos §)
+ M A%wcos §(—é€ sin fcos wt — ej sin @sin wt — €} cos §)
= M A%w(—e] sin 20 cos wt — €} sin 20s5in wt + e425sin 9)

same as that obtained in (b).
(d) The torque on the axle is

T= av _ M A% [sin 20 sin wte) — sin 20 cos wteh] .
dt !
(e) As w = (0,0,w) the rotational kinetic energy of the dumbbell is
2
T= I‘—zzw—- = MA%?sin%0 .
1169

A squirrel of mass m runs at a constant speed Vp relative to a cylindrical
exercise cage of radius R and moment of inertia I as shown in Fig. 1.135.
The cage has a damping torque proportional to its angular velocity. Neglect
the dimensions of the squirrel compared with R. If initially the cage is at
rest and the squirrel is at the bottom and running, find the motion of
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the squirrel relative to a fixed coordinate system in the small oscillation,
underdamped case. Find the squirrel’s angular velocity in terms of its
angle relative to the vertical for arbitrary angular displacements for the
undamped case. Discuss any design criteria for the cage in this case.

(Wisconsin)
?
f
|
| my
Fig. 1.135. Fig. 1.136.

Solution:

In a fixed coordinate frame, define 8 as shown in Fig. 1.136. For the
squirrel, the equation of motion is

mRO = f —mgsin@ ,
and for the cage the equation of motion is
1 =—-fR—-k¢,

where f is the friction between the squirrel and the cage and k is a constant.
In addition, as the squirrel has a constant speed V; relative to the cage, we
have
R(O-¢)=Vo,

which means ¢ = 6, p=6- %‘1. Making use of these and eliminating f
from the equations of motion give
K

R

For small oscillations, 8 < 1 and the above reduces to

(I + mR*)0 + k6 + mgRO = %’2 .

(I + mR?)§ + kf + mgRsinf =
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A particular solution of this equation is

_ M
" mgR?’

while for underdamping the general solution for the homogeneous equation
is
6 = e (Asinwt + Beoswt) ,

where
k mgR

= —— = 2
T +mRe)’ ¢

b I+mR2—b )

Hence the general solution of the above equation is

6= %o

= + e (Asinwt + Beoswt) .
) e *(Asinw coswt)

Using the initial condition that at t =0,0 =0, ¢ =0, ¢ =0, 6= %‘1, we

find
kW kVo b mgR\ . bt
6= mgRE  mgR? [coswt+ (w K sinwt| e

For the undamped case (k = 0), the differential equation is

(I + mR?)f + mgRO =0

(I + mR?)dé? = —2mgRAd0 ,
which integrates to
2 = Yo ’ — _My
R I +mR?

using the initial condition for 6. Hence

9 _ ‘/0 ? ng 2
9‘*\/(i> T+mR2

We require I + mR? > k for the undamped case to hold. Hence the cage
should be designed with a large moment of inertia.
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1170

A thin square plate with side length a rotates at a constant angular
frequency w about an axis through the center tilted by an angle § with
respect to the normal to the plate.

(a) Find the principal moments of inertia.
(b) Find the angular momentum J in the laboratory system.
(c) Calculate the torque on the axis.
(UC, Berkeley)

B

z W

Fig. 1.137.

Solution:

(a) Take origin at the center O of the square. For a coordinate frame
attached to the square, take the plane of the square as the zy-plane with the
z- and y-axis parallel to the sides. The z-axis, which is along the normal,
makes an angle § with the z/-axis of the laboratory frame about which the
square rotates, as shown in Fig. 1.137. We also assume that the z-, 2- and
2'-axes are coplanar.

Then by symmetry the z-, y- and 2-axes are the principal axes of inertia
about O, with corresponding moments of inertia

ma? ma?

L, =1, = ——, I,,=—,
W12 6
where m is the mass of the square.

(b) The angular momentum J resolved along the rotating frame coor-
dinate axesis
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2
Jz e 02 0 wsinf ";—‘fwsine
Jy,|=| o 1z 0 0 = 0
12
J, 0 0 mTcz’ wcosf "‘T“aw cosf

We can choose the laboratory frame so that its y’-axis coincides with the
y-axis at t = 0. Then the unit vectors of the two frames are related by

e, = cosf coswte,s + cosfsinwte, +sinfe,: ,
e, = —sinwtey + coswitey ,
e, = —sinfcoswte, — sinfsinwte, + cosfe, .

Hence the angular momentum resolved along the laboratory frame coordi-
nate axes is

Jor [cosfcoswt —sinwt —sinfcoswt "}—‘Ew sin6
Jy | = | cosfsinwt coswt —sinfsinwt 0
T \  sind 0 cosf mal,cos 6

2 .
( —%w sin 0 cos 8 cos wt

2 . .
= —%wsmecosesmwt

\ "‘l—gaw(l + cos? 6)

(c) The torque on the axis is given by

dJ dJ
M_(a>lab _(Et—>rot +wXJ_wXJ

e, e, e,
= u.;sine 0 u.;cose
me. ,sinf 0 2%wcosé
12 6
2
ma® o .
—-Fw sin @ cosfe,, .

The torque can be expressed in terms of components in the laboratory

frame:
2

M= —m—laz—w2 sin @ cos 6(— sinwte, + coswte,) .

This can also be obtained by differentiating L in the laboratory frame:

M= (Q)
dt lab
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1171

A thin flat rectangular plate, of mass M and sides a by 2a, rotates with
constant angular velocity w about an axle through two diagonal corners,
as shown in Fig. 1.138. The axle is supported at the corners of the plate
by bearings which can exert forces only on the axle. Ignoring gravitational
and frictional forces, find the force exerted by each bearing on the axle as
a function of time.

(Princeton)

Fig. 1.138.

Solution:

Use a coordinate frame attached to the plate with the origin at the
center of mass O, the y-axis along the normal, and the z-axis parallel to
the long side of the rectangle, as shown in Fig. 1.138. Then the z-, y- and
z-axes are the principal axes with principal moments of inertia

Ma? 5Ma? 4Ma?
ko= WmTTo =T

Let 2’ denote the axis of rotation and o the angle between the 2- and
Z'-axes. The angular momentum of the plate is

1 6 0 wsina sina
Ma? Ma?
L 1; 05 0 0o |= 1"2“’ 0
0 0 4 wCos & 4cosa

The torque on the axle of the plate is then
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dL dL
= — = —_— L:
T (dt)ﬁxed (dt)rot e wxL

Ma2,?)| & €& &
= sina 0 cosa
1 .
sina 0 4dcosa

_ Mad%? ) _ Mad%?
=-— cosasinae, = — 10 ey,
as sina = 15, cosa = 25. Let N4, Np be the constraint forces exerted

by the bearings on the axle at A, B respectively. Rotate the coordinate
frame Ozyz about the y-axes so that the 2z and 2’-axis coincide. The new
coordinate axes are the z’-axis, y’-axis which is identical with the y-axis,
and z’-axis shown in Fig. 1.138. As the center of mass is stationary, we
have

Nagr + Npyr =0,  Npy +Npy =0.
Considering the torque about O we have

Ma2w?
10 °

Npyd — Nppd = — NAyrd—NByrd=0,

where d = % B = ﬁéa. The above equations give
Nay =Ny =0

Ma?2w? Maw?

Nug = ,
Az 20d 10v5
Ma?w? Mauw?
Npy = — = - .
20d 10v5

These forces are fixed in the rotating frame. In a fixed coordinate frame
they rotate with angular velocity w. In a fixed frame Oz"y"2" with the
same 2'-axis and the z'’-axis coinciding with the z'-axis at ¢t = 0,

Maw? 2
Npgn = ——= coswt Npgyy = ————sinwt
AT 0v5 ’ v 10v/5 :
2 Maw?
Npgn = — coswt, Npy» = ——=sinwt .

10v/5 10v5
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1172

A homogeneous thin rod of mass M and length b is attached by means
of an inextensible cord to a spring whose spring constant is k. The cord
passes over a very small and smooth pulley fixed at P. The rod is free to
rotate about A without friction throughout the angular range -7 <0 <«
(Fig. 1.139). When ¢ = 0 the spring has its natural length. It is assumed
that b < a and that gravity acts downward.

(a) Find the values of 8 for which the system is in static equilibrium,
and determine in each case if the equilibrium is stable, unstable or neutral.
(b) Find the frequencies for small oscillations about the points of stable
equilibrium.
{(Note: line PA is parallel to g).
(SUNY, Buffalo)

Solution:
(a) Take the direction pointing out of the paper as the positive direction
of the torques. The torque about point A due to gravity is

Ly = —Mng sind ,

and that caused by the restoring force due to the spring is Ly = kc bsin6,,
where 6, is the angle formed by the rod with the rope, or, using the sine
theorem

c _ a
sinf  sin6; ’
L, = kbasin@ .

For equilibrium, we require Ly + Ly = 0, or kasinf = A—gﬂ sin@.



Newtonian Mechanics 281

i) If ka = Mg/2, the equilibrium condition is satisfied for all # and the
equilibrium is neutral.

ii) If ka < Mg/2, the equilibrium condition is satisfied if § = 0 or § = .
Consider the equilibrium at § = 0. Let § = 0 £ ¢, where € > 0 is a small
angle. Then

M
L=Lk+ng;b(Tg—ka)e.
Thus

L < 0 for 6 = +e,
L>0forf=—c¢.

Hence L tends to increase ¢ in both cases and the equilibrium is unstable.
For the equilibrium at @ = 7 £ ¢, we have

Then

L<Oforf=7n—¢,
L>0for0=7n+¢€.

In the case L tends to reduce € and the equilibrium is stable.

iii) If ka > Mg/2, the situation is opposite to that of (ii). Hence in this
case @ = 0 is a position of stable equilibrium and § = 7 is a position of
unstable equilibrium.

(b) Take the case of ka > Mg/2 where 8 = 0 is a position of stable
equilibrium. Let § = € where ¢ is a small angle. The equation of motion is

2
b (ka - %) sine = ——M;—bé' ,

or for small oscillations

2MY?

b(2ka — Mg)e + E€=0.

Hence the frequency of oscillation is

;= 1 [3(2ka — My)
Y 2Mb :
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Similarly in the case ka < Mg/2, the frequency of small oscillations about
the position of stable equilibrium at 8 = = is

1 [3(Mg - 2ka)

f =5 oMb

1173

A thin ring of mass M and radius R is pivoted at P on a frictionless
table, as shown in Fig. 1.140. A bug of mass m runs along the ring with
speed v with respect to the ring. The bug starts from the pivot with the
ring at rest. How fast is the bug moving with respect to the table when it
reaches the diametrically opposite point on the ring (point X)?

(MIT)

>

]

w

Fig. 1.140.

Solution:

The moment of inertia of the ring with respect to the pivot P is
I = MR? + MR? = 2MR? .

When the bug reaches point X, its velocity with respect to the table is
v — 2Rw and the angular momentum of the ring about P is

J =2MR*w ,

where w is the angular velocity of the ring about P at that instant.
Initially the total angular momentum of the ring and bug about P is zero.
Conservation of angular momentum then gives

2MR?*w — 2mR(v — 2Rw) =0,
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or
muv

YTRM+2m)
The velocity of the bug at point X with respect to the table is

My

vo 2R = g

1174

A cone of height h and base radius R is constrained to rotate about its
vertical axis, as shown in Fig. 1.141. A thin, straight groove is cut in the
surface of the cone from apex to base as shown. The cone is set rotating
with initial angular velocity wo around its axis and a small (point-like) bead
of mass m is released at the top of the frictionless groove and is permitted
to slide down under gravity. Assume that the bead stays in the groove, and
that the moment of inertia of the cone about its axis is Io.

(a) What is the angular velocity of the cone when the bead reaches the
bottom?

(b) Find the speed of the bead in the laboratory just as it leaves the
cone.

(MIT)

Fig. 1.141.

Solution:

(a) As the total angular momentum of the system is conserved, the
angular velocity w of the cone at the time when the bead reaches the bottom
satisfies the relation
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Iqwo = (I + mRY)w .

Hence
Towy

w= I() + mR? ’
(b) As the energy of the system is conserved, the velocity v of the bead
when it reaches the bottom satisfies

Lo _Ll 2 1. 4
510“-’0 + mgh = va + 210w
with
v? = vﬁ+vi =’Uﬁ+R2w2 ,
where v is velocity of the bead parallel to the groove and v, is that
perpendicular to the groove. Thus
1 1 1 1
Emvﬁ = ilowg +mgh — §Iow2 - EmR%u2 ,
giving
(Io+mR?)  IZuw? Iow?R?
m_ (lo+mR22 T i rmRe

Hence the velocity of the bead when it reaches the bottom is

2 2
'U" = I()UJO -

V=’Uli+’v||j

IOUJOR . Iow§R2
I() + mR?

- Iy +mR2l

+2ghj,

¢ and j being unit vectors along and perpendicular to the groove respec-
tively, with magnitude

_ IOUJOR 2 Iow§R2
v= \/(Io+mR2) t o rmRz T W0

This speed could have been obtained directly by substituting the expression
for w in the energy equation.

1175

A thin uniform disc, radius a and mass m, is rotating freely on a
frictionless bearing with uniform angular velocity w about a fixed vertical
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axis passing through its center, and inclined at angle a to the symmetry
axis of the disc. What is the magnitude and direction of the torque, and of
the net force acting between the disc and the axis?

(Columbia)

Fig. 1.142.

Solution:

Take a coordinate frame Ozyz attached to the disc with the origin at
its center O, the z-axis along the normal to the disc, and the z-axis in the
plane of the z-axis and the axis of rotation 2/, as shown in Fig. 1.142. The
2-, y- and z-axes are the principal axes of the disc with principal moments
of inertia

1 1 1
I =gmd®, L= Zma2, I, = 5ma2 .

The angular momentum about O is

ima® 0 0 wsin o
L= 0 jma? 0 0
0 0 3ma? wcos a

1
= Zma2(wsinaez + 2wcosae,) .

Hence the torque is
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dL dL
M:(—) =(—) +wxL=wxL
dt fixed dt rot

1
(wsinae, + wcosae,) x —ma?w(sinae, + 2cos ae,)

4

1
= —-ma’wsinacos aey .

4

The torque is in the plane of the disc and is perpendicular to the plane
formed by the normal to the disc and the axis of rotation. It rotates with
the disc. As the center of mass of the disc is stationary, the net force on
the disc is zero.

1176

A moon of mass m orbits with angular velocity w around a planet of
mass M. Assume m <« M. The rotation of the moon can be neglected
but the planet rotates about its axis with angular velocity {z. The axis of
rotation of the planet is perpendicular to the plane of the orbit. Let I =
moment of the inertia of the planet about its axis and D = distance from
the moon to the center of the planet.

(a) Find expressions for the total angular momentum L of the system
about its center of mass and for the total energy E. Eliminate D from both
these expressions.

(b) Generally the two angular velocities w and §2 are unequal. Suppose
there is a mechanism such as tidal friction which can reduce E if w # §2,
but conserves angular momentum. By examining the behavior of F as a
function of w, show that there is a range of initial conditions such that
eventually w = § and a stable final configuration obtains.

Famous examples of this effect occur in the orbits of the moons of
Mercury and Venus. (However, it is the lighter body whose rotation is
relevant in these examples.)

(Princeton)

Solution:

(a) As M > m, the position of the planet can be considered to be fixed
in space. The total angular momentum about the center of mass and the
total energy of the system of moon and planet are then
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L=IQ+mDw,

1 1 GMm
E=-I024+ = 2.2 _ T
2IQ +2me Fo)

Considering the gravitational attraction between the two bodies we have

M
—G’D;n = mDuw? ,
or
1
o-(2)
w
Substituting this in the above gives
2002\ %
L=IO4+m (G M ) .
1
E=I0" - %(GMW)% : (1)

(b) As angular momentum is to be conserved, dL = 0, giving

dQ mD?

dw 31
For a configuration to be stable, the corresponding energy must be a
minimum. Differentiating (1), we have

dE = IQdS) — %(G’M)%w_%dw

mD?

= 3 (Q—W)dbj,
d?E  2mD dD mD? [dQ
W= se-ag v (21)
__mD? mD? +1- ﬂ
T 9 I w )

Hence for the configuration to be stable, we require that

O=w,
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and furthermore that

This latter condition can be satisfied by a range of initial conditions.

1177

A pendulum consists of a uniform rigid rod of length L, mass M, a bug
of mass M /3 which can crawl along the rod. The rod is pivoted at one end
and swings in a vertical plane. Initially the bug is at the pivot-end of the
rod, which is at rest at an angle 6y (6p < 1 rad) from the vertical as shown
in Fig. 1.143, is released. For t > 0 the bug crawls slowly with constant
speed V along the rod towards the bottom end of the rod.

(a) Find the frequency w of the swing of the pendulum when the bug
has crawled a distance ! along the rod.

(b) Find the amplitude of the swing of the pendulum when the bug has
crawled to the bottom end of the rod (I = L).

(c) How slowly must the bug crawl in order that your answers for part
(a) and (b) be valid?

(Wisconsin)

Fig. 1.143.

Solution:

(a) When the bug has crawled a distance {, the moment of inertia of the
rod and bug about the pivot is



Newtonian Mechanics 289

1 1 1
I=_ML?>4+ _MI>=-M(L*+ 1) .
gML? + s MIP = SM(L* + 1)

The equation of motion of the pendulum is
d L 1
I gl g .
dt( 6) = Mg2sm9 3Mglsm9,

or

1 9 s 2 o . L 1
3M(L +1 )0+§M110— Mgsmt9(2 +3) .

For small oscillations it becomes

20 gl+3)6
L2+ L2412
If the bug crawls so slowly that the change in [ in a period of oscillation is
negligible, i.e. [ = v < lw, we can ignore the second term and write

by g(2l + 3L)
2(L? +1?)

6+ =0.

0=0
Hence the angular frequency of oscillation w is

g(2l +3L)
AL+ 12)

(b) Consider the motion of the bug along the rod,

M. . Mgcos@
(-1 = 2"~ _
S (-1 = =225
where f is the force exerted on the bug by the rod. As the bug crawls with
constant speed, I = 0. Also for small oscillations, cos§ ~ 1 — — . The above
gives .
_ Mg Mg, M
=5 %0+
The work done by f as the bug crawls a distance dl is then
Mg g6? "
dW = —fdl = ——= — -1
W=—f 3 di + 3 < 5 0

which is stored as energy of the system. The first term on the right-hand
side is the change in the potential energy of the bug, while the second term
is the change in the energy of oscillation E of the system,
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M (g6*
dE—?(T—lﬂ)dl.

Under the condition | < lw, I hardly changes in a period of oscillation and
can be taken to be constant. For each [, when we consider a full period, the
kinematic quantities in the above equation can be replaced by their average

values .
_M[(g6® =
dE_?(2 —102 | dl.

Now, in single harmonic oscillations the potential and kinetic energy are
equal on average, so that

m_ L M 5 oo E
T=g S(F+Bf =73,
V=A—/Ig—(1—cos€)+—@(1—cose)
2 3
_Mg(L N\Ngm_FE
2 \2 '3/ 2’
or
- SF
M(IZ+B)’
s_ O
= MeBLT2)

Substituting these in the energy equation we have

dE 1 l i
E \3L+2 L*+102 ’

1 3L+ 21
InE = - —_—
nk 2ln(L2+l2)+K,

or

where K is a constant. Initially, [ = 0, E = Ey, i.e.

1 3
lnE0=§ln(z) +K,

and we thus have
ln£ _ lln BL+2)L
Ey 2 3(L2 +12)
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Whenl =1L,
ln£— 1ln§
Eo 2 6’
i.e.
5
E=,/-
g 2o

0 is equal to the amplitude when § =0 i.e. T =0 and E = V. When
I = L, the amplitude 0,5 is given by

1 L LN,
§Mg(§+§)9mu—E.

When | = 0, we have

1. L
~Mg-Z6:=Ep.
5M9- 56 = Eo

Then as E = \/‘:—;‘ Ey, the above expressions give

1
3 4
Omax = (1—0) 0 .

(c) We have neglected the radial velocity of the bug as compared with
its tangential velocity: [ <« lw. This is the condition that must be assumed
for the above to be valid.

1178

A uniform rod of mass m and length [ has its lower end driven sinu-
soidally up and down as shown in Fig. 1.144 with amplitude A and angular
frequency w. It is a fact that for suitable choices of the parameters m, [, A
and w, the pendulum will undergo oscillations around the statically unstable
position 8 = 0. (The motion is confined to the plane of the diagram.)

(a) List all the components of all forces on the rod.

(b) Is the angular momentum of the rod conserved?

(c) Is the linear momentum of the rod conserved?

(d) Is the energy of the rod conserved?

(e) Find the components of the acceleration of the center of mass as
functions of time expressed in terms of 6(t).
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(f) Write down the equation of angular motion of the rod in terms of
the forces on it.
(g) Use (e) and (f) to find an equation of motion for 4(t).

YOU ARE NOT ASKED TO SOLVE THIS EQUATION OF MOTION,
BUT TO INTERPRET IT:

(h) Qualitatively, what kind of motion is predicted when A = 0?

(i) Physically, how is it that oscillations about the upright position can
occur?

(Hint: how do you expect the frequency of the § motion to be related
to w?)

( Wisconsin)

Fig. 1.144. Fig. 1.145.

Solution:

(a) The forces on the rod are the gravity mg, and the components f,,
fy of the force f exerted by the moving pivot.

(b) The angular momentum of the rod is not conserved.

(c) The linear momentum of the rod is not conserved.

(d) The energy of the rod is not conserved.

(e) Use a moving coordinate frame O'z'y’ as shown in Fig. 1.145 with
the axes parallel to the corresponding axes of the fixed frame Oxy, and the
origin O’ moving along the y-axis such that its radius vector from O is

ro = Acoswtj .

Then the radius vector of the center of mass of the rod is
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L. 1 .
r=rg+ 3 sin @i + 3 cos 6j

l l
= Esin9i+ (Acoswt+ Ecose)j ,

whence
dr l. H . Il . .
i 5000s91— (Awsmwt + §0sm9).] ,
dr 1 - 9 . 2 L. l o R
i 5(00039—0 sin8)i — (Aw coswt + §0sm9+ 50 cosB)J .

The last equation gives the z and y components of the acceleration of the

center of mass.
(f) (g) Let z', 3y’ be the coordinates of the center of mass of the rod in

the moving frame. Then

z=2x, y=v9y + Acoswt ,

and hence
=2, j=y — Aw?coswt .

Newton’s second law gives

mz' =mi = f, ,
my' = mjj + mAw? coswt = fy + mAw? coswt .

Thus to apply Newton’s second law in the moving frame, a fictitious force
mAw? coswtj’ has to be added.
Consider the rotation of the rod in the moving frame about the origin
O'. We have
1 ox l 9 l
-ml°0 = mg - - sinf — mAw* coswt - - sin@ ,
3 2 2
or

6= %(g — Aw? coswt)sin .

(h) If A = 0, the motion is just that of rotation of a rod under the action
of gravity, there being no difference between the moving and fixed frames.

(i) Suppose the rod oscillates about the upright position & = 0. Then
0 ~ 0 and the equation of angular motion becomes
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0+ %(Aw2coswt-g)9= 0.

Thus, if A # 0 the torque of the fictitious force may sometimes act as
restoring torque. For a certain interval of time we may have Aw? coswt—g >
0 and oscillations about the upright position may occur.

1179

A yo-yo of mass M lies on a smooth horizontal table as shown in
Fig. 1.146. The moment of inertia about the center may be taken as 3 M A2.
A string is pulled with force F' from the inner radius B as indicated in
Fig. 1.147.

w
<\w P F F (\w
@F @
- . -
8:=0 8= 3 g:=T
Fig. 1.146. Fig. 1.147.

(a) In what direction will the yo-yo roll if § =0, w/2, n?

(b) For what value of 8 will the yo-yo slide without rolling independent
of the roughness (coefficient of friction) of the table or the magnitude of F?

(c) At what angle @ will the yo-yo roll, independent of the smoothness
of the table?

(Columbia)

Solution:
Assume that the yo-yo is at rest before the application of the force F.

(a) As there is no friction acting on the yo-yo, the direction of rolling is
only determined by the direction of the torque of the applied force F about
its center. The direction of rolling is shown in Fig. 1.147 for § =0, 7/2 or
.

(b) The friction acting on the yo-yo is f = uN, where N is the normal
reaction of the table, as shown in Fig. 1.146. The yo-yo will slide without
rolling if
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FB=uNA.
The acceleration a of the center of mass of the yo-yo is given by
Fcos@— uN = Ma .

Thus
g_Ma B
cos 7 t1-
If this condition is satisfied, @ is independent of g. It still depends on F
unless a = 0, i.e. no motion.
(c) Let the acceleration of the center of mass of the yo-yo and its angular

acceleration about the center be a and « respectively. We have (Fig. 1.146)
Fcosf— f=Ma,
1
fA—FB= 5MA2a

For rolling without slipping, a = —Aa. Eliminating o and a gives

1= (B-3acs0) .

As
f <N = u(Mg — F = sin) ,

for the yo-yo to roll without slipping irrespective of the smoothness of the
table, i.e. independent of x, we require

sin9=%, cose=%3— ,
or A M
_ Mg
tanf = SBF

Thus we require that, first of all, 2B < A, Mg < F. Then two values of §,
one positive and one negative, with the same |sin | are possible.

1180

A bowling ball of uniform density is thrown along a horizontal alley with
initial velocity vg in such a way that it initially slides without rolling. The
ball has mass m, coefficient of static friction u,; and coefficient of sliding
friction g with the floor. Ignore the effect of air friction.
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Compute the velocity of the ball when it begins to roll without sliding.
(Princeton)

Solution:

When the bowling ball slides without rolling the friction f = ugmg gives
rise to an acceleration

a=—a=—#d9-

The moment of f gives rise to an angular acceleration o given by
2
fR= gMR2a ,

as the ball has a moment of inertia %mR2 about an axis through its center,
R being its radius. Suppose at time ¢ the ball begins to roll without sliding.
We require
Rat =vg + at
giving
_vo_ 2my _ 2uo
T Ra—a Tf  Tpag
The velocity of the ball when this happens is

t

5
v=vo+at=vg—p.dgt=?v0.

1181

A coin spinning about its axis of symmetry with angular frequency w is
set down on a horizontal surface (Fig. 1.148). After it stops slipping, with
what velocity does it roll away?

( Wisconsin)

Solution:

Take coordinates as shown in Fig. 1.149. Before the coin stops slipping,
the frictional force is f = umg, where p is the coefficient of sliding friction.
Let x. be the z coordinate of the center of mass of the coin. The equations
of motion of the coin before it stops slipping are

miZ. = —pumg ,

1§ = —ymgR ,
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Fig. 1.148. Fig. 1.149.

where m and R are respectively the mass and radius of the coin, and
I = %mR2. Integrating and using initial conditions &, = 0, § = w at
t = 0, we have

Tc = —pgt ,

_ 2ugt
R

When the coin rolls without slipping, we have

f=w

&, = —0R .
Suppose this happens at time ¢, then the above give

—ugt = —wR + 2ugt

or
_wR
C 3ug
At this time, the velocity of the center of mass of the coin is
) 1
& = —pgt = —3wR,

which is the velocity with which the coin rolls away without slipping.

1182

A wheel of mass M and radius R is projected along a horizontal surface
with an initial linear velocity Vo and an initial angular velocity wo as shown
in Fig. 1.150, so it starts sliding along the surface (wo tends to produce
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rolling in the direction opposite to Vp). Let the coefficient of friction
between the wheel and the surface be u.

(a) How long is it till the sliding ceases?
(b) What is the velocity of the center of mass of the wheel at the time
when the slipping stops?
(Columbia)

VU —>X

Fig. 1.150.

Solution:

(a) Take the positive z direction as towards the right and the angular
velocity 6 as positive when the wheel rotates clockwise. Assume the wheel
has moment of inertia 3 M R? about the axle. We then have two equations
of motion:

Mi = —uMg ,
1 "
5MR29 = uMgR .

Making use of the initial conditions &, = Vj, 6, = —wg at t = 0 we obtain
by integration

z = Vo —pugt,

Let T be the time when sliding ceases. Then at T
=R,

or
Vo — ugT = —Ruwo + 2ugT ,
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giving
_ Vo + Ruwo

T
3ug

(b) The velocity of the center of mass of the wheel at the time when
slipping stops is

:i:=V0—p.gT= (2V0—Rwo).

L
3

1183

A thin hollow cylinder of radius R and mass M slides across a frictionless
floor with speed V;. Initially the cylinder is spinning backward with angular
velocity wg = 2Vp/R as shown in Fig. 1.151. The cylinder passes onto a
rough area and continues moving in a straight line. Due to friction, it
eventually rolls. What is the final velocity Vs?

(MIT)

f

Fig. 1.151. Fig. 1.152,

Solution:

Suppose the cylinder enters the rough area at time ¢ = 0 and starts to
roll without slipping at time £ = 3. At 0 <t < g the equations of motion
of the cylinder are (Fig. 1.152)

av
—f= M

dw
fR=I%

with I = MR?. Integrating we obtain
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to
MWy ~ve) = - [ pat,
0
or

nw—«wm=RA°mu

giving
I(Wf +UJO) = MR(V() - Vf) .

The cylinder rolls without slipping at ¢t = ¢o, when Vy = w;R. We are also
given wyoR = 2Vj. The last equation then gives

1
Vf = —§Vo .

Hence the cylinder will eventually move backward with a speed 3 V.

1184

Calculate the minimum coefficient of friction necessary to keep a thin
circular ring from sliding as it rolls down a plane inclined at an angle § with
respect to the horizontal plane.

( Wisconsin )

y

e ()

Fig. 1.153.

Solution:

Use coordinates as shown in Fig. 1.153 and write down the equations of
motion for the ring:

m% = mgsinf — f, Ip=fR,
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where m and R are the mass and radius of the ring respectively, I = mR?
is the moment of inertia of the ring about its axis of symmetry and f is the
static friction on the ring. The above equations combine to give

Z+ Rp=gsing .

The condition for no sliding is R¢ = %, or Rp = Z, giving
1
i = ig sin@ .

Hence 1
f=mgsin@ —mz = Emgsine .

The normal reaction of the inclined plane is N = mgcos#f, and for no
slipping we require f < uN, or

1
-2—mgsin9 < pumgcosf |

l1.e.

Hence the minimum coefficient of friction necessary to keep the ring from
slipping is u = %tan 0.

1185

A solid uniform cylinder of mass m, radius R is placed on a plane
inclined at angle 6 relative to the horizontal as shown in Fig. 1.154. Let ¢
denote the usual acceleration due to gravity, and let a be the acceleration
along the incline of the axis of the cylinder. The coefficient of friction
between cylinder and plane is p.

For 0 less than some critical angle 6., the cylinder will roll down the
incline without slipping.

(a) What is the angle 6.7

(b) For 6 < 0., what is the acceleration a?

(CUSPEA)

Solution:

Let f denote the frictional force and a the angular acceleration about
the axis of the cylinder. The equations of motion are
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Fig. 1.154.

mgsinf — f =ma ,
fR=1Io,
with .
— *ap2
I= 2MR .
{a) If there is no slipping, we require ¢ = Ra, f < uN, where N, the

normal reaction of the inclined plane, equals mgcosf. The equations of
motion give

f= %mgsinﬁ .

Hence we require
1 .
umgcos @ > 3™9 sinf ,

or
3> tanf .

Let tanf, = 3u. Then we require tanf < tan 8, for no slipping. Therefore
the critical angle is 8, = arctan 3u.
(b) For 8 < 8., the cylinder rolls without slipping and the above gives

. f 2 .
a=gsinf m—3g3m0.

1186

A wheel of radius r, mass m, and moment of inertia I = mR? is pulled
along a horizontal surface by application of a horizontal force F to a rope
unwinding from an axle of radius b as shown in Fig. 1.155. You may assume
there is a frictional force between the wheel and the surface such that the
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wheel rolls without slipping. In the expression I = mR? the quantity R is
a constant with dimensions of length.

(a) What is the linear acceleration of the wheel?
(b) Calculate the frictional force that acts on the wheel.
(Wisconsin)
Solution:

Let z be the displacement of the center of mass of the wheel along the
horizontal direction and 8 the angular displacement of the wheel from an
initial direction through its center of mass.

(a) The equations of motion of the wheel are (Fig. 1.155)

mi=F—f,
16 = Fb+ fr.

Fig. 1.155.

The constraint for no sliding is © = r6 or & = rf. Hence

2
%?&:qup—m@n

or

5= F(b+r)r
" m(R? +r2)’

which is the linear acceleration of the wheel.
(b) The frictional force is

f=F-mi

_(b+r)r] _ F(R? - br)
R+r2|  R2+7%

-F|1
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1187

A flat disc of mass m = 1.8 kg and radius r = 0.2 m lies on a frictionless
horizontal table. A string wound around the cylindrical surface of the disc
exerts a force of 3 Newtons in the northerly direction (Fig. 1.156). Find
the acceleration (magnitude and direction) of the center of mass a and the
angular acceleration a about the center of mass. Is ¢ = ra? Explain.

(Wisconsin)

f
A
8
Fig. 1.156.
Solution:
The equations of motion are
f=ma,
fr=1a,
where I = mr?/2, giving
a= A =17m/s,
m
2
o= —j-;- =17 rad/s .

The direction of a is the same as that of f. It is seen that a # ar. This is
because as the disc lies on its flat surface the two motions are not related
even though they are due to the same force.

1188

A wheel of radius R and moment of inertia I is mounted on a frictionless
axle at O. A flexible, weightless cord is wrapped around the rim of the
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Fig. 1.157.

wheel and carries a body of mass M which begins descending as shown in
Fig. 1.157. What is the tension in the cord?

(Wisconsin)
Solution:

Let F be the tension in the cord, x the position of the center of mass
of the body and 6 the angular velocity of the body as shown in Fig. 1.157.
We have the following equations:

1§ = FR,
Mi=Mg—-F,
#=R0,
which yield
. Mgl
F_I+MR2
1189

Two uniform discs in a vertical plane of masses M; and M, with radii
R, and R, respectively have a thread wound about their circumferences,
and are thus connected as shown in Fig. 1.158.

The first disc has fixed frictionless horizontal axis of rotation through
its center. Set up the equations to determine the acceleration of the center
of mass of the second disc if it falls freely.
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o
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T F
X

. F
o
Fig. 1.158.

(You need not solve the equations.)
( Wisconsin )
Solution:

Let F be the tension in the thread, z; the distance of the center of mass
of disc 2 from that of disc 1, and 8,, 83 the angular velocities of the discs,
as shown in Fig, 1.158. We have the equations of motion

szi = M2g - F s
L6, = FR; ,
L6, = FR, ,
where I} = m R?/2, I, = maR%/2. W, also have the constraint
T = R]él + Rzéz ,
or . .
i = R101 + Rzoz .

From the four equations the unknowns 6, 6;, # and F can be determined.

1190

A yo-yo of mass M is composed of 2 large disks of radius R and thickness

t separated by a distance t with a shaft of radius r. Assume a uniform

density throughout. Find the tension in the massless string as the yo-yo
descends under the influence of gravity.

(Wisconsin )
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Solution:

Let the density of the yo-yo be p, then its moment of inertia and mass
are respectively

1 1
I =2 —rwtpR* + ~mtpr* |
2 2
M = 2rtpR? + wtpr?

whence . .
1 2R* +r
I== -

M (2R2+r2)

The equations of motion of the yo-yo are

Mi=Mg-F,
16 = Fr |

where F is the tension in the string. We also have the constraint & = ré.
From the above we obtain

IMg  (2R*+r%)Mg

F = = .
I+Mr?2 2R*+4R?r? 4 3r4

1191

A sphere of mass M and radius R (I = 2MR?) rests on the platform

of a truck. The truck starts from rest and has a constant acceleration A.

Assuming that the sphere rolls without slipping, find the acceleration of
the center of mass of the ball relative to the truck.

(Wisconsin)

Fig. 1.159.
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Solution:

Let Ozxzy and O'z'y’ be coordinate frames attached to the truck and
fixed in space respectively with the z- and z’-axes along the horizontal as
shown in Fig. 1.159. Denoting O’O = ¢, we have for the center of mass of
the sphere

' =z4+¢, or a‘:"=fi3+£.

As the force acting on the sphere is the friction f, Newton’s second law
gives, writing A for £,

f=Mz' =Mi+ MA,

or
Mi=f-MA.

Thus in the moving frame there is a fictitious force F = —M A acting on the
sphere through the center of mass, in addition to the friction f. Considering
the torque about the center of mass, we have

I6=fR

with I = %MR2. We also have the constraint for no slipping, ¢ = ——Ré, or
¥ = —Rf. These three equations give Z = —%A, which is the acceleration
of the center of mass of the sphere relative to the truck.

1192

Referring to Fig. 1.160, find the minimum height h (above the top
position in the loop) that will permit a spherical ball of radius r (which
rolls without slipping) to maintain constant contact with the rail of the
loop. (The moment of inertia of a sphere about the center is 2mr2.)

( Wisconsin)
Solution:

Conservation of mechanical energy requires that the kinetic energy of
the sphere at the top position in the loop is equal to the decrease mgh in
potential energy as it falls from the initial position to this position. The
kinetic energy of the sphere is composed of two parts: the translational
kinetic energy of the sphere and the rotational kinetic energy of the sphere
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Fig. 1.160.

about its center of mass. Let m,T,v,w be respectively the mass, kinetic
energy, velocity of the center of mass, and angular velocity about the center
of mass of the sphere. Then

1 o4 1
T—Emv +2Iw

with I = gmrz. As the sphere rolls without slipping, v = wr and

1 2 v? 7
T== 2 f2v \_ 2
2 (mv + 5mr r2) 1Omv
In the critical case, the force exerted by the loop on the sphere is zero when
the latter reaches the top of the loop. In other words, the centripetal force
needed for the circular motion of the sphere is supplied entirely by gravity:
mo?
- =mg,

R

whence »? = Rg and

7
T= Eng =mgh .

Hence h = 7TR/10 is the minimum initial height required.

1193

A sphere of radius b is at rest at § = 0 upon a fixed sphere of radius
a > b. The upper sphere is moved slightly to roll under the influence of
gravity as shown in Fig. 1.161. The coefficient of static friction is u; > 0,
the coefficient of sliding friction is © = 0.
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(a) Briefly describe and explain the sequence of sphere motions in terms
of rolling, sliding and separation.

(b) Write the equation of constraint for pure rolling of the upper sphere
on the lower sphere.

(c) Write the equation of motion in terms of 6 and 6 for the part of the
motion where the sphere rolls without slipping.

(d) Find a related equation between 6 and .

() Solve this equation for 8(t), assuming 0 < 6(0) <« 6(t). You may
wish to use the relation

/sindé) = 2Intan (z) .

(MIT)

Fig. 1.161.

Solution:

(a) At first the upper sphere rolls without slipping, the angular velocity
becoming larger and the normal pressure on it smaller with increasing 6.
When the condition for pure rolling is not satisfied, the sphere begins to
slide and finally when the centripetal force is not large enough to maintain
the circular motion of the upper sphere, it will separate from the lower
sphere.

(b) Suppose initially O, A,O’, B are on the same vertical line. As the
upper sphere rolls by an angle ¢, its center has traveled through a path
00’8, as shown in Fig. 1.161. Hence the condition for pure rolling is

(a+b)0 =by .
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(c) The equations of motion of the upper sphere are

m{a + b)§ = mgsiné — f,
.2 g,
Ip = gmb p=1fb,

where f is the static friction on the sphere. When the sphere rolls without
slipping, we have from (b)

(a+b)f =bp
Then the equations of motion give

_ 5gsiné
T T(a+b)

(d) As
_ 1dé?
T 2d6
the last equation gives

62 — _ 10g cosd

199cos? | k.
Tatb) |

Withé=0at0=0,K a+b Hence

g2 = 10g(1 — cos 8)
T a+b)

dd _ [10g(1 ~ cosH) 20g smg
dt 7(a+b) 7(a+b)

we have, with 8y = 6(0) at t = 0,

20g / dt
90 sin § T(a+b)
tan ¢
In an ; =at,
tan ¢

or
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where a = /7 j’+b . Hence
at bo
0@ =4darctan [ e tan—4— ,

valid for the part of the motion where the sphere rolls without slipping.

1194

A sphere of mass m, radius @, and moment of inertia 2ma? rolls without
slipping from its initial position at rest atop a fixed cylinder of radius b (see
Fig. 1.162).

(a) Determine the angle 6,,,, at which the sphere leaves the cylinder.

(b) What are the components of the velocity of the sphere’s center at
the instant it leaves the cylinder?

(Wisconsin)

Fig. 1.162.

Solution:

(a) The forces on the sphere are as shown in Fig. 1.162. The equations
of motion for the center of mass of the sphere are

m(a + b)f = mgsinf — f , (1)
m{a + b)§% = mgcosd —~ N, (2)

and that for the rotation of the sphere is

Zma’p=fa. 3)
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The condition for it to roll without slipping is

(a+ b)d = ap, or (a+b)f=ap. (4)
From (3) and (4}, we found
2 o
= -m(a+b)f .
5
Substitution in (1) gives
= Sgsinf
C T(a+b)

Asﬁ=é=0att=Oand§=%"Tf;,itgives

2 — 10g(1 — cos )
T(a + )
Substitution in (2) gives
1
N = mgCOSH - %mg(l — COSH) — mg( 7('37080 _ %) .

After the sphere leaves the cylinder, N = 0. We assume that the coefficient
of friction is large enough for the period of both rolling and slipping which
occurs before the sphere leaves the cylinder to be negligible. Then at the
instant /V becomes zero, f = Oyax given by

10

17

(b) At that instant the velocity of the center of the sphere has magnitude

v=(a+b)0'=\/i—,(;g(a+b) ,

and is parallel to the tangential direction of the cylinder at the point where
0 = Omax-

c08 Omax =

1195

In Fig. 1.163, the ball on the left rolls horizontally without slipping at
speed V toward an identical ball initially at rest. Each ball is a uniform
sphere of mass M. Assuming that all the frictional forces are small enough
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to have a negligible effect during the instant of collision, and that the
instantaneous collision is perfectly elastic, calculate:

(a) The velocity of each ball a long enough time after the collision when
each ball is again rolling without slipping.

(b} The fraction of the initial energy transformed by the frictional forces
to thermal energy.

The moment of inertia of a sphere of mass M, radius R about its center
is ZMR2.

(CUSPEA)

Fig. 1.163.

Solution:

(a) Before the collision
|4
R’
During the collision, as friction can be neglected, the forces with which

the balls interact are directed through the centers so that the angular
momentum about the center of each ball is conserved. Thus

V1=V, V2=0, w) = UJ2=0.

wi = wy, why=10.

As the collision is elastic, conservation of translational momentum and that
of kinetic energy then require

/=0, Vi=w=V.

In the above, single primes denote quantities immediately after the collision.
After some time, the balls again roll without slipping. Let the quantities
at this time be denoted by double primes. The positive directions of these
quantities are shown in Fig. 1.164.

The angular momentum of each ball about some fixed point in the plane
of motion is conserved. Consider the angular momentum of each ball about
the point of contact with the horizontal plane.
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For ball 1,
MRV} + Iwy = MRV’ + 1wy ,
or
v I
- M - " ,
= (Mr+ 5 ) v
giving
|4 2
V= =V
PrEELT
For ball 2,
MRV; + Iwy = MRVy' + Iwy |
or
I
MRV = (MR + E) vy,
giving

"o_
V) = ——F—

ol w2
w w)
”‘

"

Wy wg

Fig. 1.164,
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(b) The initial and final energies of the system are

W; = %va + %wa = % (MV2 +2mR2. v )

R?
1 7
=_MV2._
2 v 5’
Wf — %M( 112 2//2) I(w"2 + wé/2)
1
— §M [V/m VII2 + = ( 112 V2//2)]
7 29
=_ M 2.
v 5 49 °
Hence the loss of energy is
1 7 20
Wy =5 MV?.
Wi-Wi=35MV" %>
and the fractional loss is 38
1196

A small homogeneous sphere of mass m and radius r rolls without sliding
on the outer surface of a larger stationary sphere of radius R as shown in
Fig. 1.165. Let 8 be the polar angle of the small sphere with respect to a
coordinate system with origin at the center of the large sphere and z-axis
vertical. The smaller sphere starts from rest at the top of the larger sphere
(6 = 0).

(a) Calculate the velocity of the center of the small sphere as a function
of 6.

{(b) Calculate the angle at which the small sphere flies off the large one.

(c) If one now allows for sliding with a coefficient of friction y, at what
point will the small sphere start to slide?

(Columbia)

Solution:

(a) As the sum of the kinetic and potential energies of the small sphere
is a constant of the motion when it rolls without sliding, we have
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¢.®

Fig. 1.165.

1 1 2
Emv2 +3 gmr2 - ¢? + mg(R + 1) cosf = mg(R + )

with » = r¢ = (R + )6, whence

b 10 (1 —cosf)g
V7 (R+r)

The velocity of the center of the small sphere is

v=(R+r)f= \/1—,;)(R +r)(1 —cosf)g .

(b) At the moment of flying off, the support force on the small sphere
N = 0. From the force equation

’I’I’L’l)2

§—N = :
mgeos R+r

we find the angle 6, at which the small sphere flies off the large sphere as
given by

10

1_,7 .

10
0. = arccos (1—7) .

Note that this derivation applies only for sufficiently large coefficient of
friction.

cosf. =

Thus
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(c) When the small sphere rolls without sliding, we have
mgsinf — f =m7
2 5.
=—mr‘g,
fr=gmrig
v=(R+r)f=r¢,
where f is the frictional force on the sphere. From these we find
2
= —mgsinf .
f=zmg
At the moment when the sphere starts to slide, the frictional force is
f=uN,

ie.

2 sinf = m 09— my’?
7mg =i g COS rRir)

Then, using the expression for » from (a), we have
2sin® = 17ucos @ — 104 .
Solving this we find that the angle 6, at which the small sphere starts to

slide is given by
170u% + /756u2 + 4
289u2 + 4 ’

However, we require that 6, > 6,, or cosf, > cosf.. Where this can be
satisfied by the value of u, we generally have to take the upper sign. Hence

2 / D]
6, = arccos (170# + V756 +4> )

289u% + 4

cos @, =

1197

A spherical ball of radius r is inside a vertical circular loop of radius
(R+r) as shown in Fig. 1.166. Consider two cases (i) rolling without sliding
(ii) frictionless sliding without rolling.
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(a) In each case what minimum velocity v; must the sphere have at the
bottom of the loop so as not to fall at the top?
(b) For a 10% smaller v, and the sliding case, where on the loop will
falling begin?
(Columbia)

Fig. 1.166.

Solution:
(a) For rolling without sliding, R = ry. Hence

. RO v
w:(p:-—r—z;,

where v is velocity of the center of the ball. In order that the ball does not
fall at the top of the loop, the force N; the loop exerts on the ball at the
top must be such that

2
my
Ny = — — >0.
t R mg =~
Thus we require that
v?> Ry .

The minimum velocity v; that satisfies such condition is v = Rg and the
corresponding kinetic energy is

1 7
Tt=§mvt2+§-gmr2-w2zﬁmvf.

At the bottom of the loop, if the ball has the required minimum velocity

v1, we have
Tb=Tlt+‘/t s
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ie.

7 7
Emvf = l—Omvt2 +2mRg ,
giving 9
20 7
vf=vf+7Rg= 7Rg,
or

/27
v = 7Rg .

(ii) For sliding without rolling, we still require that v> > Rg at the top
of the loop, i.e. the minimum velocity at the top is given by

v} =Rg,

and the corresponding kinetic energy is
1

n = Emvf .
Thus we have
Emvl = mv; +2mgR ,
giving
v} =5Rg,
or
v = 5Rg .

(b) Suppose falling begins at 6. At that moment the velocity v of the
center of the ball is given by

%m(O.Qvl)2 = %mv2 +mg(R— Rcos8) ,

and

with
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These equations give

3Rgcosf = 2Rg — 0.81v2 = —2.05Rg ,

ie.
cosf = —0.683 ,
or
8 =133.1°.
1198

A uniform plank of length 2qa is held temporarily so that one end leans
against a frictionless vertical wall and the other end rests on a frictionless
floor making an angle § = 83 with the floor. When the plank is released, it
will slide down under the influence of gravity.

(a) Find the expression (as an integral if you like) for the time that it
will take for the plank to reach a new angle 6.

(b) At what value of 6 will the upper end of the plank leave the wall?

(Columbia)
y
!
M
N2
mg 6 S x
Fig. 1.167.

Solution:
(a) As mno friction is involved mechanical energy is conserved, which
gives

%ma%z + % . §ma292 + mgasinf = mgasin by ,
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ie.
gaéz = g(sinfp — sin @) (1)

or

; 39, . .
6= —\/2—Z(sm00 —sin6) .

Note that the factor %ma2 is the moment of inertia of the plank about a
horizontal axis through its center of mass, and that the negative sign is to
be used for @ as 6 decreases as t increases.

Thus

¢ 0
t= [a=- 46 .
0 bo \/g{}(sin 0 — sin )
(b) Take coordinates as shown in Fig. 1.167. The center of mass of the
plank has horizontal coordinate

r=acosf .

Thus .
&= —a(f%cos0 + Gsind) .

The forces on the plank are as shown in Fig. 1.167. At the instant the plank
ceases to touch the wall, Ny = m& =0, i.e.

62 cos 6 = —fsind .
Differentiating (1) we have
6= —Z—Z cosf .
Substituting this and (1) in the above we have
sin@ = 2(sinfy — sinb) ,
or

sinf = gsinﬁo ,

i.e.

6 = arcsin (g sin 00) s

being the value of @ when the upper end of the plank leaves the wall.
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1199

A thin uniform stick of mass m with its bottom end resting on a fric-
tionless table is released from rest at an angle 8, to the vertical (Fig. 1.168).
Find the force exerted by the table upon the stick at an infinitesimally small
time after its release.

(UC, Berkeley)

Fig. 1.168.

Solution:

As there is no friction, the forces acting on the stick are the normal sup-
port N and the gravity mg as shown in Fig. 1.168. Within an infinitesimal
time of the release of the stick, the equations of motion are

N -mg=mj,
1 1 o
~NLsinfy = — 2
2N sin 6, 12mL e,
where y is the vertical coordinate of the center of mass and 11—2mL2 is the

moment of inertia about a horizontal axis through the center of mass of the
stick. As

y= -12—Lcosl9,

§= ~%L(é2cos0+§sin0) = —%Lésinﬁg ,

as initially

Hence
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N =mg+mj
1 5
=mg — EmLOSm 6o
= mg — 3N sin? 6, ,

or
_ mg
T 14 3sin%6y

1200

Two long uniform rods A and B each 1 m long and of masses 1 kg (A)
and 2 kg {B) lie parallel to each other on a frictionless horizontal plane
(z,y). Rod B is initially at rest at y = 0, z = 0 to x = 1 m. Rod
A is moving at 10 m/s in the positive y direction, and it extends from
z=(-14¢) mtoz=em (¢ < 1m) as shown in Fig. 1.169. Rod A
reaches y = 0 at ¢t = 0 and collides elastically with B. Find the subsequent
motion of the rods, ignoring the possibility of subsequent collisions. Check
for equality of energy before and after collision.

(Columbia)
Yy
A
Yy
A 1/
1 A B wg
é.ﬁ X F T _l—l X—} X
l \—=% 1 8 ¢
A “a
Fig. 1.169. Fig. 1.170.

Solution:

Let I be the impulse rod A exerts on rod B during the collision. Its
direction is the direction of the motion of A, i.e. the positive y direction.
Let va4, wa, vg, wa, be the velocity of the center of mass and the angular
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velocity about the center of mass of A and B respectively, as shown in
Fig. 1.170. Denoting the masses of A, B by m,4, mp respectively, we have

-I= mA(vA - 10) )

I = L w
9! T 1pMmavA
I =mpgug ,

1 1
EI—EmBUJB.

The condition of elastic collision means that the relative velocity of the
points of collision remains the same in magnitude but reverses in direction:

1 1
('UB + EWB) - ('UA - EwA) =10.

The above equations give

Smampg 10

I= = — Ns ,
ma +mpg 3
I 20 .
’UA—IO—E—?m/S,
wA=6—I=20rad/s,
my
I
’UB—EB-—gm/S,
w3=g—=10rad/s
mg

for the subsequent motion. The energy of the two rods before collision is

E,~=%-1‘102=50J

and after collision is
1 1 1 1
E,— - 2 1 2 . 4+ 1 2 2 1
! zmAvA + 2vaB + 3 lzmAwA+ 2 lszwB
_ 25 30

—:0 =E~,
9+12 50 J i

Hence the equality of energy holds.
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1201

A billiard ball of radius R and mass M is struck with a horizontal cue
stick at a height h above the billiard table as shown in Fig. 1.171. Given
that the moment of inertia of a sphere is %MRz, find the value of h for
which the ball will roll without slipping.

(Wisconsin)

Fig. 1.171,

Solution:

Suppose that f is the impact force on the ball exerted by the stick and
that it acts for a time At causing a change of momentum of the ball of
MAv and a change of its angular momentum about the center of mass of
IAw. We have the equations of motion

MAv = fAt,
IAw = f(h — R)At

with I = %MR2, which yield

_ 2R’Aw

“ 5h—-R)’

As the ball is at rest initially, the velocity of its center of mass and the
angular velocity after impact satisfy

Av

Y 2R%w
~ 5h-R)’
The ball will roll without slipping if v = Rw. Hence we require
5(h— R)=2R,
or .
h=-R.

5
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1202

A uniform solid ball of radius a rolling with velocity v on a level surface
collides inelastically with a step of height h < a, as shown in Fig. 1.172,
Find, in terms of h and a, the minimum velocity for which the ball will
“¢rip” up over the step. Assume that no slipping occurs at the impact
point, and remember that the moment of inertia of a solid sphere with
respect to an axis through its center is %Ma2.

( Wisconsin)

QL
f-> |

l/

Fig. 1.172.

Solution:

Let w and w’, J and J' be the angular velocity of the ball with respect
to its center of mass and its angular momentum about the point of impact
A before and after collision with the step, respectively. We have

J =muv(a—h) + gmazw = gmva — mvh

as v = aw for rolling without slipping, and
J = (gma2 +ma2) w' = gma2w’

as the center of mass of the ball is momentarily at rest after the collision.
Conservation of angular momentum requires

7
—ma?y = %mva — muvh ,

5
yielding
5h\ v
'=(1-—)-.
v ( 7a) a
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In order that the ball can just trip up over the step, its kinetic energy must
be sufficient to provide for the increase in potential energy:

%I'u.z’2 = mgh ,

where I' = %ma2 +ma? = Ima? is the moment of inertia of the ball about
a horizontal axis through A. Hence the minimum velocity required is given

by
7 2 5h 2 AN _
To™me (1 %) (Z) = mgh ,
yielding
v = a+/T0gh
" 7a-5h "’
1203

A parked truck has its rear door wide open as shown in the plane view
in Fig. 1.173(a). At time ¢t = 0 the truck starts to accelerate with constant
acceleration a. The door will begin to close, and at a later time ¢ the door
will be passing through the position shown in Fig. 1.173(b) such that the
door makes an angle 6 with its original orientation. You may assume that
the door has mass m uniformally distributed along its length L.

(a) Using 0 and its time derivatives to describe the motion, write down
dynamic equations relating the two components, Fj| and F,, of the force
exerted on the door at the hinge to the kinematic quantities. Fj is the
component of the force parallel to the door in the plane of the diagram and
F) is the component perpendicular to the door.

(b) Express § = d?0/dt?, Fj and F, in terms of 8, m, L and a.
(c) Write down, but do not attempt to integrate, an expression for the

total time elapsed from the start of acceleration to the closing of the door.
(MIT)



Newtonian Mechanics 329

ﬁmo

T fldoor 8!
L
1 = (
S B s N e
(a) (b) (o)
Fig. 1.173.
Solution:

(a) In a frame attached to the accelerating truck, the center of mass
of the door has components of acceleration %LO perpendicular to the door
and —%L@2 parallel to the door. The directions of Fj and F) are as shown
in Fig. 1.173(c). In this frame a fictitious force —ma acting at the center
of mass is included in the equations of motion:

1 o
F), —macosf = —EmLO ,

F" —masinf = %mLé2 s

1 0
LF, = lsz 9,

1

2
where %mﬁ is the moment of inertia of the door about an axis perpen-
dicular to the top edge of the door through the center of mass.

(b) The above equations give

.  3acosf
0= 2L '’

1
F_L = Zma cosf .
As b = %%’;—, integrating the expression for 6 and noting that 8 = 6=0
initially we have
_ 3asind

0'2
L ’

whence 3 5
Fj = masinf + Emasinﬁ = Emasinﬁ .
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(c) As
19_ _ /3a sin 8
dt L

the total time elapsed from start of acceleration to the closing of the door

is
™ [ L
= 9 .
t /0 3asiné d

1204

Consider a solid cylinder of mass m and radius r sliding without rolling
down the smooth inclined face of a wedge of mass M that is free to move
on a horizontal plane without friction (Fig. 1.174).

(a) How far has the wedge moved by the time the cylinder has descended
from rest a vertical distance h?
{b) Now suppose that the cylinder is free to roll down the wedge without
slipping. How far does the wedge move in this case?
(c) In which case does the cylinder reach the bottom faster? How does
this depend on the radius of the cylinder?
(UC, Berkeley)

Solution:

(a) Let £ be the distance of the center of mass of the cylinder from
its initial position. In a fixed coordinate frame, let  be the horizontal
coordinate of the center of mass of the wedge. The horizontal component
of the velocity of the cylinder in the fixed frame is & — £ cos. As the total
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momentum of the system in the z direction is conserved, we have, since the
system is initially at rest,

Mz +m(t —€£cosf) =0,

giving
(M + m)x =mcosh .
Without loss of generality we set £ = 2 = 0 at t = 0. Integration of the

above then gives
(M +m)x =mé&cosb .

When the cylinder has descended a vertical distance h, it has moved a
distance £ = #, and the wedge has moved a distance

mé mh

= M+mcosl9= Mim

{(b) If the cylinder is allowed to roll, conservation of the horizontal
component of the total linear momentum of the system still holds. It follows
that the result obtained in (a) is also valid here.

(c) Conservation of the total mechanical energy of the system holds
for both cases. As the center of mass of the cylinder has velocity (Z —
£ cos 0, —£ sin 8) and that of the wedge has velocity (&, 0), we have for the
sliding cylinder,

z cot 8 .

%m[(a’: —£cosf)? 4+ £2sin% 0] + %M:i:2 = mg€sinb ,
and for the rolling cylinder,
%m[(a’: — £cos0)? + £2sin? 0] + %wﬂ + %Ma:-2 = mg€sinf
with I = gmr?, ¢ = S for rolling without sliding. As

. m :
T = (M+m)§cos0,

the above respectively reduce to

m

__m 12 9V62 .
2(M+m)(M + msin® 8)¢? = mgé€siné ,

m

m[sM +m(1 + 2sin® 6))€2 = mg€ sinb .
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These equations have the form £ = bvE As £ = 0 at t = 0, integration

gives t = % €. Hence for the same £ = sigo’ tocj. As

3M + m(1 + 2sin? ) — 2(M + msin?0) =M + m >0,

the sliding cylinder will take a shorter time to reach the bottom.

1205

A stepladder consists of two legs held together by a hinge at the top
and a horizontal rope near the bottom, and it rests on a horizontal surface
at 60° as shown in Fig. 1.175. If the rope is suddenly cut, what is the
acceleration of the hinge at that instant? Assume the legs to be uniform,
identical to each other, and neglect all friction.

(UC, Berkeley)

Fig. 1.175. Fig. 1.176.

Solution:

Consider the instant when the horizontal rope is suddenly cut.
By symmetry the forces which the two legs exert on each other at the
hinge A are horizontal and the acceleration of A4, a4, is vertically downward.

Consider one leg of the stepladder. The forces acting on it are as shown
in Fig. 1.176. Let [ be the length of the leg and ac the acceleration of its
center of mass C at the instant the rope is cut. We have
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mg — N = magy ,

F=mac, ,
1 "
§N100860° - §Flsm60 =16
with I = j5mi?, or
N~ V3F = gmif .
The velocity of A in terms of the velocity of C are given by
. . 1 o no . . 1., o
xA=:z:C—§lem60 , yA=yC+§ll900860 .
Hence a4, which is in the y direction, has components

0=aCz_—4§l§y

1 .
= =0 .
as acy+4l

Consider now the acceleration ap of point B. At the instant the rope is
cut it has only a horizontal component. Thus ag, =0, i.e.

1. 1. ..
acy — 510008600 =acy — 110 =0.

The above consideration gives

V3

v 1.
aCx = —4-10, oy = 110 .

Using these in the equations of motion for C' we find
§=3,
4l
which gives the acceleration of the hinge as

1. 3
aA=§w=§9,

directed vertically downward.
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1206

A particle of mass m and speed v collides elastically with the end of a
uniform thin rod of mass M as shown in Fig. 1.177. After the collision, m
is stationary. Calculate M.

(MIT)

Fig. 1.177.

Solution:

Let v, be the velocity of the center of mass of the rod and w the angular
velocity of the rod about the center of mass. Conservation of momentum
and that of energy of this system give

mv = Muv, ,
1 1
Emv2 = %va + §Iw2

with I = %2M 12, | being the length of the rod. Conservation of the angular
momentum of the system about a fixed point located at the center of the
rod before collision gives

Elmv =Jw.

The above equations give
M=4m.

1207

A uniform thin cylindrical rod of length L and mass m is supported
at its ends by two massless springs with spring constants k; and k. In
equilibrium the rod is horizontal, as shown in Fig. 1.178. You are asked
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to consider small-amplitude motion about equilibrium under circumstances
where the springs can move only vertically.

(a) First consider the special case k1 = k2. Find the eigenfrequencies of
the normal modes and describe the corresponding normal mode motions.
Here you might well be guided by intuitive reasoning.

(b) Now consider the general case where k; and k2 are not necessarily
equal. Find the normal mode eigenfrequencies.

(Princeton)

A y
v, B ¥
’E‘ﬁ 8 k32 |
g 31 —
3 c

- -

¢

mg

Fig. 1.178.

Solution:

(a) Let y, and ya be the vertical displacements from the equilibrium
position of the two ends of the rod as shown in Fig. 1.178. As the displace-

ment of the center of mass C is %(yl + y2), its equation of translational
motion is

| S
Em(yl +4j2) = —kiy1 — kayz -

For small-amplitude rotation about the center of mass, we have

1
18 = _EL(klyl — kay2)

with I = ;mL?, 6 = B3¥2. For ky = k2 = k, the equations of motion
reduce to

. . 2k
h+i=——@ +y2),
m

.. 6k
yl—y2——m(?/1—yz)-
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Hence there exist two normal modes.
(i) Symmetric mode
Ys = Y1 T Y2

with eigenfrequency w, = 4/ % This mode corresponds to vertical har-

monic oscillation of the rod as a whole.
(if) Asymmetric mode
Ya =41 — Y2

with eigenfrequency w, = 4/8. This mode corresponds to harmonic

oscillation about a horizontal axis perpendicular to the rod and through
its center of mass.

(b) For the general case k) # k2, let y1 = A1e™*, y2 = Aze™*, where w
is the eigenfrequency of oscillation. The equations of motion now give

1
(kl - 57"44)2) Ay + <k2 — %W2> Ay =0,

I 1 1 Iw?
(T - §Lk1) A+ (§Lk2 -~ —L—) Ay =0.

For a non-zero solution we require

k — %nuu2 ko — %nuu2
=0
Iw? 1 ’
= —glk Lk -
e 4
I I 1
% - (E + ZmL) (k1 + k2)w? + Lk1k2 = 0,
or

m2wt — dmik, + k2)w2 4+ 12k1ky =0

Solving for w? we obtain the eigenfrequencies

w= \/% [(kl +ka) £ /(K — kaka + kg)] ‘

Note that for k&;y = k2 = k, this expression gives w = \/%n’ﬁ,\/%, in
agreement with {(a).
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1208

A rigid wheel has principal moments of inertial I}, = I # I3 about
its body-fixed principal axes X;, X2 and X3, as shown in Fig. 1.179. The
wheel is attached at its center of mass to a bearing which allows frictionless
rotation about one space-fixed axis. The wheel is “dynamically balanced”,
i.e. it can rotate at constant w # 0 and exert no torque on its bearing.
What conditions must the components of w satisfy? Sketch the permitted
motion(s).

(MIT)

N

A

Fig. 1.179.
Solution:
Setting I} = I = I in Euler’s equations

hun + (I3 — L)wgwz =0, (1)
Lws + (I — )uws =0, (2)
I3ws +(12—Il)w2w1 =0, (3)

we see that (3) can be readily integrated to give
w3 = constant =} | say .

We then rewrite (1) and (2) as
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(A'}l = — (13;1) QUJ2,

Is -1
(7).

which are the conditions that must be satisfied. Differentiating these
equations gives

2
W =— (Ia—IQ) Wy = — (Ia—IQ) w1 = —aw ,

)

I I

Is—1_\?
632=—( 31 Q) we = —aPws ,

where o = (£2)Q. The general solution is
w1 = wop cos(at + €), we = wpsin(at +¢) .

Hence the total angular velocity has magnitude

w= \/Q2+wf+w2 = \/Q2+w(2,,

which is a constant. As w3 = 2 is a constant the total angular velocity
vector w makes a constant angle @ with the %3-axis as shown in Fig. 1.179.
Furthermore the plane of w and %3 rotates about the %3-axis with an
angular velocity a, or a period

2_1r_ 2nI
a (I3-I)Q°

The motion, which is the only one allowed, is sketched in Fig. 1.179.

1209

A rigid body is in space. All external influences (including gravity) are
negligible.

(a) Use Newton’s law to show that angular momentum is conserved;
mention any assumptions made.
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(b) Suppose the center of mass of the body is at rest in an inertial frame.
Must its axis of rotation have a fixed direction? Justify your answer briefly.
(UC, Berkeley)

Solution:

(a) The angular momentum of a rigid body about a fixed point O is
defined as

n
L=E r; X mur; ,
i

where r; is the radius vector from O of a particle m; of the rigid body,
which consists of n particles. As there are no external forces, only internal
forces act, and according to Newton’s second law

n
mif; = Z Fij,
J#
where Fy; is the force acting on m; by particle m; of the rigid body.

Consider
n

n n
Zr,-xmii‘g=zzriXFij- (1)
i

i g
By Newton’s third law, the internal forces F;; occur in pairs such that
Fij=-Fj,

both acting along the same line joining the two particles. This means that
the double-summation on the right-hand side of (1) consists of sums like

l','XF,‘j+l'j><Fj,‘.

As shown in Fig. 1.180, each such sum adds up to zero. Hence

n
E l','me','=0.
r

Then
n n
L=Zi‘;xmi'¢+Zr; xmr; =0,
i i

or
L = constant .
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Fig. 1.180.

That is, the angular momentum of a rigid body about an arbitrary point
is conserved.

(b) The above argument holds also for a point fixed in an inertial frame,
so that the angular momentum L of the body about the center of mass is
a constant vector in the inertial frame. However, the angular velocity w of
the body about the center of mass need not be in the same direction as L.
Only when the axis of rotation is along a principal axis of the body is w
parallel to L. Hence, in general the axis of rotation is not fixed even though
the direction of L is.

1210

The trash can beside the Physics Department mailboxes has a conical-
shaped lid which is supported by a pivot at the center. Suppose you tip the
cone of the lid and spin it rapidly with spin velocity w about the symmetry
axis of the cone (Fig. 1.181). Does the lid precess in the same or opposite
sense to the spin direction of w? Document your answer with appropriate
formula and vector diagram.

(Wisconsin )
Solution:
The torque of gravity about O is
M=0Cxmg.
In a fixed frame we have

dL OCL
@ M=

xmg=%mng=wl,xL,
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\
Supporting
axis

Axis of
symmetry

Fig. 1.181. Fig. 1.182.

where wp = g_%ﬂ‘. Thus L and hence the axis of symmetry of the lip

precess with angular velocity w, = O_Lng about the vertical axis in a sense
opposite to that of the spin, as shown in Fig. 1.182.

1211

A rigid square massless frame contains 4 disks rotating as shown in
Fig. 1.183. Each disk has mass m, moment of inertia Iy, and rotational
velocity wp. The frame is horizontal and pivots freely about a support at
one corner. What is the precession rate?

(MIT)

4mg

Fig. 1.183. Fig. 1.184.
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Solution:

The angular momentum of each disk about its axis of rotation is Igwy
with directions as shown in Fig. 1.184. The total angular momentum of the
system about the pivot has magnitude L = 2v/2Igwo and a direction along
OC, C being the center of mass of the system. Note that L is horizontal
as the frame is horizontal. The torque due to gravity is

L

— D
M=OCx4mg—Ez x 4dmg .
Hence Y
dL 2v2Dm
E_M___L—gXL_QXL’
where

_2V2Dmg _ Dm
2\/5[0(4)0 IQUJQ g

is the precessional angular velocity. Hence the precession has a rate %f
and is anticlockwise when seen from above.

1212

We consider an ideal free gyro, i.e. a rotationally symmetric rigid body
(with principal moments of inertia I; = I < I3) so suspended that it can
rotate freely about its center of gravity, and move under the influence of
no torque. Let w(t) be the instantaneous angular velocity vector, and let
L(t) be the instantaneous angular momentum. Let the unit vector u(t)
point along the symmetry axis of the body (associated with the moment of
inertia I3). These vectors are in an inertial frame with respect to which the
body rotates. Derive expressions for L(t), w(t), and u(t) in terms of initial
values ug = u(0) and wo = w(0).

(UC, Berkeley)

Solution:

Let ¢ = 0 be an instant when L, w and the axis of symmetry of the
gyro, u, are coplanar, Use a fixed coordinate frame Ozyz with origin at
the center of mass of the gyro which at ¢ = 0 has the z-axis along the
angular momentum vector L and the y-axis perpendicular to the angular
velocity wg. Also use a rotating coordinate frame Oz'y’z’ attached to the
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gyro such that the z'-axis coincides with the axis of symmetry and the
x'-axis is in the plane of z'- and 2-axes at t = 0. The relation between the
two frames is shown in Fig. 1.185, which also defines the Eulerian angles
0, o, 9. Note that initially the y'- and y-axes coincide and g = pp = 0.
As seen from Fig. 1.185, the angular velocity w(t) of the gyro can be
expressed in the rotating frame in terms of the Eulerian angles as

Wy = ésinz/) —¢psinfcosy ,
Wy = 6costp + psindsiny |
Wy = @cosh + 9 .
Since the z'-, &/~ and 2’-axes are principal axes, L can be expressed as
L= Ilw,:i'+11wy:j'+13wz:k' (1)

for I} = I. As there is no torque acting on the gyro, L = constant and is
along the z-axis. Furthermore, the Euler equation

Ia(;)zl — (Il - Iz)wm:wy: =0

gives for I = I,
w, = constant = wp, .

As

L= \/If(wi, +w?) + I3wi, = constant ,

we have
wg, +w§, = constant = ng, +w(2,y, = w?,,,

since wo,’ = wg, = 0. Hence

L=/I{w?, + 13w}, k.

It can also be expressed in terms of the Eulerian angles as (Fig. 1.185)
L = —Lsin6 cosyi’ + Lsin@sinj’ + L cos 0k’
in the rotating frame. Comparing this with (1) we find
Lcos0 = Iwpy
showing that cos @ = constant = cos§y, say, and thus 6 = 0. Furthermore,

—Lsinfcos = hwy = —I1psinfcosy ,
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giving
p= % = constant.
Similarly,
Lcos = Iyw, = I3(pcosf + ) ,

giving

. Lcos@® Lcos@ I3\ Lcos@ I3

= —_ — = 1 —_—— = 1 —_— z! — t .

P A I ( 11) L ( Ix) wo constant

What the above means is that the motion of the free, symmetric gyro
consists of two steady motions: a spin of angular velocity 1/) about the axis
of symmetry and a precession of angular velocity ¢ about the constant
angular momentum vector L.

(mm)

Fig. 1.185.

Consider now the unit vector u{t), which is along the axis of symmetry,
in the fixed frame (Fig. 1.185):

u(t) = sinfcos pi + sinfsin j + cos Ok .
As 0@ =0g and at t =0, ¢ = 0, we have
u(0) = sinfgi + cos ok ,
and, as ¢ = ¥t,
u(t) = ugy cos(Pt)i + ugy sin(pt)j + ug.k .

Consider the angular velocity w. In the rotating frame, we have for
time ¢
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w = (—psinbg cos ¥, P sin Oy sin 9, pcosby + V) ,
as 0 = 6,, 0 = 0, and for time t = 0
wo = (—psinby, 0, cosby + ¥) = (wogr, 0, wos) -

Thus

w = (woz COS Y, —Wog SIN Y, o)

= Juw? =
w= 4w, +wi, =wp .

Hence w has a constant magnitude. It makes an angle o with the z-axis
given by

with

cosa =2 = w-L

T w wlL
1 .

= = (psin? 0y cos? Y + psin? Gy sin? Y + ¢ cos? Oy + 1 cos by
o\7 P

_ ¢+1/3cos€0

=

which is a constant as @, 1/3,w are all constants. It makes an angle 8 with
the 2’-axis given by

F Kk / )
cosﬁ:w__zw =<pcoseo+1/),
w w w

which is also a constant. In the fixed frame,

w = (Y8in @ cos p — fsin p, v sin@sin ¢ — 6 cos @, 1 cos § + )
= (4 sin B¢ cos , ¥ sin O sin ¢, ¥ cos p + )

as 0 =10y, 0=0. At t =0, o = ¢ = 0 so that
Wy = (1/')sin90,0,1/')cost90 +(p) .

Hence

w(t) = woz cos(Pt)i + woy sin(pt)j + wo k .
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The precessions of w about L and u are depicted in Fig. 1.186. Note that
u itself precesses about L.

1213

Let I1, I, I3 be the principal moments of inertia (relative to the center
of mass) of a rigid body and suppose these moments are all different with
I > I, > I3. If the body in free space is set to spin around one of the
principal axes, it will continue spinning about that axis. However, we are
concerned about the stability. What happens if the initial spin axis is very
close to, but not exactly aligned with, a principal axis? Stability implies
that the spin axis never wanders far from that principal axis. One finds
that the motion is in fact stable for the principal axes corresponding to
I, and I3, the largest and the smallest moments of inertia. Explain this
analytically using Euler’s equations.

(CUSPEA)

Solution:

Let wy,wz,w3 be the components of the angular velocity along the
principal axes. Then, using Euler’s equations for zero torque

Loy —waws(Ip — I3) =

0,
Ipws —waw (I3 — 1) =0,
I3o3 —wwa(h ~I2) =0,
we consider the following cases.

(i) Suppose initially w directs almost parallel to the z-axis, i.e. wy >
wy,ws3. If we,w3 remain small in the subsequent rotation, the motion is
stable. As |w| = constant and w = y/w? + wf + w2 ~ w), We can take w;
to be constant to first order. Then

_ w1(13 —Il) . w%(Ia —Il)(Il _12),
way = I w3y = A w2 ,
2
. _wilh—DI)I3- 1)
w3 = 1312 Wy .

As I, > I, I3, the coeficients on the right-hand side of the above are both
negative and the equations of motion have the form of that of a harmonic
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oscillator. Thus we and w3 will oscillate about same equilibrium values and
remain small. Hence the motion is stable. The same conclusion is drawn if
w is initially almost parallel to the z-axis.

(i) If w initially is almost parallel to the y-axis. The same consideration
gives

w22(I2 - 13)(11 - Iz)w

= I] 13 1,
2
. wi(lh - I)(I2 - I5)
W3 = Tl w3

As Iy > I3, I) > I, the coefficients on the right-hand side are both positive
and the motion is unstable at least in first-order approximation.

1214

A spherical ball of mass m, radius R and uniform density is attached
to a massless rigid rod of length ! in such a way that the ball may spin
around the rod. The ball is in a uniform gravitational field, say that of
the earth. Supposing the ball and the rod rotate about the z-axis without
nutation {i.e. 0 is fixed), the angular velocity of the rod and ball about
the z-axis is w, and the ball spins about the rod with angular velocity .
Give the relation between w and  (you may assume R/l <« 1 though this
is not necessary for the form of the solution). Does the ball move in a
right-handed or a left-handed sense about the z-axis?

(Columbia)

Fig. 1.187.
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Solution:

The orientation of the ball can be described in terms of the Eulerian
angles 0, p, 1 (Problem 1212). As there is no nutation, § = 0. The angular
momentum of the ball about the origin O (Fig. 1.187) is

2
L= ng2¢er + Isin@ - pmisin Ge,
2 2 2 .2
= ng Qe, + ml*®sin® we,

in cylindrical coordinates. As e, is fixed, 6 is a constant, we have

de,
dt

dL—ngzn =M,

P
where M is the torque due to gravity. As

de,

- feq + sinfe, = wsinbe,, ,

the above becomes

2
ng2Qw sinfe, = le, x mg(—e,) = Imgsinfe, .

Hence
_ Slg
YT IR

As ¢ = w > 0, the ball moves in a right-handed sense about the z-axis.

1215

A gyroscope at latitude 45°N is mounted on bearings in such a way that
the axis of spin is constrained to be horizontal but otherwise no torques
occur in the bearings. Taking into account the rotation of the earth, show
that an orientation with the axis of spin along the local north-south is
stable and find the period for small oscillations of the spin axis about this
direction. Assume that the rotor can be approximated by a thin circular
ring (i.e. the spokes and other parts are of negligible mass). (In working
out this problem it is simpler when writing the angular velocity of the rotor
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Fig. 1.188.

about the z-axis (Fig. 1.188) to lump together the spin term and the term
due to rotation of the earth).
(UC, Berkeley)

Solution:

Use an inertial frame Oz'y’z’ fixed with respect to a distant star which,
at the instant under consideration, has the origin O at the center of mass
of the rotor, the z’-axis pointing vertically up and the z’-axis pointing
north, and a rotating frame Ozyz attached to the earth with the same
z-axis but with the z-axis at that instant along the spin axis of the rotor
as shown in Fig. 1.188. Denote the spin angular velocity by w, and the
moments of inertia about the z-, y-, z-axes, which are the principal axes of
the gyroscope, by C, A, A respectively. The angular momentum then has
components

(Cw,0, A9)

in the rotating frame, and
(Cwcos9,Cwsin g, Af)

in the fixed frame. Note that the » component which is the same in both
frames is contributed by the precession. In the fixed frame, the earth’s
rotational angular velocity at latitude A = 45°N has components

2(cos 45°,0,sin45°) = %(1,0, 1).
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Also, the only torques are those that constrain the spin axis to the hori-
zontal so that
M, =0.

dL dL
M={— =|— L9 =
(dt)ﬁx (dt)rot * L 0 ,

its z component is

As

CwQlsing
V2

46+ %0
V2
for small 8. Note that for £ x L we have resolved the vectors in the fixed
frame. The last equation shows that the spin axis oscillates harmonically

about the local north-south direction with angular frequency

W = Cuwil
V24

and the orientation is stable. The period is

A + 0,

or

27 V2A
T=2="Con

If the rotor is approximated by a thin circular ring of mass M and radius
R, we have

2
C = MR?, A=MR, T=_2
2 V2w

1216

A thin disk of mass M and radius A is connected by two springs of
spring constant k to two fixed points on a frictionless table top. The disk is
free to rotate but it is constrained to move in a plane. Each spring has an
unstretched length of Iy, and initially both are stretched to length [ > [ in
the equilibrium position, as shown in Fig. 1.189. What are the frequencies
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AN

Fig. 1.189.

Fig. 1.190.

of the normal modes of oscillation for small vibrations? Sketch the motion
for each mode.
(Princeton)

Solution:

The motion of the disk is confined to the vertical plane. Let the
displacement of the center of mass from equilibrium be z and the angular
displacement be 6, as shown in Fig. 1.190. To first order in 8, the restoring
forces are

F1=k(l+.’l,‘—lo), Fzzk(l—x—lo).

The equations of motion are then
Mi=F, - F = -2kzx,

or

i+2ﬂ’°w=o, (1)

and
16 = (Fy + Fy)Asingp ,

where I = 3 MA? and ¢ is given by

sin(m —¢)  sind
l+A+z  l+2z

]
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A
sin =~ (#) sin @ ~ (H—T) g,

4k(l - lo)(1 + A)
MlA
Equation (1) gives the angular frequency for linear oscillation,

or

ie.

d+ 9=0. (@)

2k
w) = -

i
Equation (2) gives the angular frequency for rotational oscillation,

(= 1)+ A)
w2 = \/ MOzA '

The normal mode frequencies of small oscillations are therefore

wh wa
27’ o’

and the motions of the two normal modes are as shown in Fig. 1.191.

> O
Fig. 1.191.
1217

A simple symmetrical top consists of a disk of mass M and radius r
mounted on the center C' of the massless cylindrical rod of length ! and
radius a as shown in Fig. 1.192. The top is rotated with large angular
velocity w(t) and is placed at an angle  to the vertical on a horizontal
surface with a small coefficient of friction. Neglect nutation and assume
that the rate of slowing of w(t) is small in one period of procession.

(a) Describe the entire subsequent motion of the top.
(b) Compute the angular frequency of the (slow) precession.
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Fig. 1.192.

{(c) Estimate the time required before the axis of the top becomes
vertical.

(UC, Berkeley)

Solution:

(a) The motion of the top consists mainly of three components:

(1) spinning with angular velocity w about its axis of symmetry,

(2) a slow procession {2 about the vertical axis due to gravity,

(3) motion of the axis of symmetry to come to the vertical gradually
due to the effect of the frictional torque.

(b) Use two coordinate frames with origin O as shown in Fig. 1.192: a
fixed frame Ozyz with the z-axis along the upward vertical, and a rotating
frame Ozx'y’'z’ with the 2’-axis along the axis of symmetry in the same
direction as the spin angular velocity w, both the z- and z’-axes being
taken in the plane of the 2- and z’-axes at the instant under consideration.

We have
dL dL
(E?)ﬁx B (E)rot +QXL

Under the condition that the spin angular velocity w is very large, the total
angular momentum can be taken to be approximately

L = Iwk'.

Further, as w does not change appreciably in a period of precession,
(%), ~0. We then have
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dL
—— =n =
(dt)ﬁx xL=rcx Mg
with

Q2 = Q(—-sinb,0,cos8) ,
L= (0,0,Iaw)

in the rotating frame, and
rec = (0, 0, %) R
g = g(sin,0,cos6) .
In the fixed frame, the above gives
I3wStsind = %Mlgsine ,
ie.

Q_Mlg_l_g
T 2w 2w’

1
13 = 5M7‘2 .

(c) When the axis of symmetry makes an angle § with the vertical,
the frictional force f on the contact point of the rod with the ground is
approximately uMg. Actually only the left edge of the bottom end touches
the ground. The frictional force is opposite to the slipping velocity of the
contact point and has the direction shown in Fig. 1.192. This force causes
an acceleration of the center of mass C of the top and generates a torque
about C at the same time. Neglecting any specific condition of the rod, we
can take the torque about C' as approximately

1,
r%,uMg-El_].

This torque changes the magnitude of the angle § and causes the axis of
symmetry to eventually become vertical.

When the axis is vertical, the bottom of the rod contacts the ground
evenly so that the frictional force is distributed symmetrically. The total
torque about C due to friction is then zero. Actually the torque of the
frictional force about the 2’-axis (relating to the 2’ component of L) does
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not vanish altogether, but as the rod is so thin the torque is quite small
and causes w to decrease only slowly. We have for the frictional torque
approximately

dLe 1 .
Tl EuMglJ ,
ie.
. 1
—0I3w = E,u.Mgl ,
or
49 _ _ pgl
dt = r2w’
which gives

0,2 2
t=~[ W= T%
o Hgl rgl

1218

A heavy symmetrical top with one point fixed is precessing at a steady
angular velocity 2 about the vertical axis z. What is the minimum spin w’
about its symmetrical axis 2’ {2’ is inclined at an angle § with respect to the
z-axis)? The top has mass m and its center of gravity is at a distance h from
the fixed point. Use the coordinate systems indicated in Fig. 1.193, with
the axes z, 2/, = and 2’ in the same plane at the time under consideration
and assume I, = I.

(SUNY, Buffalo)

S,
/
] K"w'
0 X

Fig. 1.193.
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Solution:

Referring to the Eulerian angles defined in Problem 1212, the torque
due to gravity is in a direction perpendicular to the zz-plane and in the
rotating frame Oz'y’z’ attached to the top has components

mgh sin§siny, mgh sin @ cos 1, 0.
Euler’s equations, which apply in the rotating frame, are, for Iy = Iy,
Ilolz,: - (Il - Ia)wy:wz: = mghsinesinzp y
Lay — (I3 — h)wyw, = mghsinfcosy
Ia(bzl =0.
The angular velocity vector w in the rotating frame has components

—psinfcos iy, psinfsiny, @ cosf + 1

as § = 0. So writing € for ¢ and noting that ¢ = 0 for steady precession,
the first Euler’s equation becomes

92(11 — I3) cosf — 9131/} +mgh=0,
giving
=g = mgh + (I, — I3)2% cos 0 .
0

However for €2 to be real we require that

2w — 4(I, — I3)mghcos8 >0

or

W' > %\/4(11 — I3)mghcos@ .
3

1219

The game of “Jacks” is played with metal pieces that can be approxi-
mated by six masses on orthogonal axes of length ! with total mass M, as
shown in Fig 1.194.

(a) If you spin the jack around one of the axes so that there is a steady
precession around the vertical {Fig. 1.195) what is the relation between the
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spin velocity s, the precession rate, and the angle @ between the vertical
and the rotation axis of the jack?

{(b) What must the spin velocity be for the jack to spin stably around a
vertical axis (i.e. 8§ = 0)?

(Princeton)
z .
z
*d
: WUs
l ]
Side view Top view 5
Fig. 1.194. Fig. 1.195.
Solution:

Use fixed frame Ozyz and rotating frame Oz'y’z’ as in Problem 1212
with O at the point of contact with the ground and the latter frame attached
to the jack. The z-axis is along the upward vertical and the 2’-axis is along
the axis of spin as shown in Fig. 1.195. The moments of inertia about the
z'-, y’- and z'-axes are

I = I, = 4mi? + 6mi? = 10mi? |

I3y = 4mi?

withm =4

(a) In tge; rotating frame, the torque due to gravity has components
6mgl sin 8 sin ¢, 6mgl sin @ cos v, 0,
and the angular velocity w has components
ésinz/)—q’)sinecosz/), écosz/)+¢sinesin1p, 1[)+¢cos€.

Euler’s equations then give
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Swyr — Swyw, = 3l—gsin9sin ¥, (1)
. 3g .
Swyr + Sw, iy = 7 sin @ cos 1, (2)
dw, =0.

The last equation gives
Wy = 1/) + pcosf = s+ cosf = constant .

where (1 is the precession rate.
(b) If the spin axis is nearly vertical, § ~ 0 and we take the approxima-
tions sin@ ~ 6, cos@ =~ 1. Then siny x (1) + cosy x (2) gives
. 3
5o+(mn—3nﬁr$)e=o

with Q = ¢, 8 = ¢). Hence for stable spin at = 0 we require

xn—mf—§2>o,
or
s>3Q+ 3
2 TaAn -’
1220

A propeller-driven airplane flies in a circle, counterclockwise when
viewed from above, with a constant angular velocity x with respect to
an inertial frame. Its propeller turns at a constant angular velocity di/dt
clockwise as seen by the pilot.

(a) For a flat, four-bladed propeller, what relations exist among the
moments of inertia?

(b) Find the magnitude and direction of the torque that must be applied
to the propeller shaft by the bearings to maintain level flight in a circle.

(UC, Berkeley)

Solution:

(a) Take a fixed frame Ozyz at the instantaneous position of the center
of the propeller with the z-axis pointing vertically up and a rotating frame
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N

N,

Fig. 1.196.

Oz'y'2' fixed to the propeller such that the z'-axis is along the spin axis,
and the z'-axis is along a propeller blade, the z-axis being taken to coincide
with the z'-axes at the instant under consideration, as shown in Fig. 1.196.
The rotating coordinate axes are then the principal axes with moments of
inertia
IL=I3=1,
and I; = 2I by the perpendicular axis theorem. The angular velocity has
components in the rotating frame of
Y,  xsiny,  xcosy,
where 1 = ¢t. Euler’s equations of motion
Il“:’z' - (I2 - I3)wy’wz’ = My )
Iztbyr - (13 - Il)w,;wzl = Myl y
Ia(bzl - (Il - Iz)wz;wyl = le
then give for the torque M exerted on the propeller shaft
M, =0,

as 1/) = constant and I = I3,

M, = 2 cos(yt) ,
M, = —2Iz/3xsin(1/}t) ,

as x = constant. Hence
M = 2lyy
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and as
M, =0,
My =Mcosy ,
M, =—-Msiny ,

M is in the plane of the propeller and has a direction along the y-axis of
the fixed frame.

1221

A perfectly uniform ball 20 cm in diameter and with a density of 5 g/cm3
is rotating in free space at 1 rev/s. An intelligent flea of 1073 g resides in
a small (massless) house fixed to the ball’s surface at a rotational pole as
shown in Fig. 1.197. The flea decides to move the equator to the house by
walking quickly to a latitude of 45° and waiting the proper length of time.
How long should it wait? Indicate how you obtain this answer.

Note: Neglect the small precession associated with the motion of the flea
on the surface of the ball.
(Princeton)

Fig. 1.197. Fig. 1.198.

Solution:

After the flea moves to a position of latitude 45°, the angular velocity w
no longer coincides with a principal axis of the system. This causes the ball
to precess. As the mass of the flea is much smaller than that of the ball,
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the center of mass of the system can be taken to be at the center of the ball
O. Use a fixed frame Oxyz with the 2-axis along the original direction of w
and a rotating frame Oz'y’z’ attached to the ball with the z’-axis through
the new position of the flea, with both the z- and z'-axes in the plane of
the z- and 2’-axes at t = 0 as shown in Fig. 1.198. As the system is in free
space, there is no external force. We assume that the flea moves so quickly
to the new position that w remains the same at t = 0 as for ¢t < 0.

The rotating axes are the new principal axes. Let the corresponding
moments of inertia be I, I and I3 with I} = I, for symmetry. Euler's
equations are then

hwy — (Il - IS)Wy’wz' =0, (1)
Ilwy’ - (I3 -1 )wz’wz’ =0, (2)
Iyw, =0. (3)

Equation (3) shows that
wyr = constant = wq,r .
Equations (2) and (3) then give
W + Pwy =0

with = ‘!3#4 waz. Its solution is

wy = Acos(§it + ¢) ,
where A and ¢ are constants. Equation (2) then gives

wy = Asin(QU + ¢) .

Initially, w has components in the rotating frame

w

w
Wogr = _ﬁ’ Woy = 0, Woz = E .

These give

Hence at time ¢, w has components
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Wy = el cos(SU + 7) ,

V2
, = 2 sin(Qt +7)
Wy, 2 sin( )
w
7
Thus, both the magnitude and the 2’ component of w are constant, and
the angular velocity vector w describes a cone in the rigid body with axis
along the z’-axis. In other words, w precesses about the z'-axis with an
angular rate

Wyr =

Ia —
Q= 311

o

For the equator at be at the flea house, the angular velocity w must be
midway between the z'- and 2'-axes, i.e.

w w
Wer = —=, —-.
? \/§ \/§

This means that Qt = m, or that the time required is

wyl = 0, wzl =

m_V2x| L | V2 2MR?
0 w |Ii-1 w SmR?
_ 2Vom 2R 4‘/—1r x 105 = 6 x 10° s
Swm \ 3

1222
A horizontal bar of mass m and length 2a hangs by 2 parallel strings of
length 24 attached to its two ends. The rod is suddenly given an angular
velocity w about a vertical axis through its center. Calculate
(a) the distance h to which the bar rises,
(b) the initial increase in tension in each string.
( Wisconsin)

Solution:

Use a fixed coordinate frame as shown in Fig. 1.199 with origin at the
center of the bar, the z-axis vertically upward and the z-axis along the
initial direction of the bar.
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1 m 0

L——Za——-l A

Fig. 1.199.

(a) Take the zy-plane as the reference level for potential energy. The
total mechanical energy of the bar at £ = 0 at which instant it is given an
angular velocity w is
ma?w?

6
as I = lma?. When the bar is at its highest position h, it has only a
potential energy mgh. Conservation of mechanical energy then gives

1
E=§IUJ2=

1
mgh = —ma?w? ,
6
or
b= a?w?
6g

(b) Due to symmetry, the bar is always horizontal during the motion
while it rotates about the z-axis. Let the height of the bar be z and the
angle it makes with the r-axis be 6 at time t. Assume the strings to be
unstretchable then the distance between a point of support A’ and the
corresponding end of the bar A is constant. The coordinates of A and A’
are respectively (acos,asiné,z2) and (a,0,2a). Thus

a®(1 — cos0)? + a%sin? 0 + (2a — 2)% = 4a? ,

ie.
2% —4az + 2a*(1 — cosf) =0 .

Differentiating twice with respect to time we obtain
#2 4+ 25 — 263 + a*0sin @ + a%6% cos0 = 0 ,

or

Z [2% 4+ a0 sin 0 + o262 cosd) .

- 20—z
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Att=0,60=0,2=0,z2=0, 6= w, we have z = %aw2. Thus the vertical
force on the bar is increased by mz = %maoﬂ. As this is shared equally by
the two supporting strings the initial increase in the tension of each string

18

1. 1 2
AT—imz—Zmaw

1223

A uniform rod of length 2a and mass M is rotated with constant angular
velocity w in a horizontal circle of center B and radius b. The rod is hinged
at A so that it can move freely only in the vertical plane containing it. The
angle between the vertical and the rod is § as shown in Fig. 1.200. The
earth’s gravitational field is in the vertical direction.

(a) Compute the kinetic and potential energies of the rod as a function
of 8, 6 and w.

(b) Find a general expression for the possible equilibrium positions of
the rod.

(c) Solve the expression found in part (b) by a graphical technique to
find the equilibrium positions in each quadrant of § between 0 and 2x.

(d) Which of these equilibrium positions are stable? Unstable? For each
quadrant of § how does the existence of the equilibrium position(s) depend
on the parameters w, b and a?

(e) For each quadrant of # make a force diagram to verify qualitatively
the existence and nature of the equilibrium positions.

(MIT)

Fig. 1.200. Fig. 1.201.
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Solution:

Use a coordinate frame Oz'y’2’ such that the origin O coincides with
B, the 2'-axis is along the axis of rotation of angular velocity w and the
z'-axis is in the vertical plane containing the z'-axis and the rod.

(a) In this rotating frame the kinetic energy of the system is

- ama?. 67 = Zmaf?

The potential energy consists of two parts, a centrifugal potential and
a gravitational potential. In the rotating frame, a fictitious centrifugal
force mw?z’ must be introduced on every mass point m, corresponding
to a potential —imaz'2w?. For the entire system this fictitious centrifugal
potential is —%Iz:uﬂ, where I, = %ma2 sin?@ + m(b + asin§)2. As the

gravitational potential is mga cos @, we have

1 .
T=21,0°=
2.4

1
V= —gm [%a2 sin? 9 + (b + asin9)2] w? + mgacosf .

(b) For equilibrium, % = 0, which gives the equation for possible

equilibrium positions of the rod,

4
—rmuw? (b + §asin€) -a-cosf —mgasingd =0,

o aw? (b 4
tanf = ——— (— + —sine) .
g \a 3
(c) Let the left-hand side of the above equation be f, and the right-hand
side be fy and draw these curves in Fig. 1.201. The equilibrium positions
are given by their intersections. It can be seen that one equilibrium position
occurs in each of the second and fourth quadrants of 8. In the third
quadrant, f; = tan@ is positive, and

f2= (—9 + 4—a|sin9|) w?
g 3¢

as sin @ is negative. It is seen that only if f; is positive and sufficiently large
can there be one or two equilibrium positions, otherwise there will be none.
(d) For an equilibrium position to be stable, we require that

d2v

a7 >0
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at that position. As

av 2 4 .
20 =™ (b+§asm9)acos9—mgasm9,

we require that

d2V 4 2 2 2 2 2
Tl = —§ma w*(cos* @ — sin* 0) + mabw sin @ — mga cos @
2
= %—9 (%auﬂ sin @ tan2 0 + bw? tan? @ +bw2>

ma cos?

3 2
- 0
b (—gtan® 0 + bw?) >

for an equilibrium position 8 to be stable.
When 6 is in the second quadrant [, 7], as sin > 0, tan@ < 0, we have

d*v
d_92>0

and the equilibrium is stable.
When @ is in the fourth quadrant [37”,21r], as sinf < 0, tanf < 0, we
have
d’v
d—ez <0
and the equilibrium is unstable.
When 6 is in the third quadrant [, 37], we write

d 26 (4
d_;; = T%;e (§w2 sin 0 tan? 0 + bw? sec? 9)

maw? (4 . maw? 4 3
= onp (§asm 9+b) = Tomd] (b— §a|s1n9| )

as sin@ < 0. Then if b < $a|sin6|3, the equilibrium is stable, and if
b> 3a|sind|3, the equilibrium is unstable,
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mg

@

mg

(i) (i) (i)
Fig. 1.202.

(e) The force diagram for each equilibrium situation is shown in
Fig. 1.202, where (i), (ii) and (iii), are for the second, third and fourth
quadrants respectively, with T and F denoting the support force by the
hinge and the fictitious centrifugal force. By considering a small deviation
80 from equilibrium, we see that (i) is stable and (iii) is unstable, while for
(ii) the situation is more complicated; whether it is stable or not depends
on the relative values of the parameters.

4. DYNAMICS OF DEFORMABLE BODIES (1224-1272)

1224

A string is stretched between two rigid supports 100 cm apart. In the
frequency range between 100 and 350 cps only the following frequencies
can be excited: 160, 240, 320 cps. What is the wavelength of each of these
modes of vibration?

( Wisconsin)
Solution:

As the two ends of the string are fixed, we have n) = 2L, where L is the
length of the string and n an integer. Let the wavelengths corresponding
to frequencies 160, 240, 320 Hz be Ag, A;, A2 respectively. Then

nho = (n+ DA =(n+2)x =200,
160Xy = 240X; = 320, .
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Hence n = 2, and

Ao =100 cm , A =67 cm A2 =50 cm .

1225

(a) Give the equation which relates the fundamental frequency of a
string to the physical and geometrical properties of the string.
(b) Derive your result from Newton’s equations by analysing what
happens to a small section of the string.
(Wisconsin)

Solution:

(a) Let w be the fundamental frequency of a string of length I, linear
density p and tension F. The equation relating F,l and p is

w="T
]

=

(b) Consider a small length Al of a string along the z direction undergo-
ing small oscillations and let F, F; be the tensions at its two ends, as shown
in Fig. 1.203. For small oscillations, 8 =~ 0 and A#f is a second-order small
quality. Furthermore as there is no £ motion, we can take the z-component
of the net force on Al to be zero. Thus
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fo = Fycos(0 + A8) — F) cos &
~ (Fp — F1)cos@ — F,A@siné

~ F2 - F] =0 y
or F; =~ F,. Then
. A dsin @
[y =Fsin(@ + Af) — Fsinf~ F 20 A6
= FcosOﬁA:z: R Fd—eA:z .
dx dzx
For small @,
= dz’ dz =~ dxz?’
and the above becomes
Py _ 0%
Al— =F—2A
PRl = I ppat®
by Newton's second law. As Al ~ Az, this gives
&y p&y_,
8r2 Fo2

which is the equation for a wave with velocity of propagation

For the fundamental mode in a string of length ! with the two ends fixed,
the wavelength X is given by | = A/2. Hence the fundamental angular
frequency is

1226

A violin string on a violin is of length L and can be considered to be
fastened at both ends. The fundamental of the open string has a frequency
fo. The violinist bows the string at a distance L/4 from one end and touches
the string lightly at the midpoint.
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(a) Under these conditions, what is the lowest frequency he can excite?
Sketch the shape of the string.

(b) What is the frequency of the first overtone under these conditions?

( Wisconsin )

Fig. 1.204.

Solution:

(a) For the open string, the wavelength XAy corresponding to the funda-
mental frequency fo is given by A/2 = L. When the violinist bows at L/4
from one end and touches the string at L/2, the former point is a node and
the latter point an antinode so that A\g = L. Hence the string has the shape
shown in Fig. 1.204 and, as fo ox 1/Ag, the fundamental frequency is 2fq.

(b) The frequency of the first overtone is 4f.

1227

A guitar string is 80 cm long and has a fundamental frequency of 400 Hz.

In its fundamental mode the maximum displacement is 2 cm at the middle.

If the tension in the string is 106 dynes, what is the maximum of that

component of the force on the end support which is perpendicular to the
equilibrium position of the string?

( Wisconsin)

> X (cm)

Fig. 1.205.



Newtonian Mechanics 371

Solution:

Use Cartesian coordinates with the z-axis along the equilibrium position
of the string and the origin at one of its fixed ends. Then the two fixed
ends are at £ = 0 and £ = [ = 80 cm, as shown in Fig. 1.205. At z = 0,
the y-component of the force on the support is

. 9y
Fy:TsmezTOzT% )

where T is the tension in the string. The guitar string has a sinusoidal form

. T
Y = Yo sin [w (t - —)]
v
27y __ 21w

with w = 55* = 5 = 7, yo = 2 cm. Thus

y = 2sin (wt— %) cm .

Hence at x =0,

F, = —ggo—T cos (wt)

Fymax = % = 7.85 x 10* dynes .

1228

A transverse traveling sinusoidal wave on a long stretched wire of mass
per unit length p has frequency w and wave speed ¢. The maximum
amplitude is yg, where yg <« A. The wave travels toward increasing z.

(a) Write an expression for the amplitude y as a function of ¢t and =z,
where z is distance measured along the wire.

(b) What is the energy density (energy/unit length)?

(c) What is the power transmitted along the wire?

(d) ¥ the wave is generated by a mechanical device at z = 0, find the
transverse force Fy(t) that it exerts on the wire.

(Wisconsin)

Solution:
(8) y = yosin [w (t — 23].
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(b) Every point the wave travels through undergoes simple harmonic
motion. Consider an element of the wire from z to £+ Az. The mechanical
energy of the element is the sum of its potential and kinetic energies and is
a constant equal to the maximum of its kinetic energy. As

. T
Y = wyg COS [w (t - z)] ,

the maximum vibrational velocity of the element is wyg and its total
mechanical energy is

1 1
§Am~w2y§ = ipw2ygA:z: .

Hence the energy per unit length of the string is

1
E= §Pw2y(2) .

(c) As the wave travels at a speed c, the energy that passes through a
point on the string in time ¢ is Fct. Hence the power transmitted is

1
§W2y§ .

(d) The tension T in the string is given by ¢ = \/% (Problem 1225).

The transverse force the mechanical device exerts on the wire at £ = 0 is
(Problem 1227)

F,@t)=-T (%) oo cos(wt) .

1229
A violin string, 0.5 m long, has a fundamental frequency of 200 Hz.

(a) At what speed does a transverse pulse travel on this string?
(b) Draw a pulse before and after reflection from one end of the string.
(c) Show a sketch of the string in the next two higher modes of oscillation
and give the frequency of each mode.
( Wisconsin)
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(A

Before reflection

w TN f2=600Hl

After reflection

~ - T™< < -=> f:4L00Hz

Fig. 1.206. Fig. 1.207.

Solution:

(a) For a string of length [ fastened at both ends, the wavelength A of
the fundamental mode is given by A/2 = I. Hence

v=>v=2v=2x0.5x 200 =200 m/s .

(b) Figure 1.206 shows the shape of a pulse before and after reflection
from one end of the string.

(c) The frequencies of the next two higher modes are 400 Hz and 600 Hz.
The corresponding shapes of the string are as shown in Fig. 1.207.

1230

A piano string of length [ is fixed at both ends. The string has a linear
mass density o and is under tension T'.

(a) Find the allowed solutions for the vibrations of the string. What are
the allowed frequencies and wavelengths?

(b) At time t = 0 the string is pulled a distance s from equilibrium
position at its midpoint so that it forms an isosceles triangle and is then
released (s < I, see Fig. 1.208). Find the ensuing motion of the string,
using the Fourier analysis method.

(Columbia )

Solution:

(a) The vibration of the string is described by the wave equation
(Problem 1225)
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oy oty _
82 T o2

subject to the conditions

for all t. Let

and obtain from the above
1d2X o d?A
X dz2  TAd? '
As the left-hand side depends only on z and the right-hand side only on ¢,

each must be equal to a constant; let it be —k2. We then have the ordinary
differential equations

2x
W-}_k X=0,
d2A 2k2A_
a PUEA=0,

—./T
wherev—\/:.

Solutions of the above equations are respectively

X (z) = c1 cos(kz) + casin(kz) ,
A(t) = by cos(vkt) + by sin(vkt) .

With the boundary conditions X (0) = X (I) = 0, we have

c1 =0, cesin(kl) =0.
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As ¢; and ¢z cannot both be zero (otherwise y(z,t) would be identically
zero), we have to choose sin(kl) = 0 or

kl = nm, n=123...
Thus the allowed general solution is

= t
y(z,t) = Z [An cos ("7;” ) + B, sin (2”%’1{)] sin (TIE> ,

n=1

where we have replaced the integration constants bjc2 by A, and bacy by
B,, for integer n. Each term in the general solution is an allowed solution

corresponding to an allowed mode. The period for the nth mode is given
by
nwv

] T, =2m

the frequency being

the initial conditions are

282
l

2s8(l — z) l
T for 2

Furthermore, the string is initially at rest so

By)
—= =0.
(at t=0

| =~

y(z,0) =
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Hence

and the A, are given by

y(z,0) = i A, sin (?) .
n=1

Multiply both sides by sin(mnz/l) and integrate from 0 to I:

/01 y(x,0) sin (m;r:z) dz = 2 A, /01 sin (?) sin (@) dz
=A, /Ol sin? (@) dz

= Anl sin? ¢d¢ = lAml .
m 0 2

Hence

use having been made of the formulae

/ sin(mz) sin(nz)dz = %r&mn )
0

. 1 z
/:z:sm(a:z:)d:z: == sin(az) — Ecos(a:z:) .

Thus the motion of the string is described by

oo

1= 55 2 (1) o (o (1)
n=1
with v = \/g
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1231
A spring of rest length X and force constant k has a mass m. One end

is fixed and the other end is attached to a mass M. The orientation is
horizontal, and M moves on a frictionless surface.

(a) Derive a wave equation for longitudinal oscillation of this system.
(b) Find the frequency of the lowest mode as a function of mass for the
case where M and k are finite and m < M.
(Princeton)

e X — >
0 —_—> X
X xelbx

Fig. 1.209.

Solution:

(a) Take the z-axis along the length of the spring with origin at the
fixed end and consider a section of length Az extending from z to  + Az
as shown in Fig. 1.209. Then as M moves to the right, the point  moves
to  + £ and the point z + Azx moves to £ + Az + £ + A€ as shown in
Fig. 1.210.

o —

Xof XeAx oE «Af
Fig. 1.210.

Let o be the Young’s modulus of the spring. The restoring force F' is
given by F = aoAl/l, where a is the area of the cross section of the spring
and Al/l is the extension per unit length. Write K¢ for ao. The net force
on the section under consideration is

a a
Frvas — Fo = Ko (3—i> K (3—i>
z4+Azx T
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which by Newton’s second law is equal to pAz (9%¢ /3t2)z, p being the mass
per unit length of the spring, assumed constant for small extensions. Thus

12 p Az T p \Or?

(02§> _Ko (%i)x-{-Az B (%2): _Ko (&)

or

o m 9% 0

05122 K()X 8t2 -
This is the equation for propagation of longitudinal waves along the spring
and gives the velocity of propagation as

oo Xy [E
m m

as k = Ky/X by definition.
(b) Try a solution of the form

£(a,t) = Eo(w) cos(wt + ¢) ,
where w, ¢ are constants. Substitution in the wave equation gives

8%

5':1‘;?+K2§0=0,

where
K2_ ’ITW2 _U_JE
KQX - ’02 )

Its general solution is
& = Asin(Kz) + Bcos(Kz) ,

A, B being constants of integration. The boundary condition £ = 0 at
z =0 gives B = 0. We also have from Newton’s second law

A o€
M<W>x__K° (%)x !

m

or

KX tan(KX) =

¥

]
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which can be solved to give a series of K, and hence of the vibrational
frequencies of the spring.
For m <« M and the lowest frequency, tan(KX) ~ KX and the above

becomes \

w'm m
kK M’
giving the lowest angular frequency as
k
w=4— .
M

Note that this is just the vibrational frequency of an oscillator which
consists of a massless spring of force constant k with one end fixed and the
other end connected to a mass M.

To obtain a more accurate approximate solution, expand

tan(KX)= KX + %(KX)3+~~

and retain the first two terms only. We then have

m 1 1T m 1
(KX)2 =" [1+ g(KX)2] = i [1 — §(KX)2] ,
or 5
K2 = ___om
(B3M +m)X2"’

giving

_ 3k

T V3M+m

1232

(a) Suppose you have a string of uniform mass per unit length p and
length [ held at both ends under tension T'. Set up the equation for small
transverse oscillations of the string and then find the eigenfrequencies.

(b) Now consider the case where the string is free at one end and
attached to a vertical pole at the other end, and is rotating about the
pole at an angular frequency w (neglect gravity) as shown in Fig. 1.211.
Set up the equation for small transverse oscillations for this case.
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(c) Find the eigenfrequencies.
(Hint: the equation you get should look familiar in terms of the Legendre
polynomials.)
(CUSPEA)

Fig. 1.211.

Solution:

(a) Consider a section of the string as shown in Fig. 1.212. The y-
component of the tension at z is

F,(z)=-Tsinf~ -To~ -T (%) .

Similarly at z + Az
Fy(x+Ax)zT(@) .
O z+Az

Note that T is constant. Thus
o) ()| _p2 (%
(aw)z+Az (aw)] =75 (51)
a

2
-7%Y .
—T3x2 Az .

The section has length Az, mass pAzx, and by applying Newton’s second
law to the section we have

Fy(x+Az) - Fy(z)=T

Py _p%y_
oz Tot2
This is the wave equation for small transverse oscillations, the velocity of
propagation being v = \/% . The general solution is (Problem 1230)
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NIE

y(-’lf, t) = 1 +anin I ]

nnut nrvt\ . nrx
A, cos sin

]
—

n

The eigenfrequencies are

Wnp, NIV

Un

T o oml A
Yy T
8
_.( - .
L fﬁ
x X XelAx
Fig. 1.212.

(b) Take a rotating frame Ozyz attached to the spring with the y-axis
along the axis of rotation and the z-axis along the string. There is a
fictitious centrifugal force acting on the string which is balanced by the
tension. Consider a section Az of the string. The difference of tension
across its ends is

—AT = pAz - zw? |
whence
g = — 2x
dz T
Integrating and applying the boundary condition T' = 0 at z = [ we find

T = %pw2(l2 —z?%).

Following the procedure of (a) we have

R(e+a)-Fe) = (15)  —(15)
z+Azx T
~ % [%pw2(l2 x2)a—] Az

Newton’s second law gives

8y 01
PATSE = 32 [
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or
i [ 2 )@] 1@
Oz ( or| w?ot?
for small transverse oscillations.

(c) Try a solution of the type y ~ e~ ** and let £ = 2. The above
equation then becomes

By_ dy 2Q2

— 2 e — — =
(1-¢ )d£2 2 a€ + 0,
with 0 < £ < 1. This differential equation has finite solutions if
2002
—‘;2— = n(n + 1) s

n being an integer. The equation is then known as Legendre’s differential
equation and the solutions are known as Legendre’s polynomials. Thus the
eigenfrequencies are given by

Q w |1
e Y el 1
i LGN
where n = 1,2,3,.... However we still have to satisfy the boundary

condition y = 0 at { 0. This limits the allowable n to odd integers
1,3,5,... since Legendre’s polynomials P,(§) = 0 at £ = 0 only for odd
values of n.

1233

A long string of linear density (mass per unit length) u is under tension
T. A point mass m is attached at a particular point of the string. A wave
of angular frequency w traveling along the string is incident from the left.

(a) Calculate what fraction of the incident energy is reflected by the
mass m.

(b) Suppose that the point mass m is replaced by a string of linear
density g, > p and short length ! such that ! = m/u,,. For what range of
I values (for fixed m) does the answer for (a) remain approximately correct?

(CUSPEA)

Solution:

Divide the space into two regions with separation at the location of m,
which is taken to be the origin of the z-axis, as shown in Fig. 1.213. In
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y

o - @

x=0

Fig. 1.213.

region 1, let the wave function be
y(l) — eikx +Ae—ikz ,

where k = w/v, v = /T/u being the velocity of the wave (Problem 1225),
and the second term of the right-hand side represents the reflected wave.
In region 2 we have

y® = Betk® |
At z = 0, where the mass m is located, we require that

MONC)

ie.
1+A=8B. (1)

Furthermore, considering the forces on the point mass m we have

Oy oy'? oy
B2 =T oz T oz ’

where for y we can use either y{!) or y®. Then

m

—mw?B =ikT(B — 1+ A) . (2)
Solving (1) and (2) we have

—muw?

A= ST 7 m?’
B:fﬁ@l__
2ikT + mw?

Therefore the fraction of the incident energy that is reflected is

A m2wh
T 4k2T? + m2wt
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(b) The calculation in (a) still applies provided I < X, where X is the
wavelength, being

2r  2nv 2_1r T

k w w\ pu

Hence the condition that the answer to (a) remains approximately correct
is

1234

A perfectly flexible string with uniform linear mass density p and length
L is hanging from a fixed support with its bottom end free, as shown in
Fig. 1.214.

(a) Derive the partial differential equation describing small transverse
(in one plane) oscillations of the string, and from it, the differential equation
for the form of the normal modes.

(b) Solve this differential equation using standard (power series) meth-
ods (the trick for transforming it into Bessel’s equation is not what is
wanted), and, using approximate numerical methods, solve for the fre-
quency of the lowest normal mode.

(Princeton)

Y€

Fig. 1.214.

Solution:

(a) Use coordinate frame Ozyz as shown in Fig. 1.214. following the
procedure of Problem 1232, we have, by Newton’s second law, for a section
Az of the string
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&y _ dy 9y
pr‘a? B (T%)z-{-Az B (Ta_x)z ’

&y 0 Oy
"5 = bz (Ta) :

The tension T in the string at z is related to the gravity by

or

L
T=/ pgdz = pg(L — z) ,
T

so the above equation becomes

&%y 3] 8y

—=g— |(L-2)=] .
o2~ oz [( 2) 3:1:]
This is the partial differential equation for small transverse oscillations of
the string, Applying the method of separation of variables by putting

y(z,t) =&(z)7(¢) ,
we obtain
1d7_1d (L~ )ﬁ
grdt?  fdz =
As the left-hand side depends on t alone and the right-hand side depends
on z alone, each must be equal to a constant, say —A, A being a positive
number. We thus have the equivalent ordinary differential equations

d ol

& |e-a%] +xe-0.
d*r
W+Ag'r—0.

The boundary conditions are
y(0,t) =0, y(L,t) = finite ,
i.e.
£(0) =0, £(L) = finite .
(b) The £-equation can be written as

(z— L)E" +& — X =0.
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As x = L is a regular singular point, the equation has a solution of the
form

£=) an(z—L)".
n=0

Then

o0

L =) (n+ anu(z - D",
0

oo

¢ = Zna (z—
¢ = Zn(n +app(z— L))" = Z(n —nag(z — L)* 2,

2

oo

(z— L)¢" = Z(n ~ Dna,(z— L)* ! =

2

n(n+ Nanp(z - L)",

...Mg

and the £-equation becomes
o0
(@1 — Aag) + Y _[(n +1)%ans1 — Aan)(z — L)* = 0.
1

Equating the coefficients of (z — L)™ on both sides of the equation, we find

= Aa a = A a
a) = 0> n+l—(n+1)2 n .
Hence
A 22
az 52‘(11 ?ao »
A a 23 a
a S
3 32 2 (3 . 2)2 0
Xn
an (n!)2 ag ,
giving
o X’"
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The boundary condition £(0) = 0 then yields

o0
=nr(AL)” 122
AL) = — - =1-AL+ ML -...=0.
FOD) = Y g = 1M L 0
This equation can be solved to find the roots AL, which then give the
frequencies of the various modes, y/Ag/2m, according to the T-equation.

For an approximate solution we retain only the terms up to n = 2 in

F(OL):

FOL)~1— AL+ %(AL)2 ,

Newton’s approximate method gives a better approximate root of f(AL) =
0, ag41, if we input an approximate root ay by calculating

f(ak)
flaw)

k1 = Qg —

As
F'OL) = ~1+ %AL ,
if we take a; = 0, then

a; =1, fla2) = 0.25,
az3=1———=1.5, flas) ~ 0.625 .

As f(a3) is quite close to zero we can consider a3 = 1.5 as the smallest
positive root. Thus
1.5
Amin = _L‘ .

for the lowest mode. Then for this mode

7= Acos(v/Ag t) + Bsin(/Ag 1)

. NL‘/-'*_!I
mn ™ on V2L

and the frequency is
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1235

A common lecture demonstration is as follows: hold or clamp a one-
meter long thin aluminium bar at the center, strike one end longitudinally
(i.e. parallel to the axis of the bar) with a hammer, and the result is a
sound wave of frequency 2500 Hz.

(a) From this experiment, calculate the speed of sound in air.

(b) From this experiment, calculate the speed of sound in aluminium.

(c) Where might you hold the bar to excite a frequency of 3750 Hz?
Explain. Does it matter which end of the bar is struck? Explain.

(d) Suppose you hold the bar at the center as before, but strike the bar
transverse to its length, rather longitudinally. Qualitatively explain why
the resultant sound wave is of lower frequency than before.

(UC, Berkeley)

Solution:

(a) The point where the bar is struck is an antinode and the point where
it 18 held a node. With the bar held at the center and its one end struck,
the wavelength X is related to its length L by A = 2L. Hence the speed of
sound propagation in the aluminium bar is

val =vA=2vL =2x 2500 x 1 = 5000 m/s .

Y
V= —,
p

where Y is the Young’s modulus of its material and p its density. The speed
of sound in a fluid is

The speed of sound in a solid is

where M is its bulk modulus and p its density. For adiabatic compression
of a gas, M = ~«p, where p is its pressure and < the ratio of its principal
specific heats; v = 1.4 for air, a diatomic gas. Hence

Vair — 1. 4ppAl
vat V Ypair
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With

p=1.013 x 108 dyn/cm? (standard atmosphere) ,
Y = 7.05 x 10" dyn/cm? ,

par = 2.7 g/cm®

Pair = 1.165 x 1073 g/em3  (at 30°C) ,

Vagr = 6.83 x 1072 x 5000 = 341 m/s .

(b) var = 5000 m/s.

(c) Suppose the bar is held at distance z from the struck end. We have
x—é—i— 5000 ——l-m

T4 4 4x3750 3

Hence the bar is to be held at % m from the struck end. If it is so held but
struck at the other end, we would have

2 v

3
and the frequency would become 1875 Hz.

(d) If the bar is struck transversely, the wave generated will be trans-
verse, not compressional, and the velocity of propagation is then given by

where N is the shear modulus. As the shear modulus of a solid is generally
smaller than its bulk modulus, v is now smaller. And as

y="1
T 2L

the frequency generated is lower.

1236

(a) A violin string of length L with linear density g kg/m and tension
T newtons undergoes small oscillations (Fig. 1.215 (a)). Write the solutions
for the fundamental and first harmonic, and sketch their z-dependences.
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Give the angular frequency w; of the fundamental and wp of the first
harmonic.

(b) The left-hand 1/3 of the string is wrapped so as to increase its linear
density to 4 kg/m (Fig. 1.215 (b)). Repeat part (a), i.e. derive and sketch
the new fundamental and first harmonic, and express the new w; and w;
in terms of the original w, and w, of part (a).

(UC, Berkeley)

(a)

4 > 2/\5
0
L/Z«lﬂ 2L/3
(b) 3‘ F (b) e N
q Le N t

Fig. 1.215. Fig. 1.216.

Solution:

(a) Use coordinates as shown in Fig. 1.215 (a). The equation of motion
for the string is (Problem 1225)

By pdy

o2 Tom

from which it is seen that the wave propagating along the string has velocity
v = /T /u. As the two ends of the string are fixed the fundamental mode
(Fig. 1.216 (a)) has wavelength A; given by
1
= =A; .
L M

Hence the fundamental angular frequency is

The solution for the fundamental mode is

z
y1 = A;sin (%) cos(wit + ¢1) ,
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where A, ) are constants to be determined from the initial conditions.
The wavelength for the first harmonic (Fig. 1.216 (b)) is A, = L. Hence for
the first harmonic the angular frequency is

w_21rv_21r T
LA VIR R | P

and the solution is

y2 = Agsin (-2%{) cos(wat + 2) ,

where Ay, @2 are constants to be determined from the initial conditions.

{b) The equations of motion for the two sections are

P2y  4udy L
— 2 <z<-—
2 Tor O UsTs3,
&y pndy L

bl A Rl 4 2 <L.
o2 Tom > 3Tl

The boundary conditions are that for all ¢, y = 0 at £ = 0, L, and y and
Oy/dz are continuous at £ = L/3. Thus the solutions of the equations of

motion are
L
(A1 coswt + B) sinwt) sin (ix) , 0<z<—,
y(x,t) = . ’
T L
(A2 coswt 4+ Bj sinwt) sin [;(L - :z:)] 3 <z <L,
2
with

T
vl=\/m, v2=‘w%=2vl

and
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Lw
(A1 coswt 4+ B sinwt) sin (—)
301
Lw
= (A coswt + Bz sinwt) sin (—) ,
301
Lw
g"—(Al coswt + By sinwt) cos (—)
V1 3uy
Lw
= —i(Az coswt + B sinwt) cos (3—) .
V1

201

Equating separately the coefficients of coswt and sinwt on the two sides of
the last two equations gives

. [ Lw . LwY
A sin (E) _A2sm(3v1) =0,
Alicos (Lw) +A2—cos(Lw) =0,
v 3, 3u;
B, sin (ﬂ) — Bysin (ﬂ) -0,
3’01 3’01

w Lw w Lw
B, — == Shadll =0.
lvlcos(3v1)+B2zlcos(3vl) 0

For A,, A3, By, B3 not all zero we require

ie.
2Lw

— = =123,...
3vl nm, n [ it B |

Hence the new fundamental and first harmonic angular frequencies are
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170 Tar\w 4l
b= _3r T3,
T AT A P A

For the fundamental frequency w},
Ay = Ay, By =B .
For the first harmonic frequency wj,
Az = —24,, By, = -2B; .

The corresponding wave forms are sketched in (a) and (b) of Fig. 1.217
respectively.

{a) — g - = - wy
]
i
1
]
i
(b) M wy
Fig. 1.217.
1237

A string of infinite length has tension T and linear density o. At t =0,
the deformation of the string is given by the function f(z), and its initial
velocity distribution by g(z). What is the motion of the string for ¢ > 0?

{ Chicago)

Solution:
The deformation of the string travels as a wave following the wave
equation

&y 18
dr2 2612
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with

v== Z
o

The general solution is a sum of waves traveling in the —z and 4z directions:

y = fi(z + vt) + fa(z — vt) .

The initial conditions give

Fi(®) + falz) = £(z) (1
fil@) - fi(z) = 42, (2

where

fi(2) = (0135(5))::0, fi(@) = (0’;25‘5))::0,

with £ = z 4 vt, £ = x — vt respectively. Integrating (2) gives

7@ - =1 [ oy +c, 3

C being an arbitrary constant. Combining Eqgs. (1) and (3) we obtain

he) =3 |1+ [ ez 4]

a@) =3[~ [Tatwrar —c]
Hence

= fi(z + vt) + fo(z — vt)

{ (z + vt) / o g(z')dz' + C]
|
4

B | =

z—vt

+ | f(z — vt) g(z')dz' — C’] }

T+ vt

=% f(z+vt) + f(z —vt)+11)/z g(w')dw'] ~

—ut
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1238

A long wave packet with amplitude A composed predominantly of
frequencies very near wy propagates on an infinitely long string of linear
mass density p stretched with a tension T as shown in Fig. 1.218. The
packet encounters a bead of mass m attached to the string as shown in the
sketch.

(a) What is the amplitude of the transmitted wave packet?
(b) In the limit of large m and high frequency (large wq), how does the
amplitude of the transmitted wave depend on wy?

__.,_>MM_I_, x

m

(MIT)

Fig. 1.218.

Solution:

(a) The equation of motion for the string for small transverse oscillations
is a wave equation (Problem 1225)

Py udly

or2 Toz

the velocity of wave propagation being v = +,/T/u. For waves of angular
frequency w, define wave number

For waves with angular frequencies very nearly wg, the wave equation has
solutions

y1 = Aetkr—wot) 4 Be—ilkz—wot)  for g <

yp = Ceilkz—wot) forz >0,
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where A, B,C are the amplitudes of the incident, reflected and transmitted
waves respectively, and the position of the bead is taken to be the origin
of the z-axis. The continuity of the displacement at the boundary requires
y1 =y2 at £ =0 for all £, i.e.

A+B=C.

The equation of the motion of the bead is
m (%)z:o = —Tsin@; + T sin 62
~ —T6, + T8,

on Oy2
~-T| = T{—
T(ax)z:0+ (ax)zzo ,

where 0, 0, are the angles the string makes with the z-axis for z < 0 and
z > 0 respectively as shown in Fig. 1.219. Thus

—mwiC = —ikT(A — B) + ikTC ,

or

mw?
A-B= ——0\C.
(1 + z'kT)

As A + B = C we have
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and the amplitude of the transmitted wave is

IC] = VC°C = 2A,..=w¢ - 2A,,.=w‘ .
wre= R

(b) In the limit of large m and large wq we have

2A 1
Cl~ —/uT x — .
IC] VT o

1239

A uniform string has length L and mass per unit length p. It undergoes
small transverse vibration in the (z,y) plane with its endpoints held fixed
at (0,0) and (L,0) respectively. The tension is K. A velocity-dependent
frictional force is present: if a small piece of length 8! has transverse velocity
v the frictional force is —kvél. Using appropriate approximations, the
following equations hold for the vibration amplitude y(z,t):

G) %¥+a% =0y, (i)  y(0,£) =0 =y(L,¢).

(a) Find the constants a and b in (i). If you cannot do this part, take a
and b as given positive constants and go on.

(b) Find all solutions of (i) and (ii) which have the product form y =
X (z)T(t). You may assume a? < b/L?.

(c) Suppose y(z,0) =0,

y(z,0) = Asin (3—22) + Bsin (5%’”) .

Here A and B are constants. Find y(z,t).
(d) Suppose, instead, that a = 0 and y(z,0) = 0 while

(@0 = {

0<z<
A(L-z), £<z<L.

Find y(z,t).
(UC, Berkeley)
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Solution:

(a) The frictional force acting on unit length of the string is —kv =
—kdy/Bt, so the transverse vibration of the string is described by
623/ 623/ @

Porr = Kopz ~ %%

Py (kN9 _ (K\ %y
ot2 p) ot \p)ox?’
Hence a = k/p, b= K/p.

(b) Setting y = X (z)T'(t) and substituting it in the wave equation we
obtain

or

TII aTI bXII

TYT =X -
As the left-hand side depends only on ¢ and the right-hand side depends
only on z, each must be equal to a constant, say —bA2. Thus we have

X"+XX=0,
T" +aT' +bX°T =0 .

Using the boundary conditions
y(0,t) =y(L,t) =0, i.e. X(0)=X(L)=0,

we obtain the solutions for the first equation

Xn(z) = Ay sin(A,z) = A, sin (?) ,
where A, is a constant and n = 1,2,3,.... The second equation then
becomes )

T +aT' +5("F) T=0.
Letting T'(t) = e”* we obtain the characteristic equation
2.2
némh
p’+ap+ i - 0,

whose solutions are

—a + \/a? — 4n2n2p/L2? a | .

P+ = 9 = _—2' + Wy ,
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where

n2mw2b a2
Wy =4/ —— — —

L2 4

is real as b/L? > a?. Hence the solution of the second equation can be
written as
Ty, = [C!, sin(wnt) + D), cos(wnt)le™ %

and thus

yn = sin (E{E) [Crsin(w,t) + Dy cos(wnt)]e_%!

grouping the constants in each term into one. The general solution of the
wave equation is thus

y(z,t) = Zyn("’:at) .
n=1
(c) As y(z,0) =0, D, =0 for all n and we have

t

y(z,t) = i Cpsin ("_zf) sin(wat)e™ % .
n=1

and
b nnx a
. — . hhdiied < _ v _%&
ylz,t) ;C’n sm( 7 ){wn cos{wnt) 2sm(w,,t)]e .
Then as
j(z,0) = Asin 31r_:1: + Bsi Smz —iC’ sin(m)
y\z, - L sin L - = n L Wn s
we have A B
C'3 = —, C'5 = —
[P35 ws

and all other C,, = 0. Hence
A 3rz B Sz at
0= |2 . B . _at
y(z,t) [ws sin (—L ) sin (wst) + o sin (_L ) sin (wst)] e

with
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(d) Starting with the general solution
> . /nnz . _g
y(z,t) = Z sin (T) [Cr sin(wpt) + Dy, cos(wat)]le™ %
n=1
we find C,, = 0 for all n as §(z,0) = 0. Then

o0
. (nTT Az, 0<z<L/2,
¥(z,0) —;Dns‘“ (T) - { A(L-z), L/2<z<L.

As
L . mnx > L , nwry\ . mnx
/0. y(z, 0) sin (T) dx = 7?:1‘/0. D, sin (T) sin (T) dx
LD.,,
= —-—2—— R

we have

2 (L . /mrzx
D,, = Z./o y(z,0) sin (T) dz

2 L2 . /mrux 2 [ . ([MmTZX
= Z./o Aa;sm(T) dz + Z/L/zA(L—x)sm (T) dz

_ 4AL (=)

= ——sin(—
m2n2 2

Note that we have used the formula
T . T
/ sin(mz) sin(nz)dz = 56,,,,,
0

in the above. Finally we have
o0
4ALN . /nmwyN . /nwz
y(z,t) = ; (W) sin (7) sin (T) cos(wpt) ,
where

nw
Wn = —Vb
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1240

(a) Plot the pressure and air displacement diagrams along a pipe closed
at one end for the second mode.
(b) What is the frequency of this mode relative to the fundamental?
( Wisconsin)

T

pipe [

pressure  p 9@-
|

displacement ¢ l@e
]

Fig. 1.220.

|
|
1)
1
|
{
|
{
I
|

Solution:

(a) The pressure and air displacement as functions of distance from the
closed end are sketched in Fig. 1.220.

(b) For this mode, L = 3\/4, while for the fundamental mode, L = /4.
Hence if wy is the fundamental frequency, the frequency of this mode is 3wy.

1241

An organ pipe of length ! open on both ends is used in a subsonic wind
tunnel to measure the Mach number v/c of air in the tunnel as shown in
Fig. 1.221. The pipe when fixed in the tunnel is observed to resonate with
a fundamental period ¢. If v/c = 1/2, calculate the ratio of periods t/to
where tg is the fundamental period of the pipe in still air.

( Wisconsin )
Solution:

As the organ pipe is open at both ends, the fundamental wavelength of
sound in resonance with it is given by A/2 = l. The corresponding period
is
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Vv —>

I

Fig. 1.221.

t=

¥

A2
v v
where v is the velocity of sound relative to the pipe.

When the air in the pipe is still, v is equal to the velocity of sound in
still air, ¢, and the fundamental period is

21
to = — .
[+

When the air in the pipe moves with velocity ¢/2, the pipe can be
considered to move with velocity —c/2 in still air. Thus v = ¢ — (—¢/2) =
3c/2 and the period is

‘o 20 4l
= ig = - .
5 3c
Hence we have the ratio . 9

tt 3
1242

The speed of sound in a gas is calculated as

adiabatic bulk modulus
density

V =

(a) Show that this is a dimensionally-correct equation.

{b) This formula implies that the propagation of sound through air
is a quasistatic process. On the other hand, the speed for air is about
340 m/sec at a temperature for which the rms speed of an air molecule is
about 500 m/sec. How then can the process be quasistatic?

(Wisconsin)
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Solution:
(a) The dimensions of the bulk modulus are the same as those of pressure
while the adiabatic factor is dimensionless. Thus dimensionally

adiabatic bulk modulus g/cm -
density g/cm3

which are the dimensions of v2, Hence the formula is dimensionally correct.
(b) Consider for example sound of frequency 1000 Hz. Its wavelength
is about 0.34 m. Although the rms speed of an air molecule is large, its
collision mean free path is only of the order of 10~° ¢cm, much smaller than
the wavelength of sound. So the motion of the air molecules does not affect
sound propagation through air, which is still adiabatic and quasistatic.

1243

A vertical cylindrical pipe, open at the top, can be partially filled with
water. Successive resonances of the column with a 512 sec™! tuning fork
are observed when the distance from the water surface to the top of the
pipe is 15.95 cm, 48.45 cm, and 80.95 cm.

(a) Calculate the speed of sound in air.

(b) Locate precisely the antinode near the top of the pipe.

(c) The above measurements are presented to you by a team of sopho-
more lab students. How would you criticize their work?

(Wisconsin)

PO |

; MM e
____ ceee| |-= - s035em

Fig. 1.222.



404 Problems € Solutions on Mechanics

Solution:

(a) The wave forms of the successive resonances in the air column are
shown in Fig. 1.222. It is seen that for successive resonances, the air columns
differ in height by half a wavelength: d = A/2. As

d = 48.45 — 15.95 = 80.95 — 48.45 = 32.50 cm ,
A =2d =65.00cm .

The velocity in air is then
v=Av=0.6500 x 512 =330 m/s .

(b) As A/4 = 16.25 cm and 16.25 cm—15.95 cm = 0.30 cm, the
uppermost antinode is located at 0.30 cm above the top of the pipe.

(c) This method of measuring sound velocity in air is rather inaccurate
as the human ear is not sensitive enough to detect precisely small variations
in the intensity of sound, and the accuracy of measurement is rather limited.
Still, the data obtained are consistent and give a good result. The students
ought to be commended for their careful work.

1244

Two media have a planar, impermeable interface as shown in Fig. 1.223.
Plane acoustic waves of pressure amplitude A and frequency f are generated
in medium (1), directed toward medium (2). Take A and f as given
quantities and assume the wave propagation is normal to the interface.
Medium (1) has density py and sound velocity c;, while medium (2) has
density p; and sound velocity ca.

(a) What are the appropriate boundary conditions at the interface?
(b) Apply these boundary conditions to derive the pressure amplitude
A, of the wave reflected back into medium (1) and the pressure amplitude
B of the wave transmitted into medium (2).
(CUSPEA)

Solution:

(a) The boundary conditions at the interface are
(i) the pressure is continuous,
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n (2)

—-—A

0
Fig. 1.223.

(ii) the component of the rate of fluid displacement perpendicular to
the interface is continuous, otherwise the interface would be permeable.

(b) Take the z-axis perpendicular to the interface with the origin on the
interface and let the pressure be

Aeilwt—k12) for the incident wave,
Apeitwt—k12) for the reflected wave,
Beilwt—kaz) for the transmitted wave,

with k; = w/c;, ¢; being the velocity of sound in the jth medium. The
boundary condition (i) gives

A+Ar=B. (1)

The velocity of sound in a fluid is given by

where M = —p (Av/v) " is the bulk modulus, Av being the change of the
original volume v by an excess pressure p. For a compressional wave, Av
is solely longitudinal so that

av B¢ 5
v Az 8z’
where £ is the displacement of fluid layers from their equilibrium positions.
Thus
2%

p= pcaza
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or
66 —p ei(wt:sz)
8z pc? pc?
Integrating we have
ei(wt:[:kz)
~t—
¢ tkpc?

For the three waves we have respectively

£A _ 1 (i) ei(wt—hl),

© ;i ik
_ —1 Ar i(wt+k12)
= (ikl)e ’

_ 1 B i(wt—k22)
B g (%kz) ) ’

and thus
4= et(wt—klz)
3 oo ;
éA — :ﬁei(wt-i-klz) ,
T opa

éB_ B ei(wt—kzz).

p2C2
The boundary condition(ii) states that at z = 0,

£A+5A,=€B s

. A A B
L= @
pna  pc p2C2
Combining Eqgs. (1) and (2) we obtain the amplitudes of the reflected and
transmitted pressure waves:

A, = AP ha
pic1 + pac2
_ 2Apac;
pic1 + pacz
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1245

Let the speed of sound in air be ¢ and the velocity of a source of sound
moving through the air be v in the z-direction.

(a) For v < ¢: a pulse of sound is emitted at the origin at time ¢t = 0.
Sketch the relationship of the wavefront at time ¢ to the position of the
sound at time ¢. Label your sketch carefully. Write an equation for the
position of the wavefront as seen from the source at time .

(b) For v > c: a source emits a continuous signal. Sketch the wavefront
set up by the moving source. Indicate on your sketch the construction
which leads to your result. Write an equation relating the shape of the
wavefront to other known factors in the problem.

(Wisconsin)

y y
L4 f
0 3 / > XX
Fig. 1.224.

Solution:

(a) Let S be the position of the source at time ¢. Take coordinate frames
Ozxy, Sz'y’ with origins at O and S, the z-, z'-axes along OS, and the y-,
y'-axes parallel to each other as shown in Fig. 1.224. We have

T =z —vt, Y =y.
The wavefront at time ¢ is given by £ = ctcosp, y = ctsinp, with 0 < p <
2m. Then the wavefront as seen from the source is given by ' = ct cos p—vt,
y' = ctsinp.
(b) Suppose the source moves from point O to point S in the time
interval t = 0 to ¢ = t and consider the signals emitted at ¢ = 0 and
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intermediate instants £;,%2,..., when the source is at Si,S2,..., with
0OS; = vty, OSy = vty, .... Each signal will propagate from the point
of emission as a spherical wave. At time £, the wavefronts of the signals
emitted at O, S2, Ss,... will have radii ct, c(t—1t1), c(t—t3), .. ., respectively.
As

ct_c(t—t)) c(t—tz)

vt v(t—t1) wlt—ty)

all these wavefronts will be enveloped by a cone with vertex at S of semi-

vertex angle 6 given by
R ct c
sinf=— =—,
vt v
as shown in Fig. 1.225. Hence the resultant wavefront of the continuous
signal is a cone of semi-vertex angle arcsin(c/v) with the vertex at the

moving source.

1246

The velocity of sound in the atmosphere is 300 m/s. An airplane is
traveling with velocity 600 m/s at an altitude of 8000 m over an observer
as shown in Fig. 1.226. How far past the observer will the plane be when
he hears the sonic boom?

( Wisconsin)
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V = 500 m/s
8= —

8000 m

3
l"—x=?——-‘

Fig. 1.226. Fig. 1.227.

Solution:

As the velocity v of the source S is greater than the velocity ¢ of sound
propagation, the wavefront is a cone with vertex at the moving source
(Problem 1245). The observer at A will hear the sonic boom, which was
emitted when the source was at O, when the cone sweeps past him, as
shown in Fig. 1.227. The source is now at S. Let A’ be a point on the path
of the source directly above A. We have

OA 1L AS, OA=ct, OS=vt,

and

E _ i _ ct _ c

z AS JOS?T-0A2 VB -&
or

x:h,/(gy —1=28000/22-1=1.39%x10*m ..

This is the horizontal distance of the plane from the observer when he
hears the sonic boom. Note that the semi-vertex angle of the cone is
0 = arcsin (¢/v) as required.

1247

It is a curious fact that one occasionally hears sound from a distant
source with startling clarity when the wind is blowing from the source
toward the observer.

(a) Show that this effect cannot be explained by “the wind carrying the
sound along with it”, i.e. a uniform wind velocity cannot account for the
effect.
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(b) Wind blowing over the ground has a vertical velocity gradient which
can be well represented near the ground by the formula v = ky?, where y is
the height above the ground and k is a constant which depends on the wind
speed outside of the boundary layer where the parabolic velocity profile is
a good approximation. For a given value of k and of the speed of sound
v,, calculate the distance s, downwind from a sound source, where the
maximum enhancement of sound intensity occurs.

HINT: You may assume that the sound rays follows low, arc-like paths
which are well represented by

y = hsin (?) .

(c) One also notices an enhancement of the transmission of sound over
a lake, even for no wind. What is happening in this case?
(Princeton)

Solution:

(a) The effect cannot be explained by the wind carrying the sound with
it, for across the path of a uniformly moving wind, all observers would then
hear the sound with equal clarity. This not being the case the effect is
in fact due to refraction of sound brought about by the variation of the
sound velocity, with respect to a fixed observer, at different points of the
medium. This may arise from two possible causes, temperature gradient or
velocity gradient in the moving wind. The velocity of compressional waves
in a gas varies with temperature T as v/T. It also varies if the velocity of
the medium itself varies. Refraction of sound changes the direction of its
wavefront. Near the surface of the earth, both gradients may be present
and the path of sound can bend in different ways, making it possible for a
distant observer to hear it with startling clarity.

y=hsin(T£)

> X

Fig. 1.228,
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(b) Take coordinate axes as shown in Fig. 1.228. It is assumed that the
wind velocity near ground is horizontal with a vertical gradient, i.e.

v:vz:ky2,

so the medium can be considered as consisting of horizontal layers with
different sound velocities. The law of refraction is

sin

Vv = constant ,

where 6 is the angle between the direction of sound propagation in the layer
and the vertical, and V is the velocity of sound with respect to the ground.
Consider two points on the sound path with variables

6,=20, Vo =wv, +v,8in0 =v, +vsing ,
O=0+dd, Vz2=uv,+ (v+dv)sin(f+db) .

The law of refraction then gives

vy + (v +dv) sin(6 + df) _ sin(8 + df)
v, + vsin f ~ sinf

As sin(f + df) ~ sin 0 + cos 0d8, retaining only the lowest order terms we
have

dv _ dsin 8
v, sin’f
Thus N .
E
/ 2ky@=/ d.s1;10 ,
0 Vs 9o SIN /]
or
kn? 1 1
v,  sinfg ’

On the other hand the given sound path yields

cot# = dy = W—hcosw—x ,
dz s s

or

1 —
sing

2
V1+cot?g = 1+(ﬁ) cos21r—x,
v 8 8
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1 wh\?
=4/1 — ] .
sin g + ( 8 )

Substituting this in the above gives the path length s, downwind from the
sound source, where maximum enhancement of sound intensity occurs as

in particular,

TV,

k(2v, + kh?)

(c) The speed of sound in a gas varies with absolute temperature T as
VvT. Vertically above a lake, for some range of heights, the temperature
increases during daytime and establishes a vertical gradient. So does the
speed of sound. Refraction of sound occurs during daytime similar to that
described in (b).

1248

Consider a plane standing sound wave of frequency 10° Hz in air at
300 K. Suppose the amplitude of the pressure variation associated with this
wave is 1 dyn/cm? (compared with the ambient pressure of 10¢ dyn/cm?).
Estimate (order of magnitude) the amplitude of the displacement of the air
molecules associated with this wave.

(Columbia)

Solution:

The longitudinal displacement £ from equilibrium of a point in a plane
stationary compressional wave in the z direction can be expressed as

€ = €£sin(kz)e™t |

with k = nn/l, | being the thickness of the gas and n = 1,2,.... The
velocity of the wave is

Here the bulk modulus M is by definition

Avy~!
()
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p being the excess pressure and V' the original volume. Consider a cylinder
of the gas of cross-sectional area A and length Az. We have

AV AAL %€
V ~ AAz 6z’
Then

_
D= M%

= —Mkéq cos(kx)e ™t
= —pp cos(kx)e ™,

where po = Mk€y = pv?ké€ is the amplitude of the excess pressure. Hence

_ Dbo
60— p’U2k .

For the lowest mode

n=1, A=2l,

2r 27wy
k:—:—
A v

v being the frequency of the sound wave. Thus

R 4
b= 2rpvv
For an ideal gas
V="RT
DoV = M ’
giving
_m _ psM
~V  RT’

where p,, T are the ambient pressure and temperature respectively. As
po = 1 dyn/ecm? = 107! N/m?, p, = 10° dyn/cm? = 10° N/m?, M =
29 x 1073 kg/mol , R = 831 J/mol/K, T = 300 K, v = 340 m/s,
v =10° Hz, wefind £, = 4x10~8 m as the amplitude of the displacement
of the air molecules.
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1249

An acoustical motion detector emits a 50 kHz signal and receives the
echo signal. If the echoes have Doppler shift frequency components depart-
ing from 50 kHz by more than 100 Hz, a “moving object” is registered.
For a sound velocity in air of 330 m/sec, calculate the speed with which
an object must move toward (or away from) the detector in order to be
registered as a “moving object”.

(Wisconsin)
Solution:

Consider a source emitting sound of frequency v. The Doppler effect
has it that if an observer moves with velocity v toward the source he will

detect the frequency as
I (C + - )
v = v,
C

¢ being the speed of sound propagation. On the other hand, if the source
moves with velocity v toward the observer, who is stationary, then

] [
v = V.
c—9

Thus the object, moving toward the detector, receives a signal of frequency

, <c+v)
Vo= v,
c

and the signal after reflection by the object is detected by the detector as

having frequency
S = c V= ctv Y
c—v c—v '

For the moving object to be registered, we must have v/’ = v + Av, where
Av > 10? Hz. Then

or

as Av < v. Hence the object must be moving toward or receding from the
detector at
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330 x 102

> ——— =0.
v_2><5><104 0.330 m/s

for it to be registered.

1250

A student near a railroad track hears a train’s whistle when the train is
coming directly toward him and then when it is going directly away. The
two observed frequencies are 250 and 200 Hz. Assume the speed of sound
in air to be 360 m/s. What is the train’s speed?

(Wisconsin)

Solution:

Let vy, v1, v be respectively the frequency of the whistle emitted by the
train, and the frequencies heard by the student when the train is coming
and when it is moving away. The Doppler effect has it that

c

v = 1 Z
c—v

y c

2 = Yo
c+v ’

where c is the speed of sound and v is the speed of the train, and thus

n _¢ +v

ve c—v
Putting in the data, we have

1.25 — 360 +v ,
360 — v

or

225 720

025 2v '’
and thus

360

v=T=4Om/S.
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1251

The velocity of blood flow in an artery can be measured using Doppler-
shifted ultrasound. Suppose sound with frequency 1.5 x 10® Hz is reflected
straight back by blood flowing at 1 m/s. Assuming the velocity of sound
in tissue is 1500 m/s and that the sound is incident at a very small angle
as shown in Fig, 1.229, calculate the frequency shift between the incident
and reflected waves.

(Wisconsin )

Sound source

an .,))) —
recelver

—y=z1m/s

Fig. 1.229.

Solution:

As the sound is incident at a very small angle, the blood can be
considered to be flowing directly away. Then the results of Problem 1249
can be applied with v replaced by —v:

V' = (C_v)u
c+v

The frequency shift is then

" _y=— 2oy z—zv—u=—2x103 Hz .
c+v c
1252

A car has front- and back-directed speakers mounted on its roof, and
drives toward you with a speed of 50 ft/s, as shown in Fig. 1.230. If the
speakers are driven by a 1000 Hz oscillator, what beat frequency will you
hear between the direct sound and the echo off a brick building behind the
car? (Take the speed of sound as 1000 ft/s.)

(Wisconsin)
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( )((ﬁ "))

Fig. 1.230.

Solution:

The sound from the back-directed speaker has Doppler frequency

Uy = d v
b = c+ v )

where ¢ and v are the speeds of sound and the car respectively, and v is
the frequency of the sound emitted. As the wall is stationary with respect
to the observer, vy is also the frequency as heard by the latter. The sound
from the front-directed speaker has Doppler frequency

vy = ¢ v
F=\e=w '
Hence the beat frequency is

1 1 2 2
l/f—l/b=Cl/( - )— YV Y 100 Hz .
c—v c+v c

2 — 12

1253

A physics student holds a tuning fork vibrating at 440 Hz and walks
at 1.2 m/s away from a wall. Does the echo from the wall have a higher
or lower pitch than the tuning fork? What beat frequency does he hear
between the fork and the echo? The speed of sound is 330 m/s.

( Wisconsin )

Solution:

As the tuning fork, which emits sound of frequency v, moves away from
the wall at speed v, the sound that is incident on the wall has frequency

- ()
v = v.
c+v
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Then the student, who is moving away from the wall at speed v, hears the
reflected frequency
Al AN £ A
c ct+v

2uv
c+v

As

the echo has a lower frequency. The beat frequency between the fork and

the echo is

LA L P e
c+v c

1254

A rope is attached at one end to a wall and is wrapped around a capstan
through an angle 6. If someone pulls on the other end with a force F as
shown in Fig. 1.231(a), find the tension in the rope at a point between the
wall and the capstan in terms of F, 8 and pu,, the coefficient of friction
between the rope and capstan.

(Columbia)

T+ AT
A8

(b)
Fig. 1.231.

Solution:

Consider an element of the rope as shown in Fig. 1.231(b). The forces
acting on the element are the tensions T and T' + AT at its two ends, the
reaction N exerted by the capstan, and the friction f. As the element is in
equilibrium we have
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f+(T+ AT)cos (%) — T cos (%) =0,

N — (T + AT)sin (%9—) — T'sin (%9) =0.

In first-order approximation the above equations become

F+(T+AT)-T =0, or f=—-AT,

N—Téz—e—T%q=0, or N=TAf§.

Then as f = y, N, we find

% =—u,T,
or, letting A9 — 0,

dT

'@' = —,u.,T .
Integrating we have

T = Ce ¢ |

where C is a constant. AsT =F at § =0, C = F. Hence

T = Fe Hab .

1255

A uniform, very flexible rope of length L and mass per unit length
p is hung from two supports, each at height h above a horizontal plane,
separated by a distance 2z, as shown in Fig. 1.232.

(a) Derive the shape of the curve assumed by the rope.

HINT: A parameter in your solution will depend on a transcendental
equation, which need not be solved. However, any differential equations
which you encounter should be solved.

(b) Find an expression for the tension in the rope at the supports.

Suppose the supports are now replaced by frictionless pulleys of negligi-
ble size, and a uniform rope of infinite length is hung over the two pulleys
(see Fig. 1.232). There is no friction between the rope and the table. In
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Fig. 1.232.

this case the shape of the curve assumed by the rope depends only on a
dimensionless parameter o = h/xg.

(c) Assuming that the rope hangs in a smooth curve with minimum
height ¢, derive a transcendental equation relating h/c to a.

(d) Find an exact solution for the shape of the rope when o < 1.

(e) Relate the shape of the rope in parts (c) and (d) to the shape of a
soap film stretched between two circular wires of radius h and separation
2z, as shown in Fig. 1.233.

(MIT)

~

_s__

T
1%
]
|“<1
1
-
-Z
|

!
1
t

|

1 i 1 x

-xg 0 x ' oxg

X+ dx
Fig. 1.233. Fig. 1.234.

Solution:

(a) Use coordinates as shown in Fig. 1.234 and let the tension in the
rope be T' = T(z). Consider an infinitesimal element between the points
and z + dz. Conditions for equilibrium are
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(T c080)g 44y — (T'cos0), =0,
(T'sin )z yaz — (T'sinf), = pgy/(dx)? + (dy)? = pg\/1 + y'2dz .

The first equation gives

m =0, or T cosf = constant = A, say.
T

The second equation gives

As 4
_dy_
tand = I = v,
we have
. y' 0 1
sinf = ——, c0sf = ——
/1 +yl2 /1 + yl2
and the above equations become
T=Av1+y?, (1)
Ay = pgv1+y?. (2)
Writing (2) as
L & _p
£/ 1 + y’2 d.’l: A ’
or 4
o PY
dzr (Slnh Y ) - A ]

and integrating, we obtain
' sinh (%2 1. C) |
y =sin A +
where C is a constant. Asy' =0atxz =0, C =0 and
! = sinh (M) . 3
y' =sinh (=5 3)
Further integrating gives

y=%cosh(%)+3,
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With the boundary condition y = h at = Ty, we find

h—p—gc h(”":") .

Hence the shape of the rope is described by
_ A P9z P9To
y(x)—z[cosh( v ) sh( i )]+h 4)

with the constant A yet to be determined. Consider the tensions T' (+zg)
at the supports £ = +xy. Their y-components satisfy

2T'sin@ = Lpg ,
ie.
2Ty

——— = Lpg .
iz

Using Eqs. (1) and (3), we can write this as

2Asinh (pilo) = Lpg ,

from which A can be determined. The tensions in the rope at £ = +x are
given by (1) to be

T(tzo) = AV1+y?|e= zo—ACOh( .‘,ZEO) ) (5)

use having been made of Eq. (3).
{c) The tensions T'(+zp) in the rope on the two sides of each pulley are
equal. Hence
T(+zo) = hpg ,

or, by Eq. (5),

A cosh (pil 0) = hpg

Substituting this in (4) gives the equation describing the shape of the rope
between the pulleys:

y(z) = —%cosh (”i‘”) . (6)

Let y=cat £ =0, then c = A/pg. As y = h at T = xp, we have

h = ccosh (:c_:) ,
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% cosh (%) . @

This equation determines h/c as a function of a = h/zy only. Equation (6)
can be written as

or

If we scale the coordinates by h, i.e.

_T -y
£—h, =4

c h
7= Ecosh (zg) .

This equation, which describes the shape of the curve, depends only on h/c,
which in term depends only on a = h/zp through Eq. (7).

(d) Physically, ¢ < h, so that if & <« 1, cosh (h/ca) > 1. Then for h to
remain finite, we require ¢ — 0 as indicated by Eq. (7). This means that
the whole rope is lying on the ground.

(e) Let o be the coefficient of surface tension of the soap. For equilibrium
in the horizontal direction at a point (z,y) on the film, we have

we have

(0 - 21y co80) g az — (0 - 2mycosb), =0,

or

%(21&73/ cosf) =0,

ie.
ycos@ = constant .

Suppose y = c at z = 0, then as § = 0 for z = 0, the constant is equal to
c. Furthermore, as

cosf = dz = !
V(@D +(dy)?  1+y?
we have
y = CA /1 + yl2
or

cdu

dz = —2
u? -1
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with © = y/c. Integrating we have
T = ccosh™! (%) + constant .

As y = c at £ = 0, the constant is zero. Hence

y = ccosh (%) ,

which is identical with Eq. (6) of part (c).

1256

(a) A bounded, axially symmetric body has mass density p(z,y, 2) =
p(r,0). At large distances from the body its gravitational potential has the
form

r r

where
M= /p(:c',y', 2)dz'dy'dZ = 21r/p(r',9')r'2 sin §'dr’'d6’

is the total mass. Find f(6).

(b) A small test body has mass density o(z,y,z) and is placed in
a gravitational potential ¢(z,y,2). What is its gravitational potential
energy?

(c) Suppose the body in (a) is spherically symmetric, i.e. p = p(r),
then ¢ = ¢(r). Suppose the body is made of gas and supported against
its own gravity by a pressure p(r). Denote its radius by R. Some of the
following integrals correctly represent the gravitational potential energy
of the body, others are incorrect by simple numerical factors (positive or
negative). Identify the correct ones and find the missing factors for the
others. That is, if U = potential energy/ 4w, then is
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( (1) —/{;Rp%radr ?

1 (R rdg)\® ,
N do 0
(ii) 41rG/(; (dr) ridr 7
1 R

(i) 3 / ppridr 7

0

U=/«

R
(iv) —/ pridr 7
\ 0

(d) The test body in (b) is placed with its center of mass at (0,0, ro) in
a spherically symmetric potential
MG
o(r) = -
For large ry the gravitational potential energy has the form
GM d 1
- +5+ 0 (—4) ,
TO TO TO

where m = [ od3z. Find d.
(UC, Berkeley)

Test body

Fig. 1.235. Fig. 1.236.

Solution:

(a) As in Fig. 1.235 take z-axis along the axis of symmetry and origin
O inside the body. The gravitational potential (potential energy per unit
mass of test body) at a distant point P due to the body is
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Gp(r' ;
¢=— _p(_rT) ,
|r —r/|
VI

where V' is the volume of the body.
As
(r—1)2 =1 4+r'2 —2rr' cos(d' — ),

for large distances from the body |r — r/|~! can be approximated:

-1
1 N 2 / 2
= % [1 + (’7) - ?:—cos(e—e')}

7
~ 1 [1 + = cos(6 — e')] .
r r

Substituting it in the integral gives

o= —g -21r/p(r',9')r'2 sin 'dr'do’

- g . 21r/p(r',t9’)r’3 sin@’ cos(8 — 8')dr'dé’ .

Comparing it with the given form

_GM 1)

r r2

¢~

]

we find
() = —2*er’/p(r',0')r’3 sin @ cos(0 — 6')dr'dd’ .
(b) In a gravitational potential ¢(x,y, 2) the potential energy of a test

body with mass density o(z,y, 2) and volume V is

W= [ o(z,9,)9(z,4, 24V
\2

(c) For a closed system of mass density p and volume V the gravitational
energy is

1
W=- / pddV .
2Jv
Then for a spherically symmetric gaseous body of radius R we have

1

R
W= 5/{; p(r)p(r)dnridr
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taking the origin at its center. Thus

w 1"
U—E—E/{; poridr . (1)

Thus integral (iii) is correct.

Consider a spherical shell of the gaseous body of radius r and thickness
Ar. As the body is supported against its own gravity by pressure p, we
require that for equilibrium

4rr? [p(r) — p(r + Ar)] — 41rr2p%Ar =0,
or
dp _ _ 49
ar = Par-

Poissons’s equation for attracting masses is
Vip =4nGp,

or, for spherical symmetry,

1d [ ,dd)

r2dr (r dr)_47er’
1 1d [ ,dp
p_41rG’.r2d_r(r dr).

dp _ 1 1d/(,d¢)dd
dr 4G rear\  dr)dr-

giving
Hence

Outside the spherical body, p is zero and dp/dr = 0. Hence

d¢ B
(d_r)r=R =0
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Equation (1) can then be written as

1 (R 4 de
U= %A ¢$ (T2d_r) dT
R
1 do R rdo\?
s |t - [ (%)’

1 (R, rdo\?
=_87FGA T2 (5) dT‘. (2)

Thus integral (ii) has to be multiplied by a factor — % Consider now integral
(i). It can be written as

1 R
_ L [7,8 (200 do
4nG Jy dr dr /) dr

I Y2V LR,
=~ |’ (d_) 0‘/0 T (d_)
1 (B do\?
=§EL Td(Td—T)
R
1 dp\ > R rde\?
_%[Ta (d_r) O—A T2 (J) dr

1 (R, (dp)?
=5, (&) o

which is the same as Eq. (2). Hence integral (i) is correct.

Integral (iv) can be written as
R R
d
0 0 dr

1 (R 1
_ = d3=__ 3
3/0’” 3[’"'
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Compared with integral (i), which is correct, it has to be multiplied by a
factor 3.

(d) Let C be the center of mass of the test body, and consider a volume
element dV' at radius vector r' from C as shown in Fig. 1.236. We have

r=ryg+r,

or

r2=r2 +r'? +ror' cos' ,

giving

’ i\ 214 / 2
rl =r5! [l+r—cost9'+(r—) ] [l—r—cos9'+0(r )] .
ro ro 2rg rs

The gravitational potential energy of the test body is

[ 2
W = a¢dV'=—/ G(r)GM (l—r—cose'+0( ))dvl,
v ’ ro 27‘0 0

where V' is the volume of the test body. Use spherical coordinates (r',8',¢)
with origin at C, we have

av' = r'?sin@'dr'df' dy’

and can write the above as

GMm GM L A AN < I syt anl g 1
= - d d 1 .
w ~ o0z z /a(r 0,0 )r" sin26'dr'd6'dy’ + O 3
Hence cm
d= 2 i /a(r’,ol,([’,)r,a sin 29’d7"d9'd(p’ .

1257

A beam of seasoned oak, 2 in x 4 in in cross section is built into a
concrete wall so as to extend out 6 ft, as shown in Fig. 1.237. It is oriented
s0 as to support the load L with the least amount of bending. The elastic
limit for oak is a stress of 7900 1b/in?. The modulus of elasticity, I (dp/dl),
is 1.62 x 10% 1b/in?2. What is the largest load L that can be supported
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without permanently deforming the beam and what is the displacement of
the point P under this load? In working this problem make reasonable
approximations, including that it is adequate to equate the radius of the
curvature of the beam to — (d?y/dz?) ! instead of the exact expression.
(UC, Berkeley)

P
P { —
Z ' ]
L IR
N g 1 N 2h
F T ]
i
X —
Cl ¢

Fig. 1.237.

Solution:

Neglect shear stresses and assume pure bending. During bending, the
upper fibers will be extended while the lower fibers are compressed, and
there is a neutral plane N’ N which remains unstrained. Consider fibers a
distance £ from N’N as shown in Fig. 1.237. Let the radius of curvature of
N'N be r and that of the fibers under consideration r + £. The latter thus
suffer a longitudinal strain

+e-r_¢
r r’
Consider a cross section A of the beam at . The longitudinal stress at £
from the neutral axis in which the cross section intersects the neutral plane
is E¢
T(&) = T

r

where F is the Young's modulus of the material. The total moment of the
longitudinal stresses about the neutral axis is

M(z) = /ngA = g /§2dA _ B (1)

r

I is the moment of inertia of the cross-sectional area about the neutral axis.
The maximum bending moment occurs at the cross section £ = 0 and the
maximum stress occurs at the upper and lower boundaries. As
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o BE_ M@
r I
_ M(QO)h _ L_lh
Tmax— Ji - 1 .

For least bending the beam should be mounted so that its height is 2h = 4 in
and width w = 2 in. Thus
h
2
I=/§2dA=w/ §2d§=gwh3=3—in4.
~h 3 3
With | = 72 in, limiting stress Tax = 7900 1b/in?, this gives the maximum

load as
_ 7900 x 32

L_3x72x2

=5851b .

Fig. 1.238.

Figure 1.238 shows the bending of the neutral plane N’ N. Equation (1)
gives

d*y N

T

1 M(z) L(-2)
r EI EI

Integrating and noting that dy/dz = 0 at = = 0, we have

dy L z?
a = EI (’””‘ ?) :

Further integration with y = 0 at z = 0 gives

_L (2
Y=F1\s 2 )
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The displacement of the point P is therefore

L (8 B L3 )
E(E_E)__;E'_I__‘Lzlln'

1258

Many elementary textbooks quote Pascal’s principle for hydrostatics as
“any change in the pressure of a confined fluid is transmitted undiminished
and instantaneously to all other parts of the fluid”. Is this a violation of
relativity? Explain clearly what “instantaneously” must mean here.

(Wisconsin)
Solution:

Pascal’s principle does not really violate relativity. It assumes the fluid
to be incompressible, which is a simplified model and does not correspond
to a real fluid.

A change in the pressure at a point of a fluid is transmitted throughout
the fluid with the speed of sound. As the size of an ordinary container is
very small compared with the distance traversed by sound in a short time,
the change in pressure appears to be transmitted to all parts of the fluid
instantaneously.

1259

A beam balance is used to measure the mass m,; of a solid of volume
Vi which has a very low density p,. This solid is placed in the left-hand
balance pan and metal weights of a very high density p; are placed in the
right-hand pan to achieve balance.

(a) If the balancing is first carried out in air and then the balance casing
is evacuated, will the apparatus remain balanced? If not, which pan will
go down?

(b) Determine the percentage error (if any) in the measured mass m,
when the balancing is carried out in air (density of air = p4).

( Wisconsin)
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Solution:

(a) The apparatus will not remain balanced after the balance casing
is evacuated. The left-hand pan, which carries a lower density solid, and
hence an object of a larger volume, will go down, as it had been supported
more by air in the earlier balancing.

(b) Let the true and apparent masses of the solid be m and m, respec-
tively. Then

mg T pag =mg KL
- = 19— —/—— )
PlA P2 A

or
m-m (m ml)p lp
—_—my=(—-— ~ b ,
P P2 A 71 A
ie.
Amy Pa
m) !
1260

A bucket of water is rotated at a constant angular velocity w about
its symmetry axis. Determine the shape of the surface of the water after
everything has settled down.

(MIT)

“J

F

mg

Fig. 1.239.
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Solution:

Consider a particle of water of mass m at the surface. Two forces act
on it: a force F normal to the surface due to neighboring water particles,
and gravity mg, as shown in Fig. 1.239. As it moves in a circular orbit with
constant angular velocity w, in a cylindrical coordinate system with origin
at the lowest point of the surface we have

Fcos§ =mg,
Fsinf = mw?r |
where 0 is the angle formed by the normal to the water surface and the

z-axis. Hence

w?r

tanf = — .

As tan@ is the slope of the curve representing the shape of the surface,

& _ o
dr = g '

giving
_ wir?
=35

as z = 0 for r = 0. Hence the surface is a paraboloid generated by rotating
the above parabola about the z-axis.

1261

A device consisting of a thin vertical tube and wide horizontal tube
joined together in the way shown in Fig. 1.240 is immersed in a fluid of
density ps. The density and pressure of the external atmosphere are p,
and p, respectively. The end of the horizontal tube is then sealed, and
subsequently the device is rotated as shown with constant angular velocity
w. You may treat the air everywhere as an ideal gas at fixed temperature,
and you may ignore the variation of density with altitude. Finally, ignore
capillarity and surface friction.

Find the height h to which the fluid rises in the vertical tube to second
order in w.

(Princeton)
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X

[— 11

Fig. 1.240.

Solution:

The pressure p and density p of the air in the horizontal tube are not
uniform. Consider a vertical layer of the air of thickness dz at distance x
from the axis of rotation as shown in Fig. 1.240. As the tube is rotating
with angular velocity w, we have

[p(z + dz) — p(z)]A = WP zpAdz ,

A being the cross-sectional area of the tube, or

& _ gy
Treating air as an ideal gas of molecular weight A, we have
m
= —RT,
PV =+
or
_pM
p - RT ]
where R is the gas constant. Hence
M
dp = ==d
and )
dp Muw
7 =BT zdzx .

Integration of the above gives

p Mo ,
(L) =2a?,
n(PO) 2RT"
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where pg is the density of the air at £ = 0. Thus
p = poe™®’

with a = Mw?/2RT. p, can be determined by considering the total mass
of the air in the tube:

L
/ pSdx = p,SL
0
ie.

L 2
pg/ e™® dx = p,L .
0

For moderate w, « is a small number. As

ozl

2!

e =1+ az? + +..~1+az?,

the above becomes approximately

L2
poL (1+ "T) ~ pal

al?
Po ~ 1——3— Pa -

As p is proportional to p since the temperature is assumed the same
everywhere, we have the pressure at £ =0 as

al?
po=|1——)pa.

or

3

Consider now the liquid in the thin vertical tube. For equilibrium we
have

Pa = po + ghpy
or )

%pa = ghpy ,
giving

_ MWLPp, WL p,

6RTgp, 69 p;
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1262

A cylindrical container of circular cross section, radius R, is so supported
that it can rotate about its vertical axis. It is first filled with a liquid
(assumed to be incompressible) of density p to a level h above its flat
bottom. The cylinder is then set in rotation with angular velocity w about
its axis. The angular velocity is kept constant, and we wait for a while until
a steady state is achieved. It is assumed that the liquid does not overflow,
and it is also assumed that no portion of the bottom is “dry”.

(a) Find the equation for the upper surface of the liquid.

(b) Find an expression for the pressure p(z) on the cylindrical surface
at a height z above the bottom.

(c) Find an expression for the pressure py(z) along the axis at a height
z above the bottom.

(d) Is the fluid flow as viewed by a stationary observer irrotational? The
liquid is, of course, subject to the influence of gravity, and we assume that
the normal atmospheric pressure p, prevails in the environment.

(UC, Berkeley)

Fig. 1.241.

Solution:

(a) Consider a vertical plane containing the axis of rotation. Let a be
the angle made by the tangent to the upper surface of the liquid with the
horizontal at a point distance £ from the rotational axis and height 7 above
the lowest point of the upper surface, as shown in Fig. 1.241. Following
Problem 1260 we have
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tana = é’ = wa&
Its integration gives the parabola
w22
2

The upper surface is obtained by rotating this parabola about the axis of
rotation.

(b) The upper surface of the liquid is an isobaric surface with a pres-
sure equal to the atmosphere pressure p,. Note that each such revolving
parabola in the liquid is an isobaric surface, the difference in pressure
between it and the upper surface being determined by the distance between
the two surfaces along the rotational axis. Let h be the height of the lowest
point of the upper surfaces above the bottom of the container. The height
of the highest point of the upper surface above the bottom is then

w?R?

ho=ht =5

If S = 7R? and hy is the height of the liquid when it is not rotating, the
total volume of the liquid is

it R orw?
hoS = b S — / n€dn = hS — / T§3d§
0 0

2 2 p2
=hls_7”‘;R4:(hl—WR )1rR2,
g

4g
giving
hy = ho + w252 )
and hence 2 2
w
h=hy— 19

The pressure on the cylindrical surface at a height 2 above the bottom is
therefore

w?R?
p(z) =pa+(hl _Z)pg::pa—{»- (h0+ 1g —z)pg .
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(c) The pressure along the axis at a height z above the bottom is

w?R?
Po(2) = pa + (h — 2)pg = pa + (ho— - —z) .

(d)
i j k
Vxv=Vx(wxr)=Vx|0 0 w
T y 2z

=V X (—wyi + wzj)

i j k

8 8 8

oz oy oz|=2wk.
—wy wz 0

As V x v # 0, the fluid flow is rotational.

1263

Given that the angular diameter of the moon and that of the sun are
nearly equal and that the tides raised by the moon are about twice as high
as those raised by the sun, what statement can you derive about the relative
densities of the sun and moon?

(UC, Berkeley)

Solution:

Let R, Ry, R, be the radii, M., M,,,, M, the masses of the earth, moon
and sun, and denote by A, h, the heights of the tides raised by the moon
and sun at a point on earth, and by Dy, D, the distances of the moon and
sun from the center of the earth, respectively. The disturbing effect of the
moon at a point on the earth’s surface may be represented by a potential
which is approximately

3GM,R? (1 0

27 D3, (5 - ) !
where 0 is the moon’s zenith distance at that point. This being equal to
ghm, where
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_ GM,

is the acceleration due to the earth’s gravity, we have
3RiIM,, (1
h, —Sem (2 20) .
™= 2D3 M, (3 08 )

For the same zenith distance,

P _ (g)&n_ _ (D»)“(Rm)“eg
hs Dm M, D,, R, Ps ’
with p,,, p, denoting the average densities of the moon and sun respectively.

As the angular diameters of the moon and sun as seen from the earth are
approximately equal, we have

Bm _ R,
Dm Ds ’
and hence
pm _ P 2
Ps hs ’

which is the density of the moon relative to that of the sun.

1264

A hypothetical material out of which an astronomical object is formed
has an equation of state

1
= ~Kp?
p=3ghe,
where p is the pressure and p the mass density.

(a) Show that for this material, under conditions of hydrostatic equilib-
rium, there is a linear relation between the density and the gravitational
potential. The algebraic sign of the proportionality term is important.

(b) Write a differential equation satisfied at hydrostatic equilibrium by
the density. What boundary conditions or other physical constraints should
be applied?

(c) Assuming spherical symmetry, find the radius of the astronomical
object at equilibrium.

(UC, Berkeley)



Newtonian Mechanics 441

Solution:

(a) Suppose the fluid is acted upon by an external force F per unit
volume. Consider the surfaces normal to the z-axis of a volume element
dr = dzdydz of the fluid. At equilibrium F is balanced by the pressure in
the fluid, thus

Fydr = [p(z + dz) — p(x)]dydz = a—zdr ,

0.
ie. 5
D
F,=—
T oz
or
F=Vp.

Then if £ is the external force per unit mass of the fluid, we have
1
f=-Vp.
p

As p is given by the equation of state, we have
Vp=KpVp,

and
f=KVp.

If the external force is due to gravitational potential ¢, then
f=-Vo.
A comparison with the above gives
Vé+ KVp=0,

or
¢+ Kp = constant .

Hence ¢ and p are related linearly.
{b) Poisson’s equation
Vi = 4xGp

then gives

V2p+§7r7{0-£=0.
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This is the differential equation that has to be satisfied by the density at
equilibrium. The boundary condition is that p is zero at the edge of the
astronomical object.

(c) For spherical symmetry use spherical coordinates with origin at the
center of the object. The last equation then becomes

£, 20y 4rGr _
dr?2  rdr K

0.

Let u = pr, w? = 4nG/K and write the above as

d?u
W+w2u=0,

which has solution

u = upsin(wr + G) ,
giving
r
p= _orp_o sin(wr + f8) ,

where rg, pp and 3 are constants. The boundary condition p = 0 at r = R,
where R is the radius of the astronomical object, requires

wR+ B =nm, n=123,....

However, the density p must be positive so that wr + 8 < m. This means
that n =1 and wR + B = m. Consider

f=KVp
=K [—T—:g—o sin(wr + 8) + C‘ZTERW cos(wr + ﬂ)] e,
= _Kp_;);_o cos(wr + B)[tan(wr + 3) — wrle, .
Due to symmetry we require f = 0 at r = 0. This means that as r — 0

tan(wr+ﬂ)—wr=ﬂ+%(wr+ﬂ)3+...—+0.

Hence 8 = 0 and wR = =, giving the radius as

jmK
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1265

Consider a self-gravitating slab of fluid matter in hydrostatic equilibrium
of total thickness 2h and infinite lateral extent (in the z and y directions).
The slab is uniform such that the density p(z) is a function of z only, and the
matter distribution is furthermore symmetric about the midplane z = 0.
Derive an expression for the pressure p in this midplane in terms of the

quantity
h
o= / p(2)dz
0

without making any assumption about the equation of state.
(UC, Berkeley)

Solution:

In hydrostatic equilibrium the applied force on unit mass of the fluid is
(Problem 1264)

1
f=-Vp.
p

As there is variation only in the z-direction,

_ldp

f_;)dz'

(1)

Consider the gravitational force acting on unit mass at a point at zp, as
shown in Fig. 1.242, by a layer of the fluid of thickness dz at z2:
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3 /°° Gp(2)dz - 2mrdr 20— 2
o rit+(z0—2)? r2 + {29 — 2)?

rdr
72 + (20— 2)7]3

= —21Gp(2) (2 — 2)dz /:,
-1 =

= —21Gp(2)(20 — 2) [m] “

0

_ —2nGp(z)(20 — 2)dz
|20 — 2| '

The total gravitational force acting on the unit mass at z = 2 is

f(2) = —2nG [ / h )iz [ h p(z)dz]

= -2nG p(2)dz

—2p

as p(z) is symmetric with respect to the plane z = 0. Applying Eq. (1) to
the point z = 29 and integrating, we have

h h EN
p(h) — p(0) = /0 dp(z9) = —27G /0 p(z0)dzo /_ . p(2)dz .

This gives for symmetric p(z)

h zp
(k) = 3(0) = ~47G [ plao)dzo | plz)ds

Setting ¢(z0) = f;° p(2)dz, we have dp/dzp = p(z) and

0.2

/{;h p(z0)dzp /{;zo p(2)dz = /{;hp(zo)‘/’(zo);% - /: pdp = A

where 0 = foh p(z)dz. Using the boundary condition p(h) = 0 we finally
obtain

p(0) = 2nGo? .
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1266

(a) A boat of mass M is floating in a (deep) tank of water with vertical
sidewalls. A rock of mass m is dropped into the boat. How much does the
water level in the tank rise? If the rock misses the boat and falls into the
water, how much does the water level rise then?

[You may assume any reasonable shapes for the tank, boat and rock, if you
require.)

(b) A U-tube with arms of different cross-sectional areas A, A; is filled
with an incompressible liquid to a height d, as shown in Fig. 1.243. Air
is blown impulsively into one end of the tube. Describe quantitatively the
subsequent motion of the liquid. You may neglect surface tension effects
and the viscosity of the fluid.

(UC, Berkeley)

ey

Fig. 1.243. Fig. 1.244.

Solution:

(a) Let p,, and p, be the densities of water and the rock, S; and S, the
horizontal cross-sectional areas of the tank and boat, respectively. With
the rock in the boat, the boat will sink a distance (from water surface) Ah
such that an additional buoyancy is made available of magnitude

mg = pySplAhg ,
giving
m
Ah = .
PwSh
This will cause the water level in the tank to rise by AH given by
StAH = SpAh
or m
AH

- prt i
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If the rock misses the boat and falls into the water, it drops to the bottom
of the tank. This increases the “water” volume by m/p,, which then causes
the water level in the tank to rise a height

m

AH = .
prSt

(b) The motion of the fluid is irrotational and non-steady, and is
described by Bernoulli’s equation of the form
1
§m2 +p+U-— p%% = constant ,
which holds for all points of the fluid at any given time t. Here U is the
potential of the external force F defined by F = —VU, and ¢ is the velocity
potential defined by v = —V¢. Consider two surface points 1, 2, one on
each arm of the vessel, at distances z,, z; from the equilibrium level d, as
shown in Fig. 1.244. Bernoulli’s equation gives

91
ot

o¢n

1 3
== Uy —
2p’02+P2+ 2 ot

1
S tp Ui —p
with

p1 = p2 = atmospheric pressure ,
Ur=(d+zi)pg, Uz=(d—z2)pg,

v, = &y, vy =g ,
6¢1 /d+z1 6,01 .
- = - ——dr ~ —%,d,
Bi , ot o
B¢ /""’“ vy .
7z _ _ —Zdx = ¥od
En A En dr = Zod ,

retaining only first order terms of the small quantities x;, z; and their time
derivations. In the same approximation, Bernoulli’s equation becomes

(£, + &2) + g(m1 ) =0.

Making use of the continuity equation

Az, = Ayz2,
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we have
" g,
L - = 0 ,
Ty + d
W gz
===0.
%) + d

Hence the subsequent motion of the liquid is that of harmonic vibration
with angular frequency w = /g/d.

1267

A space station is made from a large cylinder of radius Ry filled with
air. The cylinder spins about its symmetry axis at angular speed w to
provide acceleration at the rim equal to the gravitational acceleration g at
the earth’s surface.

If the temperature T is constant inside the station, what is the ratio of
air pressure at the center to the pressure at the rim?

(MIT)

Solution:

Consider a cylindrical shell of air of radius r and thickness Ar. The
pressure difference across its curved surfaces provides the centripetal force
for the rotating air. Thus

[p(r + Ar) — p(Ar)|2nrl = w?r - 2wrlpAr
where p is the density of the air and [ is the length of the cylinder, giving

d_p= 27-
ar T

The air follows the equation of state of an ideal gas

m
pV = BT,
or
M
P = Rr?>

where T and M are the absolute temperature and molecular weight of air
and R is the gas constant. Hence
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d_p_Mca.:2
dr ~ RT

/P(Ro) @ _ Muw? /Ro rdr
p0) P AT Jo ’

n [p(Ro)} _ Mw?R§ _ MPRog
p(0) |  2RT ~ 2RT ’

as the acceleration at the rim, w?Ry, is equal to g. Hence the ratio of the

pressures is 0
p(0) _ _ MRyg
p(Ro) _exP( 2RT ) '

pr.

Integrating we have

i.e.

1268

Calculate the surface figure of revolution describing the equatorial bulge
attained by a slowly rotating planet. Assume that the planet is composed
entirely of an incompressible liquid of density p and total mass M that
rotates with uniform angular velocity w. When rotating, the equilibrium
distance from the center of the planet to its poles is R,.

(a) Write down the equation of hydrostatic equilibrium for this problem.

(b) Solve for the pressure near the surface of the planet using the crude
approximation that the gravitational field near the surface can be written
as —GMr/r?.

(c) Find an equation for the surface of the planet.

(d) If the equatorial bulge (R, — R,) is a small fraction of the planetary
radius, find an approximation to the expression obtained in (c) to describe
the deviation of the surface from sphericity.

(e) For the case of earth (R, = 6400 km, M = 6 x 10%* kg) make a
numerical estimate of the height of the equatorial bulge.

(MIT)

Solution:

(a) Use coordinate as shown in Fig. 1.245 and consider a point P in
the planet. In equilibrium the external forces are balanced by the pressure
force per unit volume,
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dp Ip
P=1\3 an 0 ]
or’ rof
in spherical coordinates with the assumption that the planet is symmetric
with respect to the axis of rotation.

S

Fig. 1.245. Fig. 1.246.

Now use a rotating coordinate frame attached to the planet such that
the 2’-axis coincides with the axis of rotation and the z’z'-plane contains
OP. In this frame a fictitious centrifugal force per unit volume, pw?r cos ),
where A = 7 — 0 is the latitude, has to the introduced. Let F be the
gravitational force per unit volume. Then the forces involved are as shown
in Fig. 1.246. As df = —d\, we can write dp/86 = —0p/8) and have, in
the =’ and 2’ directions,

—Eh coS A — %sin)\ = Fyp + pw?rcos A, (1)
9p . 9p

hud 4 o =F, .

ar sin A + 3 Cos A Y (2)

(b) The gravitational force per unit volume at P, as given, has compo-

nents
pGM cos A

pG M sin \
r2 R

Fp =—
4 T2

F, =

?

Substitution in Eq. (2) gives

Op _ _(pGM  Op
rox (r2 * o tan,
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which, with Eq. (1), then gives

or

As p =0 at r = R, its integration gives

op 2rcos? A — 'O—G2£ )
r

1 1 1
p==(r — R)pw? cos® X + (

2 ;‘§>PGM

For a point a depth h under the surface at latitude )\, we have, asr = R—h
with h < R,

r? — R? ~ —2Rh,

Q

<[ |-

h
R?

@l

ph .

M
pr (—Rw2 cos? \ + gR—z

Na——

¢) The surface of the planet is an equipotential surface. The potential
p
(potential energy per unit mass) at the surface due to gravitational force is

U= —GTM + constant .

The potential ¢ due to the centrifugal force is given by

= (=92, 92 _ (L2 cos? A, w? .
V¢—( 6r’ra)\) = (w?rcos® \,w’rcos Asin)\) .

Thus
g—f = —w?rcos? ),
or .
= —§w2r2 cos’ A+ f(N) .
As
9% _ \2rcos Asin A + 1f'()\) = w?rcosAsin )\,
roA r

fliz)=0 or f(z) = constant .
Hence for the surface we have

1
—§w2R2 cos? \ — G’?m = constant .
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At the poles, A = £7, R = R,. We thus have

1ca.:2cos2)\Ra——G’—JVI-R—|~ GM=0.
2 Ry

(d) At the equator, A = 0, R = R,, and the above equation becomes
w?R3 = 2GM (Re__.ﬁ?;) .
Rp

The deviation of the surface from sphericity is therefore

Re—R,,_w2R2
R,  2GM’

(e) For the earth,

R = 6400 km, R, ~ R, = 6400 km , M =6 x10* kg,
2T -1

_ _ -1 2,42
_24x36008 , G =6.67 x 107" Nm*/kg* ,

w

we have
R.—R,=11km.

1269

The compressibility K of a gas or liquid is defined as K = —(dV/V)/dp,
where —dV is the volume decrease due to a pressure increase dp. Air (at
STP) has about 15,000 times greater compressibility than water.

(a) Derive the formula for the velocity v of sound waves, 1/v? = Kp,
where p is the mass density. Use any method you wish. (A simple model
will suffice.)

(b) The velocity of sound in air (at STP) is about 330 m/s. Sound
velocity in water is about 1470 m/s. Suppose you have water filled with a
homogeneous mixture of tiny air bubbles (very small compared with sound
wavelengths in air) that occupy only 1% of the volume. Neglect the effect
the bubbles have on the mass density of the mixture (compared with pure
water). Find the compressibility K of the mixture, and thus find v for
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+d,
[ P
p+dp
Fig. 1.247.

the mixture. Compare the numerical value of v for the given 1% volume
fraction with v for pure water or air.

(UC, Berkeley)

Solution:

(a) Without loss of generality, we can consider the problem in one di-
mension and suppose the front of the compressed region, i.e. the wavefront,
propagates from left to right at speed v. For convenience we use coordinates
such that the compressed region is at rest, then the gas particles in the
region not reached by the wave will move from left to right at speed v in
this frame. Let the pressure and density in the latter region be p and p
respectively. When the particles enter the compressed area, their velocity
changes to v+ dv, pressure changes to p+ dp, and density changes to p+dp,
as shown in Fig. 1.247. The mass of gas passing through a unit area of the
wavefront is

pv = (p+dp)(v+dv),

yielding, to first-order quantities,
vdp = —pdv .
The change of momentum per unit time crossing the unit area is
(p+ dp)(v+dv) - (v +dv) ~ pv-v = v dp+ 2pvdv .

By Newton’s second law this corresponds to the excess pressure of the
right-hand side over the left-hand side. Thus

vidp+ 2pvdv=p— (p+ dp) = —dp .
The above two equations give

vidp=dp .
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For a given mass m of the gas,

m=pV
or av
dp=—p— .
p==pry
Hence 4V
2d _—2——_d
vidp = —v'pr =dp,
or
) v\~ d 1
vV'=—|— —_—=—,
v p p
i.e.
1
V= —= .
vKp

(b) For the mixture given,

av _dV1+dV2 K\Vi + K.V,

K = — = =
Vdp Vdp |4
For water and air we have respectively
1 1
2 2
vy = , Uy = )
' Kipy 27 Kapo

and so

_ (1470\? 1
T 1330/ 1.293 x 103
=1.53 x 10% .

Hence, for the mixture,

(| KV, _ N
K= (7 + Klv) K, = (0.99 + 153)K, ~ 154K,

1 1 U410
vRp ~ V154Kip, 154

which is much less than the velocity of sound in pure water or air.

v =118 m/s,
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1270

Consider the spherically symmetric expansion of a homogeneous, self-
gravitating gas with negligible pressure. The initial conditions of expansion
are unspecified; instead, you are given that when the density is pg, a fluid
element at a radius Ry from the origin has a velocity vg.

(a) Find v(R).

(b) Describe the ultimate fate of the gas in terms of vy, R and pg.

(UC, Berkeley)

Solution:
(a) Consider the motion of a unit mass at the surface of the gas,
conservation of mechanical energy gives

2 GM _ 1, GM

1
2% "Ry, T2V T R

where M = 4mpoR3/3 is the total mass of the gas. Hence the speed of the
unit mass when the radius of the volume of gas is R is

v=”v§+§1eroR8 (%—%) .

(b) As R increases, v decreases, and finally v = 0 and expansion stops
when the radius becomes

Rl 3 17
" |Ro  87GpoR}
1271

An incompressible fluid of mass density p, viscosity n is pumped in
steady-state laminar flow through a circular pipe of internal radius R and
length L. The pressure at the inlet end is p,, the pressure at the exit is py,
P > p2.

Let Q be the mass of fluid that flows through the pipe per unit time.
Compute .

(CUSPEA)



Newtonian Mechanics 455

Solution:

Use cylindrical coordinates (r,, z) with the z-axis along the axis of the
pipe. For laminar flow the velocity v of the fluid has components
v = v, =0, v, =0.
Furthermore, because of symmetry, v = v(r). Then in the Navier-Stokes
equation

av
p§+p(v-V)v—nV2v+Vp:F,

Ov/8t = 0 for steady-state motion,
v,

(v-V)v=v,—e, =0,

0z

as v = v,(r), and the external force per unit volume F is zero provided
gravity can be neglected, we have

Vp=nViv.

This becomes

ap_ng(av) o _ o _,

3z ror \'or ar ~ dp

for v = v(r)e,. As the right-hand side of the first equation depends on r
while p is a function of z, either side must be a constant, which is

op _p2—p_ _Op
0z L L’
where Ap = p, — p2. Hence

d (v __(Bp
a\"ar )= "\ )"

A
(n—Lp) r2+C,Inr+C,,

Integration gives

C,, C; being constants. As

v(r) = finite , v(R)=0,
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we require
1 /Ap
Ci=0, Co=-(—])R*.
’ ‘T4 (nL)
Hence A
_ 8P p2 2
v= L (R =1r%).
The mass of the fluid flowing through the pipe per unit time is then
R
_ _ mpRiAp
Q—p/(; v 2nrdr = S A

1272
A sphere of radius R moves with uniform velocity u in an incompressible
(V- v(z) =0, v(z) being the velocity of the fluid), non-viscous, ideal fluid.
(a) Determine the velocity v of the fluid passing any point on the surface
of the sphere.
(b) Calculate the pressure distribution over the surface of the sphere.
(c) What is the force necessary to keep the sphere in uniform motion?

(Columbia)

AA z

KERNE

Fig. 1.248.

Solution:

We can consider the sphere as being at rest while the fluid flows past
it with velocity v = —u as shown in Fig. 1.248. Use spherical coordinates
(r,8,¢) with origin at the center of the sphere such that the velocity of the
fluid is in the direction @ = 7. Define the velocity potential ¢ by

v=-V¢.
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The incompressibility of the fluid means that
V.v=-V2%=0.

Thus ¢ satisfies Laplace’s equation. The boundary conditions are

oo _
— (b—r)R = —ucosf

as the surface of the sphere is impenetrable, and
¢=0 for r — 00
as v = —u = constant at large distances from the sphere.

The general solution of Laplace’s equation is

[0 o]

= Z Z (@nmT™ + bymr """ 1) P (cos B)ei™e |

n=0m=0

As the geometry is cylindrically symmetric, ¢ is independent of ¢ and we
have to take m = 0. Thus we have

¢ = Z(anr" + bpr ") P, (cos6)
n=0

where P,(cosf) are the Legendre polynomials, and a,, b, are arbitrary
constants. As ¢ = 0 for r — oo, we require a, = 0. As

(a¢) = 3 (= — 1B B2 P (cos) = uP (cos)

or)g oy

we require
b,=0 forall n#1l
and
b = — SR
1= 2 u .
Hence
uR3
¢ - ET_‘? cos @
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(a) At a point (R,0) on the sphere the velocity of the fluid is

e, 200

=R

I

1 .
——uR3 2 cosBe, + gl—‘9e(;
2 r3 r3 =R

1,
= —ucosfe, — iusmeeg .

(b) Bernoulli’s equation for the irrotational steady flow of a nonviscous,
incompressible fluid is

1
L—,pv2 +p+ U = constant ,

where U = constant if there is no external force. Consider a point (R,0)
on the surface of the sphere and a point at infinity, where the pressure is
pa. Then

gu2 (cos29 + %sin29) +p= %mﬁ +po ,

or
3 5,
P(R,0) = Sou’sin®0 +py .

This gives the distribution of the pressure over the surface of the sphere.
(c) The net total force exerted by the pressure on the sphere is in the
direction of u and has magnitude

F, = /pcosOdS

=/ (g;mzsin29+pg) -2wrRsin@ - cos@ - Rdf
0

=0.

Hence no force is required to keep the sphere in uniform motion. This can
be anticipated as the sphere moves uniformly without friction.
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1. LAGRANGE’S EQUATIONS (2001-2027)

2001

A massless spring of rest length g (with no tension) has a point mass
m connected to one end and the other end fixed so the spring hangs in the
gravity field as shown in Fig. 2.1. The motion of the system is only in one
vertical plane.

(a) Write down the Lagrangian.

(b) Find Lagrange’s equations using variables 8, A = (r — rp)/rq, where
ro is the rest length (hanging with mass m). Use w? = k/m, w3 = g/ro.

(c) Discuss the lowest order approximation to the motion when \ and
0 are small with the initial conditions § = 0, A = 0, A = 4, § = wpB at
t =0. A and B are constants.

(d) Discuss the next order approximation to the motion. Under what
conditions will the A motion resonate? Can this be realized physically?

( Wisconsin)

!
!
1 8
!
!
!

m

Q) -—

Fig. 2.1.

Solution:

(a) In polar coordinates (r,0) as shown in Fig. 2.1, the mass m has
velocity v = (#,78). Thus

T= %m('i’2 +1r%6?)
V = —mgrcosf + %k(r ~1p)?,
k being the spring constant. The Lagrangian of m is therefore
L=T-V= %m('i’2 +120%) 4+ mgr cos 6 — %k(r —1p)?.

461
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gives

mi — mr0% — mgcosf + k(r —lp) =0 .
4 (ory_oL_,
dt \ 56 00

mr26 + 2mrif + mgrsind =0 .

gives

The rest length of the spring with mass m hanging, rq, is given by Hooke’s
law

k(ro — lo) =mg .
Thus with A = (r — r¢)/ro we have

_ mg
r—1lg= Arg + %

r=ro(l+ A), F=roh, F=ro\,

and the equations of motion beconse

A E—(1+,\)é2+i(1—cosa9)=0,
m Tro
(1+,\)i)’+2,'\é+risine=o;
0
or, with w? = %,wﬁ: 1,

A+ (w? —92)A—92+w12,(1—cos9) =0,
(1+M)f+ 230 +w?sind =0.

(c) When ) and 6 are small, we can neglect second order quantities in
0,0, A\, and the equations of motion reduce to

A+wir=0,
é+w12,9=0
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in the lowest order approximation. For the given initial conditions, we find

A = Acos(w,t) ,
0 = Bsin(wpt) .

Thus X and 8 each oscillates sinusoidally with angular frequencies w, and
w, respectively, the two oscillations differing in phase by 7/2.
(d) If we retain also terms of the second order, the equations become

X+w3A=é2—%w§92,
(1+X)8+2)00 +w20=0.

Using the results of the lowest order approximation, the first equation above
can be approximated as

2w = %B2w12,{2 cos?(wpt) — sin?(wyt)]

1
= ZB2w12,[3cos(2wpt) +1].

Thus \ may resonate if w, = 2w, However this is unlikely to realize
physically since as the amplitude of ) increases toward a resonance the
lowest order approximation no longer holds and higher order effects will
take place. Furthermore the nonlinear properties of the spring will also
come into play, invalidating the original simplified model.

2002
A disk of mass M and radius R slides without friction on a horizontal
surface. Another disk of mass m and radius r is pinned through its center
to a point off the center of the first disk by a distance b, so that it can
rotate without friction on the first disk as shown in Fig. 2.2. Describe the
motion and identify its constants.
(Wisconsin)

Solution:

Take generalized coordinates as follows: z,y, the coordinates of the
center of mass of the larger disk, 0, the angle of rotation of the larger disk
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<y

Fig. 2.2. Fig. 2.3.

—_—

0 >

and ¢ the angle of rotation of the smaller disk as shown in Fig. 2.3. The
center of mass of the smaller disk has coordinates

z + bcosé, y + bsin
and velocity components
& — bl sind, 7 + b6 cos 0 .
Hence the total kinetic energy of the system of the two disks is
T = %M(a‘u2 + %) + %MR292
+ %m[(m — b9sin8)? + (y + b cos8)?] + %mr2q'52

and the Lagrangian is

L=T-V=T
= %M(ai;2 +97) + %MR292
+ %m[:i:2 + 4% + 5262 — 2bif sin 6 + 26y cos 9 + %mr2¢2 .

Consider Lagrange’s equations

d (oL _oL _,
dt \ 0¢; da;
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As
B_I_:_O d (8L _%_d oL —0
dx dt \ 0z dr dt\odz/)
we have
%=constant,
or

(M +m)& — mbfsin@ = constant . (1)
As 8L/8y = 0, we have L/0y = constant, or
(M + m)y + mbf cos @ = constant . (2)

As OL/Oyp = 0, we have OL/0¢p = constant, or

@ = constant . (3)
As
oL » A
20 = —mbz6 cos — mbyfsinb |
L . .
%5 = %MR20 + mb?@ — mbi sinf + mby cos b ,

we have the equation of motion
1 . o
—éAlee + mb?0 — mbisin@ + mbijcosd = 0 . (4)

Equations (1)-(4) describe the motion of the system. Since V = 0 and
T + V = constant as there is no external force, the total kinetic energy
of the system, T, is a conserved quantity. Conservation of the angular
momentum about the center of mass of the system requires that, as ¢ =
constant, 6 = constant too.

2003

A uniform solid cylinder of radius R and mass M rests on a horizontal
plane and an identical cylinder rests on it, touching it along the highest
generator as shown in Fig 2.4. The upper cylinder is given an infinitesimal
displacement so that both cylinders roll without slipping.
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(a) What is the Lagrangian of the system?
(b) What are the constants of the motion?
(c) Show that as long as the cylinders remain in contact

2 = 12g(1 — cos )
" R(17+4cosf —4cos?9) ’

where 0 is the angle which the plane containing the axes makes with the
vertical.

( Wisconsin )

Fig. 2.4.

Solution:

(a) The system possesses two degrees of freedom so that two generalized
coordinates are required. For these we use 8, the angle of rotation of the
lower cylinder, and 8, the angle made by the plane containing the two axes
of the cylinders and the vertical.

Initially the plane containing the two axes of the cylinders is vertical.
At a later time, this plane makes an angle § with the vertical. The original
point of contact, A, now moves to A’ on the lower cylinder and to A” on
the upper cylinder. With the angles so defined we have from Fig. 2.4

91+9=92—9,

or
=0, +26.

Taking Cartesian coordinates (z,y) in the vertical plane normal to the
axes of the cylinders and through their centers of mass, as shown in Fig. 2.4,
we have, at t > 0, for the lower cylinder

zy = —Rb,, n=~Rr,
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and for the upper cylinder

22 =21+ 2Rsiné ,
y2=3R—2(R —cosf) = R +2Rcosf .

The corresponding velocity components are

& = —Rb;, n=0,
@3 = —RO; + 2R0 cosé, Yo = —2Rfsind .

The kinetic energy of the lower cylinder is thus
1 -2 1 242 3 242
Ty = iM"l"l +4—MR 01 = ZMR 01 y
and that of the upper cylinder is

1 1 .
T, = EM(:bg +93) + ZMR20§

= MR2(6} — 4610 cos 0+ 40°) + TME2(6} + 46,0 + 46%)
= %MR2[30'3 +40,6(1 — 2cos6) + 1267 .

The potential energy of the system, taking the horizontal plane as level of
reference, is
V = Mg(y1 + y2) = 2MR(1 + cosf)g .

Hence the Lagrangian of the system is
L=T-V
1 . .. .
= EMR2[30§ +26,0(1 — 2cos §) + 66%] — 2MR(1 + cosf)g .

(b) As only gravity is involved, the total mechanical energy of the system
is a constant of the motion;

E=T+V
1

= EMR2[30.3 +20,6(1 — 2cos ) + 667] + 2MR(1 + cos8)g

= constant .
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Furthermore, if #L/d¢; = 0, Lagrange’s equation

d(oLY_oL _
dt 6(], Gq,- -
requires that AL/0¢; is conserved. For the system under consideration,

OL/06; = 0 so that

% = MR?*[36; + 6(1 — 2 cos §)] = constant .
06,
(c) As long as the cylinders remain in contact the results of (b) hold.
Initially, 8 = 0, 8, = 8 = 0, so that

1 . . .
§MR2 (362 + 26,6(1 — 2cos ) + 66°] + 2MR(1 + cosf)g = 4MRg ,
MR?[30, +6(1 —2cos8)] = 0.
These combine to give

6%[18 — (1 — 2c0s8)?] = %(1 —cosf)g ,

i.e.
2 = 12(1 — cosf)g

" R(17 4+ 4cos@ — 4cos26)

2004

Two particles of the same mass m are constrained to slide along a thin
rod of mass M and length L, which is itself free to move in any manner.
Two identical springs link the particles with the central point of the rod.
Consider only motions of this system in which the lengths of the springs
(i.e. the distances of the two particles from the center of the rod) are equal.
Taking this to be an isolated system in space, find equations of motion
for it and solve them (up to the point of doing integrations). Describe
qualitatively the motion.

(Wisconsin)
Solution:

Use a fixed Cartesian coordinate frame, and a moving frame with origin
at the midpoint O of the rod and its Cartesian axes parallel to those of
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2
z
() S 1
y r' yl
P "N
X x’

Fig. 2.5.

the former respectively. Let (r, 6, ) be the spherical coordinates of a point
referring to the moving frame, as shown in Fig. 2.5. Then the point O has
coordinates (z,y, z) in the fixed frame and the two masses have spherical
coordinates (r, 8, ) and (—r, 8, ¢) in the moving frame.

The kinetic energy of a system is equal to the kinetic energy it would
have if all its mass were concentrated at the center of mass plus the kinetic
energy of motion about the center of mass. As O is the center of mass of
the system, we have

1 \
T=3(M+ 2m)(2? + 9% + %) + m(#? + r?20% + r2p? sin? ) + Tror,

where T, is the rotational kinetic energy of the rod. The angular velocity
of the rod about O is

w = pcosfe, — psinfey — éeq, ,
resolved along its principal axes, the corresponding moments of inertia
being

— _1 2 _1 2
L=0, Iy=5ML,  I,= M.

Hence

1
Trot =5

5 (I,w? + Igw + I,w?)

_1 2/92 22 :02
—24ML (6% + ¢°sin*9) .

The system is in free space so the only potential energy is that due to the
action of the springs,

1
V=2~§K(r——ro)2=K(r-ro)2,
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where K and rg are the spring constant and the natural length of each
spring respectively. Hence

L=T-V
= %(M +2m) (2% + 9% + 2%) + m(#? + r20% 4 r¥p?sin? @)
+ %ML2(0.2 + ¢?sin? ) — K(r —ro)? .

Lagrange's equations
4 (L) 2
dt \8¢;/ Og;

then give the following constants of motion:

(M + 2m)z = constant ,

(M 4+ 2m)y = constant ,
(M + 2m)z = constant ,

1
(2mr2 + EML2) ¢sin? @ = constant .

The first three equations show that the velocity (z,y, 2) of the center of
mass of the system is a constant vector. Thus the center of mass moves in
a uniform rectilinear motion with whatever velocity it had initially. The
last equation shows that the component of the angular momentum about
the z/-axis is a constant of the motion. Since the axis has been arbitrarily
chosen, this means that the angular momentum is conserved.

Lagrange’s equations also give the following equations of motion:

. K
i - rf? — rp?sin® 0 + E(T_TO) =0,

2N . . 2
(r2 4 ML )o+ 2ri9 — (r2 + ML ) ¢?sinfcosf =0.

24m 24m

These and the ¢ equation above describe the motion about the center of
mass of the system.

Thus under the constraint that the two masses m slide along the rod
symmetrically with respect to the midpoint O, the motion of the center of
mass O of the system is a uniform rectilinear motion, and the motion of
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the system about O is such that the total angular momentum about O is
conserved.

2005

A rectangle coordinate system with axes z,y, 2z is rotating relative to
an inertial frame with constant angular velocity w about the z-axis. A
particle of mass m moves under a force whose potential is V (z,y, z). Set
up the Lagrange equations of motion in the coordinate system z,y, 2.
Show that their equations are the same as those for a particle in a fixed
coordinate system acted on by the force —VV and a force derivable from
a velocity-dependent potential U. Find U.
(Wisconsin)

Solution:

Let the inertial frame have the same origin as the rotating frame and
axes z',y', 2'. Denote the velocities of the particle in the two frames by v
and v'. As

vVi=v4+wxr
with
w=(0,0,w), r=($,y,z), v=(j:»y»é) ,
we have

v2=02+2v.wxr+(wxr)?

=& + 9% + 2% + 2w(zy — ty) + W (2* +37)

and the Lagrangian of the particle in the inertial frame, expressed in
quantities referring to the rotating frame,

L=T-V
1 1
= 5m(e® + 97 +2°) + muw(zy — 3y) + (@’ +¢7) -V .
Lagrange’s equations
d (0L BL _
dt 6(1, 6(]1‘ -
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then give

o . 2
— — +—=—=0
mz — 2mwy — mw e 3 y

|4
mﬂ+2mw:i:—mw2y+6—y=0,

s+ Y o
mz + 5%

For a particle of mass m moving in a fixed frame (z,y, z) under a force

~VV and an additional velocity-dependent potential U, the Lagrangian is

1
L= Em(d:2+y2+z'2)—V—U.
A comparison of this with the Lagrangian obtained previously gives
1
U=—muw(zy—ay) - §mw2(x2 +y%) .

This Lagrangian would obviously give rise to the same equations of motion.

2006

(a) Show that the moment of inertia of a thin rod about its center of
mass is ml2/12.

(b) A long thin tube of negligible mass is pivoted so that it may rotate
without friction in a horizontal plane. A thin rod of mass M and length
[ slides without friction in the tube. Choose a suitable set of coordinates
and write Lagrange’s equations for this system.

(c) Initially the rod is centered over the pivot and the tube is rotating
with angular velocity wg. Show that the rod is unstable in this position,
and describe its subsequent motion if it is disturbed slightly. What are the
radial and angular velocities of the rod after a long time? (Assume the
tube is long enough that the rod is still inside.)

( Wisconsin)

Solution:

(a) By definition the moment of inertia is
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Fig. 2.6,
2 b 2 1 3_1 2
I=ZR,-Am,-= %x pdw=ﬁpl =ﬁml .

(b) Take the angle § between the thin tube and a fixed horizontal line
through the pivot and the distance x of the center of mass of the thin
rod from the pivot of the tube, as shown in Fig. 2.6, as the generalized
coordinates. We have

R S PIICRNN Y YN iy _
T—2M(:1: +:z:0)+24M10, V=0,

and the Lagrangian

_1 -2 242 l 242
L= M(&" +2%0%) + o MI%" .

Lagrange’s equations then give
% = 262 ,

1 .
M (:1:2 + ﬁl2) 0 = constant = C,  say.

(c) The initial conditions z = 0, § = wy give

1

C = §Ml2wO ,
ie.
6= _Luwo
1222 412 °
We then have
1 di? iz

TT2dr T (12492
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Integrating we obtain, as initially z =0, £ =0,

2 12wx?
1222402

It is noted that the speed of the rod in the tube,

le
Viz+ 5

increases as its distance from the initial position increases. Thus the rod
is unstable at the initial position. For t — oo, z — o0, 6 — 0 and
& — lwp/v/12. Hence, after a long time, the rotation will slow down to
zero while the speed of the rod in the tube will tend to an upper limit. The
distance x however will be ever increasing.

=

2007

A block of mass M is rigidly connected to a massless circular track of
radius a on a frictionless horizontal table as shown in Fig. 2.7. A particle
of mass m is confined to move without friction on the circular track which
is vertical.

(a) Set up the Lagrangian, using 6 as one coordinate.

(b) Find the equations of motion.

(c) In the limit of small angles, solve that equations of motion for  as
a function of time.

( Wisconsin)

4

L.

M

m
7T 77T

Fig. 2.7.
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Solution:

(a) As the motion of the system is confined to a vertical plane, use a
fixed coordinate frame x, y and choose the z coordinate of the center of the
circular track and the angle 6 giving the location of m on the circular track
as the generalized coordinates as shown in Fig. 2.7. The coordinates of the
mass m are then (z + asinf, —acosf). As M is rigidly connected to the
circular track its velocity is (&,0). Hence the Lagrangian is

1 . .
L=T-V= %M:i:2 + im[(m + afcos §)% + a%6? sin? 9] + mga cos §
1 ) 1 .2 242 y,
= §M:1: + im[:l: + 6“0 + 2036 cos 0] + mga cos@ .

(b) As

oL

30

Q% = Mz + mi + mafcos ,

ot

oL A .

50 = —maifsin0 — mgasind ,

L .
%5 = ma?0 + maz cosf ,

Lagrange’s equations
4 (oL _oL _,
dt \dg:) 8¢
give
(M +m)i + mab cos§ — maf?sind =0 ,
ab + i cosf + gsind =0 .

(c) For small oscillations, 8 and 8 are small quantities of the 1st order.
Neglecting higher order terms the equations of motion become

(M +m)i+mab=0,
ab+i+g0=0.
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Eliminating # we have

(M +m)g0

Ma =0.

6+
Hence

0 = Asin{wt) + Bcos(wt) ,

where w = /(M + m)g/Ma is the angular frequency of oscillation and A
and B are constants to be determined from the initial conditions.

2008

Consider a particle of mass m moving in a bound orbit with potential
V(r) = —k/r. Using polar coordinates in the plane of the orbit:

(a) Find p, and py as functions of r, 8,  and 6. Is either one constant?
(b) Using the virial theorem show that

k
J,+J9=f;dt,

Jr = f.prdr )
Jo = f‘pode .

—2m2mk?2
(Jr+J9)=V-‘—E—‘— )

T4 1
/ ——d—r——=1r, ry = —(axVa%—4b).
r. V—r24ar—> 2

(d) Using the results of (c) show that the period of the orbit is the same
for the r and § motions, namely,

/m
T=rnk :m

where

(c) Show that

using

(Wisconsin )
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Solution:
(a) We have

L=T—V=%m(f2+r292)+§ .

The generalized momenta are

——a—é—mr‘
pr—ar.‘— 3
) R
po=—6—§=mr20.

As thereisno §in L, pg = mr26 is a constant of the motion.
(b)
Jr+Jg = fm'i'dr + fmr29d0

= fmf'2dt + fmr2é2dt
= fm(f"2 + r26%)dt
=2 }{ Tdt = 2Tr ,
where 7 is the period and T is the average kinetic energy of the particle

over one period. For a particle moving in a bound orbit in the field of an
inverse-square law force the virial theorem takes the form

Thus k
Jr+J9=—V’r=f;dt.

(c) The total energy of the particle
_ 1l o 9 k1 o  h? _k
E—T+V—2m('r +r°6) ;—2m('r +r2 o

where h = r20 = pg /m = constant, is a constant. The above gives

2 2
7'~2=—(E+5)—h—2,
m r r
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1 /2Er? 2k
Y R S A

r m m

—2F 1\/ ,  kr mh?
=¥ VT et

where it should be noted that E < 0 for bound orbits.
For a bound orbit, r_ < r < r,. The extreme values of r are given by

or

=0, ie.
o  kr mh?

r° + E 3E © 0.
Writing this as
rP—ar+b=0,
where q,b are positive numbers a = —k/E, b = —mh?/2E, we have

1
ry = i(a:l:\/a2—4b) .

Then
J,+Jg=f£dt= ﬁ,dr
T rT
r+ kd
=2 r
r— —2F 2 ﬂ mh2
m E 2F
T4 d
— %%k m / T
V —2F J, \/; ~ E mh2
E 2F

T4
— 9% [ m / dr
—2E J,_ V-r?+ar—b
m 2memk?
=2k =V "=F

using the value given for the integral.
(d) As E is a constant, we have

—E=-E=-T+V)=—(T-2T) =T,
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or
_E=1 f Tat
T
1 1 [2n2mk?
= 2_T(Jr + Jo) 2 —'E y
giving
[m
T=nk ——W .
2009

Two identical discs of mass M and radius R are supported by three
identical torsion bars, as shown in Fig. 2.8, whose restoring torque is
7 = —k6f where k = given torsion constant for length ! and twist angle
0. The discs are free to rotate about the vertical axis of the torsion bars
with displacements 6,, 6, from equilibrium position. Neglect moment of
inertia of the torsion bars. For initial conditions 6,(0) = 0, 6,(0) = 0,
6,(0) = 0, 62(0) = Q = given constant, how long does it take for disc 1 to
get all the kinetic energy? You may leave this in the form of an implicit
function.

(UC, Berkeley)

Fig. 2.8.

Solution:
If I is the moment if inertia of each disc, the Lagrangian of the system
is
1, iy age 1
L= I(67 +65) — Skl6} + 63 + (61 — 62)°] .
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The two Lagrange’s equations are

16, + k(26, —62) =0,
165 + k(202 — 6,) =

These combine to give

1(91 +92)+k(91 +92) =0,
I(6, — 63) + 3k(6, —6,) = 0.

t+‘P+) 3

The solutions are respectively

91 +92 :A+sin(

==

6, — 60 = A_sin

The initial conditions
0, +6: =0, 0,—6,=0 at ¢
give ¢, = p_ = 0. The conditions
0,+0,=Q, 6,-6,=-0 at

give

t+<p>.

t=20

I I
A, = _ = — — .
+ Q\/;, A_ 0 3

Hence

o= e (5 ) o
b~ (5 ) v ()]

Only when 6, = 0, i.e. after a time t given by

() (f%).

will disc 1 get all the kinetic energy.
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It should be noted that the kinetic energy of the system is not a constant.
When ¢ satisfies the above equation, disk 1 does take all the kinetic energy
of the system at that time. However, this kinetic energy varies from time
to time this happens.

2010

A thin, uniform rod of length 2L and mass M is suspended from a
massless string of length [ tied to a nail. As shown in Fig. 2.9, a horizontal
force F is applied to the rod’s free end.

Write the Lagrange equations for this system. For very short times
(so that all angles are small) determine the angles that the string and the
rod make with the vertical. Start from rest at ¢ = 0. Draw a diagram to
illustrate the initial motion of the rod.

(UC, Berkeley)

2L
Fes U
Fig. 2.9.

Fig. 2.10.
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Solution:

As the applied force F is horizontal and initially the string and rod
are vertical, the motion is confined to a vertical plane. Take Cartesian
coordinates as shown in Fig. 2.10 and denote the angles made by the string
and the rod with the vertical by 6y,0; respectively. The center of mass
of the rod has coordinates (Isin6; + Lsinz, —Ilcos@ — Lcos @) and thus
velocity (lél cos 0 + L, cos 65,16, sin 6; + L, sin 02). Its moment of inertia
about a perpendicular axis through its center is M L?/3. Hence its kinetic
energy is

T= %M[Féf + L?62 + 2L16,62 cos(6, — 0)] + %Mﬁég

and its potential energy is
V =-Mg(lcos, + Lcosby) .
The potential U of the horizontal force is by definition
U= —/F~dr = —F(lsinf; + 2Lsiné,) .
The Lagrangian is therefore
L=T-V-U
- %M[Féf + L262 + 2L16:65 cos(6: — 63)] + %ML2é§

+ Mg(lcos 8y + LcosOz) + F(lsin; + 2Lsin ;)
4 (oLy 9L _,
dt \84;) Og;

M16; + ML, cos(8; — 6,) + ML62 sin(6; — 6)
+ Mgsin; — Fcosf; =0,

Lagrange’s equations

then give

gMLiiz + M6, cos(8; — 8;) — M16%sin(8, — 6)
+ Mgsin; — 2Fcosf, =0 .
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Note that if F is small so that 6y, 62, 63, 62 can be considered small then,
retaining only first order terms, the above become

MIlb, + ML, + Mg, —F =0,
4 " "
-:;MLez + M6, +Mg92 —-2F=0.

The motion starts from rest at ¢ = 0. For a very short time At
afterwards, the force can be considered as giving rise to a horizontal impulse
FAt and an impulsive torque FLAt about the center of mass of the rod.
We then have

FAt = M(lél cos 0, + L3 cos 02)
~ M1, + MLG, ,

as the angle 6,,0; are still small, and

FLAt = %MLzéz .

Eliminating FAt from the above, we have
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2011
Counsider a binary star system.

(a) Write the Lagrangian for the system in terms of the Cartesian
coordinates of the two stars r; and rs.

(b) Show that the potential energy is a homogeneous function of the
coordinates of degree —1, i.e.

V(ar;,or;) = a'V(r;,ra),

where a is a real scaling parameter.

(c) Find a transformation which leaves the Lagrangian the same up to a
multiplication constant (thereby leaving the physics unchanged) and thus
find Kepler’s third law relating the period of revolution of the system to
the size of its orbit.

(Chicago)

Solution:

(a) Let r, r2 be the radius vectors of the binary stars, masses m;,m2
respectively, from the origin of a fixed coordinate frame. Then

1 .2 1 .12 Gmlm2
- = = V=212
T 2m1|r1| + 2m2lr2| 3 |l'1 ___r2| y
and the Lagrangian is
1 . . Gmim
L=T-V= 5 (m1|r112 +m2|r2|2) + TE—:—T;I .
(b)
Gmim 1 Gmym 1
Vian,on) = - T o LT < V()
ar; — ars| alrp—r| «

i.e. the potential energy is a homogeneous function of the coordinates of
degree —1.

(c) Let R be the radius vector of the center of mass of the binary system
from the origin of the fixed coordinate frame, and r}, r; be the radius vectors
of my,my from the center of mass respectively. By definition

(my + m2)R = mar) + mara ,
r;=R+r], ro=R+r),
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, mar / mr

rl T — r2 = ———,

my + me my + mo
where r =r; —rs =rj —rj.
We can then write the Lagrangian as
my +ma mimg ..o Gmima
L=———R[>+ e[ +
2 2(ma + ma) |r]

As L does not depend on R = (z,y, 2) explicitly, 8L/0x, OL/dy, OL/dz
and hence (m, +mg)R are constant. Therefore the first term of L, which is
the kinetic energy of the system as a whole, is constant. This terms can be
neglected when we are interested only in the internal motion of the system.
Thus

L= (———mlm ) L 4 GO0+ M) +M2)]

mi + mg

_ ( my ) '1m2lflz+Gm2(m1 +m2)]
!

mi + ma |r|

:( ma )'1 |f|2+G’m1(m1+m2)],

my + ma

which may be consider as the Lagrangian, apart from a multiplicative
constant, of the motion of one star in the gravitational field of a fixed star
of mass m, +mga. Let m; be this “moving” star and consider its centripetal

force:
G'ml (ml + m2)

myr6? = 3
r

4

or
T2 472

r3 G’(m1 +m2) !

where T' = 21r/9 is the period of m; about mq, which is Kepler's third law.
The same is of course true for the motion of ms about m;.

2012

Two thin beams of mass m and length ! are connected by a frictionless
hinge and a thread. The system rests on a smooth surface in the way shown
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in Fig. 2.12. At t = 0 the thread is cut. In the following you may neglect
the thread and the mass of the hinge.

(a) Find the speed of the hinge when it hits the floor.

(b) Find the time it takes for the hinge to hit the floor, expressing this
in terms of a concrete integral which you need not evaluate explicitly.
(Princeton)

30° 30 <

Fig. 2.12.

Solution:

(a) Due to symmetry, the hinge will fall vertically. Take coordinates as
shown in Fig. 2,12 and let @ be the angle each beam makes with the floor.
Then the centers of mass of the beams have coordinates

1 1
Ty = —2-lcost9, Y = Elsine ;

1 1. .
Tg = ——Elcose, Yo = Elsme ;

and velocity components

. 1. R
i, = ——EIOSmO, n = 5100039 ,

) 1., . 1,
Tg = 510sm9, U2 = Elﬁcose .

Each beam has a moment of inertial mi?/12 about a horizontal axis through
its center of mass. The Lagrangian of the system is



Analytical Mechanics 487

L=T-V

1 A 1 »
l2 2 l2 2 :
—4m 9 + —12m é —mglsm9

= %ml2é2 — mglsin® .

4 (8L\ 9L _
dt \ 96 00

Lagrange’s equation

Then gives 3
. g
—~ 0050 =0.
0+ 2 cos 0
As "
. 1df . .
0—53‘9— and =20 when 6 = 30°,
the above integrates to
6% = 32_7(1 — 25in @)
Hence when the hinge hits the floor, § = 0 and
b= 2’
ie.
. 3gl
= l = _
(vl = 18] = /2

(b) The time taken for the hinge to hit the floor is given by

30° 0 /30° \/%5} 1—-2sin6)
B 2_1 /30° do
“V3g), 1-2sing

2013

A uniform rod of the length L and mass M moves in the vertical
zz-plane, one of its end-points. A being subject to the constraint z =
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ztano (o = constant inclination to the horizontal z-axis). Derive the
Lagrangian equations of motion in terms of the generalized coordinates
¢, = s and g2 = 0 (see Fig. 2.13). Use these to determine if a pure
translational motion (§ = constant) is possible and, if so, for which values
of 6.

(Princeton)

Fig. 2.13.

Solution:

The coordinates and velocity components of the center of mass of the
rod are

1 1
:z::scosa—ELsinG, =ssina——§Lcos9,

| .
:i::écosa—ELﬁcose, 2=ésina+%L0sin9,

and the moment of inertia of the rod about a perpendicular axis through
the center of mass is ML?/12, so the Lagrangian is

L=T-V

N P ST N VT Y
—2M(:1: +z)+24ML0 Mgz

= %M[$2 — Lifcos(6 + a)] + %ML292 — Mg (ssina - %Loose) .

4 (0L _OL
dt Bq, Bq,-—

Lagrange’s equations
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then give

1.« .
§— §L000s(9 +a)+ %LO2 sin(f + o) + gsina =0,

dcos(6+ a) — gLé—gSinO =0.

If the motion is pure translational, § = constant, 6 =0, =0 and the
above become

§+gsina =0,

3cos(0+a)—gsinfd =0.

Eliminating § gives
sin accos(6 + o) = —sinf ,

or
0= —a.

2014

A spherical pendulum consists of a point mass m tied by a string of
length ! to a fixed point, so that it is constrained to move on a spherical
surface as shown in Fig. 2.14.

(a) With what angular velocity will it move on a circle, with the string
making a constant angle 8y with the vertical?

(b) The mass in the circular orbit as in part (a) above receives an
impulse perpendicular to its velocity, resulting in an orbit which has its
highest point with the string making an angle 6, with the vertical. Write
down (but do not try to solve) the equation which may be solved for the
angle the string makes with the vertical when the mass is at its lowest point.

(c) For the case in which the amplitude of the oscillations about 6y is
small, solve for the frequency of these oscillations.

(Princeton)

Solution:

Use a rotating coordinate frame, as shown in Fig. 2.14, with the z-axis
vertical and the z-axis in the vertical plane containing the string and mass
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Fig. 2.14.

m. The mass has coordinates (Isin,0, —l cos ), where 6 is the angle which
the string makes with the vertical. Let ¢ be the angular velocity of m about
the z-axis. The velocity of m in a fixed frame is given by

v=r+exr,

with
t = (10 cos9,0,0sin8), ¢ =(0,0,¢).

The Lagrangian is then

1
L:T—V:Emﬁ—mw

1 .
= 5711(12492 + 12¢?sin? 0) + mglcos @ .

d (oL\ oL _,
dt \ 0¢; dq;

Lagrange’s equations

give

6 — ¢?sinfcosf + %sinez 0,

¢ sin? @ = constant .

(a) For circular motion with constant angle 6 = 6o, 6 = 0 and Eq. (1)
gives
g
cos bp

(p: ] =w, say .
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The equations of motion can now be written as
. 24 2
¢sin“ 0 = wsin“ 6y ,
. . 4, cosé
6 — w?sin? 6,

sin® @

+ w?cosfpsind=0. (1)

As 6 = d6? /2d6, Eq. (1) can be integrated to
_w2 sin* 6,

P =
sinZ @

+ 2w? cosf cos 0 + K .

At the highest point of the orbit of m, 6 =0and 8 =0, giving

. 4

sin® 6g

— —2w§cos€ocost91 .
sin“ 6,

At the lowest point, § = 0, § = 6, and we have

sin? 8 ( 1 1
cosfp \sin’6, sin’6,

) +2(cosf; —cosb,) =0,

which may be solved for 6; in terms of 6y and 6,.
(c) Let = o + Gy with a < 0y. As

cos 0 = cos 8y — asin by, sinf =~ sinfp + acos g ,

cosd cos Bp(1 — o tan bp) cos b
~ ~ 1 atan 6 + 3cot §
sin®@  sin®0p(1 + ccotfp)3  sin® Gy [ — o(tan 6o + 3ot 6o)]
with § = &, Eq. (1) reduces to
& + w? sin O cos Gpfa(tan by + 3cotfg) —1 + 1+ acotf] =0,

i.e.
&+ o..:2(sin2 6 + 4 cos®Gg)a= 0,

or
&+ w?(1 +3cos?fp)a=0.

Hence 8 oscillates about 8y with angular frequency

2
wp = wy/TF 30050y = 4 IULF 3057 00)

lcos 90
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2015

A spring pendulum consists of a mass m attached to one end of a
massless spring with spring constant k. The other end of the spring is tied
to a fixed support. When no weight is on the spring, its length is I. Assume
that the motion of the system is confined to a vertical plane. Derive the
equations of motion. Solve the equations of motion in the approximation
of small angular and radial displacements from equilibrium.

(SUNY, Buffalo)

Solution:

Use coordinates as shown in Fig. 2.15. _The mass m ht_)s coordinates
(rsin@, —r cos @) and velocity components (8 cos §+7 sin 8, r0 sin 6 -7 cos §)
and hence kinetic energy

1 ,
T= Em('i'2 +r%6?) ,
and potential energy
1 2
V= Ek(r ~1)* —mgrcos@ .

The Lagrangian is therefore

L=T-V= %m('i’2 +r2f?) - %k(r —1)? + mgrcosf .

d (0L oL
dt \0¢;) B¢

Lagrange’s equations
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then give the equations of motion
mi — mré? + k(r —1) — mgcos = 0,
r§+2fé+gsin9 =0.

The equilibrium position in polar coordinates (rq, 8y) is given by ¥ = 6 =0,

f = 6 = 0, namely,
mg

k-
For small oscillations about equilibrium, 8 is a small angle. Let p = r—rg
with p < ro and write the equations of motion as

0y =0, ro=14

mp—m(ro+p)% +kp=0,
(ro+p)+2p0+g0=0,

or, neglecting higher order terms of the small quantities p, g, 0,
. k
[ Ep =0,
§+20=0.
To
Thus both the radial and angular displacements execute simple harmonic

motion about equilibrium with angular frequencies \/k/m, \/g/ro respec-
tively. The solutions are

p= Acos (‘/£t+<p1>,
m
r=1+29 4 Acos \/£t+
- k m ¥y ’

or

and

kg
9—Bcos( K+ mg t+<.02> ;

where the constants A, ¢;, B, 2 are to be determined from the initial
conditions.
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2016

A particle is constrained to be in a plane. It is attracted to a fixed point
P in this plane; the force is always directed exactly at P and is inversely
proportional to the square of the distance from P.

(a) Using polar coordinates, write the Lagrangian of this particle.
(b) Write Lagrangian equations for this particle and find at least one
first integral.
(SUNY, Buffalo)
Solution:

(a) Choose polar coordinates with origin at P in the plane in which the
particle is constrained to move. The force acting on the particle is

k being a positive constant. Its potential energy with respect to infinity is
r
k
V:—/ F.dr=——.
oo r
The kinetic energy of the particle is
1 .
T= Em(f'2 +r26%) .
Hence the Lagrangian is
1 .
L=T-V = 5m(7‘~2+r202)+§
r
(b) Lagrange’s equations
d(9Ly _oL
dt 0(}, Bq,- N
then give the equations of motion
. k d 24
mr+r—2:0, a(er):O.

The second equation gives immediately a first integral

mr2 = constant ,

which means that the angular momentum with respect to P is conserved.
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2017

Consider two particles interacting by way of a central force (potential
= V/(r) where r is the relative position vector).

(a) Obtain the Lagrangian in the center of mass system and show that
the energy and angular momentum are conserved. Prove that the motion is
in a plane and satisfies Kepler's second law (that r sweeps out equal areas
in equal times).

(b) Suppose that the potential is V = kr?/2, where k is a positive
constant, and that the total energy F is known. Find expressions for the
minimum and maximum values that r will have in the course of the motion.

(SUNY, Buffalo)

my

Fig. 2.18.

Solution:

As the forces acting on the particles always direct along the line of
separation, the motion is confined to whatever plane the particles initially
move in. Use polar coordinates in this plane as shown in Fig. 2.16 with
origin at the center of mass of the particles. By definition of the center of
mass,

miry +mere =0,

i.e.

m)ry = —marsa ,

or

myry = marp

for the magnitudes.
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(a) The kinetic energy of the particle are

T——I I2+—Ir &

2
. me o2+ 215,02

2
ma .. 2
= —=|pr
2m, 2 £l

where u = mymy/(m1 + m2) is the reduced mass of the system.

potential energy is

Viri4rs) =V (mzrz +r2) _v (mzm) ‘
m w

Hence the Lagrangian is

2 mara2
L:T—V:2—2(2+r202) ( Z )

using r2 and @ as the generalized coordinates.
The Lagrangian L does not depend on t explicitly. So

dL oL dg; oL
dt ‘;(aq,- @t aqjq’)

-5 [Ldy , 4 (0L),
- Bq] dt t Bq] 9

use having been made of Lagrange’s equations. Hence

Z a3, qJ ~ L = constant .

In the present case,

oL m3r3 B_L b= m3r36?
Orq T 06 u

The
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and the above gives

m3 o mj 42
#( +T%02)—'T+V—- #(7'2‘}'7'20)

=T 4+ V = constant ,

showing that the total energy is conserved. Note that this proof is possible
because V does not depend on the velocities explicitly.
Asg L does not depend on § explicitly, Lagrange’s equation gives

aL _ m2 T20
'

The angular momentum of the system about the center of mass is

= constant = J , say .

(my +m2)m2r20 m3rié
m w

=J.

m2r20 + m1r10 =

Hence the angular momentum is conserved. The above also implies

. . L 2r26
r20 = (7‘1 + T2)20 — m 7-30 = m272‘2 = constant ,
m w
i.e.
r2A0 2AS

At = F = constant ,

where AS is the area swept out by r in time At. Thus Kepler's second law
is satisfied.
(b) The total energy

m% .2 242 L 2
E=T+V=ﬂ(r2+r20)+§kr

2,2
miry J,u.l 2
= k
2u +2m +
can be written as )
1 5, J1 1
E=_-pr*+ — 4 —kr? .
oHT ot gt

When r is a maximum or minimum, 7 = 0. Hence the extreme values of
are given by
kpur* —2Eur? +J2 =0.
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2018

A particle is attracted to a force center by a force which varies inversely
as the cube of its distance from the center. Derive the equations of motion
and solve them for the orbits. Discuss how the nature of the orbits depends
on the parameters of the system.

(SUNY, Buffalo)

Solution:

As the particle moves under a central force its motion is confined to
a plane, We use polar coordinates in this plane with origin at the force
center. For the force
Fo_kr
rd’
where k is a positive constant, the potential energy is

T k
V(T):—'\/OOF'dr:—'w.

Hence the Lagrangian is

L=T-V= %m(i2+r2é2)+—

22’
4oLy oL _
dt \ 0¢; B4

mr26 = b, (a constant) ,

Lagrange’s equations
then give

. k
mi"—mr02+—3 =0.
r
Let u = 1. The first equation becomes

2
o= 2
m
,:—i 1 —”_l_gﬁg'—_ﬁgﬁ
Tdt\u)  u2dd  mde’

bdiu,  budu

“md? m? de?’

As

7=
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the second equation becomes

Hence, if b > mk,

ro b2
ie.
k
rcos[ 1—% (9—90)] =703
if b2 < mk,
1 /mk
u—-ECOShIZ -bT—l(e—oo)] y
i.e.

k
rcosh[ %—1 (o—oo)] =rg.

Here (rg, 60) is a point on the orbit.

2019
Assume the Lagrangian for a certain one-dimensional motion is given
by
1 o, 1
L=¢" (qu2 — Ekq2) )

where v, m, k are positive constants. What is the Lagrange’s equation?
Are there any constants of motion? How would you describe the motion?
Suppose a point transformation is made to another generalized coordinate

S, given by
t
S = exp (—;)q .

What is the Lagrangian in terms of §7 Lagrange’s equation? Constants
of motion? How would you describe the relationship between the two
solutions?

(SUNY, Buffalo)
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Solution:

Lagrange's equation
d (8L oL
dt \ 8¢ 0q

e’ (mg+ymg+kq) =0,

gives

or k
“ . q

—==0.
¢+79+ .

As L contains g, t explicitly, there is no constant of motion.
Try solutions of the form g ~ e®t. Substitution gives

k
o +ya+— =0,
m

whose solutions are

(S

Write this as a = —% + b and consider the three possible cases.
(i) 3 <4/ % b is imaginary; let it be ¢3. The general solution is
g=e % (Aet + Be*Pt) |
or
g=e % (A cospt + B'sinBt) ,

A, B, A’, B’ being constants. Thus the motion is oscillatory with attenuat-
ing amplitude.
(i) 2 =y/£. b=0and we have

9= ‘101‘3_323 3

showing that the motion is non-oscillatory with ¢ attenuating from the
value gg at t = 0.
(i) 2 > \/£. b=0and

m

q= e_J%(Cebt + De7bt) |
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C and D being constants. This motion is also non-oscillatory and time-
attenuating.

The three cases can be characterized as underdamped, critically damped
and overdamped.

If we include the time factor in the generalized coordinate by a point
transformation

S=e¥gq, ie. gq=e %8,

the Lagrangian becomes

1 (s 1. N 1, .,

Lagrange’s equation then gives the equation of motion
§+u?8=0
with w? = k/m — (7/2)2. As §= %%‘g—z, integration gives
$? + w?8? = constant .

Hence there is now a constant of motion. Physically, however, the situation
is not altered. As S, S both contain ¢ implicitly, this constant actually
changes with time,

For v/2 < \/k/m, w? is positive, i.e. w is real, and the equation of
motion in § describes a simple harmonic motion without damping. For
v/2 = \/k/m, w = 0 and the motion in § is uniform. For v/2 > \/k/m, w
is imaginary and the motion is non-oscillatory with time attenuation. How-
ever, as noted above, S contains a hidden attenuating factor exp{—~t/2)
which causes time attenuation in all the three cases.

We may conclude that both sets of solutions describe identical physical
situations but in the second set the attenuating time factor exp(—+yt/2) is
absorbed in the generalized coordinates and the treatment proceeds as if it
were nonexistent.

2020

A bead of mass m slides without friction on a rotating wire hoop of
radius a whose axis of rotation is through a vertical diameter as shown in
Fig. 2.17. The constant angular velocity of the hoop is w.
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(a) Write the Lagrangian for the system and find any constants of the
motion that may exist.

(b) Locate the positions of equilibrium of the bead for w < w, and
w > W, where w, = \/—g%.

Which of these positions of equilibrium are stable and unstable?

(d) Calculate the oscillation frequencies of small amplitude vibrations
about the points of stable equilibrium.

(UG, Berkeley)

ey

mg

Fig. 2.17.

Solution:

(a) Use a rotating polar coordinate frame attached to the loop as shown
in Fig. 2.17. In this frame, in additional to the gravitational force on the
mass, mg, a fictitious centrifugal force £ as shown has to be introduced. In
polar coordinates

2

f = (mw?rsin® 0, nuw?rsinfcosd) ,

mg = (mg cosd, —~mgsinb) .
f can be expressed in terms of a potential V; by

_ (Ve %Yy
=-vvy= (-3 5)

ie.
2

1
Vi = —imr w?sin?0 .
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Similarly the gravitational potential is
Vg = —mgrcos¥9 .

The particle velocity is (#,7). With the constraint r = g, the Lagrangian
is ) )
L=T-V= ima292 + Ema%..:2 sin? 0 + mgacos® .
As OL/8t = 0 and V does not contain 6 explicitly, §9L/86 — L = constant
(Problem 2017). Hence
1 2 2

. 1
Ema202 — gme‘w sin? @ — mga cos @ = constant ,

which means that T+ V = constant.
(b) Lagrange’s equation gives the equation of motion

af — aw?sinfcosd + gsind = 0 .
At a position of equilibrium, 6= 0, so
sinf(aw?® cos — g) =0 ,

or
asin§(w? cos§ — w?) =0

with w? = 2,
If w < we, w?cosd < w? and hence sinf = 0, and we have two equili-
brium positions at 8 = 0, .
If w > we, we have in addition to the above positions an equilibrium
position at
2
W g
cosf = Z}i = au—2 .
(c) Suppose 8y is an equilibrium position and let 8 = 8y + o, where o
is a small quantity. The equation of motion reduces, retaining up to first
order terms, to

ad + (gcosfg — aw? cos 20p)a — aw? sinfy cos G + gsinfy = 0 ,
or,as 6 =0 at 6 = 6,

&+ (g coseo—w2cos290) a=0.
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fw< \/éﬁ, the coefficient of « is positive for the equilibrium at 8, = 0.
So this is a position of stable equilibrium. The coefficient is negative for
the equilibrium at 8y = 7, showing that it is an unstable equilibrium.

If w > \/g/a, equilibrium also occurs at cosfy = g/aw?
the coefficient of a is

. In this case

1 2
gcos00—2w2cos200+w2 =— (w4— 9—2) >0,
a w a
so that the equilibrium is a stable one.
(d) The angular frequency of small vibrations about a point of stable
equilibrium is

W= \/‘g cosfy — w? cos 26,

Z—w? at 8o =0,

1 2
“yfwt— (2) at 6y = cos™! (%) .
w a aw

2021

Particles of mass m; and mg, connected by a light spring with spring
constant k, are at rest on a, frictionless horizontal surface.

(a) An impulse I of very short duration is delivered to m,. The direction
of the impulse is from m; to mo. How far will mge move before coming to
rest for the first time?

(b) Is it possible by delivering a short impulse to m; to have the system
move from rest so that it is rotating without oscillation? Explain.

(UC, Berkeley)

Solution:

(a) Take the initial position of m; as origin and the direction from m,
to mq as the positive direction of the z-axis. The Lagrangian of the system
is

1 1 1
L=T-V = §m1$?+ §m2x§ - Ek(xg — T — l)2 s
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where [ is the natural length of the spring, being equal to zo —z; at t = 0.
Lagrange’s equations
d oL oL 0
dt \ dq; dq; -
give
mlfi:l = k(:l:g — ) —l) s
mzfﬁg = —k(:l:g — T — l) .
From the above, we obtain

k -z~
1-1.:2—5151 = — (ml +m’l:l)1(’l’a:l22 o ) )

or, by setting u = x3 — x1 — I, w? = k(m,y + my)/myma,
i+ wu=0.

The general solution is
u = acos(wt + ) ,
giving
zo — T —l =acos(wt + a) ,
where ¢ and a are constants. The initial conditions =, = 0, T3 = [,

zy = I/m;, 2 = 0 at t = 0 then give

acosa =10,

. I
awsing = —
m

with solution

_m I
=39 a_mlw
Hence
T
a:g—a:1=l+mlwcos<wt+—2—) . (1)

Conservation of momentum gives
mEy +moete =1 .
Integrating and applying the initial conditions we obtain

miTy + Maxg = mol + It .



506 Problems & Solutions on Mechanics

This and Eq. (1) together give

It Isin(wt)
my+mg (M1 + mg)w

$2=l+

?

and thus
I _ T cos(wt)

my + mo my + me

T =

When mg comes to rest for the first time, £ = 0, and the above gives
cos(wt) = 1 for the first time. Hence when mg comes to rest for the first

time,
_2n

w

t

At that time my has moved a distance

a:g—l——L=27rI Mme

_ ~3/2
w(m + mg) k

(my + mg)

(b) If the impulse given to m; has a component perpendicular to the line
joining the two particles the system will rotate about the center of mass, in
addition to the linear motion of the center of mass. In a rotating frame with
origin at the center of mass and the z-axis along the line joining the two
particles, there will be (fictitious) centrifugal forces acting on the particles in
addition to the restoring force of the string, At the positions of the particles
where the forces are in equilibrium the particles have maximum velocities
on account of energy conservation (Problem 2017). Hence oscillations will
always occur, besides the rotation of the system as a whole.

2022

A sphere of mass M and radius R rolls without slipping down a triangu-
lar block of mass m that is free to move on a frictionless horizontal surface,
as shown in Fig. 2.18.

(a) Find the Lagrangian and state Lagrange’s equations for this system
subject to the force of gravity at the surface of the earth.

(b) Find the motion of the system by integrating Lagrange’s equation,
given that all objects are initially at rest and the sphere's center is at a
distance H above the surface.

(UC, Berkeley)
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y ”
]
3
’
~
¢
X
L 4 -— X
Fig. 2.18.

Solution:

(a) Use a fixed coordinate frame as shown in Fig. 2.18 and let 8 be the
angle of rotation of the sphere. As the sphere rolls without slipping down
the inclined plane, its center will have coordinates

(z + (£0 + RO) cosp, H — REsin p)

and velocity
(¢ + R cosp, —Rfsin p) .
Note that at t =0,z =0,0 =0, £ = £, y = H, & = § = 0. Then the

Lagrangian is

1 1 . ,
L=T-V-= §m¢2 + 5M(:i;'-" + R?6% + 2Ri6 cos )
1 ,
+ 5MI~2202 — Mg(H — Rfsinyp) .

Lagrange’s equations

4oLy _or_
dt \ 9¢; 0q;
give
(m+ M)i + MRfcosp =0,
Zcosyp+ gRé —gsing=0.
(b) Eliminating % from the above gives

(7 Mcos2<p>é= gsing

5 m+M R
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or, on integration and use of initial conditions,

_ 5(m+ M)sing gt_2
T 2[7(m+ M)—5Mcos?¢] R’

and thus

_MRcosy , 5M sin(2¢) .2
m+M ~ 4T(m+ M) —5Mcos2<p]g '

Note that, as the sphere rolls down the plane, the block moves to the left
as expected from momentum conservation.

2023

Two mass points m; and mg (m) # my) are connected by a string of
length [ passing through a hole in a horizontal table. The string and mass
points move without friction with m,; on the table and mq free to move in
a vertical line.

(a) What initial velocity must m, be given so that m; will remain
motionless a distance d below the surface of the table?

(b) If my is slightly displaced in a vertical direction, small oscillations
ensue. Use Lagrange’s equations to find the period of these oscillations.

(UC, Berkeley)

my

Fig. 2.19.
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Solution:

(a) m1 must have a velocity v perpendicular to the string such that the
centripetal force on it is equal to the gravitational force on my:

2

mv
I —d =mag,
or
_ my(l - d)g )
my

(b) Use a frame of polar coordinates fixed in the horizontal table as
shown in Fig. 2.19. mg has z-coordinate —(I — r) and thus velocity #. The
Lagrangian of the system is then

1 . 1
L=T-V= §m1(7‘2 +7r29%) + §m27"2 +maog(l—7) .
Lagrange’s equations give

myr20 = constant ,

(my + mg)¥ — mré? + mog =0.

Att=0,r=1~—d, v=y/ma{l — d)g/m, = vy, say, so

bW _ [M g
071 -d mil—d’
Hence
mr?d = my (1 — d)%6y = m”/r—nﬁ(l —d)3g,
m
giving
4542 _ 3
r m r
and

) 1-d\*
(m1 + ma)¥ — mg - g+meg=0.

Let r = (Il ~ d) + p, where p < (I — d). Then

F=p o i=(-d7 (1+I_Ld)_3z(z_d)-3( '2‘3_%)
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and the above equation becomes

3mag
(m1 +mg)(l - d)

p+ p=0.

Hence p oscillates about O, i.e. r oscillates about the value [ — d, with

angular frequency
= 3mag
(m1 +mg)(l —d)’

e 2W\ﬁm1 +ma)(l-d)
3Imag

or period

2024

Two rods AB and BC, each of length a and mass m, are frictionlessly
joined at B and lie on a frictionless horizontal table. Initially the two rods
(i.e. point A, B, C) are collinear. An impulse P is applied at point A in
a direction perpendicular to the line ABC. Find the motion of the rods
immediately after the impulse is applied.

(Columbia)

Solution:

As the two rods AB, BC are freely joined at B, take coordinates as
shown in Fig. 2.20 and let the coordinates of B be (z,y). Then the center
of mass of BC has coordinates
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1 1
(a:+ 5as1n01,y+ 5acos01>

and velocity
1 . 1 .
T + —ab) cosby,y — —ab) sinf,
2 2
and that of AB has coordinates

1 1
(a: + Easin()g, y+ 0 cos 02)

and velocity
1 . 1 .
(:i: + §a02 cosfy,y — §a02 sin 02) .

Each rod has a moment of inertia about its center of mass of ma?/12. Hence
the total kinetic energy is

1 . .
T= %m [j;2 +9 + Za20f + ab){zcosh, — ysinOI)] + 214ma202

1 1 ,. . 1
+ 5m [:i:2 +92+ Za20f + af2(& cos Oz — ysin02)] + 24ma202

= %m [2(:&2 + 4%) + a@() cos B + 63 cos b3) — ay(fy sin8) + b5 sin 02)]
+ éma'-’-(é';’- +63) .

The impulse P is applied at A in a direction perpendicular to the line
ABC. Thus the virtual moment of the impulse is P6(y + acosf;) and the
generalized components of the impulse are

Q.’c = O’ Qy = F’ Q01 = 0, Qo, = —aﬁ sin 02 .

Lagrange’s equations for impulsive motion are

(@), (55). =

where i, f refer to the initial and final states of the system relative to the
application of impulse. Note that at ¢ = 0 when the 1mpulse is applied,
6, = —m/2, 8; = 7/2. Furthermore, for the initial state, 6, = 6, = & = ¢ =
0. As
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%g =2mi + %ma(él cos 6 + 63 cosfy) ,
%% = 2my — %ma(él sinf, + G2sin by) ,
g% - lmaa‘: cosy — %mag} sin 6, + %ma20'1 )
go% = %ma:i: cos O3 — %mag}sinOz + %ma292 )

Lagrange’s equations give

2mz =0,

1 . . —
2my + Ema(Ol —0)=P,

1 1 .

Emay + gma201 =0,

1 1 . —

—Emay + gma202 = —aP.
The solution is
P . 3P . 9P

I = ) = —— = - 0 = —— .
2=0, 4 m’ b 2ma’ 2 2ma

Hence immediately after the application of impulse, the center of mass of

BC has velocity -
P S p
(x)y"' 56101) - (O’ 4m> )

and that of AB has velocity
_1,\ (. 5P
((E,y— 5002) = (O, %) .

2025
Consider a particle of mass m moving in a plane under a central force

kK K
F(r) = ~2 + 3
(assume k > 0).
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(a) What is the Lagrangian for this system in terms of the polar
coordinates r, 0 and their velocities?

(b) Write down the equations of motion for » and 4, and show that the
orbital angular momentum [ is a constant of the motion.

(c) Assume that [2 > —mk’. Find the equation for the orbit, i.e. r as a
function of 6.

(Columbia)
Solution:
(a) As
kK
F(r)= —z + 30
r k kl
Vir) = —/OOF(r)dr— ~S o
The Lagrangian is then
1 . kK K
L=T-V=-m@#*+r2%) + 2 - >,
T-V 2m(r +7°0 )+r 573
(b) Lagrange's equations give the equations of motion
. kK
m(r-—r02)+7-3—r—3=0, (1)

m(rf +270) =0 .

The second equation has first integral mr2¢ = constant. This quantity is
the angular momentum of the mass about the origin | = r - mré.
(c)Letu=r"'. Asr=u"1,
du ; du |
fo 2By _20e l du

dé Y dmre T Tmadd’
ld2u'_ l2 2d2u

=@ = m a
. 2 2,3
mr02=l—3=ll,
mr m

Eq. (1) becomes

d2u+ 1+mk’ u—m—k—O
de? 12 2
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A special solution is
v mk 2 _ mk
TR \24+mk) R4+mk’

As? > —mk',ie 2F > -1,

and the general solution is

mk’ mk
u=Acos(\/1+l—20+a) +m,

where A, o are constants. By a suitable choice of coordinates, a: can be put
to zero. Hence the equation of the trajectory can be written as

mk’ mk
r= [ACOS( 1+l—20)+m

-1

2026

A point particle of mass m is constrained to move frictionlessly on the
inside surface of a circular wire hoop of radius r, uniform density and mass
M. The hoop is in the zy-plane, can roll on a fixed line {the z-axis), but
does not slide, nor can it lose contact with the z-axis. The point particle
is acted on by gravity exerting a force along the negative y-axis. At ¢t =0
suppose the hoop is at rest. At this time the particle is at the top of the
hoop and is given a velocity vy along the z-axis. What is the velocity vy,
with respect to the fixed axis, when the particle comes to the bottom of
the hoop? Simplify your answer in the limits m/M — 0 and M/m — 0.

(Columbia)

Solution:

Use a fixed coordinate frame as shown in Fig. 2.21 and let the coordi-
nates of the center of the hoop be (z,y). Then the mass m has coordinates

(z +7rsinf,r + rcosb)
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<

and velocity
(¢ +rfcosf, —résind) .

As the hoop has moment of inertia Mr?, the system has kinetic energy
1 2. 2 . 1-212"5’2
T = -m(z* +r°* + 2rifcosf) + - Mz* + - Mr* | -
2 2 2 r
and potential energy
V =mg(r + rcosb) .
Hence the Lagrangian is
1 . .
L=T-V=Mi*+ Em(:i:2 +1r26% + 2rif cos8) — mgr(1 + cos @) .
As OL/dx = 0, Lagrange’s equation gives
(2M + m)i + mrf cosf = constant . (1)

At t = 0, m is at the top of the hoop, = 0, 8 = 0, 7§ = v, giving the
value of the constant as mvy, When m is at the bottom of the hoop, 6 = =,
the velocity of the mass is

vf=i+récosw=i—ré,

and Eq. (1) becomes
2Mz + mvy = mug .

The total energy is conserved so that between these two points we have

1 1
Mi? + Emvﬁ = Emvg +2mgr .
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Eliminating & between the last two equations gives
(2M + m)v? — 2muovy — [(2M — m)v +8Mgr] =0.

The solutions are

vy = TR0 + 2/M2v} + 2(2M + m)Mgr
F= 2M +m ’

In the limit m/M — 0, v — +41/v2 + 4gr. The negative sign is to be
chosen as for M > m, & is small and vy ~ —rd. In the limit M/m — 0,
vy — Yo.

2027

(a) A particle slides on the inside of a smooth vertical paraboloid of
revolution 7?2 = az. Show that the constraint force has a magnitude =

3
constant - (1 + 4—:;—) . What is its direction?

(b) A particle of mass m is acted on by a force whose potential is V{r).

(1) Set up the Lagrangian function in a spherical coordinate system
which is rotating with angular velocity w about the z-axis.

(2) Show that your Lagrangian has the same form as in a fixed coordi-
nate system with the addition of a velocity-dependent potential U {which
gives the centrifugal and Coriolis forces).

(3) Calculate from U the components of the centrifugal and Coriolis
forces in the radial {r) and azimuthal (¢) directions.

(Wisconsin)

Solution:

(a) Use cylindrical coordinates (r,y,z) as shown in Fig. 2.22. 1In
Cartesian coordinates the particle, mass m, has coordinates

(rcosp,rsing, z) ,

velocity

(Fcosp — r@sing, 7 sing + rgcosp, z) ,
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Fig. 2.22.

and hence Lagrangian

1
L=T—V=5m(7"2+r2¢2+z'2)—mgz.

The constraint equation is

f(T,(p,Z)= —'I‘2+CLZ=O,

or
—2rdr+adz=90.
Lagrange’s equations
doL oL _
dtdg g

517

where Q; are the generalized forces of constraint, then give, making use of

Lagrange’s undetermined multiplier A,
mi — mrg? = =2r),
mZ+mg = aA,

mr2p = constant =J, say.

The equation of constraint z = ';2 gives

2 orF | 27

= , = — _—

a a

Using Eqs. (3) and (4), we rewrite the total energy

1
E= Em(i'z +r2p? + 3% + mgz ,

(1)
()
(3)

4)
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which is conserved, as

and Eq. (2) as
%(27‘7" +2/%) + mg=al.

Making use of Egs. (1) and (3), this becomes

4r? 2ms2 2.J2
ad{l+— )= +mg+
a a

mar?

Expression (5) then reduces it to

AE  8J? 42\ 72
,\=(_+._+@>(1+L2) =constant-(
a a

a2  mat
The force of constraint is thus

f=-2rke, +ale,,

/ 4r?
4r?

-2
2
= constant - (1 + —2) .
a

of magnitude

)”2,

This force is in the rz-plane and is perpendicular to the inside surface of
the paraboloid. (It makes an angle arctan (—a/2r) with the r-axis while

the slope of the parabola is 2r/a).

(b) As shown in Fig. 2.23, in spherical coordinates (r, 8, ¢) an infinites-

imal displacement of the particle can be resolved as
or = (br,r60,r6psinb) |

and its velocity as
I = (#,70,r¢sind) .

(1) Suppose the coordinate frame rotates with angular velocity w about
the z-axis. Then the velocity of the particle with respect to a fixed frame

18
vV=F+wxr,
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8r
rsing sy

rge

- — Y
rsinBgv

Fig. 2.23.

so the kinetic energy of the particle is
1 ) ; 2
T= Em[r +2r-wXr+ {wxr)’].
Referring to the rotating frame and using spherical coordinates we have

r= (r’ 0’ O)’
w = (wcosf, ~wsin,0) ,
w X r = (0,0,wrsinf) ,
2F - w X r = 2wripsin?g
(wxr)? =w??sin?0 ,
% =72 4+ r%0% 4+ r2p%sin® g .
Hence
L=T-V
i .
= Em(i'2 + 7262 + r2p? sin% 0 + 2wrlysin® @ + w?r?sin? ) — V(r) .

Note that this is the Lagrangian of the particle with respect to a fixed frame,

which is to be used in Lagrange's equations, using coordinates referring to
the rotating frame.

(2) The Lagrangian can be written as

1 .
L= 5m(r"-’- +720% + r2p%sin%0) - U -V

with
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1
U=—- §m(2wr2gb sin @ + w?r?sin9) .

Thus L has the form of the Lagrangian the particle would have if the

coordinate frame referred to were fixed and the particle were under a

potential U + V, i.e. with an additional velocity-dependent potential U.
(3) Write the Lagrangian as

L=T'-U-V=L-U,
where
T = %m(i‘2 +726% + r2p?sin? 9) |
LI'=T-v

are the kinetic and Lagrangian the particle would have if the coordinate
frame referred to were fixed. Lagrange's equations

(8L oL _
dt \ 9¢; dqi
can be written as

d(or\ _ou _d(ouy_ou _,

dt \ 9g; dq;  dt \dg; dg; ~
Q; are the generalized forces that have to be introduced because of the fact
that the frame referred to is rotating. Differentiating U we find

Q' = 2mwrysin® @ + mw?rsin? 4

Q= 2mwriysinfcos§ + mw?risinfcosf

Q, = —2muwr sin® 8 — 2mwr2fsinfcosd .

The generalized components Q’; of a force F’ are defined by
F' . é6r = ZQ;-iqu ,
J

i.e.
F.6r + Fyr68 + F,rsin06p = Qr6r + Qg0 + Q60 .
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Hence

F, = Q. = 2mwr¢sin® § + mw?rsin?é ,

!
Fy = % = 2mwrsin @ cos + mw?rsinfcosf ,

_ 9%

rsinf

v = —2mwr sin 8 — 2mwré cos b
are the components of the centrifugal and Coriolis forces in the directions of
e,, €y, €,. Note that the velocity-dependent terms are due to the Coriolis
force while the remaining terms are due the centrifugal force.

2. SMALL OSCILLATIONS (2028-2087)

2028

A mass M is constrained to slide without friction on the track AB as
shown in Fig. 2.24. A mass m is connected to M by a massless inextensible
string. (Make small angle approximation.)

(a) Write a Lagrangian for this system.

(b) Find the normal coordinates (and describe them).

(c) Find expressions for the normal coordinates as functions of time.
(Wisconsin)

Fig. 2.24.
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Solution:

(a) Use coordinates as shown in Fig. 2.24. M and m have coordinates
(z,0), {z + bsin@, —bcosb)
respectively. The Lagrangian of the system is then

1 1 . .
L=T-V= 5M:i;'-’- + 5m(.»i;2 + b%6% + 2bi:f cos ) + mgbcos §

(b) For small oscillations, 8 and 6 are small quantities and we have the
approximate Lagrangian

1 . .
L= %M:e'-’- + 5m(:i;2 + b26% + 2bi6) + mgb (1 ~ %0‘-’-) .

d (LY _oL
dt \ 0¢; g
then give (m + M)z + mbf = C, a constant, & + b§ + g6 = 0.
In the above, the first equation can be written as

Lagrange’s equations

(m+M)y=C (1)

by setting

n=x+m+M'

As (m+ M)Z + mbf = 0, the second equation can be written as

Mb
m+M

+90=0. 2)

The two new equations of motion are now independent of each other.
Hence 7 and 8 are the normal coordinates of the system. The center of
mass of the system occurs at a distance mT;u from M along the string,
Hence 7 is the z-coordinate of the center of mass. Equation (1) shows that
the horizontal motion of the center of mass is uniform. The other normal
coordinate, 8, is the angle the string makes with the vertical.

(c) Equation (1) has the solution
Ct

+D,
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and Eq. {2) has solution

6 = Acos(wt + B) ,

_ [{(m+M)g
Y=Y

is the angular frequency of small oscillations of the string and A, B,C, D
are constants.

where

2029

A simple pendulum is attached to a support which is driven horizontally
with time as shown in Fig. 2.25.

(a) Set up the Lagrangian for the system in terms of the generalized
coordinates 8 and y, where 8 is the angular displacement from equilibrium
and y(t) is the horizontal position of the pendulum support.

(b) Find the equation of motion for 8.

(c) For small angular displacements and a sinusoidal motion of the
support

y = yo cos{wt) .

Find the steady-state solution to the equation of motion.
(Wisconsin )

Fig. 2.25.
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Solution:

(a) The mass m has coordinates
(ys + lsin@, 1 cos 6}

and velocity
(95 + 10 cos, 10 sin0) .

Hence the Lagrangian is
L=T-V= %(yf + 1262 + 21,6 cos 8) + mglcos .

(b) Lagrange’s equation

4 (%)%
dt \ 90 00

gives
10 + jj;cos8 + gsind =0 .

(c) For ys = yo cos{wt) and small 8, the above reduces to
0 +wio= %uﬁ cos(wt)

with wy = ﬂ . A particular solution is obtained by putting § = A cos{w?).
Substitution gives

2
_ Yow
A= H(wi —w?)
The general solution is then
2
_ Yow?* cos(wt) .
0 = ma’)— + ACOS((AJOt) + BSln(Wot) .

Resonance will take place if wp ~ w. As long as w # wy, the motion of the
system is steady.

2030

A solid homogeneous cylinder of radius r» and mass m rolls without
slipping on the inside of a stationary larger cylinder of radius R as shown
in Fig. 2.26.
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(a) If the small cylinder starts at rest from an angle 6, from the vertical,
what is the total downward force it exerts on the outer cylinder as it passes
through the lowest point?

(b) Determine the equation of motion of the inside cylinder using
Lagrangian techniques.

(c) Find the period of small oscillations about the stable equilibrium
position.

(Wisconsin )

Solution:

Take coordinates as shown in Fig. 2.26. The center of mass of the rolling
cylinder has coordinates

((R—r)sind, —(R — r)cos )

and velocity ) )
((R—-r)0cosf,(R—r)dsind) .

The cylinder has moment of inertia %mr2 and the condition of rolling

without slipping means
(R—r)0=rp.

(a) Initially & = 0 at 6 = 6,. Suppose the cylinder has velocity v when
it passes through the lowest point # = 0. Conservation of the total energy
T + V gives

1

5mv2 + %mr2z§2 —mg(R—r)=-mg(R—r)cosby ,
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or, with r¢ = (R — 7‘)9, v=(R- 7‘)9,
, 4

mu* = §(R—r)(1 —cos by)mg .

The force exerted by the cylinder on the outer cylinder as it passes through
the lowest point is vertically downward and has magnitude

mv?
(R-1)

mg +m(R — )62 = mg +

=mg+ %(1 — cos 8y)ymyg
= %mg(7 —4cosby) .
(b) The Lagrangian of the cylinder is
L=T-V-= %m(R — )2 + %mrw + mg(R —r)cos @
= %m(R —7)%6% + mg(R — 1) cos .

Lagrange’s equation

gives

(c) For small oscillations about the equilibrium position § = 0, the
equation of motion reduces to

i, 2( 9 -
0+§<R_r)0-0.

This has the form of the equation for simple harmonic motion. Hence the
equilibrium is stable and has period
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2031

A bead of mass m is constrained to move on a hoop of radius b. The
hoop rotates with constant angular velocity w around a vertical axis which
coincides with a diameter of the hoop.

(a) Set up the Lagrangian and obtain equations of motion of the bead.
(b) Find the critical angular velocity 2 below which the bottom of the
hoop provides a stable equilibrium position for the bead.
(c) Find the stable equilibrium position for w > €.
( Wisconsin)

Solution:

(a) Use a rotating frame attached to the hoop as shown in Fig. 2.27.
The mass m has coordinates (bsin 8, bcos 8) and velocity (bf cos 8, —bf sin 8)
referring to the rotating frame. In addition to the potential mgbcos 8 due
to gravity, a potential due to a fictitious centrifugal force mzw? has to be
introduced. As

mrw? = —6—U
oz’
we can take
U= —%mw2a:2 = —%maﬂb2 sin? @ .

Hence )
L=T-U-V= 5mzﬂ(é2 + w?sin? §) — mgbcos 6 .

4 (%)%,
dt \ 9 86

Lagrange’s equation
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then gives
b9 — bw?sinfcosf — gsinf =0 .

(b) At the bottom of the hoop, § = 7. Let 8 = 7w+, where « is a small
quantity. As
sinf = sin(7 + o) = —sina~ —a,
cosf =cos(m+a) = —cosa~ —1,
the equation of motion becomes
d+(%—w2)a=0.

For a to oscillate about the equilibrium position, i.e. for the equilibrium
to be stable, we require

g_ .2 : 9
b w” >0, i.e. w<\/;.

Hence for stable equilibrium, w must be smaller than a critical angular

frequency @ = /.
(c) At equilibrium, 8 = 0 and the equation of motion becomes

bw? sinfcosf + gsinf =0 .

Having considered the case 8 = 0 in (b), we can take sin8 # 0 and so the

above gives
g

cosfy = bt

for the other equilibrium position.
To test the stability of this equilibrium, let 3 = 8 — 8y, where 3 is a
small quantity. As

sinf = sin(fp + B) ~ sinfy + Fcos by ,
cos @ = cos(fy + 3) = cos by — Bsin by ,

the equation of motion becomes
bﬁ — bw? sin @ cos Oy — bw?(cos? fy — sin? 00)3 — gsinfy —gfBcosby =0,

i.e.
ﬁ — w?(2cos? Gy — 1)8 - ‘%ﬂcosOo =0,
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or, using the value of cos 8y,

B+(1—i2—)ﬂ=o.

b2w?

2
Hence the equilibrium is stable since as w > Q, 1 — g#— > 0.

2032

Consider the longitudinal motion of the system of masses and springs
illustrated in Fig. 2.28, with M > m.

(a) What are the normal-mode frequencies of the system?

(b) If the left-hand mass receives an impulse Py at ¢t = 0, find the motion
of the left-hand mass as a function of time.

(c) If, alternatively, the middle mass is driven harmonically at a fre-

quency wp = 2 ;’;—, will it move in or out of phase with the driving motion?
Explain.
(Wisconsin )
M m M
@ISR —0—LAARAIL R —@
k k
Fig. 2.28.

Solution:

(a) Let z),z2,z3 be the displacements of the three masses, counting
from the left, from their equilibrium positions. The Lagrangian of the
system is

1 o, 1 o 1., 1 1
L=T-V= -2-fo + 5ma:§+ EMa:g — Ek(:@ —x)% - —2-k(a:3 — )2

4oy o,
dt \ 9¢; og

Lagrange’s equations
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then give
Mfi:l +k($1 —3:2) =0 3
mig + k(zy —x1) + k(xg —23) =0, (H
Mis+k(zs—x3)=0.
Try a solution of the type
T; = xioeiwt
Substitution gives
(k - w2M)a:10 - k$20 =0 y
—kzyo + (2k - w2m)a:20 —kz3g=0, (2)
—k:l:20 + (k - w2M)$30 =0.

For a solution where not all amplitudes vanish, we require

k—wM -k 0
-k 2k —w?m -k =0,
0 —k k—wM

which has solutions

2M
w =0, 1+——

Hence the system has three normal-mode (angular) frequencies

w =0 w—\lﬁ w3 = Ll 1+2M
1 =Y 2 = M’ 3= m m

(b) For w = wy, Egs. (2) give
T10 = T20 = T30, or Ty =Ty =1T3 .
Equations (1) then give
Ty=x9=x3=at+b,

where a,b are constants, showing that in this mode the three masses
undergo translation as a rigid body without oscillation.
For w = w,, Egs. (2) give

$2=0, T3 =-— ,
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and Eqgs. (1) give
# 22, =0 3 2p3 =0
1 twyzy =4, Iz t+wyzz =40,
The solutions are then

z) = Asin{wsyt) + Bcos(wst) ,
zy=0,

r3g =—I) .

In this mode the middle mass stays stationary while the two end masses
oscillate harmonically exactly out of phase with each other.

For w = w3, we have, similarly,

z, = Csin(wst) + D cos(wst) ,
2M$1
Ty = — 3
m
T3 =1Iy .

Here the two outer masses oscillate with the same amplitude and phase,
while the inner one oscillates out of phase and with a different amplitude.

The general longitudinal motion of the system is some linear combina-
tion of the normal-modes:
z, = at + b + Asin(wst) + B cos(wst) + Csin(wst) + D cos(wst) ,
2M
To=al +b— W[Csin(w;;t) + D cos(wst)] ,

z3 = at + b — Asin(wst) — B cos(wat) + C'sin(wst) + D cos(wst) ,

The initial conditions that at ¢t = 0,
$1=$2=$3=0, i:1=—, :i:2=1i:3=0

then give
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a——PO
T m+2M’
Py
A=
2M(AJ2’
Pom
C=——
2M(m+2M)(AJ3
b=B=D=90.

Hence the motion of the left-hand mass is given by

t sin(wst) m sin(wst)
m+2M  2Mw;  2M(m + 2M)ws

$1=P0[

(c) Suppose the middle mass has motion given by
Ty = Tog sin(wpt) .
The first equation of (1) now becomes
£y 4+ wiz) = wlzeg sin(wpt) .
In steady state z; moves with the same frequency as the driving motion:
Z) = Ty9sin(wot) .

Substitution in the above gives

2 m
2 . N
= __*2 = —— ).
T ( 2 8) Zop sin(wot) ( 4M> Z90 sin(wot)

As m—4M < 0, the left-hand mass will move out of phase with the driving
motion.

2033

Two pendulums of equal length [ and equal mass m are coupled by a
massless spring of constant k as shown in Fig. 2.29. The unstretched length
of the spring is equal to the distance between the supports.

(a) Set up the exact Lagrangian in terms of appropriate generalized
coordinates and velocities.
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(b) Find the normal coordinates and frequencies of small vibrations
about equilibrium.

(c) Suppose that initially the two masses are at rest. An impulsive force
gives a horizontal velocity v toward the right to the mass on the left. What
is the motion of the system in terms of the normal coordinates?

(Wisconsin)

Solution:

(a) Assume the masses are constrained to move in a vertical plane. Let
the distance between the two supports be d, which is also the unstretched
length of the spring, and use Cartesian coordinates as shown in Fig. 2.29.
The masses have coordinates

(Isin 8y, —lcos By), (d + lsin 8y, —lcos 6,)
and velocities
(lél cos 6y, lél sin6,), (lég cos 05, l02 sin @),

respectively. The length of the spring is the distance between the two
masses:

\/(d +1sinf; — Isin8,)? + (lcos O, — lcosh))? .

Fig. 2.29.

Hence the Lagrangian of the system is

L=T-V= %mﬂ(éf + 62) + mgl(cos 6, + cos )

2
- %k <\/d2 + 2dl(sin 8, — sin 6y ) + 212 — 212 cos(0, — 6,) — d)
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(b) As

_ oL
06,

=mglsin) — k (\/d2 + 2dl(sin 8y —sin 6y) + 2{2 — 2|2 cos(f2 — 6,) — d)
y dlcos 6, + 1%sin(f; — 6))
/@ + 2dl(sin 8, — sin 6,) + 212 — 212 cos(8; — 6;)

d+ 1(02 - 01)
Va2 +2d1(8; — 6,)

~ mglé; — kl [\/az2 +2d1(6, — 07) — d] x

1
~ mglé, — ki (1 - —————) [d+ (62 — 6)]

/1 + 21!03d—01!
(6, — 90
~ mgld, — ki [%] [d+ (6, — 61)]

~ mglOl - kl2(02 - 01) B

neglecting second and higher order terms in 8,, 8, which are small quanti-
ties. Similarly,

oL
_8_02_ = mglf,; + kl2(02 -6 .

Thus the equations of motion for small oscillations are

. b k(6a—0
A LIC k),

T m
< 0 k(9, — 86
92+&+-———(2 l)=0.
l m
Let 1 1
77=§(01+92)1 §= 5(01—92)
and the above give
i+ 4 =0,
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These show that 7 and £ are the normal coordinates with the corresponding
normal (angular) frequencies

2k
weff anfi7E

(c) The solutions of the equations of motion in the normal coordinates
are
n = Acos(wit) + Bsin(wt) ,
& = C cos(wspt) + Dsin(wst) .

Att =00, =8, =0, givingn = £ = 0; and 6, = ¢, 85 = 0, giving

n=§= 9. Thus
v v
A=C= 0, = m, D= % '
and
_ wvsin(wt) _ wsin(wst)
2w, T 2w,

giving the motion of the system in terms of the normal coordinates.

2034

Four identical masses are connected by four identical springs and con-
strained to move on a frictionless circle of radius b as shown in Fig. 2.30.
(a) How many normal-modes of small oscillations are there?
(b) What are the frequencies of small oscillations?
( Wisconsin)

Fig. 2.30.
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Solution:

(2) Take the lengths of arc s1, 82, 83, and s4 of the four masses from their
initial equilibrium positions as the generalized coordinates. The kinetic
energy of the system is

1
T=§m(sf+s§+s§+s§).

As the springs are identical, at equilibrium the four masses are positioned
symmetrically on the circle, i.e. the arc between two neighboring masses,
the nth and the (n + 1)th, subtends an angle 7 at the center. When the
neighboring masses are displaced from the equilibrium positions, the spring
connecting them will extend by

[l /8p41 8 T m 1
2bsin [2 (T— b +5)] 2bsm4 ~7§(sn+1—sn) s

for small oscillations for which s,, are small.
Thus the potential energy is

k
2, 2
V= 5(3% + 82 + 85 + 8§ — 5182 — 5283 — 8384 — 8481) .

This system has four degrees of freedom and hence four normal-modes.
(b) The T and V matrices are

m 0 0 0 k - 0 —4
10 m 0 0 -3 k£ -3 0
T= 0 00 m 0} V= 0 -—g k —% !
0 0 0 m _g 0 _g k
so the secular equation is
k — mw? -£ 0 —%
—k k — mw? -k 0
— WT| = 2 2 =
V- T 0 -k k — mw? -% %,
N

which has four roots 0,0, 1/ %, \/ %" Hence the angular frequencies of small
oscillations are 4/ ﬁ and 4/ 2.

m
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2035

A simple pendulum of length 4/ and mass m is hung from another
simple pendulum of length 3/ and mass m. 1t is possible for this system to
perform small oscillations about equilibrium such that a point on the lower
pendulum undergoes no horizontal displacement. Locate that point.

(Wisconsin)
Solution:

Use Cartesian coordinates as shown in Fig. 2.31. The upper and lower
masses have, respectively, coordinates

(3lsiné,,—3lcoshy)
(31sinf, + 4lsinfy, —3lcos b — 4l cos b)

and velocities

(3[01 00801,3101 sin01) s
(3101 cos 8, + 410, cos 85, 316, sin 6, + 410, sin 8;) .

The Lagrangian of the system is then
1 . . -
L=T-V-= 5m[lsﬂef + 161262 + 241%6,6, cos (8, — 6,)]

+ mg(6lcos by + 4lcosby) .
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4(oLy _oL_
dt \ Og; 6%'_

36, + 20, cos(6, — ) + 262 sin(6) — 8,) +

Lagrange’s equations

give
gsin 6,

=0,
or, retaining only first order terms for small oscillations,
" . 0
30, + 20, + T2 =0,

and, similarly,

Try 6, = 01pe'“%, 6; = 030e*. The above equations give

(% - 3w2) 610 — 2w?0 = 0,

—3w0y0 + (% _ 4w2) 020 =0 .

The secular equation

g -3w? 22

—4./9 /9
w—:i:\/;, + 6l

Hence there are two normal-mode frequencies. For

wy = \/% 020 = =60 or 6,=-6

has roots

for

The general small oscillations are a linear combination of the two normal-
modes.

A point on the lower pendulum at distance £ from the upper mass has
z-coordinate 3!sin 6 + £sind; and thus z-component velocity

& = 316, cos 9, + 592 cos by ~ 3101 + 592 .
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For it to have no horizontal displacement, £ = 0. For the w; mode,
0, = —6,, this requires

(31— ¢)b =0, or £=31.

For the w mode, 8, = 36y, ¢ = 0 would require

As £ is positive this is not possible unless 6, = 0, ie. there is no
motion. Therefore when the system undergoes small oscillations with
angular frequency \/?, a point on the lower pendulum at distance 3! from
the upper mass has no horizontal displacement.

2036

(a) Find the Lagrangian equations of motion for the coplanar double
oscillator shown in Fig. 2.32 in the vibration limit, assuming massless strings
or connecting rods. From them find the normal frequencies of the system.

Fig. 2.32.

(b) Now consider a simple pendulum of mass m, again in the small-
vibration limit. Suppose the string of length [ is shortened very slowly
(by being pulled up through a frictionless hole in the support as shown in
Fig. 2.33), so that the fractional change in [ over one period is small. How
does the amplitude of vibration of m vary with {?

(Wisconsin)



540 Problems & Solutions on Mechanics

Fig. 2.33.

Solution:

(a) The coordinates of m;, m, are

(hsinfy, -1 coshy) ,

(L sinby + losinfy, —1j cos by — 5 cos 6)
and their velocities are

(1191 cos by, 1,6, sinf;) ,
(1101 cosf, + 120'2 cos 02,{10.1 sin, + 120'2 sin 02)

respectively. The Lagrangian of the system is then
1 . . ..
L=T-V=c-m (126} + 1262 + 21,150,0, cos(6, — 65)]
+ maygly cos 8y + mag(ly cosy + Iy cos b;)

1 | : .
~ o (ma + ma)120% + “my(120% + 21,156,6,)

2
9? 92
+ (m1 +m2)gll ( - ?l) + magly (1 — ?2) s

neglecting terms higher than second order in the small quantities 6,6, in
the small vibration limit. Lagrange’s equations

4oLy oL _

then give
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e me ly . g
6 —— | =0+ 26, =0,
l+(m1+m2>ll 2+ll !

N T
b+ 20, +26,=0.
LT

Let 8; = 6,0e*?, 8, = 00e** and obtain the secular equation
9 _ .2 ___malg’
A Cver v g B 0
- ki

g2
—u? olae

or

mh 4 2 2
— 1 4l —g(ly +1 +g°=0.
(ml +m2> 1h2w g(l 2)w g

The normal frequencies w,,ws are given by the solutions of this equation:
w% 2m1 ll 12

x [(ml + mo)(la + lo) £ /(o + ma)2(ls + 1a)2 — d(my + mQ)mlzle] .

(b) As shown in Fig. 2.33. The forces on m are the tension f in the
string and the gravity mg. These provide for the centripetal force:

f —~mgcos8 = mré? .
When the string is shortened by dr, the work done by f is
dW =f.dr = —fdr

~ —mgdr + (%m902 - mr92> dr

= —mgdr +dE ,

where dFE is the part relating to the oscillations, for small angle oscillations.
As the change in 7, the length of the string, is small over a period, we can
take average

dE = (—2—m902 - mr02) dr .
Also, the vibration can be considered simple harmonic, i.e.

0 = §p cos(wt + ) ,
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where w = /2. Then if T = 2% is the period we have
1 7 1

— 0%dt = -62

T A 2 01

1 (T, w? [T —
. = — 9%dt = w262
T/o 0°dt T /0 dt = w6? |

mré? = mgh? .

62

o

i.e.

The energy of the pendulum is

. : 1
%mr202 —mgrcosd =~ —mgr + —;—mr262 + 5mgr02 ,
so that ) )
E= Emr20'2 + 5mgr0_2 = mgré? .
Hence
dE = (1E - E) dr
2 T
or .
ab _ _dr
E 2
Integrating we have
Er? = constant ,

or
0573 = constant .

Let the amplitudes at string lengths r,[ be 8,, 8, respectively, then

04[3
4 __ 1
6= Lo
2037

A particle in an isotropic three-dimensional harmonic oscillator poten-
tial has a natural angular frequency wp. Find its vibration frequencies if it
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is charged and is simultaneously acted on by uniform magnetic and electric
fields. Discuss your result in the weak and strong field limits.
( Wisconsin)

Solution:

Assume that the uniform magnetic and electric fields, B and E, are
mutually perpendicular and take their directions as along the 2- and r-axes
respectively. Then as

Bk=VxA, Ei=-V&,
we can take the vector and scalar potentials as
1 . .
A= 5(—By1 + Bzj), ®=—-Fz.

As the particle is an isotropic harmonic oscillator of natural augular fre-
quency wyp and has charge e, say, its potential energy is

V=%mwgr2+e<l>—ei"A,

where r = (z, y, 2) is the displacement of the particle from the origin, in SI
units. Hence the Lagrangian is

1 1
L=T—V=Em(¢2+?]2+2‘2)‘§W3($2+y2+22)

1
+eFEzx + EeB(—:i:y +zy) .

i(.‘?ﬁ _oL_,
dt \ O¢; qu_

Lagrange’s equations

then give

By E
:‘é+w3x—%—%=0,

. o , eB% -0
y+w0y+——m )

P+ wiz=0.
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The last equation shows that the vibration in the z-direction takes place

with the natural angular frequency wy. Letting x =z’ + m"—f;, the first two
0

equations become

Bi
:ii’+w§a:’———e Yo,
— +eBa':’_O
) ol m

Try a solution of the type
(El — A’ei“’t, y= B/eiwt

and we obtain the matrix equation

2 2 ieBw
Wy —w ~Tm A’ 0
ieBw wg _ w2 B

The secular equation

2_ .2 _ ieBw 2
wp —w ™ 22 eBw
B . 2=(w0—w)— — ] =0
ieBw _ m
=y Wi —w
then gives
eBw
wit— —Wwi=0,
m

which has two positive roots

1{eB B\?
4 (e_) +4wi |,
m

1 B\?
wo=1[_¢B, (e_) + 4
m

Hence the three normal-mode angular frequencies are wy, w, and w_. Note

that the last two modes of oscillations are caused by the magnetic field

alone, whereas the electric field only causes a displacement % along its
0

direction.
For weak fields, % < wq, we have
eB eB
wy =wp+ —,

m’ T T o
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For strong fields, % > wp, we have

L[ eB (s
Tl 'm m e2B?

_eB  mw
" m' ' eB '’
| _@_‘_eB 1+2m2w8
-T2 m m e2B?
mwg
e
2038

Three particles of equal mass m move without friction in one dimen-
sion. Two of the particles are each connected to the third by a massless
spring of spring constant k. Find normal-modes of oscillation and their

corresponding frequencies.
(CUSPEA)

Solution:

Number the masses from the left as shown in Fig. 2.34 and let =4, 3,23
be the displacements of the respective masses from their equilibrium posi-
tions. The Lagrangian of the system is

1 &k 2 k 3

N LOASAARAAAA A

m m m
Fig. 2.34.

1. L2 . 1 .
L=T-V= Em(a:f + 32 +43) - 5’5[(1}2 —z1)? + (z3 —x2)?] .

Lagrange’s equations
d(oLy_oL_,
dt 8q. 6(]{ -
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give

mE + k(z) —23) =0,
mie + k(zg — 1) + k(zg —23) =0, (1)

mis + k(zg —x3)=0.
Trying a solution of the type
T, = Aeiwt’ Ty = Beiwt’ z3 = Ceiwt ,

we can write the above as a matrix equation

k — mw? —k 0 A
—k 2%k-mw? -k Bl=o0. 2)
0 —k k— mw? C

The secular equation

k — mw? -k 0
-k 2k — muw? —k | =mw(k - mw?)(mw? —3k) =0
0 —k k — muw?

has three non-negative roots

k 3k
W = 0, Wy = E, w3z = E .

These are the normal-mode angular frequencies of the system. The corre-
sponding normal-modes are as follows.

Hw =0

Equation (2) gives A = B = C and thus £, = z3 = z3. The first of
Egs. (1) then gives

£ =0, or Ty=at+b,

where a,b are constants. Hence in this mode the three masses undergo
uniform translation together as a rigid body and no vibration occurs.

(1) we = ,%

Equation (2) gives B = 0, A = —C. In this mode the middle mass
remains stationary while the outer masses oscillate symmetrically with

respect to it. The displacements are
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z; = Acos(wat + ¢) ,
Ty = 0 y
T3 = —Acos(wyt + ¢) ,
¢ being a constant.
(ifi) w3 = /3
Equation (2) gives B = —24, C = A. In this mode the two outer
masses oscillate with the same amplitude and phase while the middle mass
oscillates exactly out of phase with twice the amplitude with respect to the
other two masses. The displacements are
z, = Acos(wst + ¢) ,
To = —2Acos(wst + ) ,
z3 = Acos(wst + ¢) .

The three normal-modes are shown in Fig. 2.35.

(1) —> —> —
{ii) [ o ] . *——p
{iii) - e -—>

Fig. 2.35.

2039

A rectangular plate of mass M, length a and width b is supported at each
of its corners by a spring with spring constant k as shown in Fig. 2.36. The
springs are confined so that they can move only in the vertical direction. For
small amplitudes, find the normal-modes of vibration and their frequencies.
Describe each of the modes.

(UC, Berkeley)

Solution:

Use Cartesian coordinates with origin at the center of mass C of the
plate when the plate is in equilibrium, the z-axis vertically upwards, the z-
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Fig. 2.36. Fig. 2.37.

and y-axes along the axes of symmetry in the plane of the plate, and let the
angles of rotation about the z- and y-axes be ¢, 8 respectively, as shown in

Fig. 2.37. If z is the vertical coordinate of C, the vertical coordinates of
the four corners are

1 1
za=2z— zap+ b,

2 2
1 1
zB=z—§a<p—§b¢9,

1 1
ZD=Z+-2-0<P‘—§M,

1 1
ZE=2Z+ §a<p+ ibf) ,
for small angle oscillations.

As the coordinates are relative to the equilibrium positions, the La-
grangian is

L=T-V

1 .2 1 22 1 2,2 1
= — —_— - —"‘k 2 2 2 2 -
s M + 5 Ma®p® + 5 Mb'0" — 5 (25 + 25 + 2p + zp) — Mgz

1
T2

Lagrange’s equations

1 1 o 1
M+ 2—4Ma2¢‘-’- + ﬁM1>2(9'-’- - 5k(4z2 +a%¢® +b%6%) — Mgz .

4oLy _on_
dt \ 0¢; dg;

then give
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Mz+4kz+ Mg=0,
1M"+k =0
Mé+ke=0,
L Mi+ko=0
12 o
By putting z = 2/ — %;‘1, the first equation can be written as

M7 +4kz =0.

The equations show that the normal-mode angular frequencies are

[ k /3k
w1=2 ﬁ’ (AJ2=(AJ3=2 ﬁ
If we define
— /M M
— ! — —_— = —_—
61— MZ> 62— 12 ayp, 63 12bo>

we can, neglecting a constant term in the potential energy, write
1 . . .
1
V= Sig +wigs +wigl)

These are both in quadratic form, slowing that &;,£2,£3 are the normal-
mode coordinates.

Denoting the amplitudes of 2/, , 8 by 2§, g, 8o respectively, we obtain
from the equations of motion

(4k — Mw?)zy = 0,
1 2
k— EMw wo =0,

1 2 _

It can be seen that if w = w; then 29 # 0, o = 6y = 0. If w = ws or w;,
then zo = 0, and one or both of g, 8y are not zero.
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2040

A particle moves without friction on the inside wall of an axially sym-

metric vessel given by
z= %b(m2 + %),
where b is a constant and z is in the vertical direction, as shown in Fig. 2.38.

(a) The particle is moving in a circular orbit at height z = 2;. Obtain
its energy and angular momentum in terms of zy5, b, g (gravitational
acceleration), and the mass m of the particle.

(b) The particle in the horizontal circular orbit is poked downwards
slightly. Obtain the frequency of oscillation about the unperturbed orbit
for very small oscillation amplitude.

(UC, Berkeley)

Solution:

(a) Use coordinates as shown in Fig. 2.38. As ¢ = rcosé, y = rsiné,
the vessel can be represented by

_ 1 2 2y __ 1 2
z—ib(m +y)_2b'r.
The Lagrangian of the particle is

1 )
L=T -V =m(i* +r26* + i) - mgz

1 . 1
= Em(i2 +720% + b2r27?) — Emgln"2
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Lagrange’s equation for r then gives
(1 +6*r2)F —b%ri2 —rf% + gbr = 0. (1)

As the particle motion is confined to a circle of height zp and radius ro,
say, we have

T =Ty, F=7=0, zo=%br(2,,
6> =gb=0?% say.
The total energy of the particle is then
T+V= %m(rg(f + gbrd) = mgbrd = 2mgz, ,

and the angular momentum about the center of the circle is

J=mr-r =mriQ = 2mz0\/%.

(b) For the perturbed motion, let r = ro + p where p < 7o, Lagrange’s
equation for 8 shows that the angular momentum mr24 is conserved. Hence.
62 rdQ?  rigb

32
re° = = =
r3 r3 3

and Eq. {1) becomes

(L+b%2)p+4gbp=0
by neglecting terms of order higher than the first in the small quantities
0, p, p- The angular frequency of small amplitude oscillations about rg is

therefore
4gb gb
=, =24y —=— .
YEVTERR T VT 2be

2041

A block of mass m is attached to a wedge of mass M by a spring with
spring constant k. The inclined frictionless surface of the wedge makes
an angle a to the horizontal. The wedge is free to slide on a horizontal
frictionless surface, as shown in Fig. 2.39.
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(a) Given the relaxed length of the spring alone is d, find the value s
when both the block and the wedge are at rest.
(b) Find the Lagrangian for the system as a function of the z coordinate
of the wedge and the length of the spring s. Write the equations of motion.
(c) What is the natural frequency of vibration?
(UC, Berkeley)

y s
1y
Y
¢ =5 X
Fig. 2.39.

Solution:
(a) When the block is in equilibrium, the sum of forces parallel to the
inclined surface is zero:
mgsina — k(sg —d) =0,
yielding
mgsin o
k
(b) Let the height of the wedge be h. Use coordinates as shown in
Fig. 2.39 and let the horizontal coordinate of the left side of the wedge be
z. Then the mass m will have coordinates

S0 = +d.

(z + scosa, h — ssina) .
The Lagrangian of the system is then
L=T-V

1 1
§M¢2 + im[(a: +$cosa)? + (§sina)?|

- %k(s —d)? — mg(h — ssina)

= 2 _mg(h—ssina) .

1
(m+ M)3® + %mé2 + mdécosa — ik(s ~d)
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Lagrange’s equations then give the equations of motion

(m+ M) +micosa=0,

miZcosa+ m8 + ks — (kd + mgsina) =0 .

(c) Setting
,  kd+mgsino
T

s=3s
we can write the above equations as

(m+ M)i+mé cosa=0,

micosa+mé +ks'=0.
Consider a solution of the form
= Ae*t, s = Be*t,
the above give the secular equation

—(m+ M)w? —mw?cosa

2 2

=O,
—Mw* cos o k —mw

yielding

k(m + M)
wy =0, wg = —3 .
m(M + msin® a)

553

As the motion related to w, is not oscillatory but as a whole translational

along the z-axis, there is only one natural frequency of vibration, wy;.

2042

An uniform log with length L, cross-sectional area A and mass M is
floating vertically in water (p = 1.0) and is attached by a spring with
spring constant K to a uniform beam which is pivoted at the center as
shown in Fig. 2.40(a). The beam has the same mass and is twice the length
of the log. The log is constrained to move vertically and the natural length
of the spring is such that the equilibrium position of the beam is horizontal.

(a) Find the normal-modes (frequencies and ratio of displacements) for

small displacements of the beam.
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(b) Discuss the physical significance of the normal-modes in the limit of
a very strong spring.
(UC, Berkeley)

Solution:

Use coordinates as shown in Fig. 2.40(b) with = denoting the displace-
ment of the top of the vertical rod from its equilibrium position (the
downward direction being taken as positive), and 8 the angle of rotation of
the beam. At equilibrium (Fig. 2.40(a)), the spring is in its natural length
xp and does not exert a force on the rod. With p =1 we have

Mg = [L — (h — z0)]Ag .

When the beam has rotated an angle 4 (Fig. 2.40(b)) the spring is extended
by £ — L6 and the upward thrust of the water is

L (h— 20 ~2)|Ag = — % |
giving
Ve=Ag [ (L~ (k=20 + '} ds'
0
= [L — (h — z0)]Agz + %Aga:2

= Mgz + %Ag:z:2 .

Hence the total potential energy is
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1 2,1 2
V=—-Mgzr+ Mgz + §Aga: + EK(:B_ L)

= Lage? + lK(a; - Lo)?

— 279 T ‘
The beam has moment of inertia %M L2, so the total kinetic energy is

T = 1ma? + e
2 6 )

Thus the Lagrangian is

1 1 9 1 1
L=T—-V=-Mi2+ -ML?§* — - Agz® - = —Le)?.
|4 2M::: +6M 9 2Aga: 2K(::: L)

4oLy oL,
dt \ 9¢; dq;

Mz + Agz + K(xz— L8) =0,
ML§—3K(z— L) =0.

Lagrange’s equations

give

Try a solution of the type z = De™*, § = Be™* and write the above as
(K + Ag— Mw?*)D — KLB =0,
—3KD+ (3KL — MLw*)B=0.

The secular equation is then

K+ Ag — Muw? ~KL

_3K SKL - MLw?| =0

or
M2t — M(4K + Ag)w? + 3KAg=0.

The two positive roots

4K + Ag + /(4K + Ag)? — 12K Ag
el 2M

are the two normal-mode angular frequencies of the system for small oscil-
lations of the beam.
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The ratios of the displacements are

g D 3K—-Mw? 2K - Ag¥ /(4K + Ag)? — 12K Ag
I6 _ BL ~ 3K 6K

with the top sign for w; and the bottom sign for w_.

(b) In the limit of a very strong spring, K — oo. As Mi, Agz, ML
are all finite, this requires that £ — L8 — 0, i.e. £ — L#. Eliminating the
K(x — L) terms from the equations of motion and making use of L8 = ,
we find

4Mi+3Agx =0

and hence the angular frequency of oscillation

_ [3Ag
w = m.

The ratio of the displacements is

z
6~

and they are in the same phase. Note that these results cannot be obtained
from the previous ones by putting K — oo because the constraint relations
are different. Physically, the constraint £ =~ L6 means that the system
oscillates with the spring keeping its length constant, which is expected for
a very strong spring.

2043

Two unequal masses M and m (M > m) hang from a support by strings
of equal lengths [. The masses are coupled by a spring of spring constant
K and of unstretched length equal to the distance between the support
points as shown in Fig. 2.41. Find the normal-mode frequencies for the
small oscillations along the line between the two masses. Give the relation
between the motion of M and that of m in each mode. Write down the
most general solution.

Now specialize for the case where at ¢t = 0, m is at rest at its equilibrium
position, and M is released from rest with an initial positive displacement.
If the total energy of the system is Ey and the spring is very weak, find the
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Fig. 2.41.

maximum energy acquired by m during the subsequent motion for the case

M _ . . . .

 =2. (Where did you use the assumption that the spring is weak?)
(UC, Berkeley)

Solution:

Use coordinates as shown in Fig. 2.41 with origin O at the equilibrium
position of the mass m and the z- and y-axes along the horizontal and ver-
tical directions respectively and let the distance between the two supports
be L. The masses m and M then have coordinates

(!sin6y,1(1 — cos b)), (L + lsinf2,1(1 — cos 82))
and velocities
(161 cos0y,10, sin6;), (162 cos By, 105 sin By)
respectively. The Lagrangian of the system is
L=T-V
1 242, Lyese 1.9 . 2
= Eml 07 + §Ml 05 — §Kl (sinf; —sin ;)
—mgl(l — cos6,) — Mgl(1 — cosbs)
1 252 1y 1. 2 1 2 2
~ Eml o7 + §Ml 0; — —2-Kl (62 — 6,)° — igl(m()1 + M63)

for small oscillations in the horizontal direction.

Lagrange’s equations
d(oLy _oL _
dt \ 0¢: dq:;
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then give
miby + (mg + K1)6, — K16, =0,

Mib; + (Mg + K1)6; — K16, =0 .

Try a solution of the type 8, = Ae*“?, 8, = Be** and write the above as

mg + Kl — mlw? -Kl 4\ _y
_KI Mg+Ki-Miw? )\ B)=0"

The secular equation is then

mg + Kl — miw? —Kl

_KI Mg+ Kl - Miw?| =

yielding the normal-mode angular frequencies
_ /9 _ ,[mMg+ Ki(m+ M)
“ = \/; w2 = \/ mMI ‘

A Mg+Kl-M?
B K]

]

we have

Hence, for w = w,

6 = Acos(wit + 1), 02 = Acos(wit+ 1) ,

for w = ws,
m
0y = —— A’ cos(wat + ¢2) ,

N

6, = A’ cos(wat + 2),
and the most general solution is
6, = Acos(wyt + 1) + A cos(wat + 3),

0 = Acos{wyt + 1) — mA’cos(wgt +2) .
M
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Initia.lly at t = 0, é] = 92 = 0, giving ‘i’l = (/-92 = 0, and 01 = 0, 02 = 00,
giving
M
= 6
m+M

If the initial total energy is Ey, then as

A=-A.

1 1
EO = 5Kl203 + 5M9l02 y

o 2E,
TN (Ki+ Mgyl

If in addition, M = 2m, the general solution reduces to

we have, as 6y is positive,

6, = goo[cos(wlt) — cos(wat)] ,

2 1
0 = §(90[cos(wlt) +3 cos(wet)] ,

w _\/E o = 2mg + 3K 0 — 2E,
Ty =V om O\ Cmg+ KDL

The energy of m is

with

1 g 1
E, = 5ml‘-’-e';’- + Emgwf .

If the spring is very weak, we can take Kl < mg so that

g 3Kl g 3KI\
] 1+ = ( +4mg —w1(1+6),

where
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We then have

E; = gmgwg 1+1+ 6)2 sin®(wat) + cos?(wst)
—2(1 + 6) sin{wn t) sin{wat) — 2 cos(w t) cos(wat)]

~ %Eo[l — cos{w, 6t)] ,

neglecting 6 as compared with unity. Hence the maximum energy of m is
8E
9~0-

2044

Two small spheres of mass M are suspended between two rigid supports
as shown in Fig. 2.42. We assume that both particles can move in the plane
of the figure, sideways and up and down. The three springs are equal, of
spring constant K. The springs are under tension: in its unstretched con-
dition each spring would be of length 3. The springs are assumed massless
and perfectly elastic. Assuming small oscillations about the equilibrium
configuration shown above, find the frequencies for the four normal-modes
of the system.

(UC, Berkeley)

y my
my
0 a 2a 30 "

Fig. 2.42. Fig. 2.43.

Solution:

Since the motion is confined to the plane of the diagram of Fig. 2.42,
the sideway motion is to be interpreted as longitudinal along the springs.

Let (z1,%) and (z2,%2) be the horizontal and vertical displacements
of the spheres, numbered from the left, from their respective positions
of equilibrium. Using coordinates as shown in Fig. 2.43, my,mo have
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coordinates (@ + 1,11 ), (2a + z2, y2) respectively. Taking the equilibrium
configuration (Fig. 2.42) as the state of zero potential, we have for the
system the potential energy

S O B rvernr Rl REND WAL

+iK [\/(a+$2 —z1)? + (y2 — 1) - %]2

2
(@) a2
%K(g) + Mg(n +y2) .

Consider

s [Vierareat-2] - 3x (3’

1 2 1
ZEK [a2+xf+2aa:1+yf+%—a a? + 2 + 2az; + y? —gKa2.

As the term involving the square-root sign can be written as

2 2\ }
2 :c1+2aa:1+y1
a (1+—a2-——

1 (22 + 2ax; + y? 1/1 1\ 422

2 s(Ireanirhn) (2 (2 )

@ [l+2( a? +2!(2 2) a?
2, 1 2 2y 1 2

=a +§($1+2aa:1+y1)—§a:1

retaining only terms of orders up to the second in the small quantities zy, 3,
the above becomes

1 1
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The same approximation is taken over the other terms. Hence

1 2
V ~ 5K[mf+aa:1 + % + (x2 -a:l)2+a(a:2 —-x)

i 1
+ 5(3/2 —yn)?+ 2 —az2 + 53/%] + Mg(y + y2)

1
= 5K(2a:f +2z2 + 42 + 942 - 22170 — yiy2) + Moy + 12) .

The Lagrangian is then

L=T-V
Vo o 2,
= S M} + 9] + 23+ 93)

1
- 51{(21:? + 223 + P +yE -2z — ) — Mo(n +v2)
4oy oL _
dt 6(], 6‘]1’ -

Mi +2Kz, -~ Kz =0,

Lagrange’s equations

give

Mis +2Kzs — Kz, =0,

.. 1
My1+Ky1~—2-Ky2+Mg=O,

. 1
My2+Ky2*§Ky1+Mg=O.

It is seen that the equations naturally separate into two groups, those in
z1, T2 and those in y,,y2. Let

Iy = Aieim
Then the first two equations give the secular equation

— 2 —
M _IXM2 ~ (3K — Muw?)(K — Mw?) =0,
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yielding two normal-mode angular frequencies

l—va 2—VM

for longitudinal oscillations.
For the second group of two equations, let

2Mg 2Mg
M=m+7r, %=m+7r.

They can then be written as
M + Kyi — %Kyé =0,
Mij, + Ky; — %Kyi =0.
Trying a solution of the type
y; = Bie™*
we obtain the secular equation

K — Muw? -X
-X K — Mu?

(3 _ap2) (] 2\ _
_(2K Mw>(2K Mw)-O,

which yields the normal-mode angular frequencies

w_1/£ w_1/ﬁ
=™ Vom 1" VoM

for vertical oscillations.

2045

A simple pendulum of length L is suspended at the rim of a wheel
of radius b which rotates within the vertical plane with constant angular
velocity €2 (Fig. 2.44). We consider only the motion in which the bob of
the pendulum swings in the plane of the wheel.

(a) Write an exact differential equation of motion for the angular dis-
placement 4 of the bob. Also write a simplified form valid when the
oscillation amplitude is very small.
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(b) Assume that both the radius b and the oscillation amplitude of
the bob are very small. Give an approximate steady-state solution of the
equation of motion valid under the assumptions.

(You may ignore transients which will die out, if there is a slight dissipation.)
(UC, Berkeley)

Fig. 2.44.

Solution:
(a) Use coordinates as shown in Fig. 2.45. The mass m has coordinates

(bsin(2t + @) + Lsin,bcos(Qt + ¢) + L cosd)
and velocity
(b2 cos(§2t + ) + LO cos §, —b2sin(Qt + o) — LOsin6) ,

where ¢ is a constant.
The Lagrangian of m is then

L=T-V
= %m{b202 + L%6° + 2L cos(6 — Ot — )

+ mg[bcos(Qt + ¢) + Lcos ).

(oL _oL_
dt \ 59 08

L + b92%sin(6 — Ot — @) + gsind =0 .

Lagrange’s equation

gives
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For small-amplitude oscillations, sind = 8, cosf = 1,
sin(@ — it — ) ~ Hcos(Ut + ) — sin(t + ) ,
and the equation of motion becomes
L6 + [b22 cos(2t + @) + 9]0 — b2 sin(Qt + ) =0 .

(b) For b and 6 small, we have, retaining terms of only up to the first
order of b, 4, 6,
LO + g6 — b2 sin(Qt + ) =0 .

In the steady state, the pendulum will swing with the same frequency as
the rotation of the wheel, so we can assume

0 = acos(xt + @) + Bsin(2t + ¢) ,
where a, § are constants. Substitution in the equation of motion gives
(—LQ? + g)[a cos(t + ) + Bsin(Qt + )] — b2 sin(Qt + @) = 0.

As this equation must be true for any arbitrary time, the coeflicients of
cos(§t + ) and sin(Q2t + ¢) must separately vanish:
—alP® +ga=0,
98— BLO? —b0% =0.

As Q) is given, we must have a = 0 in the first equation. The second
equation gives

b2
f=—res .
g—LQ
Hence the steady-state solution is
0 b2 sin(Q2t + @)
g - LO?
2046

Three equal point masses m move on a circle of radius b under forces
derivable from the potential energy

V(e,B,7)=Vo(e @ +e P +e).
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where a, 3, are their angular separations in radians, as shown in Fig. 2.46.
Whena=8=v= %”, the system is in equilibrium. Find the normal-mode
frequencies for small departure from equilibrium.
(Note that a, 3,7 are not independent since a + 3 + v = 2~.)

(UC, Berkeley)

my

' m

Fig, 2.47.

Solution:

Let 68,, 85, 83 be the angular displacements of the three masses from their
equilibrium positions as shown in Fig. 2.47. We have

27
a=?+02—01,
2
B=" +0—62,
3
2
’Y—?+01—03.
As
2
L D
N TR :

we can write the potential energy as
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VvV = Voe—zs"‘[e—(%—ﬂx) 4 e (03—02) e—(91—93)]
~ Voe 5 (3= (62— 6,) — (83 — 63) — (61 — 63)

1 1 1
+ 502 = 61)" + 505 — 62)" + 5(61 — 03)2]

= A(3+ 6% + 602 + 0% — 6,0, — 6,05 — 636,)

567

with A = Vyexp (—%”), retaining terms of orders up to the second in the

small quantities 6y, 62,03.
As the velocities are b8, bz, bd3, the kinetic energy is

1_ . v -
T = 53(0‘;" + 6% + 62)
with B = mb2.
The Lagrangian is therefore

L=T-V
= B(62 + 62 +63) — A(3+ 6% + 63 + 62 — 0,02 — 0205 — 036,) .

4oy oL,
dt \ 9g; dq;

Bb, + A(20, — 0, — 63) =
Bly + A(20; — 05 — 6,) =
Bfy + A(203 — 6, —62) =0 .

Lagrange’s equations

then give
0,
0

b

Trying a solution of the type 8; = C;e*t, we find the secular equation

2A — Bw? —A —A
—A 2A — Buw? —A =0,
—A —A 2A — Buw?

or, after some arithmetic manipulations,

0 —24A A — Buw?
0 24 — Bw? —A
—3A + Buw? —A 24 — Bw?

= Bw?(-34+ Buw*)?=0.
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Hence the normal-mode angular frequencies are

o [3A [ 3Vo exp (_T%)
wl—O, Wy = W3 = f_ mb2 .

Note that w;, does not give rise to oscillations, for in this case the equations
of motion give 6, = 62 = 03 and the system as a whole rotates with a
constant angular velocity. The other two normal-modes are degenerate and
there is only one normal-mode frequency

2047

Three point particles, two of mass m and one of mass M, are constrained
to lie on a horizontal circle of radius r. They are mutually connected by
springs, each of constant K, that follow the arc of the circle and that
are of equal length when the system is at rest as shown in Fig. 2.48.
Assuming motion that stretches the springs only by a small amount from
the equilibrium length (27r/3),

M
Fig. 2.48.

(a) describe qualitatively the modes of motion that are simple harmonic
in time (the normal-modes);

(b) find a precise set of normal coordinates, one corresponding to each
mode;

(c) find the frequency of each mode.

(UC, Berkeley)
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Solution:

(a) As the system is not acted upon by external torque, its angular
momentum is conserved. This means that there is a normal-mode in which
the system rotates as a whole. Consequently there are only two vibrational
degrees of freedom. Let 0y, 02, 85 be respectively the angular displacements
of m, M, m from their equilibrium positions and let their amplitudes be
C3,C2,¢3. When considering the vibration of the masses relative to their
equilibrium positions, we can take the total angular momentum of the
system to be zero. Then the two vibrational normal-modes correspond
to

M Co

62_—‘0, Cy = —C3 and Cl=C3=—'2——.
m

(b) Let the natural length of each spring be a and denote the equilibrium
length by b, i.e.

p= 2T
3
The Lagrangian of the system is
L=T-V
1 U 1 .
= §m7'2(0f +8%) + EMr20§

- %K[(b'{" 7‘02 - r0, —0)2 +(b+ 7‘03 - 7‘02 - 0)2 +(b+ T01 - 7‘03 — a)2].

4oLy an_
dt \ 0¢; o

then give the differential equations of motion

Lagrange’s equations

mby + K(20, — 6, —63) =0 ,
M, +K(202— 05— 6,) =0,
mbs + K(203 — 6, — 6,) =0 .

The above sum up to
m01+M02+m03 =0,
and the first and third equations give

m((), - 03) +3K(8, —03)=0.
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These can be written as

mé=0, (1)
mij+3Kn =0 (2)
if we set
Mo
E=0,+—2+03,
m
7]=01—03.

Hence £ and 7 are normal-mode coordinates of the system.
Equation (1) shows that w; = 0. Thus corresponding to this mode in
which the system rotates as a whole and there is no oscillation.

Equation (2) shows that
[3K
Wwye = —_
m

To find the third normal coordinate, we choose the coordinate transforma-

tion
M
q, =0y, Q2=92\/—, g3 =03
m

to make the kinetic energy a sum of squares:
1 9L 2, s
T = omr*(§ + 43 + ) -

1,42, g3 are just like Cartesian coordinates. The transformation between
the three normal coordinates and the three “Cartesian” coordinates q;, gz,
g3 must be linear. We already have

M
E=q+q o, T n=¢q —qs.

Assume the third normal coordinate to be
(= Aq; +Bg; +Cgs .

It should be orthogonal to the £-, n-axes. Resolving along the g;-axes we

have
£ = (1,\/%,1), n=(1,0,-1), ¢=(A4,B,0).
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Orthogonality means that
¢ce=a+ByZic=0,
m
(- m=A-C=0,

which yield A = C, B = —2A,/7;. Since a normal coordinate remains so
after multiplying it with a nonzero constant, we can set A = 1, then

m
C=Q1—2Q2\/ﬁ+%=91 — 26, +0; .
The equations of motion then give

e [(2m + M)K
8= mM '

(c) wy,wsy,ws are the normal-mode angular frequencies corresponding to
the three normal coordinates &, 7, { respectively.

yielding

2048

A ring of mass M and radius R is supported from a pivot located at one
point of the ring, about which it is free to rotate in its own vertical plane.
A bead of mass m slides without friction about the ring (Fig. 2.49).

(a) Write the Lagrangian for this system.
(b) Write the equations of motion.
(c) Describe the normal-modes for small oscillations in the limits
m> M and m <« M.
(d) Find the frequencies of the normal-modes of small oscillations for
general m and M.
{UC, Berkeley)

Solution:

(a) Use coordinates as shown in Fig. 2.49. The mass m and the center
of mass of the ring have coordinates
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Fig. 2.49.

(Rsinf + Rsinp, Rcosf + Rcos ), (Rsinf, Rcos6)
and velocities
(RO cosb + R¢cos o, —REsinf — Rpsin p), (Rf cos 8, — Rf sin 6)

respectively. The ring has moment of inertial 2MR? about the pivot. The
Lagrangian of the system is then

L=T-V
| . .
= MR*? + 5mR2 [0% + p% + 20¢ cos(8 — )]
+ (M +m)gRcos 8 + mgRcosp ,

taking the pivot as the reference level of potential energy.
(b) Lagrange’s equations

4 () oL
dt \ 0¢; O0q;

give the equations of motion
(2M + m) R + mR cos(6 — )

+mRp?sin(f — @) + (m + M)gsind = 0,
R + Rcos(8 — ) — R6%sin(@ — ) + gsinp =0 .

(c),(d) For small oscillations, 8, ¢, 8, are small and the above reduce
to

(2M +m)RO + mRp+ (M +m)gf =0,
Rp+Rb+gp=0.
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Try a solution of the type § = Ae!, » = Be™* and write these equations
as a matrix equation

((M+m)g—(2M+m)Rw2 —me2> (A) —0.

—~Ruw? g—Rw? )\ B
The secular equation

(m+ M)g— (2M + m)Rw? —mRuw?
—Ruw? g — Ruw?

= (2Rw? — g)[MRw® — (m + M)g] = 0
has positive roots

_ /e _ . [(m+M)g
wy = 2R’ wy = MR 3

which are the normal-mode angular frequencies of the system. The ratio of
the amplitudes is

B Rw?

g A
= P —=1
“=\sr BT

i.e. 8 and ¢ have the same amplitude and phase;

mg A
= ./ —= i |
“2“VMR B :

i.e. 8 and ¢ have the same amplitude but opposite phases.

fm<< M,
_ /s A _
“1=4/3R B

i.e. 6 and ¢ have the same amplitude and phase as in the above;

_jo A__m
Wy = Ra B— Ma

A_g-Ruﬂ_{l for w = wy,
h B *F:':Tn' for w =w, .

Ifm>M,
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i.e. 6 has a much smaller amplitude than ¢ and the two oscillations are
opposite in phase.

2049
T

A particle of mass m is constrained to move on the parabola z = 72 in
the plane, a is a constant length, and there is a constant gravitational force
acting in the negative z direction.

(a) Define a suitable generalized coordinate for the problem.

(b) Write the Lagrangian in terms of your generalized coordinate and
velocity.

(c) Where is the equilibrium position for the particle?

(d) Write the equation for small oscillations about this equilibrium.

(e) Solve the equations you get, in (d).

(Columbia)

Solution:

(a) We choose z as the generalized coordinate ?f the particle.
(b) The particle has coordinates (z,z) = (z, %) and velocity (&,9) =
(¢, %2). Then

1 4z
T = sm(& +4%) = %m:i;? (1 + i) ,

mgz?

V =mgz =

The Lagrangian is therefore

2 2
L=T—v=%m¢2(1+4—x~)—mgx :

a?

(c) The equilibrium position is given by

oV 2mgx
- _ =0,
oz a
or
z=0.

Then z = 0 also. Thus the equilibrium position is (0, 0).
(d) For small oscillations about equilibrium, z, are small quantities.
Neglecting terms of orders greater than two we obtain
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then gives

Analytical Mechanics

1 ., mgz?

L=§ma: -

d (O8L\ oL _,
dt\oz) oz

2
i+ 9.
a

(e) This equation has general solution

a:=Acos(\/2—g t+6) ,
a

575

where A, are constants of integration to be determined from the initial

conditions.

2050

A thin uniform bar of mass m and length 32! is suspended by a string
of length | and negligible mass. Give the normal frequencies and normal-
modes for small oscillations in a plane.

Solution:

(Columbia)

Use coordinates as shown in Fig. 2.50. The center of mass of the bar
has coordinates (sin ¢+ 31sin 8, — cos o — 3l cos#) and velocity (I cos -+

310 cos 6, lpsin ¢ + 310 sin6). The bar has moment of inertia

Fig. 2.50.
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Lo (3 23
127°\2/ 16
Hence its Lagrangian is
L=T-V

_ 1 oaf.2, 95 35, 1
—Eml [gp +E0 +§09pcos(0—<p)J

3 os 3
+§ml 6 + mgl (cos<p+4cos0)

ol a3 2, 35, 7 1 2. 3.2
~2ml (40 + +209p)+4mgl 2mgl (cp +40

for small oscillations, retaining only terms of up to the second order of the
small quantities 6, ¢, 8, .
Lagrange’s equation

d (LY _oL _

dt \ 0¢; dqi
give

3.

Zle+lgo+g<p=0,

1 +1p+g0=0.
With a solution of the form

6 = Aeiwt’ Y= Beiwt ,

(—%luﬂ g—lw2> (A) —o
g-lw? —l? B '

The secular equation

the above give

3
—Elw

2 g—lw2

=0,

g-lw? -—l?

12w® — 8lgw? +4¢2 =0,
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has solutions
w?=@£2v3)T = 1 £ v3,

w=(\/§i1)\/%,

since w has to be positive. Hence the normal-mode angular frequencies are

w,=(\/§+1)\/g, w2=(\/§—1)\/?

The ratio of amplitudes is

or

g—lw? —lé for w=w ,

lw?
3?— for w = w, .

B
A

Thus in the normal-mode given by w,, 6 and ¢ are opposite in phase, while
in that given by ws, 6 and ¢ are in phase. In both cases the ratio of the
amplitude of ¢ to that of 4 is

V3:2.

2051

A simple pendulum consisting of a mass m and weightless string of
length ! is mounted on a support of mass M which is attached to a horizontal
spring with force constant k as shown in Fig. 2.51.

(a) Set up Lagrange’s equations.

(b) Find the frequencies for small oscillations.

(Columbia)

{

y
18
(Y
X

Fig. 2.51.
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Solution:

(a) Use coordinates with origin at the position of m when the system
is in equilibrium, and the z- and y- axes along the horizontal and verti-
cal directions respectively as shown in Fig. 2.51. Then M and m have
coordinates and velocities

(z,1), (z + lsinf,l — lcosB)
(z,0), (¢ + lf cos b, 10 sin 6)

respectively. The Lagrangian of the system is
L=T-V
Lo 19 124 Y, L. 2
= §Ma: + im(a: +1%6° + 2126 cos §) — Mgl — mgl(1 — cosf) — §ka: .

4 (0L _oL _,

(M + m)i — mif?sin6 + mifcosd + kx =0,

Lagrange’s equations
then give

16 + Zcos + gsinf =0 .

(b) For small oscillations, ,8, &,0 are small quantities. Neglecting
terms of orders higher than two, the equations of motion become
(M +m)i+mlf+kz=0,
0+%+g6=0.
Set
z = Aexp(iwt) , 6 = Bexp(iwt) .
These equations become
(k - (M + m)w? —mlw2> (A)
=0.
—w? g—lw?) \ B
The secular equation

k— (M +m)w? —milw?
’ ( 2) =Mlw? - [g(M+m)+ kljw? +gk=0
—Ww

g — lw?
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has two positive roots

Fg(M +m)+ kl+ /[g(M +m) + k]2 — AMIgk | }
wy = )
2M1
" [ 9(M + m) + kl — \/]g(M + m) + ki]2 — 4Mlgk | }
2 = 1
2M1

which are the normal-mode angular frequencies of the system.

2052

Two masses, 2m and m, are suspended from a fixed frame by elastic
springs as shown in Fig. 2.52. The elastic constant (force/unit length) of
each spring is k. Consider only vertical motion.

(a) Calculate the frequencies of the normal-modes of oscillations of this
system.

(b) The upper mass 2m is slowly displaced downwards from the equilib-
rium position by a distance ! and then let go, so that the system performs
free oscillations. Calculate the subsequent motion of the lower mass m.

(Columbia)

" k
y. J— 2m
2
I
m
Fig. 2.52.

Solution:

(a) Let the natural lengths of the upper and lower springs be I;, [, and
denote the positions of the upper and lower masses by y;,y2 as shown in
Fig. 2.52, respectively. The Lagrangian is then
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L=T-V
=myi + 3my; + 2mgy1 +mgys — gk(y - L) - k2 — 1~ b)

1 . . 1
= §m(2yf +93) + mg(2y1 +y2) - §k[(y1 0P+ - — k).
NCAN AN
dt \ 0¢; dq;

2myj; + 2ky; — kya = 2mg + kly — ki, |

Lagrange’s equations

give

mis + kya — kyy = mg + kly .

Let y1 =y + M, y2 = V5 + 1.
The above can be written as
2mij; + 2ky, — ky, =0,
mijy + kyy — ky; =0,

if we set
_ 3mg + ki, _Amg+ Kkl + kly

k ) N2 k
Note that y1 = 11, yo = 1, are the equilibrium positions of the masses 2m
and m respectively, as can be seen from the force equations

T

3mg = k(y1 — l) ,
mg = k(y2 —p — b) .

With a solution of the type

’ iwi ’ iwt
yl=Aelwa y2=B€w,

(2k—2m2 —k )(A)—o
~k k-mw?/\B/)

The secular equation

we have
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has two positive roots

wy = k (1 - o ! )
+ m \/5 )
which are the angular frequencies of the normal-modes of oscillation. As
B 2k —2mw?
A- T T :F\/5 )
the corresponding normal-modes are (_ 1/5) and (\}2—,)

(b) The general motion of the system is given by

¥y = Acos(wyt + ¢3) + A cos(w_t + 3 ,
yh = —V2Acos(wyt + 1) + V24’ cos(w_t + 3) .

The initial condition is that at ¢ = 0,

==
Il
.
N -
Il
o

vn=w=1, ¢

This gives
1 =yps=0,

b ) eded)

Hence the motion of the mass 2m is described by

()3 ()

+(l+i)lcos k(l—i>t +l+l+4—@
2 V2 m V2 1R k-

2053

Three massless springs of natural length v/2 and spring constant K are
attached to a point particle of mass m and to the fixed points (-1, 1), (1,1)
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and (—1,—1) as shown in Fig. 2.53. The point mass m is allowed to move
in the (z, y)-plane only.

(a) Write the Lagrangian for the system.

(b) Is there a stable equilibrium for the point mass? Where is it?

(c) Give the Lagrangian appropriate for small oscillations.

(d) Introduce normal coordinates and solve for the motion of the particle
in the small oscillation approximation.

(e) Sketch the normal-modes of vibration.
( Columbia)

y
-1,1) (1,1)

bl N

{-1,-1)

N

(a) (b)
Fig. 2.53. Fig. 2.54.

Solution:
(a) Let the coordinates of the mass m be (z,y). Its Lagrangian is then

L=T-V
1

1
= Em:i:2 + Emgf

~ KW@+ (g 17 — V2

- %K[\/(x +1)7+(y - 1)2 - V2

- %K[\/(a: +1)2 + (y+1)2 - V2%,

(b) From the conditions of a stable equilibrium

ov ov o'V 29*v 9V

3z B_yzo’ 0x? ~ 9xdy 6y2>0’

we find one stable equilibrium position (0, 0).
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(c) For small oscillations, z,y, &,y are small quantities. Expanding L
and retaining only the lowest-order terms in these small quantities we have

1 1
L= Em:i:2 + %mgf - ZK(3:1:2 + 2zy + 3y?) .

(d) The kinetic and potential energies can respectively be represented

by matrices
m 0 3Kk 1K
v-(5 ) v-(ik &)

We have the matrix equation
3K — mw? iK U
V—w2T)U=(2 2 )( ) 0.
( iK 3K — mw?
For nonvanishing solutions we require that

3 _ 2 1
sK — mw K

-0,
iK 3K — mw?

or
(2K — mw?) (K ~mw?) =0.

Its two positive roots give the normal frequencies and the corresponding
normal-modes of vibrations

w; = /2K, U1=(1>,
m 1

w2=\/5, U2=(1>-
m -1

The general motion of the particle for small oscillations is then

(;) _ A(i) cos(wit + @1) + B(_ll) cos(wat + a) ,

where A, B, ), 2 are constants to be determined from the initial condi-
tions. The normal coordinates are given by

gs = ZUiaij‘Ij ,
)

where a;; are the elements of the matrix T. Thus for the w; mode, the
normal coordinate is

E=Umz+ Umy=Um(z+y).
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The constant factor Uym is immaterial and we can take

E=z+y.
Similarly for the w, mode
n=Um(z —y)
and we can take
n=x-y

&,n are the normal coordinates of the system.

(e) For wy = /2,
1
U= (1) )

so the point mass oscillates along the line y = z as shown in Fig. 2.54(a).

For wy = (/K|
1
U, =
2 (_1) )
and the point mass oscillates along the line y = —z as shown in Fig. 2.54(b).

2054

One simple pendulum is hung from another; that is, the string of the
lower pendulum is tied to the bob of the upper one. Using arbitrary lengths
for the strings and arbitrary masses for the bobs, set up the Lagrangian
of the system. Use the angles each string makes with the vertical as
generalized coordinates. Discuss small oscillations of this system. What
are the normal-modes? What are the corresponding frequencies? Show
that in the special case of equal masses and equal lengths the frequencies

are given by ﬂy—f@. Under what conditions will the system move as a
single piece?
(Columbia)
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Solution:

Fig. 2.55.

Let m,;, m, be the masses of the bobs and Iy, I the lengths of the two
strings, as shown in Fig. 2.55. The two bobs m,, my have coordinates

(4 sin by, —1; cos 8,), (1 sin By + lg sin 62, —1; cos 6, — I3 cos 03)
and velocities
(1,6 cos 8, 1,6y sin 8;), (116; cos 8 + 1,85 cos 03, 1,0, sin 6y + 150, sin 02)
respectively. Then the kinetic energy T of the system is given by

2T = m,lfOf + mg[l?é% + 1303 + 2[1[29192 008(02 - 01 )]
= {my + ’ma)l?O? + mglgt)g + 2mglllgélég cos(0y — 01)

e (my + ma)i20% + mal202 + 2maly 156,60,
and the potential energy V is given by

2V = —2m,gl, COs 01 — 2m29(l, cos 0! + l2 cos 02)
1 1
~ —2(my + may)gl, (1 - 50?) — magly (1 - 59%)
=W+ (ml + m2)gll0? + mggb@% .

For small oscillations, we have retained only terms of up to the order two
of the small quantities 6y, 8,, 8;, 6;. The Lagrangian of the system is given
by L =T — V. To find the normal-modes we write these in matrix form:
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2
oT = Y Mi;6:6; = 6'M8

i,j=1
2
2V =Vo+ Y Ki;08;=Vo+O'K®,
i,j=1
with

M= (m1+m2)lf malyly
m211l2 mﬂ% !

K= (my + ma)gl, 0
0 magly |

(6 N 8,
°=(a) ©=()

and ©', ©’ being the transpose matrices of ©, © respectively. Considering
a solution of the type
o A
(é) = (A;) cos{wt + €) ,

(K-wM)A =0,

we have

i.e.
((mx +ma)ly(g — hiw?)  —mallaw? ) (A1> ~0

—malylaw? mala(g — law?) ) \ A,
For Ay, A, not to be zero identically we require

(m; + mg)ll(g - llw2) —m2[112w2

—malylow? mala(g — low?) | ~ 0

or
malylaw? — (I + L) (my + ma)gw? + (my +mg)g? =0 .

Its positive roots

g
w4 = [21‘12 l{(“ll 2)(ll 2)

N |

+ V/(my + ma)ima(ly +12)2 + my (L — 12)2]}]
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are the normal-mode angular frequencies of the system. As
A_b(9
A2 ll 12(4)2

_ 1 B ma(l + 12)? + my(l — 1p)?
_E{(ll 12):F\/ pep——— )

the normal-modes are given by

(g;) _ ( 112112 F i\/[mz(lx +12)? + my(ly — 12)?]/(my + mz))

1
X At cos(wil+ey),

where the top and bottom signs correspond to w,, and w_ respectively.
The general solution is

g b=l 1 [me(l +b)?+m(l —b)
L RSTA 21, my +my

} Ay cos(wyt +ey)

yJhzl 1 ma(l +12)2 + my (U — 1o)?
2l 2l my + my

} A_cos(w-t+e_),

02 = Ay cos(wyt +e4) + A_cos(w-t+e_),

where A, A_, ¢4 and e_ are constants to be determined from the initial
conditions.

In the special case of equal masses and equal lengths, m; = my = m,
Iy = ly =, the normal frequencies are

wg = H%(2:§:\/§)

For the system to move as a single piece, we require §; = 65, i.e.

1 ma(h +12)? + my(ls — bp)?
El:(l‘_b):‘:\/ 2+ )2 +mi(l 2)]=1’

my + my

or

(m, + mg)(ll + 12) = q:\/(ml + m2)2(ll + 12)2 — 4m, (m; + mg)l,b .
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As the left-hand side is positive , the bottom sign of the right-hand side
has to be used. Furthermore, squaring both sides gives

L lgmy (ml + m2) =0.

This requires either |, = 0, or l; = 0, or m; = 0. Each of these cases
will reduce the two-pendulum system into a one-pendulum one. Hence the
two-pendulum system cannot move as a single piece.

2055

(a) Consider two simple pendulums each of mass m and length ! joined
by a massless spring with spring constant k as shown in Fig. 2.56(a). The
distance between the pivots is chosen so that the spring is unstreched when
the pendulums are vertical. Find the frequencies and normal-modes for the
small oscillations of this system about equilibrium.

(b) Now consider an infinite row of pendulums with each pendulum
connected to its neighbors just as the pair in part (a) is connected, as shown
in Fig. 2.56(b). Find the normal-modes and the corresponding frequencies
for this new system.

(Columbia)

aq —

i o ; :
Y| {
y 8 :92
m m m m m m m m
— X
(a) (b)
Fig. 2.56. Fig. 2.57.

Solution:

(a) Let a be the natural length of each spring. Number the pendulums
from the left, and use coordinates with the origin at the equilibrium position
of the bob of pendulum 1 and the z-, y-axes along the horizontal and vertical
directions, as shown in Fig. 2.57. Then the two bobs have coordinates

(Isin6y,1(1 — cos8,)), (a + lsin By, (1 — cosbs))

and velocities
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(16 cos by, 16, sin6,), (lég cos 02, 105 sin 6)

respectively. The Lagrangian of the system is

L=T-V
= %m(ﬂéf +1262) — mgl(2 — cos6; — cosbs)

- %k(a-{—lsineg — Isinf), — a)?

1 . . 1 1
zimﬂw?+@)—§mmw3+@)—5u%@-002

for small oscillations.
Lagrange’s equations

4oy oL _
dt \ 0g; dq

mi%6, + mglf, — kl2(02 -6,)=0,
mi20, + mglhy + kI2(6;, —6,) =0 .

give

Let £ = 6, + 02, n = 0 — 02. The sum and difference of the above two
equations give

€ +g6=0,
mlij+ (mg+ 2kl)n=10.

Hence £ and 7 are the two normal coordinates of the system with the normal

angular frequencies
/ 2k
wy = \/g, Wy = % + .

1 1
91—5(54’77), 92—5(6—77),
their amplitudes u,, uy have the ratio

uy tug=1:1
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for the w; mode, for which n = 0, and
Uy LUy = 1:-1

for the wy mode, for which £ = 0.
(b) The same treatment gives

L=T-V

1 . . . 1

=5m12(0f+0§+~-~+03,+---)—Emgl(0?+e§+---+eg+...)
1

B 5“2[(92—91)24’(93*92)2‘1’"'

+ (6 — an—l)2 + (0ﬂ+l - 0.,,_)2 +- ] .
Lagrange’s equations then give
mi%8, + mglby + k(8 — Op—1) — (Brny1 —02)] =0,

i.e.

mib, +mgby, + kl(20, — Opq1 — 0p_1) =0.

Since 6,, remains finite as n — o0, assume the amplitude varies periodically
along the z-axis and try

6, = Aei(nna—wt)

where the “wave number” & = 4%, with the “wavelength” A being integral
multiples of a, i.e. A =pa, p=1,2,3,.... Substitution gives

w= \/‘—? +%[1 ~ cos(ka)] .

The first few normal angular frequencies are for
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p=11 wy = 21
l
g 4k
pP=2 we=\7t
3k
p=3a w3 = 2+—1
I m
2k
p=41 Wy = g’+—a
I m

................

The corresponding normal-modes (for p = 1,2,3,4,...) are

-1
th 1 1
6, | =1 Ae~iwt, -1 Ae—iwt,
: : 1
ei%‘n
ei§7r ( ei‘lr \
eig‘n ei«i‘n
1 1
eitr Ae 't ettm Ae™ ™t .,
eig‘n eiﬂ
1 ¥
' .

2056

Consider a particle of mass m moving in two dimensions in a potential
Lo, 1y 20,1 4
V((E,y) = —Ek(l: + EA()(E Y + Z/\](E s k, /\0,/\1 >0.
(a) At what point {zo, yo) is the particle in stable equilibrium?

(b) Give the Lagrangian appropriate for small oscillations about this
equilibrium position.



592 Problems & Solutions on Mechanics

(c) What are the normal frequencies of vibration in (b)?
(Columbia)

Solution:
(a) A point where 8V/dz = 0, 8V/0y = 0, 82V/dz? > 0, B*V/dy* > 0

and
82V AT

v
or?

is a point of stable equilibrium. For the given potential we find two such

points, (1/k/A1,0) and (—+/k/A1,0).
(b) V is a minimum at a point of stable equilibrium (zo,y0). At a

neighboring point (z,y), we have, to second order of the small qualities
T — To, ¥ — Yo,

(dz)? + 2

1|/0%v
V(z,y) = Vizo, yo) + 3 [(w)m‘yo (x —x0)?

2(ZV)  e-sw-w+ (28] @-wr|+
020Y ] 24y, T oy zo,uOy ¥

2
1 ) Koy
LA VY P ) L N
» 2[ (“’ ,\1) T h

for the equilibrium point ( v/ ,\11,0).
Translate the coordinate system to the new origin

k .
(VE0):
k
! = — — ! =
r T \/: ) Yy Y,
and take the new origin as the reference level for potential energy. Then
1 A
174 ooy Zk 2 _0 +2
@y} =3 (-’v bW
and the Lagrangian is

— _ _l 12 « 12 _1 2 ﬁm
L=T V_2m(a: +9*) 2k z +/\ly .
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Similarly for the other point of equilibrium, we set

k
a:"=a:+\/;, ¥y =y

and obtain the same Lagrangian, but with =",y replacing «’, /.
(c) The secular equation

|V -w?T| =0,
or
2k — muw? 0 _o
0 leQ—muﬂ -

has positive roots

2k ko
w=g s wa =g
m mA;

These are the normal angular frequencies for small oscillations of the
system, about either of the points of equilibrium.

2057

A negligibly thin piece of metal of mass m in the shape of a square
hangs from two identical springs at two corners as shown in Fig. 2.58. The
springs can move only in the vertical plane. Calculate the frequencies of
vibration of the normal-modes of small amplitude oscillations.

(UC, Berkeley)

‘1“‘444‘?( PPIIIIIIIVL
> 3
3 : [:] \

¥y

X €—eo

Fig. 2.58. Fig. 2.59.
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Solution:

Let = be the vertical displacement of the center of mass of the square
from its equilibrium position and 6 the angle of rotation of the square in
the vertical plane containing the springs as shown in Fig. 2.59. The square
has moment of inertial gms?, s being the length of each side of the square.
For small 4, the extensions of the springs are = + -1530 and z — %30. Hence
the kinetic and potential energies are

_1 oo, 1 ok
T_Ema: +12m30,

V= ma:+1k a:+102+ l.5;02
TTmeET 2° T3 ’
where k is the spring constant, taking the potential reference level at the

equilibrium position, and the Lagrangian is

1 1 . 1
L=T—-V = —mz? + —mas26? 2 292 ) .
T 2ma: 12ms 6 + mgx k{z*+ 43 7

Lagrange’s equations
d(OLY oL
dt \ Og; oq;
give

m& + 2kzx — mg = 0,
1 95, 1, 29
6m30+§k30—0.

Let =’ = x — 34 and we can write the first equation as
mi’ +2kz' =0.

Thus z’ and @ are the normal coordinates of the system with the corre-
sponding normal angular frequencies

[2k [3k
w) = —, Wy = .
m m
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2058

A small sphere, mass m and radius r, hangs like a pendulum between
two plates of a capacitor, as shown in Fig. 2.60, from an insulating rod of
length [. The plates are grounded and the potential of the sphere is V.

5
l {
|°
_([,L:_ i_ol XE?

2800 280"
Fig. 2.60.

The position of the sphere is displaced by an amount Az. Calculate the
frequency of small oscillations and specify for what conditions of the voltage
V such oscillations occur. Make reasonable approximations to simplify the
calculation.

(UC, Berkeley)

Solution:

We assume that the mass of the insulating rod and the radius of the
sphere are very small and can be neglected. The charge on the sphere is

q = dneorV

€0 being the permittivity of free space. According to the method of images,
the forces between the sphere and the plates of the capacitor are the same
as those between the charges on the sphere and its images symmetrically
located at positions as shown in Fig. 2.60. Take z-axis along the horizontal
with origin at the equilibrium position. The kinetic and potential energies
of the system are respectively
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1
T= §m¢2 ,
= ¢ 1 1
V= 4meg [b+ 2z + b— 21:] + mgl(1 — cos8)
¢ 2

= —Em +mgl(1 - COSO) .

For small z, z ~ 10,

1 1 41762
ro R\t e )

and the Lagrangian is

1 on q* 4126* 1
L=T-V = -mi2? + 1 _ _ 2 2
T-V 2m10 +27r60b (1+ i ) 2mglO
Lagrange’s equation
d(00y oL
dt \ 99 08
gives
. 4q% 120
20 - 2.~ =
ml“f neq b3 +mgld=0.

Hence the angular frequency of small oscillations is

g 4q¢2 1 lg 64meqr?V?
w=4]/2 - =y -
I 7weqgmbd l mb3

The condition for such oscillations to take place is that w be real, ie.

[ gmbd
1% =,
< 64meor2l
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! | I 4 2 [ ! I
: | | ; | | |
I - : + : - I+;- : + : - I
ST e

I I l | | |
R I I
P | | L 1Y | I | 1 | I

: I M oeax |b-2x| : |

| —2s —IL 2 - :

: 3b+2x -+ 3b-2x ——f

Fig. 2.61

Note that the above solution is only approximate since the images
themselves will produce more images, some of which are shown in Fig. 2.61,
which also have to be taken into account. Thus the potential due to
electrostatic interactions is

v--2 i - + ! _ 2
B dmeg 4 [(2n—1)b—2x ~ (2n-1)b+2z 2nb

27:50 i { (2n - 1)b [ + (2n ixz)%?] - 2_rlzb}

n=1

A 1 1 + 4z?
T 2megh — [\2n—-1 2n (2n — 1)3b?

n

_ q2 ot 4l202ﬂ
2megb b?

with
B £ 2n(2n - 1)’ B = (2n- 1)

This would give
we i/l 64meor2V2p
— Vi mb3

and the condition for oscillations
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gmb®
V< \ Bdeoraip -

The [ series converges rapidly. With maximum n = 3, § = 1.05 and
the third decimal remains unchanged when more terms are added. As
ﬂ'% = 0.98, the two-image calculation gives a good approximation.

2059

A smooth uniform circular hoop of mass M and radius a swings in
a vertical plane about a point O at which it is freely hinged to a fixed
support. A bead B of mass m slides without friction on the hoop. Denote
the inclination OC (where C is the center of the hoop) to the downward
vertical by .

(a) Find the equations of motion for § and .
(b) Find the characteristic frequencies and normal-modes for small
oscillations about the position of stable equilibrium.
(Chicago)

Solution:

Fig. 2.62

(a) The moment of inertia of the hoop about O is
I=Ma?+ Ma® =2Ma? .

Use coordinates as shown in Fig. 2.62. The coordinates and velocity of the
bead are respectively

(asinf +asin ¢, —acosf —acos w),(aécos0+a¢cos¢,aésin0 +a@sin ) .
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The Lagrangian of the system is
. 1 . .
L=T-V = Ma??*+ —2-ma2[02 + ¢? + 20 cos(6 — )]
+ Mga cos 8 + mga(cos 8 + cos p)
1 242 , 1 9.9 2
= 5(2M +m)a*0° + Zma’e + ma“8ypcos(d — ¢)

+ (M + m)gacosf + mgacosp .

Lagrange’s equations give

(2M +m)af + magcos(f — @) + mag?sin(d — @) + (M +m)gsind =0,
abi cos(f — @) + agp — ah?sin(f — @) + gsinp =0 .

(b) For small oscillations, retaining terms up to second order in the
small quantities 8, ¢, 8, ¢, we have from the above

b+ M4+m £+ m 5= 0
2M+m /) a 2M+m‘P_ ’

v g .
= =0.
0+acp+tp

For a solution of the type § = Aexp(iwt), ¢ = Bexp(iwt), the above

become
M+m\g mw?
—_— = - -—B=0,
[(2M+m) a W}A 2M +m
—w?A+ (2 —w2)B=O.
a
For nonzero solutions the determinant of the coefficients must vanish. Thus

[Muﬂ—(ﬂ%"ﬁ] (z.ﬂ—%) —0,

whose two positive roots

M+m
“"=V2%’ “’F\/( M )?Z‘
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are the characteristic angular frequencies of the system for small oscilla-
tions. As % = ;f;; — 1, we have for w = w;, % = 1 and the normal-mode

(i), forw=wy, 4 =~ "5, and the normal-mode (_Mim)
m

2060

A small body of mass m and charge ¢ is constrained to move without
friction on the interior of a cone of opening angle 2a. A charge —gq is fixed
at the apex of the cone as shown in Fig. 2.63. There is no gravity. Find the
frequency of small oscillations about equilibrium trajectories of the moving
body in terms of ¢y, the equilibrium angular velocity of the body around
the inside of the cone. Assume v < ¢ so that radiation is negligible.

(UC, Berkeley)

Solution:

Use coordinates as shown in Fig. 2.63. In the Cartesian system, m has
coordinates (rcosy,rsing, z), or, as z = rcota, (rcosy,rsing,rcot a),
and velocity

(rcos p — rpsin g, rsin g + r@cos p, ¥ cot a) .

The Lagrangian is then

1 2 3
L=T -V = ;m(i* +72¢" +i%cot?a) + ;r—so : “’r‘a
¢?sina

1
= ~m(*?csc? a + r?p?) +

2 dmeor
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4 (0L) 2,
dt \ 0¢; Oq;

Lagrange’s equations

give

¢’sina
4megr?

mitcsc? a — mrg? +

mr?p = J (constant) ,

or, combining the above,

2 2 o5
2 L asme 4 )

mfF csc
mrd  4megr?

For the equilibrium trajectory,
';:::O’ r=To, ¢=¢0,

the above becomes
J?  ¢’sina

_3' - —‘—2- .
mry  4megry

For small oscillations about equilibrium, let r = ro+£, where § < ro. Then

3
dmegry

Hence the angular frequency for small oscillations is

g?sin® o .
WA Smegmrg PO

. J? g?sina
0 = = .
¥ m2r§ dmeomr}
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2061

A flywheel of moment of inertia I rotates about its center in a horizontal
plane. A mass m can slide freely along one of the spokes and is attached to
the center of the wheel by a spring of natural length ! and force constant k
as shown in Fig. 2.64.

(a) Find an expression for the energy of this system in terms of r, #,
and the angular momentum J.

(b) Suppose the flywheel initially has a constant angular velocity
and the spring has a steady extension r = ro. Use the result of part (a)
to determine the relation between Qg and r¢ and the frequency of small
oscillations about this initial configuration.

(MIT)

Fig. 2.64.

Solution:

(a) Let r be the distance of m from the center and 6 the angular velocity
of the flywheel at time t. The system has angular momentum

J =16 +mr?f
and energy
1osa 1 9 a9y 1 2
T+V =316+ 5m(F +r°6%) + Sk(r - 1)

J? 1 .5, 1 2
=4z ~k(r—1)? .
sT v mr?) T 2™ Tk D
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(b) The Lagrangian of the system is

L=T-V = %192 + %mﬁ + %mr292 — %k(r —)%.
Lagrange’s equations
JCARET
dt \ 0¢; 0g;
give
mi —mré? +k(r—1) =0, (1)

(I +mr?)d = constant =J ,

or, combining the two,

2
mrJ —+k(r—1)=0. @)

me (I +mr?)

Initially, # = 0, r = 7, 6 = Qo, J = (I + mr3)Qp. For small oscillations
about this equilibrium configuration, let r = rg + p, where p < 1. As

mrJ?  m(ro +p)J?
(I +mr2)2 = (I + mrd + 2mrop)?

. mroJ? P 4mrop
T (I +mrd)? ro I+mr?

. mrgJ? 1 3mri —I\ p
T (I +mr3)? I+mr2 ) 7o
. mroJ?  (3mrf -1
T (I +mrE)? I+ mrk

) ngP 3

mrod?
T +mr)

Eq. (2) becomes

.|k 3mrd —1I\ ,

pt [E+(I+mr§>no p=0.
Therefore, provided that I is such that

I-3mrd\ 2 Kk
(Tﬁﬁ)%<a’

=mroQ3 =k(ro— 1),
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the system will oscillate about the initial configuration with angular fre-

quency
2 _
w= |5+ (3_m_ro_;> o
m I+ mr§

after a small perturbation. Note that Eq. (1) implies

kl

To= 7———F5
k—mQ3’

i.e. rq itself is related to Q.

2062

Three point-like masses (two of them equal) and the massless springs
(constant K') connecting them are constrained to move in a frictionless tube
of radius R. This system is in gravitational field (g) as shown in Fig. 2.65.
The springs are of zero length at equilibrium and the masses may move
through one another. Using Lagrangian methods, find the normal-modes
of small vibration about the position of equilibrium of this system and
describe each of the modes.

(UC, Berkeley)

Solution:

Use Cartesian coordinates (§,7) as shown in Fig. 2.66. The ith mass
has coordinates (Rsinf;, R(1 — cos§;)). For small oscillations these can be
approximated as (R6;, } R6?), or (z;, 27) with =; = R6;. Then, neglecting
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terms of orders greater than two of the small quantities z;, ;, we have for
the kinetic and potential energies

1 1 1
T = -2-m:i:§ + EM:i:g + §m¢§ ,

1 1 1 1
V= K@ - z5)? + 5K (@2 - z3)? + 5m(a;f +z2) + §Mx§ ,
and the Lagrangian

+2

1
L= _mi?+ %Ma:% + 1m:z:s

2 2

_[%(KJ,’%)( +3) + - (2K+A2‘q> z3 ~ K(a:la:2+a:2:c3)].

Lagrange’s equations give

o m
mz1+(K+fg)x1—K:c2:O,

M
Miq + (2K+—Fg>x2—K(a:1+a:3) =0,

mdf3+(K+T%)a:3—K:c2:O.

Letting
T i = Ajei“"
in the above we obtain the matrix equation

K+ %2 —mw? -K 0

A
-K 2K + ¥4 ~ Mu? ~K A | =0.
0 ~-K K+ 3¢ — muw? 43
1)
For solutions in which not all A; are zero, we require
K+ 3¢ — muw? -K 0
-K 2K + M2 - Mw? -K =0,
0 -K K+ 2 — muw?

whose three non-negative roots are the angular frequencies of the normal-
modes of the system:
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w\_ o, K K 11 1
w3}_ R+2m+M:tK(4m2-"mM-"M2 '

Equation (1) gives

Ay _ A mg
Al A3 ~ RK K’

KA, — (2K+£R‘g —Mw2> Ay+ KA3=0.
These equations give for w,: A3 = —A4,, A3 =0;
B
for wy: B3 = B, ﬁ = negative;

1

Gy

for ws: Cs = (, —= = positive.
Gy
Hence the three corresponding normal-modes are
Al Bl C’l
0}, By |, Ca
_Al B 1 C’l

for w,, we, ws respectively, where

1 m 1 1

B=|i_.m_ ) 1
25137 M m\/4m2+mM+M2 By,

1 m 1 1 1
02*[5‘M+m\/m+m+m]cl-

The three normal modes are depicted in Fig. 2.67.

m M m
Wy - e ®
wy: —> &9 >
w3 —> *>

Fig. 2.67.
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2063

In the theory of small oscillations one frequently encounters Lagrangian
of the form L =T — V, where

N N
T=Y dgayg, V=23 abiq -
4,j=1 i,j=1
The matrices A = (a;;) and B = (b;;) are real and symmetric.

(a) Prove that A is positive definite, i.e.
xtAx >0

for an arbitrary column matrix x. Prove that in general the eigenvalues of
such a matrix are greater than or equal to zero. Show that we need not be
concerned with zero eigenvalues.

(b) Prove the existence of the matrices A*3.

(c) Introduce new coordinates 8, by

N
%= (A718),6;

i=1

where S is an N x N matrix. Show that S can be chosen so that A and B
are diagonalized. Interpret the diagonal elements of the transformed B.
(SUNY, Buffalo)
Solution:
(a) By definition,
T =

[ -

ka:bz >0
k

in Cartesian coordinates. After a linear transformation

Tk :xk(‘h,‘h,-v- ,‘IN) )

it becomes

n
T= Z ¢iaij4;
.Yj
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but is still > 0. In matrix form,

where )
qQ

, (i)

q= .
dn

and the dagger denotes its transpose matrix. As the velocities &y, &s,. ..
and hence the generalized velocities ¢, s, ... are arbitrary, we have

T=x'Ax>0

for an arbitrary column matrix x. That is, A is positive definite.
Suppose x, is an eigenvector of A with eigenvalue A,. By definition,
Ax, = Agx, ,

where ), is a real number as A is symmetrical and real. Then

N
2
x;Axg = x;/\gxg = /\gx;xg =X, Za:g,- .

=1

As this is greater or equal to zero as shown above, the eigenvalues A, > 0.
If A, = 0, there is no oscillation for the corresponding mode, which then
does not concern us. The vibrational degrees of freedom are simply reduced
by one.
(b) For the matrices A} to exist we require that

det|A|>0.

A real symmetrize matrix can be diagonalized by an orthogonal matrix S,
i.e. one for which StS = I, the unit matrix:

StAS = A,

where A is a diagonal matrix elements A;; = A;8;;. Writing |A| for det |A|,
we have

N
|A| = [A||S"||S| = [STAS| = [A| = [[ A >0
=1
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by the result of (a) (any zero A has been eliminated). Hence At} exists.
(c) Introduce new coordinates 6; by

0= 3 (A18)50;
i=1
where S8 which diagonalizes A is orthogonal. Consider
T=q'Aq=(A186)tAA 186
—g'sta~%)taa-1sé.
As A is real symmetric, A' = A and
A Ht=(ah i =at,
the above becomes
T = 6'Stsé = 6116 .

Similarly
V =q'Bq=0!StA-{BA-%s0 .

As A, B are real symmetric,
A-iBA-Ht = (A-HtBt(A-Ht = A-iBA-E

A-BA1 s real symmetric and can be diagonalized by the orthogonal
matrix 8. We therefore have

N N
T=Y"6, V=) B,
j=1 i=1

where B; are the diagonal elements of the diagonalized matrix of
A-iBA-1 e
(StA~iBA-18),; = B;éy; .

The Lagrangian is
N .
L=T-Vv=) (- B;6})
j=1

and Lagrange’s equations

4 (oL 9L _
dt 60i 60,'_
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give
6;+Bi#; =0, i=1,2,...,N.

Hence B; are the squares of the normal angular frequencies w; of the system.

2064

A flyball governor consists of two masses m connected to arms of length
[ and a mass M as shown in Fig. 2.68. The assembly is constrained to
rotate around a shaft on which the mass M can slide up and down without
friction. Neglect the mass of the arms, air friction, and assume that the
diameter of the mass M is small. Suppose first that the shaft is constrained
to rotate at an angular velocity wp.

(a) Calculate the equilibrium height of the mass M.
(b) Calculate the frequency of small oscillations around this value.
Suppose the shaft is now allowed to rotate freely.
(c) Does the frequency of small oscillation change? If so, calculate the
new value.
(Princeton)

Solution:

(a) Use a rotating coordinate frame with the z-axis in the plane of the
governor arms as shown in Fig, 2.68. In this frame the masses m,m and M
have coordinates (—lsin#,0, —lcos8), (Isin8,0, —lcosh), (0,0, —2lcos8)
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respectively. In a fixed coordinate frame with the same origin and z-axis,
the velocity is given by ¥’ = F+wp x r, where wy = (0,0, wp). Hence the cor-
responding velocities are (—1§cos®, lwosin 8, 16sin @), (16 cos8, —lwpsin 6,
16sin §), (0,0, —210sin). Thus the kinetic energy, potential energy and
Lagrangian of the system are respectively

T= ml2wg sin? @ + mi26% + 2M126%sin @ ,
V = —2mglcosd — 2Mglcos9 ,
L=T -V =ml®w}sin? 0 + mi?6% + 2M126?sin? § + 2(M + m)glcos 8 .

d (OLY oL _
dt \ 98 08

2(m + 2M sin? 9)16 + 2M16? sin 20 — mlw sin 20 + 2(m + M)gsin6 =0 .

Lagrange’s equation
then gives

At equilibrium, § = 0, § = 0, 8 = 6 and the above becomes
mlw? sin 20 = 2(m + M)gsin 6, . (1)
Solving for 89 we obtain two equilibrium positions:
(i) 6o =0,
(ii) cosfp = Mg
milwg

The distances of the mass M at the two equilibrium positions from the top
of the shaft are respectively

(i) 2lcosfy = 21,

(ii) 2lcosfy = M‘g
mws

(b) When 6y = 0, the governor collapses and there is no _oscillation.
Consider the equilibrium given by (ii). Let 8/ = 8 — 6, then § = ¢'. For
small oscillations, 8’ <« 6,

sinf = sinfy + 6’ cos by ,
sin 20 ~ sin 20y + 26’ cos 26, .
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The equation of motion becomes, retaining only first order terms of the
small quantities ', ', 8’ and taking account of (1),

(m + 2M sin? 6o)16" + [(m + M)gcos 8y — mlw? cos 260]6’ = 0 .

Hence the oscillation frequency is

1 [(m+ M)g cos 8y — mlw? cos 26,
2 (m + 2M sin? f)! '

f=

(c) One would expect the oscillation frequency to be different since the
angular velocity wq in the above is arbitrary. Let ¢ be the angle of rotation
about the shaft. Putting w = ¢ in the Lagrangian we have

L = ml2)?sin? § + mi20? + 2M1%6?sin? 6 + 2(m + M)glcos® .
Lagrange’s equations give

psin?f =c (a constant) |,
2(m + 2M sin? )16 + 2M16? sin 20 — mip? sin 20 + 2(m + M)gsind =0 ,

which combine to give

(m + 2M sin? 6)16 + M16? si

)gsind =0. (2)

At equilibrium, b= 0, 6 =0 and 6 = 6y, which is given by

mic? £% 6o

= (m+ M)gsin6y .
sin® 6,

For small oscillations about 8y, let 8 = 8y + &, where 8’ < 8y. As

~

, cosf 208 6o — &' sin by

mie sin @ (sin 8y + 6’ cos 6p)3

mic 2 00800

(1 — 6’ tan 6 — 36’ cot fo)
sm 0

2
= (m + M)gsin 6, [1— (1+2cos 00)0’] ,

sin 8 cos g
Eq. (2) becomes

(1 + 3cos? 6y) ,

o p vy 3
(m + 2M sin” 64)16" + (m + M)g G034 =0.
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Hence the frequency of small oscillations is

f= 1 [(m+ M)g(1 +3cos? §o)
2n (m+2Msin2 00)l cos bq '

2065

A particle of mass M moves along the z-axis under the influence of
the potential energy V(z) = —Kzexp(—az), where K and a are positive
constants. Find the equilibrium position and the period of small oscillations
about this equilibrium position. Consider also the cases where K and Jora
are negative.

(Princeton)

Sclution:

Expand the potential near a point o:

v 1/0%V 2
V(@) = Vizo) + (%) (o —20) + 3 (5:5—2) (z -z +-.. .
For ¢ to be an equilibrium position,

(6V) = K(azo —1)e7 % =0,
Zo

dz
giving
1
o= — .
a
As o .
———‘g =aK(2 - azg)e " = N ,
oz? )y, e
the equilibrium is stable.
Let
E=z—x90=2— !
0 a

and take zo as the reference level of potential energy. Then the potential
at £ is \

_1/0%V 2 aK o
Vo =3 (w)ﬁ =2t
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The Lagrangian is then

1 aK

PV — Taré2 2
L=T-V 2M§ 2e€ .

Lagrange’s equation

d(00) 0L _,

dt \ o¢ ot
yields

. K
M§ + aTg -0.

This shows that the angular frequency of small oscillations about the
equilibrium position is

w = aK
TV Me’
and the period is
T= 2_7r =27 _A_cf_e .
w aK

If both a and K are negative, then aK is positive and the above results
still hold.
If only one of a, K is negative then

62V>

L <0

( 61:2 o ’

which means that the potential at equilibrium is a maximum and the

equilibrium is unstable. Hence no oscillation occurs. This can also be
seen from the equation of motion, which would give an imaginary w.

2066

A particle of mass m moves under gravity on a smooth surface the
equation of which is z = 2 + y% — zy, the z-axis being vertical, pointing
upwards.

(a) Find the equations of motion of the particle.

(b) Find the frequencies of the normal-modes for small oscillations about
the position of stable equilibrium.
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(c) If the particle is displaced from equilibrium slightly and then re-
leased, what must be the ratio of the ¢ and y displacements to guarantee
that only the higher frequency normal-mode is excited?

(Wisconsin)

Solution:
(a) As

2=z’ +y*—ay,
=2z +2yy—cy—cy=22x—y)+y2y — ) .

The Lagrangian is

L=T-V
1 .
= omle? +9° + (25— y)" + 572y — 2)° + 229(22 - y)(2y - 2)]

—~mg(z® +y* —zy) .

AN
dt \ 0¢; dg;

Lagrange’s equations

give

9o+ (20— 9)* + 9(25 — 9)(2y ~ )]
= 2:1':2(2:1: —y)— 3]2(2y —z)+ 22y(2y — ) - ty(2x —y) — 29T + gy ,
10+ 92y~ 2 + 52z ~ y)(2 — =)
= 2y%(2y — z) — £3(2z — y) + 2¢9(2x — y) — Y(2y —~T) —~ 29y + 9T .

(b) As

ov ov
5;—"w@w—w, 5;—nw@y—ﬂ,

equilibrium occurs at the origin (0,0). For small oscillations about the
origin, z,y, Z,y are small quantities and the equations of motion reduce to

E+29x—-gy=0,
j+29y—9gz=0.
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Considering a solution of the type
_ twit _ iwt
T =Top€ Y = Yot ’
we find the secular equation

2g — w? —g

T g | =l ehBg-wh) =0,

Its position roots

wl=\/§7 (4)22\/@

are the angular frequencies of the normal-modes of the system. Note that
as w), we are real the equilibrium is stable.

(c) As
yo _29-uw’
To g ’
for the higher frequency mode to be excited we require g% = —1. Hence the

initial displacements of z and y must be equal in magnitude and opposite
in sign. Note that under this condition the lower frequency mode, which
requires yo/To = 1, is not excited.

2087

A rigid structure consists of three massless rods joined at a point
attached to two point masses (each of mass m) as shown in Fig. 2.69,
with AB = BC = L, BD = I, the angle ABD = DBC = 6. The rigid
system is supported at the point D and rocks back and forth with a small
amplitude of oscillation. What is the oscillation frequency? What is the
limit on [ for stable oscillations?

(CUSPEA)

Solution:

The structure oscillates in a vertical plane. Take it as the zy-plane as
shown in Fig. 2.70 with the origin at the point of support D and the y-axis
vertically upwards. We have

AD=CD=b=+L?+12 —2Llcosh ,
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Fig. 2.70.

and the angles between AD and CD with the vertical are o + ¢, & — ¢
respectively, where a = 8 + %, ¢ being given by

b l

sind  siny
The masses m;,mo have coordinates
(—bsin(a + ), —bcos{a + ¢)), (bsin{a — @), —bcos(a — ¢))
and velocities
(~=bpcos(a + ¢), bpsin(a + ¢)), (—bpcos(a — @), ~bpsin(a — ¢))
respectively. Thus the Lagrangian is



618 Problems € Solutions on Mechanics

L=T-V =mb*p? + mgblcos(a + ¢) + cos(a — )] .

4 (0LY oL _
dt \ 0y 0p

2mb® + mgbfsin(a + @) — sin{a — ¢)] =0 .

Lagrange’s equation

then gives

For small oscillations, ¢ <« a and
sin{a + ) ® sina + pcosa
so the equation of motion reduces to
bp + pgcosa =0,

giving the angular frequency as

_ [gcosa
w= b

As
cosa = cos(f + ) = cosfcos — sinfsiny
= 71) (\/b2 —125in%9 cos0—lsin20)
_ 2 Lcos8—1
—z( cosf —1),
we have
"= { g(Lcos8—1)
“ VL24+12—-2Llcosh’
Since

2

0
5‘/)—‘2/ = mgb[cos(a + @) + cos(a — )]

= 2mgbcos o

at the equilibrium position ¢ = 0, oscillations are stable if cosa > 0. This
requires that
Lcos6—-1>0,

or
l< Lcos@ .
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3. HAMILTON’S CANONICAL EQUATIONS (2068-2084)

2068

A flyball governor for a steam engine consists of two balls, each of mass
m, attached by means of four hinged arms, each of length I, to sleaves
located on a vertical rod. The lower sleeve has mass M and negligible
moment of inertial, and is free to slide up and down the rod without friction.
The upper sleeve is fastened to the rod. The system is constrained to rotate
with constant angular velocity w.

{a) Choose suitable coordinates and write the Lagrangian and Hamilto-
nian functions for the system. Neglect weights of arms and rod, and neglect
friction.

(b) Discuss the motion.

(c) Determine the height 2 of the lower sleeve above its lowest posi-
tion, as a function of w, for steady motion. Find the frequency of small
oscillations about this steady motion.

(Wisconsin )

Solution:

(a) The governor is as shown in Fig., 2.68 of Problem 2064. Referring
to the coordinates as shown and using the results obtained there, we have

L=T-vV
= mi2w? sin? § + mi%0% + 2M 1262 sin? § + 2(m + M)gl cos ¥ .

The Hamiltonian is
H=6py—-L

with the generalized momentum py defined as

Po = %Io; = 2(m + 2M sin? §)120 .

Thus
H = 6pg — miI%w?sin® § — (m + 2M sin’® 6)126? — 2(m + M)glcos

2
4(m + 2M sin® 9)12

~ml%w?sin? 8 — 2(m + M)glcos@ .



620 Problems € Solutions on Mechanics

(b) Lagrange’s equation
4 (oL oL _
dt\o§) 06

2(m + 2M sin® 9)16 + 2M16? sin 20 — miw? sin 260 + 2(m + M)gsing =0 .

gives

The motion is discussed in Problem 2064. Briefly, M will oscillate up and
down the vertical rod about an equilibrium position given by

m+ M
cos00=%l-.

(c) At equilibrium, M has z coordinate —2lcosfy. Hence its height
above the lowest point is
M
2l — 2l cosfy = 21 |1 — M+ Mg
milw?
The angular frequency of small oscillations about the equilibrium position
is (Problem 2084)

Q- (m + M)g cos 8y — mlw? cos 20,
- (m + 2M sin? )i

W msin® 6,
B m + 2M sin? 6,

(m+ M)g 2
miw? )

with
sin2 00 =1- [

2089

Consider the two-body system consisting of (1) a point particle of mass
m and (2) a rotator of finite size and mass M (see Fig. 2.71). This rotator is
a rigid body which has uniform density, has an axis of symmetry, and, like
the particle of mass m, is free to move. Discuss the motion of this system
if the particle is attracted to every element of the rotator by a Coulomb
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or gravitational force. Include in your discussion answers to the following
questions.

(a) How many degrees of freedom does this system have?

(b) What would be a suitable set of coordinates?

(c) What is the Lagrangian (or Hamiltonian)? (Write it down or say
how you would try.)

(d) On what coordinates does the interaction between the particle and
the rotator depend?

(e) How many constants of motion can you infer, and what are they
physically?

(f) What orbits of this system are closely similar to orbits of two point
masses? Describe the nature of their (small) difference. What is the nature
of the motion of the rotator relative to its center of mass?

(Wisconsin )

/

@M

/

3e

Fig. 2.71.

Solution:

(a) The system has 9 degrees of freedom, of which 3 belong to the mass
m and 6 belong to the rigid rotator.

(b) One may take generalized coordinates as follows: 3 coordinates z, ¥,
z describing the position of the mass m, 3 coordinates X, Y, Z describing
the position of the center of mass of the rigid rotator, 3 Euler’s angles ¢, 0,
1 describing rotation relative to the center of mass of the rotator, the axis
of symmetry of the rotator being taken as the Z’-axis of the rest coordinate
system of the rotator.

(c) The kinetic energy of the system consists of three parts: kinetic
energy of the point mass m and the translational and rotational kinetic
energies of the rotator, namely,

T=NT+T+T;,

with
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1 2, .2 .2
leim(a: +9° +2%),
1 2 2 72
T2=§M(X +Y*+ 7%,
Iy L 0O w)

(wr,wo,ws) | Ia I22 0 w2 |,
0 0 I3 w3

T3 =

[ -

where w;,w;, w3 are related to Euler’s angles (Problem 1212) by
wy =0cosy + @sinfsiny ,
wy = —@siny + psinfcosy
w3 = pcosh + 4 ,

and the inertia tensor is with respect to the center of mass of the rotator
with the Z’-axis in the direction of the axis of symmetry. The calculation
of the potential energy is more complex. Imagine a series of spherical shells
centered at the mass m and consider a shell of inner and outer radii r and
7 + dr respectively. The potential due to Coulomb interaction between the
element dM of the rotator in the shell and the particle is

dv = _Grr;dM ,

where G is the gravitational constant. Then the total potential of the

system is
dM

The Lagrangian of the system, L = T'— V, can then be obtained.

(d) The interaction between the particle and the rotator depends on
X—z,Y—-y,Z—-2 pand¥.

(e) As the interaction is conservative and the space is uniform and
isotropic, the constants of motion are the energy T + V, total angular
momentum ({each of the three components) and total momentum (each of
the three components) of the system.

(f) When the mass and the rotator are far removed from each other,
their orbits are closely similar to those of two point masses. The difference
stems from the fact that for the rotator the center of mass and the center
of gravitational force do not coincide, so the torque of the gravitational
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force about the center of mass makes the rotator revolve around its center
of mass.

2070

A motor turns a vertical shaft to which is attached a simple pendulum
of length ! and mass m as shown in Fig. 2.72. The pendulum is constrained
to move in a plane. This plane is rotated at constant angular speed w by
the motor.

(a) Find the equations of motion of the mass m.

(b) Solve the equations of motion, obtaining the position of the mass as
a function of time for all possible motions of this system. For this part use
small angle approximations.

(c) Find the angular frequencies of any oscillatory motions.

(d) Find an expression for the torque that the motor must supply.

(e) Is the total energy of this system constant in time? Is the Hamilto-
nian function constant in time? Explain briefly.

(UC, Berkeley)

Solution:

(a) Use rotating coordinates as shown in Fig. 2.72 with the z- and 2-axes
in the plane of oscillation of the pendulum. In this frame the mass m has
coordinates
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(Isin 8,0, —1 cos 8)

and velocity
(16 cos 8,0,10sin6) .

In the fixed frame m has an additional velocity
w xr=(0,0,w) x (Isind,0,—Icos9)
= (0,wlsinb,0) .

Hence the Lagrangian of the system is
1

L:T—V=2

o 1
mi?9? + 5ml'-’-uf-" sin® 6 + mgl cos 9 .

d4(ony oL _,
dt \ 96 96

6+ (% -w2cos0) sind=20.

Lagrange’s equation
then gives

(b) For equilibrium, 6 = 0. The equation of motion gives the equilibrium
positions as

6, =0, 62 = arccos (lw%) .

For oscillation near 6, = 0, in the small angle approximation the
equation of motion reduces to

§+(%—w2)020.

Ifw < /7, the equilibrium is stable. 6 is harmonic and can be represented
by
0(t) = A; cos(Siit + ) ,

where A,, ¢, are constants to be determined from the initial conditions,
and O, = ,/gl —w? is the angular frequency of small angle oscillations. If
w > \/3}- , the equilibrium is unstable.

For oscillations near 82, let § = 8; + o, where a « 2. The equation of
motion is then, in the first approximation,

a+ (% — w? cos b, +w2asin02) (sinf2 + acosfy) =0,
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or
@+ aw?sin?8, =0 .

The solution is
a(t) = Az cos(S2at + ¢2) ,

where 23 = wsinf; = & 4/12w* — g2 is the angular frequency of small
oscillations about 6o, A, @2 are constants to be determined from the initial
conditions. Hence

O(t) = A, cos(§2at + o) + 6 .

(c) For small angle oscillations about 6;, the angular frequency is §2; =

\/II — wZ; and about g, Oy = llw\/lzw“ —g2.

(d) The angular momentum about the z-axis is
J=mising-lsing w=mi’wsin®g .

The torque the motor must supply is therefore

dJ . do
M= i mlw sm(20)d—t ,
where for 6 the expressions obtained in (b) are to be used.

(e) The kinetic energy in the fixed frame, T, is not a homogeneous
quadratic function of the generalized velocity, so the mechanical energy
is not conservative. Physically, the pendulum is constrained to oscillate
in a plane which is rotating. So the constraint is not a stable one and
the mechanical energy is not conserved. On the other hand, not being an
explicit function of ¢, the Hamiltonian H is conserved.

Note that while in the fixed frame the mechanical energy is not con-
served, as the system is an unstable holomorphic one and all the external
forces are conservative, the generalized energy H is conserved. We have

0L
H = 08—. - L
00
1 25 1 .29 .9
= Eml 0 — Eml w*sin® @ — mglcos § = constant .
In the rotating frame fixed to the motor, because of the fictitious

centrifugal force
2 . ov
mlw’sinf = —————

a(lsind) ’
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the potential energy is
V= —%mlr"wz sin?@ — mglcos 8 ,
so that the total energy is
%mlzéz + V = H = constant .

Therefore, whether the mechanical energy is conserved or not depends on
the choice of reference frame.

2071
The classical interaction between two inert gas atoms, each of mass m,
is given by the potential

24 B
Vi=-"5+75 AB>0, r=ln-rf.

(a) Give the Hamiltonian for the system of the two atoms.
(b) Describe completely the lowest energy classical state(s) of this
system.
(c) If the energy is slightly higher than the lowest [part (b)], what are
the possible frequencies of the motion of the system?
(Wisconsin )
Solution:

a) The center of mass of the system is given by R = 1(r; 4+ r2) =
: 2
(z,y, 2), the reduced mass is 4 = et = 7+ and the total massis M = 2m.

Let r = r; — r2. Then the kinetic energy of the system is

1. .0 1.,
T-—EMR +§ur

= %MR? + %p(ﬂ +7%6% 4+ r%)?sin? 9)
and the Lagrangian is
L=T-V

1., 2, . 1 . ; .2 . 2A B
:EM(m2+y2+22)+EM(T2+T202+T2‘P2S“120)+T_6__l_r_ﬁ’
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where r, 8, ¢ are the spherical coordinates of a frame fixed at the center of
mass. The generalized momenta are

OL _ ... oL . . oL .
Pa = 5= = Mz, Py=gp =Mi p= 5z =Mi,

_ oL 8L ., AL 4. .,
p'—a,,'._p'r’ pe_aé—ﬂroa P¢—6—¢—ur¢sln0.

The Hamiltonian is
H= Zpiqi —-L
i

1

1 2 2 2 1 2 2 1 2 2A B
:W(pm+py+pz)+2—’; Pr+ —3Ps + —3

———2P ) — & :
r2sin’g" ¥ 6  ri2

(b) The lowest energy state corresponds to p, = py = p; = pr = pg =
P, = 0 and an ry which minimizes

2A B
et

d( 24 B\_,
@\ et =

we obtain rg = (B/A)é as the distance between the two atoms for the
lowest energy classical state. For this state the energy of the system is

Letting

—A2

B

(c) If the energy is only slightly higher than the lowest and the degrees
of freedom corresponding to z,y, 2, 9, ¢ are not excited yet (pz = py = p, =
Pe = p, = 0), we have



628 Problems & Solutions on Mechenics
the Lagrangian is

B 1o Ay, 1, AL
L—T—V—Eur —36A(§> (r—ro0) = SHP —36A E) o,

where p = r — rg « 1. Lagrange’s equation gives

AN}
up‘+72A(—§) p=0.

Hence

2072

Consider a particle of mass m which is constrained to move on the
surface of a sphere of radius R. There are no external forces of any kind
on the particle.

(a) What is the number of generalized coordinates necessary to describe
the problem?

(b) Choose a set of generalized coordinates and write the Lagrangian of
the system. '

(c) What is the Hamiltonian of the system? Is it conserved?

(d) Prove that the motion of the particle is along a great circle of the
sphere.

(Columbia)

Solution:

(a) As the particle is constrained to move on the surface of a sphere,
there are two degrees of freedom and hence two generalized coordinates are
needed.

(b) Choose (8, ¢) of spherical coordinates as the generalized coordinates.
As there are no external forces, V = 0. The Lagrangian of the system is

1

1 A
L=T= 5mu2 = —2-mR2(02 + ¢?sin?9) .
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(c) As p; = %, we have

pe = mR%6, Pp = mR2psin® @,

. 1 P2
H = peb )— L= —— | pi 1.
Pot + Py 2mR? (po + sin® 9
Since the Hamiltonian H is not an explicit function of time, it is a constant
of the motion, or, in other words, conserved.

(d) Hamilton’s equation

gives
Py = @sin®@ = constant .

We can choose the set of coordinates (8, ¢) so that the initial condition is
¢ =0 at t = 0. Then the above constant is zero at all time: sin®4 = 0.
As 8 cannot be zero at all time, ¢ = 0, or ¢ = constant, the motion of the
particle is along a great circle of the sphere.

2073

A light, uniform U-shaped tube is partially filled with mercury (total
mass M, mass per unit lengthp) as shown in Fig. 2.73. The tube is mounted
so that it can rotate about one of the vertical legs. Neglect friction, the
mass and moment of inertia of the glass tube, and the moment of inertia
of the mercury column on the axis of rotation.

(a) Calculate the potential energy of the mercury column and describe
its possible motion when the tube is not spinning.

(b) The tube is set in rotation with an initial angular velocity wy with the
mercury column at rest vertically with a displacement z, from equilibrium.

1) Give the Lagrangian for the system,

2) Give the equation of motion.

3) What quantities are conserved in the motion? Give expressions for
these quantities.
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—l N

f— > —
1

Fig. 2.73.

4) Describe the motion qualitatively as completely as you can.
(Wisconsin)
Solution:
(a) Let z be the distance of the top of the mercury column from its
equilibrium position. Suppose an external force F acting on the descending

top causes it to descend slowly a distance dz. Then F = 2pzg and its work
done is

dW = Fdz = 22pgdz .

This work is stored as potential energy dV. Hence the potential energy of
the mercury column is V = pgz2. If the tube is not spinning, the mercury
column will oscillate about the equilibrium position and the Lagrangian of
the system is

1
L = 5psé® — pgs® ,
where s = [ + 2h. Lagrange’s equation gives
2
Z+ 9,=0.
s
Hence the mercury column will oscillate with an angular frequency

_ |29 _ 29
Y VS TVivon

(b) The system has 2 degrees of freedom when the U-shaped tube
is spinning. 2 and the angle of rotation 6 are taken as the generalized
coordinates.
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1) We have
1 2, 1 g e 1 52 1242
Tzip(h—z)z +§p/(z +a:0)da:+§p(h+z)(z +1°6%) ,
0

V =pg2?

so the Lagrangian is

1 1 l .
L:T—V=5p322+§p(§+h+z)l202—pgz2.

2) Lagrange’s equations

4 (oL oL _,
dt \9¢;) 0qi

give
" 120
sz+2gz——§l 9° =0,

p (é +h+ z) 126 = constant .

As py = %, the last equation can be written as py = constant. With the

initial conditionsézwo,z'zO, z = zg at t =0, we have
! 2
Po=p §+h+zo Fwp .
3) The Hamiltonian of the system is
H=Pz2+Poé—L
1 o 1 (1 252 2
= 5pst +§p §+h+z I°0° + pgz* =T+ V,

where p, = %% = psz. Thus H is equal to the total energy of the system.

In terms of the canonical variable we have

2
P Dy 2
=2 + pgz
2s " 2(L+htz)pr2 FY
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As H does not depend on t explicitly, it is a constant of the motion, in
addition to the constant

Po=p(é+h+z>l2é.

Using the initial conditions given we obtain
1/1
H = 5 (§ +h+zo> pl*wl + pg2? .

4) The motion of the mercury column consists of two components. One
is the rotation together with the tube. The angular velocity of rotation
changes in connection with the up-and-down motion of the column. When
z increases the rotation slows down, and vice verse, to keep the angular
momentum about the vertical axis constant. The other component is the
motion of the column in the tube. The equation of motion in z is

.. A
8Z+2gz = T2
(5 + h+ Z)
2
where A = 75-37; is a constant. Generally speaking, there are three
equilibrium positions corresponding to the three roots of the equation
29z = ; A
(3+h+2)

Near each equilibrium position, the column undergoes small oscillations.
Suppose 2z, is one of the equilibrium positions, i.e.

A

22 = ——
(§+h+af

For small oscillations let z = 2z, + 2’ where 2’ is a small quantity. The
equation of motion becomes

giving the angular frequency of oscillations
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2g 24
8 s(3+h+a)

As Q is real , the equilibrium positions are all stable.

2074

A particle under the action of gravity slides on the inside of a smooth
paraboloid of revolution whose axis is vertical. Using the distance from the
axis, r, and the azimuthal angle ¢ as generalized coordinates, find

(a) The Lagrangian of the system.
(b) The generalized momenta and the corresponding Hamiltonian.
{c) The equation of motion for the coordinate r as a function of time.
(d) If %f = 0, show that the particle can execute small oscillations
about the lowest point of the paraboloid, and find the frequency of these
oscillations.
(Columbia)

Solution:

Suppose the paraboloid of revolution is generated by a parabola which
in cylindrical coordinates (7, ¢, z) is represented by

z:A’I‘2,

where A is a positive constant.
(a) The Lagrangian of the system is

1
L=T-V= 5m(7"2+r2¢2+22) —mgz
1 1
= Em(l + 4/127'2)7"2 + §mr2¢2 — Amgr? .

(b) The generalized momenta are

_oL _

pr=gz=m(l+ 44y
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and the Hamiltonian is
H=p 7 +p,0— L
1 2202, 1 2.9 2
= 5m(1+4A 4y + Zmr + Amgr

2

P2 » 2
L Amgr* .
) + Amg

= om(i+ 44272 T 2

(c) Lagrange’s equations
4 (3_13) _9L
dt \ 9¢; 0q;
give
m(1+ 4427 + dmAri? — mrg? + 2Amgr =0,

mr2p = constant .

Letting the constant be mh and eliminating ¢ from the first equation, we
obtain the equation for r:

(1+4A4% %)% + 4A%r*? + 2Agr* = A2 .
(d) If ¢ = 0, the first equation of (c) becomes
(1+4A%r?)7 + 4A% 72 + 24gr = 0 .

The lowest point of the paraboloid is given by r = 0. For small oscillations
in its vicinity, r, #, ¥ are small quantities. Then to first approximation the
above becomes

F+2Agr=10.

As the coefficient of r is positive, the particle executes simple harmonic
motion about r = 0 with angular frequency

w = +/2Ag .

2075

A nonrelativistic electron of mass m, charge —e in a cylindrical mag-
neton moves between a wire of radius a at a negative electric potential
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—¢o and a concentric cylindrical conductor of radius R at zero potential.
There is a uniform constant magnetic field B parallel to the axis. Use
cylindrical coordinates 7,6, z. The electric and magnetic vector potentials
can be written as

ln(r/R A= 1Breg

=% ln(a/R) 2

(eg is a unit vector in the direction of increasing 6).

(a) Write the Lagrangian and Hamiltonian functions.

(b) Show that there are three constants of the motion. Write them
down, and discuss the kinds of motion which can occur.

(c) Assuming that an electron leaves the inner wire with zero initial
velocity, there is a value of the magnetic field B, such that for B < B, the
electron can reach the outer cylinder, and for B > B, the electron cannot
reach the outer cylinder. Find B, and make a sketch of the electron’s
trajectory for this case.

You may assume that R >> a.
(Wisconsin)

Solution:
(a) In SI units, the Lagrangian is
1 ., .

L=T—V=§mr +ep—er- A

As
. 1

I = (7,78, %), A = (0, EBT’O) ,

the above becomes
1 . .
L= Em(i'2 + 7202+ 5%) +edp — %eBr20 .

The generalized momenta are

oL . o __, .
pr—ﬁ"mr, Po = 60 0 _CBT, pz—a_é'"mZ,

and the Hamiltonian is
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H = p, 7+ peb +p,5 — L

1 . ; .
= Em(r2 +720% + 5?) — e
2

_P3+ 1 —i—leBr2 2+pz ep
“om T oame2 \P2 T 2 2m

1|2 pe 1 ’ 2
=5 Py + 7+§eBr +p;| —ed.

(b) As H is not an explicit function of time, it is a constant of the

motion. Also, as
OH

piz—aqi,

if H does not contain g; explicitly, p; is a constant of the motion. Hence
Do, D, are constants of the motion. Explicitly,

1 pe 1 .\
H=%[p3+(7+5637‘) +p§:| —ep=F,

L1
pe = mr?f — EeBr2 =C,

pz:;mé:C?,

where E,C), C, are constants.
(c) The initial conditions r =a,7 =0 =2=0at t = 0 give

1
E = —e¢ = egy, C, = —56302, Cy=0.

p. = Cy = 0 means that there is no motion along the z-direction. H = E

gives
2 2
1], (1 a? In (%)
- ZeB - = R/ = .
om [”’ * (2e ) (’" r) ] +edo [m(%) eb
Suppose a value B, of the magnetic field will just make the electron reach
the outer cylinder. As then p, = 0 at » = R, the above gives

1 (1 2 a?\?
'2—’;’; (ECBC) (R— E) = €¢0 .
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If we assume that a < R, this reduces to

2 [2m¢o
R e

B, =

At r = R, p, is given by
2
1 [, (1
2 [Pr + (ieBR) ] = edo ,

or . \ N
p? = 2medo — (EeBR> = (B? - B?) (EeR> .

py is real at r = R if B < B.. Hence under this condition the electron
can reach the outer cylinder. If B > B, p, is imaginary at 7 = R and the
electron cannot reach the outer cylinder. For the latter case the trajectory
of the electron is as sketched in Fig. 2.74.

S~

Fig. 2.74.

2076
Consider the Lagrangian
L= %m(:i:2 —wiz?)er

for the motion of a particle of mass m in one dimension (z). The constants
m,~ and w are real and positive.

(a) Find the equation of motion.

(b) Interpret the equation of motion by stating the kinds of force to
which the particle is subject.
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(c) Find the canonical momentum, and from this construct the Hamil-
tonian function.
(d) Is the Hamiltonian a constant of the motion? Is the energy con-
served? Explain,
(e) For the initial conditions z(0) = 0 and #(0) = vo, what is z(t)
asymptotically as t — oo?
(Wisconsin)

Solution:

(a) Lagrange's equation

d(oLy _or_
dt\0z) 0z
gives the equation of motion

F+wic=—vi.

(b) The particle moves as a damped harmonic oscillator. It is subject
to an restoring force —mw?z and a damping force —m<y# proportional to
its speed.

{c) The canonical momentum is

= —— =me"'s
P= 5z
and the Hamiltonian is
H=pr—L
vt 22 1 vt 4.2 1 t, 2,2
= me —Eme a:+§me“’wm

2 ,—t 1

p'e 2,2 vt
= —mw r e’ .
2m +2 a:

(d) Since H depends explicitly on time, it is not a constant of motion.
It follows that energy is not conserved also. Physically, in the course of
the motion, the damping force continually does negative work, causing
dissipation of energy.

(e) Try a solution of the type = ~ e
motion gives

#2%_ Qubstitution in the equation of

0y —w?=0,



Analytical Mechanics 639

which has solutions
Q= % (7&:\/72 —4w2) .
Hence

z=Aexp [—-%(’y-i— V72 —4w2)t] + Bexp [—%(7— VY2 — 4wt .

The initial conditions z =0, £ = vy at t = 0 give

B=-A A=-—2_ .
V2 — 42
If ¥ < 2w, let 24/9% — 4w? = iw;. Then
—_ Yo ~a —iwyt _ piwngt =U_0 —-%’- :
z 22,Wle z (e e*1t) WIe sin(wt) ,

so that z - 0 ast — oo.
If v > 2w, both v + /% — 4w? are real and positive so that there will
be no oscillation and z will decrease monotonically to zero as t — co.

2077

A particle is confined inside a box and can move only along the z-axis.
The ends of the box move toward the center with a speed small compared
with the particle’s speed (Fig. 2.75).

(a) If the momentum of the particle is pp when the walls of the box are
at a distance z apart, find the momentum of the particle at any later time.
Collisions with the walls are perfectly elastic. Assume that at all times the
speed of the particle is much less than the speed of light.

(b) When the walls are a distance z apart what average external force
must be applied to each wall in order to move it at constant speed V?

(UC, Berkeley)

Solution:

(a) Consider a collision of the particle with one of the walls. As the
collision is perfectly elastic, the relative speeds before and after the collision
are equal. If the particle is incident with speed v and reflected back with
speed v’ and the wall has speed V towards the particle, we have
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AWMLY

Fig. 2.75.
v+ V=v -V,

i.e.
vV=v+2V.

Thus after each collision, the magnitude of the particle momentum gains
an amount 2mV, m being the mass of the particle. When the walls are at
a distance x apart, as V is much smaller than the speed of the particle, the
interval between two consecutive collisions is

T rm
T:—:—,

(&) »
p being the particle momentum. The change of momentum in time dt is

d
dp=2mVﬂ = 2Vpdt .
T T

As the walls move toward each other with speed V,
r=u1x9—2Vt,

measuring time from the moment z = z3. Then

dp = —@ .
z
As p = py when z = z, its integration gives
_ PoTo _ _ PoTo
T zo— 2Vt~

(b) Consider a collision of the particle with one wall. The momentum
acquired by the particle is

p+2mV — (—p)=2p+2mV .
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The interval between two consecutive collisions with the wall is

2z 2xm
T/=-——:—,

() »
so that the change of momentum due to collisions with the wall in a time
dt is p
t
dp =2(p+ mV)—,F/ .

Hence

2

dp _(p+mVip  p* _ pizd

dt Tm zm  mzxd
as £ > V. This is the force exerted by the wall on the particle. To keep
the walls moving at constant speed, a force of the same magnitude must
apply to each wall. The problem can also be solved using the Hamiltonian
formalism. Use a reference frame attached to one of the walls, say the
left-hand wall. As shown in Fig. 2.75, the particle has velocity —Z — V.
The Hamiltonian is

H:lm(ﬁ-i—V)2

2
_ 1 2 P’ _ Py
= am Pt ™) = gt
The force on the particle is p which is given by Hamilton’s equation:
p= OH _ Py
0  ma3’
2078

The Poisson bracket is defined by

da Ob da b
8= (Gocope ™ pcas)

(a) Show that for a dynamical quantity a(q, p, t)

da da
—d—t —[a,H]‘{"E .
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A two-dimensional oscillator has energies

T(i,5) = ym(z +37%)

V(z,y) = %K(a:2 + 3% + Czy ,

where C and K are constants.

(b) Show by a coordinate transformation that this oscillator is equivalent
to a nonisotropic harmonic oscillator.

(c) Find two independent constants of the motion and verify using part

(a).
(d) If C = 0 find a third constant of the motion.
(e) Show that for the isotropic oscillator the symmetric matrix

o 1
Aij = %% + EK:E,':E]-

is a constant of the motion by expressing each element in terms of the
known constants of motion.
(Wisconsin)

Solution:

(a) Using Hamilton’s canonical equations

we find

(b) Introducing the new variables

1 1
n=;5@+y% €=;5&—y%

we have
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1 1
T = E(n%), y= E(n—ﬁ) -
Then
T = 3m [ +6)? + (i~ €]
4
12 g
- 2m(77 +§2) ’
V= KI+ 9+ (1 -7+ 5007 — )
1 1
=K@ +€)+ 500" - €%
1 1
= S (K +C) + S (K - O)8?,
L=L+L,,
with
1

1
_ 1 a9 1 2
L, = 2’"”7 2(K +Cy*,

Ly = %me — %(K - ).

Note that the form of L; and L, indicates that n and £ are normal
coordinates. Hence the system is equivalent to two harmonic oscillators
with angular frequencies

K+C K-C

wy = > Wy =\ ———
m m

respectively. As the frequencies are different the system acts as a non-
isotropic harmonic oscillator.
(c) As the canonical momenta are by definition

oL . oL
pnza—r_’:mn, pe-_:a—é:

mé
H=pyi+p€—L

1 2 1 2 1 2 1 2
=~ p2+ —pii= Z(K - C)e? .
5Pt 5 Pet 2(K+c),, + 2( )€
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This can also be written as

H=H, + H,
with H,, H, corresponding to L,, L, respectively, i.e.

P
2m

r;

H, =1
1" om

1 1
+5(K+C)y,  Hy= o>+ (K- C)g*

As H,, H, do not contain t explicitly, we have

dH,

e = [H\,H] = [Hy, H\, + Ha| = [Hy, Hi| + [H,, Hy| = [H,, H)|

_OH,8H,  OH,0H, OH,8H, 0OH, dH,
on Op, O Opc Op, On  Opc 0%

and, similarly,

=0

dH,
dt
Hence H,, H, are two independent constants of the motion.
(d) If C =0, wy = w, and the oscillator becomes an isotropic one. The
Hamiltonian is

1 1 1 1
H=_—p2+ —p}+-Kn?+ K¢ .
amPn t omPe T 3B + S KL

Let J = m(np¢ — €py). Then as

dJ . H]

OJOH O0JOH O0JOH 0JOoH

- -t
on Op, Op, On Ot Op; Ope O
= pepy + mKE&n —pypge —mKné =0,

J is also a constant of the motion.
(e) For the isotropic oscillator, C = 0 and z,y already are normal
coordinates. As shown above, there are three known constants of the

motion:
2 P}

B = pz+ ska?,  Bp= i+ K2 J =m(zpy — ypz) -

2m
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As A1y = E,, A2z = E,, the diagonal elements of the matrix A;; are
constants of the motion. Consider

KJ? 2 1 P2 1 K
E\E; — ey = (p_ + —K:E2> (ﬁ + EK’!}2 - %(Sﬂ’y —ypm)2

py , 1 2
= (P=Py | “ _
( om | 2 my)
Since the left-hand side is a constant, 4,5 = A4, = constant. Hence A is a
matrix of constant elements.

2079

Consider the system of particles m; = mq, connected by a rope of length
! with m4 constrained to stay on the surface of an upright cone of half-angle
a and m; hanging freely inside the cone, the rope passing through a hole
at the top of the cone as shown in Fig. 2.76. Neglect friction.

(a) Give an appropriate generalized coordinate system for the problem.

(b) Write the Lagrangian of the system and the equation of motion for
each generalized coordinate.

{c) Write the Hamiltonian for the system.

(d) Express the angular frequency for ms moving in a circular orbit in
terms of the variables of the problem.

(Wisconsin)

Fig. 2.76.

Solution:

(a) Use spherical coordinates with origin at the top of the cone as
shown in Fig. 2.76. The coordinates of m;,my are respectively (r,0, ),
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(Il — r,m — a,B). The variables 7,8, p, 3 are taken to be the generalized
coordinates.

{(b) The velocities of m;,my are respectively (7, 76, r¢sin 8), (—,0, (1 —
r)Bsin(r — a)). The Lagrangian of the system is then

L=T-V
= %m[%2 +720% + r2p%sin? 0 + (I — r)?B% sin? (7 — o))

—mgrcosf +mg(l —r)coscx .
d(oLy oL _
dt 6(]., 6qi -

mr?psin®0 = p,, a constant ,

Lagrange’s equations
give

m(l —r)?Bsin®*(r — a) = ps, & constant ,
27 — r(6% + p?sin? 0) + (L — )3?sin? a + g(cosf + cosa) =0 ,
76 + 270 — rp?sinfcosh — gsind =0 .

(c) Two other canonical momenta are

p,:a—L=2m7", pg:a—l.':mﬁé.

or o8

The Hamiltonian is

_p P P 1z
4m  2mr?  2mr?sin?@  2m(l — r)?sin’

+mgrcos —mg(L —1)cosa .

(d) If my moves in a circular orbit, 7 = constant and the angular
frequency of revolution is

G___ P
m(l — r)?sin? o
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2080

The transformation equations between two sets of coordinates are

Q=In(1+ q? cosp)
P=2(1+ ¢t cosp)qé sinp .

(a) Show directly from these transformation equations that Q, P are
canonical variables if ¢ and p are.

(b) Show that the function that generates this transformation between
the two sets of canonical variables is

F3 = —lexp(Q) — 1]’ tanp .
(SUNY, Buffalo)

Solution:
(2) As [Q,Q] =0, [P, P] =0,

_8QoP 9PIQ
9F1= 3% ~da
g} cosp

=2 222 (gsin’p+ (1+ ¢} cosp)a? cosp]
1 +q5 cosp

% sin?
q—Sl—x}L[cosp—i— (1+q§ cosp)q'é] =1,
1+q5 cosp

the transformation is canonical. Then if ¢, p are canonical variables, so are

Q,P.

(b) Solving the transformation equations for ¢ and p we obtain
g=(e?~1)%sec’p,
P =2e%e? —1)tanp .

Since the transformation is canonical, there exists a generating function

F3(Q, p) such that
__9F =95
q - 6p ’ - 6Q .

give the transformation equations. As
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dF; = %%dQ + %—i}dp = —PdQ —qdp
= —d[(e? — 1)?|tanp — (2 — 1)?dtanp
= —d[(e? — 1)*tanp] ,
we obtain
F3 = —(e9 —1)2tanp .

2081

A particle of mass m moves in one dimension ¢ in a potential energy
field V(g) and is retarded by a damping force —2mq proportional to its
velocity.

(a) Show that the equation of motion can be obtained from the La-
grangian

1
L= explent) [ymi? - V(@)
and that the Hamiltonian is

g - Plexp(=271)
2m

where p = mqgexp(2+vt) is the momentum conjugate to gq.
(b) For the generating function

Fy(q, P,t) = exp(7t)qP

find the transformed Hamiltonian K(Q. P,t). For an oscillator potential

+V{g)exp(2vt) ,

1,
V(g) = ;mw’q?

2
show that the transformed Hamiltonian yields a constant of the motion
P? 1
K=_—+ -mw? P.
om T3 Q+1Q

(c) Obtain the solution g(t) for the damped oscillator from the constant
of the motion in (b) in the underdamped case ¥ < w. You may need the
integral
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/ dz sin~!
—_— = z.
V1-—2z2
(Wisconsin)
Solution:

(a) Lagrange’s equation

gives

The particle is seen to be subject to a potential force —%—‘; and a damping

force —2m-y¢ proportional to its speed. Hence the given Lagrangian is
appropriate. The Hamiltonian is given by

H=p¢-L
with
p= Z—‘II’ = mge?" .
Thus

(b) For the generating function F;(q, P,t) we have

_ R, _ OF, . OF
=% 9@ K=Hr%
As Fy = gPe™,

p="Pe", Q=ge",

P p2€—-2’yt

5+ V(@)e™" +ygPe™ .

For an oscillator of potential

V= 1maﬂq2 = lmw2Q2e'2’" )
2 2
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the transformed Hamiltonian is

P 1 59
K=—+-muwQ°+vQP.
2m 2
As it does not depend on time explicitly, K is a constant of the motion.

{c) Hamilton's canonical equations are

- 6[{_— 20y
. OK P
Qzﬁ——‘i"YQ.

Differentiating the second equation and making use of the original equations
we have

Q+ W -7 =0.
In the underdamped case, w > v and we may set
w = \/m )
where w, is real positive. The solution is then
Q = Asin(wit + ) ,
where A, p are constants. As
P=m@Q-1Q),

we have

K= %m[(QﬂQ)’+w2Q2+27Q(Q—7Q)] = %m(Q2+w?Q2) = %mw?A{

giving
A= L, 2K
wh m
Hence the solution is
1 /2K .
g=Qe " = —/—e Msin(wt+ ) .

wh m
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2082

Suppose that a system with time-independent Hamiltonian Hy(g, p) has
imposed on it an external oscillating field, so that the Hamiltonian becomes
H = Hy(q,p) — eqsinwt, where ¢ and w are given constants.

(a) What is the physical interpretation of ¢ sinwt?
{b) How are the canonical equations of motion modified?
(c) Find a canonical transformation which restores the canonical form
of the equations of motion. What is the “new” Hamiltonian?
(Wisconsin)

Solution:

(a) A possible interpretation is shown in the following example. A par-
ticle of charge e moves in an electric field uniform in space but oscillating in
time, namely an electrical field whose strength is represented by (e/e) sinwt.
Then esinwt is the force exerted on the particle by the electric field.

{b) Hamilton’s canonical equations of motion are now

_ OH _ 0H,

q 6p 6p ’

. OH  0H, )

p= 3¢~ oq + esin(wt) .

(c) We have
H(q,p, t) = HO(q,p) —€q Sin(“Jt)

and wish to find a new Hamiltonian

K(Q,P) = HO(q,p)

by a canonical transformation. Let the generating function be Fy(gq, P,t).

As

%}% = K — H = ggsin(wt) ,

we take .
Fy =qP - Eq cos(wt) .

The transformation equations are
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or
€
P=p+ " cos(wt) ,
and
Q= 5F =q
Then
OFy
= H+ 22
KQP)=H+

= Hy(q,p) — egsin(wt) + egsin(wt)

= Ho(Q, P — gcos(wt)) ,
OK _ 9H, 9p _ 9Ho
oP ~ 8p 0P  9p
_OK _ 0Hy0q _ 9H,
0Q  0q 8Q ~  9q

:‘1:Q,
=p—esin(wt) = P,

use having been of the results in (b). Hence the transformation restores
the canonical form of the equations of motion with the Hamiltonian Hg.

2083

(a) Solve the Hamilton-Jacobi equation for the generating function
S(g, a,t) in the case of a single particle moving under the Hamiltonian
H = 1p®. Find the canonical transformation ¢ = ¢(8, a), and p = p(8,a),
where 3 and « are the transformed coordinate and momentum respectively.
Interpret your result.

(b) If there is a perturbing Hamiltonian H' = 142, then a will no
longer be constant. Express the transformed Hamiltonian K (using the
same transformation found in part (a)) in terms of o, and t. Solve for
B(t) and a(t) and show that the perturbed solution

qB(t),a(®)],  plBQE), a(t)]

is simple harmonic. You may need the integrals
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dz
m2+1—tan T,

—/tana:da: = In{cos z) .

(Wisconsin))
Solution:
(a) The Hamilton-Jacobi equation

oS
B + H(q,p,t) =0

with p = %—‘2 becomes, for this case,

6_S+}(6_S)2—0
ot 2\9q)

As H does not depend on g¢,t explicitly, we can take the two terms
on the left-hand side as equal to —v,~ respectively, where v is at most a

function of p. Then
S=+2yq—7t.

Setting o = /27, we have the generating function
1
S=aq—-o’t.
ag - za

The constant o can be taken to be the new momentum P. The transfor-
mation equations are thus

p—aq—a,
s 9S8
Q=3p~gq ~ ¢ ot=h sy

As g = B+at, the particle moves with uniform velocity 3 in the g, p system.
(b) The perturbed Hamiltonian is
2 2
p q
H==—+-.
2 t 2

It is transformed to

98 p* ¢* o 1 2
ZH _ = — —_ = — == -
K + 5 3 + 3 2 2(ﬂ+at)
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by the transformation equations in (a). Hamilton’s equations

0K . 0K
ap° T=7%Q

Q=
give
B = (B + at)t, a=—(0+at).
Note that o = P, 8 = Q can no longer be considered constant as H has
been changed. The last equations combine to give

a+a=0,
showing that « is harmonic:
a = agsin{t + ¢) ,
where «yp, @ are constants, and thus
B=—&—at =—aplcos(t + ¢) + tsin(t + )] .
The transformation equations then give

p=a=agsin(t + ),
g=PB+at=—-a=—ogcos(t+ ) .

Hence the solution for the perturbed system is harmeonic.

2084

(a) Let us apply a shearing force on a rectangular solid block as shown
in Fig. 2.77. Find the relation between the displacement u and the applied
force within elastic limits.

(b) The elastic properties of a solid support elastic waves. Assume
a transverse plane wave which proceeds in the z-direction and whose
oscillations are in the y-direction. Derive the equations of motion for the
displacement,

(c) Find the expression for the speed of the transverse elastic wave.

(SUNY, Buffalo)
Solution:

(a) Hooke’s law for shearing



Analytical Mechanics 655

x
’
.
{ F
L/ [
€ TITTITITTTT >y

Fig. 2.77.
F =n
A - ‘p,

where F is the shearing force, n the shear modulus of the material of the
block, ¢ the shear angle, and A the cross sectional area of the block parallel
to F, gives the resulting displacement as

u=lp=—

An’

as p is a small angle.
(b) The potential energy of a unit volume of the block due to shear
strain is

1o, 1% 1, 1 (3u)?
lA/O qu—lA/o An:pld:p—inlp—in £

The kinetic energy of the block during shearing is

b1 u\?

p being the density of the block. Within the elastic limits, energy is
considered and Hamilton’s principle

13
6 / Ldt=90
1
applies. Thus

t2 t’ln6u2p6u2
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As, integrating by parts, we have

/016(2—:) dm—2/ (z_> i(gu)
“2(G)e], 2[5
[o(G) =2 (G) o -2 [ (G2 o

and as bu =0 at y =0, ! and t = ¢, t3, the above becomes

2 2
//(6 p%t2>6uAda:dt=0,

Pu  p0*u
dz2  n A2
as the equation of motion for the displacement .
(c) The equation shows that u, which is in the y-direction, propagates
along the z-direction as a transverse wave with speed

budz ,

giving

=0

n
v=,/—.
p
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SPECIAL RELATIVITY (3001-3054)

3001

(a) Briefly describe the dilemma which necessitated the development of
the special theory of relativity.

(b) Describe an earlier theory which could have eliminated the need for
special relativity and name an experiment which proved this theory to be
wrong.

(c) Describe one modern experiment which lends credence to the special
theory of relativity.
(Wisconsin)

Solution:

(a) According to Maxwell’s electromagnetic theory, the velocity of prop-
agation of electromagnetic waves in free space, c, is a constant independent
of the velocity of the source of the electromagnetic radiation. This is
contrary to the Galilean transformation which was known to apply between
inertial frames. If Maxwell’s theory holds in one inertial frame, it would
not hold in another inertial frame that has relative motion with respect to
the first. The dilemma was that either Maxwell’s electromagnetic theory
or Newtonian mechanics holds but not both, even though both appeared
to be well established.

(b) An earlier theory which attempted to resolve the dilemma was the
theory of ether. It presupposed that the universe was filled with a fictitious
all-pervasive medium called the ether and that Maxwell’s theory holds
only in a frame at rest relative to the ether. But Michelson’s experiment
purported to measure the velocity of the earth relative to the ether always
gave a zero result even though the earth moves in the solar system and
the solar system itself moves. Thus the presence of ether cannot be
demonstrated and the ether theory has to be abandoned.

(c) Take as example Herter’s experiment measuring the time of arrival
of two photons emitted in the annihilation of a positron in flight. The
detectors were at different locations which had the same distance from the
place where the annihilation took place . It was found that the two photons
arrived at the detectors simultaneously. This indicates that light emitted
in different directions from a rapidly moving source has a constant speed.

659



660 Problems & Solutions on Mechanics

3002

A space traveler with velocity v synchronizes his clock (¢’ = 0) with his
earth friend (¢ = 0). The earthman then observes both clocks simultane-
ously, ¢ directly and ¢’ through a telescope. What does t read when t' reads
one hour?

(UC, Berkeley)
Solution:

Let X, be inertial frames attached to the earth and spaceship re-
spectively with the z-axes along the direction of relative velocity, and set
ty =t} = 0, ; = i = 0 when the clocks are synchronized. Consider the
event that the spaceship clock reads t,. The transformation equations are

cty = y(cty + Bzh) = ety ,
zq = Y(xh + Pety) =vPets ,
where § = ¥, v = ﬁ, as =, =z} = 0. Light signal takes a time

At = % = 7Bty

to reach the earthman. Hence his clock will read

1+0 ct+v
_ o r_
tr+ At =1+ B)ty =415 ¢ _‘/c_v

when he sees t), = 1 hour through a telescope.

3003

A light source at rest at position z = 0 in reference frame S emits two
pulses (called P, and P) of light, P, at t =0 and P; at t = 7. A frame 5’
moves with velocity vX with respect to S. An observer in frame S’ receives
the initial pulse P, at time ¢/ =0 at 2’ = 0.

(a) Calculate the time 7/ between the reception of the pulses at ' = 0
as a function of 7 and 8 = 2.

(b) From (a) determine an exact expression for the longitudinal
Doppler effect, that is, calculate A’ in terms of A and 3, where A and A are
the vacuum wavelengths of light as measured in S and S’ respectively.
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(c) Calculate to first and second order in £ the Doppler shift of the Hg
emission (A = 4861.33 A) from the neutralization to H atoms of protons
accelerated through a potential of 20 kV. Assuming that emission occurs
after acceleration and while the protons drift with constant velocity. Also,
assume that the optical axis of the spectrometer is parallel to the motion
of the protons.

(Chicago)

Solution:

y s Yy s’
L__)x '——)X' —3>
[o] o

Fig. 3.1,

(a) The inertial frames S, S’ are as shown in Fig. 3.1. Assume that the
origins O and (¥ coincide at t = t’ = 0 so that the emission of P, and its
arrival at the observer both occur at z =0, t =0, ' = 0, t' = 0 as given.
The emission of P, isat z=0,t=7in S and

to arrive at the observer. Hence the observer records the time of arrival as
U+ A =1 +8)r,

or

|
I [+
@™
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(b) As 7,7’ are the intervals between two consecutive pulses in S, S’
respectively, we have the frequencies

and wavelengths

in S and S’ respectively.

{(c) The protons have energy 20 keV each, much smaller that the rest
mass energy of 936 MeV, so that their velocity can be obtained nonrela-
tivistically. Thus

v 2F 40 x 10-3
8= 1=\ =\ g = 000oss.
As (3 is small, we can expand ) (3) as a power series
143 1
MN=\/—C 324 ...
5 ,\(1+ﬂ+2ﬂ+ )

The first order shift of the Hg emission is
AX = )3 = 4861 x 6.54 x 1073 = 31.8 A,

and the second order shift is

Al = %,\W =0.10 A.

3004

(a) Consider Lorentz transformations (LT) between the frames S, S’
and S” indicated in Fig. 3.2, where the z-axes are all parallel, and S’
and S” are moving in the positive z-direction. Prove that for this type of
transformation the inverse of an LT is an LT, and that the resultant of two
LT’s is another LT.
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Fig. 3.2.

If the velocity of S’ relative to S is v, and the velocity of S” relative
to S’ is vy, derive the expression for the velocity of S’ relative to S.

(b) In particle physics, the interaction between particles is thought of
as arising from the exchange of a particle as shown in Fig. 3.3. Prove that
the particle exchanged is not real but virtual.

(SUNY, Buffalo)

Py ]

P )

Fig. 3.3. Fig. 3.4.

Solution:
The Lorentz transformation between the frames S, S’ is given by

11:/ = ’Yl(x - ﬂlCt); y/ =Y, Z/ =z, Ct/ = ’Yl(Ct - ﬂlx) )

where
0N 1

ﬂl:c; ’Yl:\/?_ﬁ?'

According to the principle of relativity, all inertial frames are equivalent,
so the transformation from S to S’ should have the same form as the
transformation from S’ to S. However, as the velocity of S’ relative to
S is v, the velocity of S relative to S’ is —v,. The transformation from §’
to S, i.e. the inverse transformation, is therefore

T=m (:Bl + ﬂlCt/)v Y= ylv z = Z/v ct=m (Ct/ + ﬂlx’) y

which is seen to be also a Lorentz transformation.
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Consider

" = vz’ — Bact’) = vam[(z — Bict) — Ba(ct — Priz)]
=yl + b B2)x — (61 + Ba)et] ,
ct” = ya(ct’ — Paz’) = o[l + B1Ba2)ct — (b1 + B2)z] ,

where
Vg _ 1
B2 = <’ T2 = ﬁ .
Writing
8= B + B2 y = 1
1+ 6316 V1-p2’
we have
izl_(ﬂl+ﬂz)2:(l—ﬂ?)(l—ﬂg): 1
72 1+ 1fa (1+ B1B2)? N1 +5B)?’
or

¥ =m7(l+506) .
Hence the transformation from S to S” is given by
' =y(@-pfet), Y=y, Z'=z " =7t-p),
showing that it is also a Lorentz transformation. Thus the resultant of two
LT’s is also an LT.
Note that (c is the velocity of S” relative to S. This can be shown

directly as follows. Consider the transformation between S and S’. Differ-
entiating we have

dr = m (dz’ + frcdt’)
cdt = v (cdt’ + fhdz')

and

dr v+

dt 1+ 4y

Thus with ¢/, the velocity of a point relative to S/, and v;, the velocity of
S’ relative to S, the velocity of the point relative to S is given by the above
relation. If the point is at rest in S, then v’ = vy and the relation gives
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_ B+ P

A= 1+ hm

as expected.

(b) As shown in Fig. 3.4, by exchanging a particle of 4-momentum ¢ in
the interaction, the 4momenta of particles 1 and 2, p) and p; change to p}
and p}, respectively. The conservation of 4 momentum requires

pi=m+4q py=pr—q.

Let the mass of particle 1 be m; and that of the exchange particle of
4-momentum ¢ be m and consider the first 4-momentum equation. The
momentum part gives

a=pi—p1,
or
¢ =p’+p - 2p1-P)
ie.
m?y?6% = min? By + m*+} B} — 2m? N m BBy cos? 8 (1)
0 being the angle between p, and p{, and
my = my; —mm ,

or
m?y? = min? + myd - 2mimm - @)

Equations (1) and (2) combine to give
m? = 2mi(1 ~ M7 + M7 4B} cos) .

We have to show that m? < 0 so that the interaction cannot be real, but
has to be virtual. As ¥26% = 4% — 1, we have to show

Vi =1y —leosb<m7i -1,

(M~ 1D -1cos?d < (mm —1)*.

This would be true if the following is true:

(MF-1DE2-1) <(mm-1)?,

or
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- -2 < -2mm ,
or
0 ’71)2 <0.

Since this always holds, the interaction has to be virtual.

3005

(a) Given that (r, ct) is a relativistic 4-vector, justify the statement that
(ck,w) is a relativistic 4-vector.

(b) Given that an atom at rest emits light of angular frequency wy and
that this atom is traveling at velocity v either directly towards or away
from an observer, use the Lorentz transformation to derive a formula for
the frequency observed by the observer for the two cases (towards or away
from the observer).

(UC, Berkeley)

Solution:

(a) Consider a plane electromagnetic wave
E = Eoei(klr—wt)’ H= Hoei(k-r—wt)

in an inertial frame ¥. In another inertial frame ¥’ moving with relative
velocity v along the z-direction, the field vectors E’, H' are given by

Ej=E, Hj=H,
E/J_ Z’Y(EJ_-FM()VXHJ_),
H/J_ Z’Y(HJ_—E()VXEJ_) .

These relations require that the exponential function in E and H be
invariant:
kK r—wt'=k-r—wt.

Since (r, ct) is a 4-vector, its components transform according to

z' = y(x — Bet), v =y, Z =z, ct’ = y(ct — Bz) .
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Letting k = (ki, ko, k3), k" = (k{, k%, k3) we have

K -t — W't = kjy(z — Bet) + kyy + kjz — w'y (t - 'ﬂc_x)

w/
=7 (k’l + %) T + koy + kjz — y(w' + Beky)t
=kT + koy + kzz — wt .

Comparing the coefficients of the independent variables x,y, z,t on the two
sides of the equation, we find

cky = y(ck} + Bu'), cky = cky, cks = ckj, w = y(w' + Bcky) .
These relations are exactly the same as those for (r, ct):
z = y(z' + Bet’), y=1, z2=2, ct = y(ct’ + Bz’) .

Hence (ck,w) is a relativistic 4-vector.

(b) Let the observer be at the origin of ¥ and the atom be at the origin
of ¥’ (the atom is moving away from the observer with velocity S8c). The
angular frequency as measured by the observer is w. As light from the atom
that reaches the observer must have been emitted in the —z direction, we
have

4
K = (—k’,0,0) = (_%,0,0)

by definition. The transformation relation then gives

w=7(w’—ﬂw’)=’Y(1—ﬂ)wo=w0\/%:“"’v 212 '

If the atom is moving towards the observer, 3c in the above is to be
replaced by —fc and we have

1+4 c+v
w=woy 775 = woy/ sy -
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3006

A spaceship is moving away from the earth at a speed v = 0.8c. When
the ship is at a distance of 6.66 x 108 km from earth as measured in the
earth’s reference frame, a radio signal is sent out to the spaceship by an
observer on earth. How long will it take for the signal to reach the ship:

(a) As measured in the ship’s reference frame?
(b) As measured in the earth’s reference frame?
(c) Also give the location of the space ship when the signal is received,
in both frames.
(SUNY, Buffalo)

Solution:

Let the observer on earth be at the origin of the inertial frame ¥ and
the spaceship be at rest in the inertial frame ¥’ moving with velocity Gc
relative to ¥ along the z direction. For convenience consider (b) first.

(b) Consider the problem in 3. At time ¢ = t, when the ship is at z,, a
radio signal is sent out by the observer. It is received by the spaceship at
time t;. As the velocity of propagation of the signal is ¢ we have

(ty —to)c =z, + (t; — to)Bc,
yielding

T, 6.66 x 108

— — = 4
ST B 02x3xies  x10s

t — to

as the time taken for the signal to reach the ship.
(a) Consider the two events

E, : sending out of signal by the observer on earth,
E) : arrival of the signal at the ship.

In ¥ the £ and t coordinates are

Ep : (zo,t0) = (0,t9) »
El : ((El,tl) = ((tl — to)C,tl) .

In ¥/
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t) =7 (tl - &) =v[(1 - B)t, + Bto] .

[

Hence the time of travel of the signal in the ship’s frame is

t’l—t{):'y(l—ﬂ)(tl—to)z‘/i—;g(tl~—to):3.7x103 s .

(c) The location of the spaceship when the signal is received is
T, = (t, — to)c = 1.11 x 10* x 3 x 105 = 3.33 x 10° km

in the earth’s frame, and z{ = 0 in the ship’s frame.

3007

A globe of (rest) radius Ry, with identifiable markings on it, is moving
with a speed v with respect to an observer located a large distance away.
The observer takes a picture of the globe at the time that he sees the globe
moving perpendicular to the line joining himself with the globe. What does
he see when he develops the film?

(Columbia)

Solution:

Consider a thin square ABCD of (rest) side | moving with velocity v
relative to an observer P at a large distance | away such that the plane of
the square contains the line of sight as shown in Fig. 3.5, and the instant
when AB is perpendicular to the line of sight. Light from D’ emitted at
an earlier time when D was at D’ intersects the extension of the line AB
at E’ at the instant under consideration. Then

DD DE _ |
v ¢ ccosd’

EA=DD—ltanf = (gseCO——tanO) ~ %’ -y
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with 8 = 7, since for L > [, 6 = 0. As AB is moving with velocity v, on

account of Lorentz contraction, it will be seen as AB’ = 4B = [, /1 — 32,

Y
where v = 1+ﬁ2

ob------
©
|
I —
i
|
|
R
|
=
|

—
-—

e I S

R

Fig. 3.5. Fig. 3.6.

Consider now the square ABCD after rotating through an angle o, as
shown in Fig. 3.6, with a given by sina = 3. We have

E'A = lsina = 13, AB' =lcosa =1\/1- 2.

The relationship among the points E’, A, B’ in the above two cases are
exactly the same. Hence the moving square in Fig. 3.5 will be photographed
as the stationary square shown in Fig. 3.6. As the object is a sphere, it will
still be photographed as a sphere.
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3008

An atomic clock is carried once around the world by a jet plane and
then compared with a previously synchronized and similar clock that did
not travel. Approximately how large a discrepancy does special relativity
predict?

(Columbia)
Solution:

Suppose the jet plane moves with velocity Sc. Let its rest frame be

S’ and the earth’s frame be S. The two frames can be considered as

approximately inertial. Lorentz transformation ct = y(ct’ + fz’) give for
_ 3 . . ’ _ _ l

Az’ = 0, since the clock is fixed in X', At = yAt/, where v = S Then

for 3 « 1, we have

1 1
At = ——— At ~ 1+—2>At’,
V1-p? ( 2ﬁ

or
At — At ~ %ﬂ2At’ .

Take for example a jet fighter flying at 1000 m/s, about three times the
speed of sound. The earth has radius 6400 km, so the fighter takes

27 x 6400 x 103

_ 4
1000 =4.02x10%s

to fly once around the earth. The clock carried by the fighter will be slower
by

=22x10""s .

At—At’~( 1000 )2 4.02 x 104

3 x 108 2

3009

(a) Write down the Lorentz transformation for the position 4-vector and
derive the transformation for the momentum 4-vector.
(b) Show that the Doppler effect on light frequency can be expressed as

when the source and observer are approaching;

1+
1-4

yv=uy
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1-—

i) v=1y 1—+—g when the source and observer are receding;
Vo
V1—p32
directions passing each other.

i) v = when the source and observer are in perpendicular

(SUNY, Buffalo)

Solution:

(a) Consider two inertial frames X,3’ with the corresponding axes
parallel to each other such that ¥’ moves with a velocity v = B¢ along
the = direction and that the origins coincide at ¢t = ¢’ = 0. The Lorentz
transformation for the position 4-vector z* = (r, ct) = (z, y, 2, ct) is

'™ = Q%a” |
where
Yy 0 0 By
. 0 10 0
Qs = 0 01 0
By 0 0 ~«

with v = (1 — 82)~%.
The momentum 4-vector is defined as

p* =(pc, E) ,

where E = mc? is the total energy. As all 4-vectors transform in the same
way, its transformation is given by

PyC Yy 0 0 -Bv PzC ¥(pzc — BE)
pyC _ 0 10 0 pyc | _ PyC
pyc 0 01 0O PzC P.C
E By 0 0 +« E Y(E - Bpzc)

(b) The wave 4-vector is defined by
k® = (kc,w) .

Its transformation
o __ nopp
k' = Qﬂk
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can be written as
ki =~ (kz -~ ﬂTw) , ky, = ky, k. = ks, w' = y{w — Bkzc) .

To obtain the Doppler effect, let the frames of the light source and
observer be X/, 3 respectively.

i) When the source and observer approach each other let Goc be the
relative velocity of the former relative to the latter. Then 3 = —f3y. The
inverse transformation is

w =YW’ + Pkic) = y(w' ~ Boklc) .

Askl =k, =0,k = —k' = —%, we have

— r__ 1+ﬂ0
w=71+ B =w -3,
or
~ v 1+ G
1-0o°

where «' = 2wy, is the proper angular frequency of the light and w is the
angular frequency as measured by the observer. Note that k, = —k as the
light has to be emitted backwards to reach the observer.

ii) When the source and observer are receding from each other, we have
B = Bo, Boc being the velocity of the former relative to the latter. Thus

1— By
w = 1_ /: ’
11 = B’ = [T
or
Vo 1- 0
1+ 6o

iii) When the source and observer are in perpendicular directions passing
each other, let the source be at (0,y’,0) in £/ and the observer be at (0,0, 0)
in £. They pass each other at t =t/ = 0, when k, =0, k, = —k, k, = 0.
The transformation equation for w then gives

w/

w =y + Pkc) = W = —— ,
VW' + Bkzc) = SiE
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or
Vo

V1—-p2 '

3010

A monochromatic transverse wave with frequency v propagates in a
direction which makes an angle of 60° with the z-axis in the reference
frame K of its source. The source moves in the z-direction at speed v = %c
towards an observer at rest in the K’ frame (where his z’-axis is parallel to
the z-axis). The observer measures the frequency of the wave.

(a) Determine the measured frequency +’ in terms of the proper fre-
quency v of the wave.
(b) What is the angle of observation in the K’ frame?
(SUNY, Buffalo)
Solution:

The frame K of the light source moves with velocity 3c relative to K’,
the observer’s frame. The (inverse) transformation of the components of
the wave 4-vector is given by

kic = y(ksc + fw), kyc = kyc, kic = k,c, W' = y(w + Pkxc) ,

where v = (1—3?)~%. The angular frequency of the wave in K is w = 2rv.
If the angle between the light and the z-axis is 6, then

ky = kcos®@, ky = ksind, k, =0, w =kc .

Thus
W = Y(w + Bwcosd) = y(1 + BeosHw ,

or
o (1 + Bcosb)v '

i

The above can also be written as

kK =~(1+ Bcosh)k .
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As
= (ke +22) vkteost + ),
the angle k’ makes with the z/-axis is given by
, kg cosf+f
cos§/ = k¥ 1+ pPBcosf’
With 3 = 0.8, 8 = 60°, we have
(a)
- 1+ 0.8cos60° o Eu _ zu
T\ VI-08 06 3
(b)

costl — 05+08 13
T1408x05 14°

giving §' = 21.8°,

3011

Consider two twins. Each twin's heart beats once per second, and each
twin broadcasts a radio pulse at each heartbeat. The stay-at-home twin
remains at rest in an inertial frame. The traveler starts at rest at time zero,
very rapidly accelerates up to velocity v (within less than a heartbeat, and
without perturbing his heart!). The traveler travels for time ¢, by his clock,
all the while sending out pulses and receiving pulses from home. Then at
time t, he suddenly reverses his velocity and arrives back home at time
2t;. How many pulses did he send out altogether? How many pulses did he
receive during the outgoing trip? How many did he receive on the ingoing
half of his trip? What is the ratio of total pulses received and sent? Next
consider the twin who stays at home. He sends out pulses during the entire
trip of the traveler. He receives pulses from the traveler. From time zero
to ty {by his clock) he receives Doppler-lowered-frequency pulses. At time
t, he starts receiving Doppler-raised-frequency pulses. Let t3 be the time
interval from time ¢, till the end of the trip. How many pulses does he
receive during interval ¢,? During t3? What is the ratio between these?
What is the ratio of the total number of pulses he sends to the total he
receives? Compare this result with the analogous result for the traveler.

(UC, Berkeley)
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Solution:

Consider inertial frames X, ¥/ with ¥/ moving with velocity v relative to
¥ in the direction of the z-axis. The transformation relations for space-time
and angular frequency four-vectors are

z' = y(z — vt), z =y’ +vt'),
¥ =y, 7=z,
t’=7(t—2—f), tzy(t’+i—f),
w' = y(w — vkz), w = y(w' + vkz) ,
K, = ky, k. =k,
where
'y:ﬁ with ﬂzl—zl, |k|=%, w=2mv,

v being the frequency.

Let 3, %’ be the rest frames of the twin A who stays at home and the
twin B who travels, respectively, with A, B located at the respective origins.
As the times of acceleration and deceleration of B are small compared with
the time of the trips, ¥’ can still be considered inertial. Measure time in
seconds so that v has numerical value one in the rest frame. At the start
of the journey of B, t =t' = 0.

Consider from the point of view of B.

(i) The total trip takes time At' = 2t;. Thus B sends out 2t; pulses for
the entire trip.

(ii) For the outgoing trip, 8 = 2, k; = %, and the pulses received by B
have frequency

1
= (= geBoke) =21 - B =701 - 9
since v = 1 as ¥ is the rest frame of A. Hence B receives

vVt =y1 -0t =t i—;—g

pulses during the outgoing trip.



Special Relativity 677

U

(ii) For the ingoing trip, 3 = -2, k, = %, and
V=11 + By =7(1+58).

Hence B receives

148
't = (1 + Bty = t14] ——
vt =71+ B)ta "Wicz 3
pulses during the ingoing trip.
(iv)
total pulses received by B y(1-B)ty +y(1+8)ty 1
total pulses sent by B 2t, == 1-p2

Consider from the point of view of A

(1) In the interval ¢t = 0 to t = t2, A receives Doppler-lowered-frequency
pulses indicating that B is moving away during the interval, i.e. 3= 2. As
the pulses have to be emitted in —z’ direction to reach A, k; = —%. Thus

v=o0"~-pv)=v1-p8) =+(1-70),

since v’ = 1 as ¥/ is the rest frame of B, and the number of pulses received
is 7(1 — B)t2. The interval of time during which B, starting at ¢t =t = 0,
moves away from A is transformed by

4
At = (At’ + @) = YAt =t

since Az’ = 0, B being stationary in ¥’. However, A and B communicate
by light pulses, whose time of travel

z _ y(z' + Bet’)
C - C

= ’Yﬂt/ = ’Yﬂtl 3

where x is the coordinate of B in ¥, must be taken into account. Hence

T 1+4
ty = At+— =7(1 ty =t/ —,
2 +- =1+ Ht =t 13
i.e. the number of pulses received is
1—
’y(l—ﬂ)tgztg —éztl.
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(ii) In the time interval 3 from ¢t = t2 to the end of journey, A receives
Doppler-raised-frequency pulses, indicating that ¥/ moves toward X, i.e.
B=-2 Ask, =-4,

v=9(t/ +pV)=v1+B) =(1+p).
By a similar argument as that in (i) we have
ts = 7t1 — vBt1 = (1 - B)tx .
Hence the number of pulses received is
Y1+ B)ts =t .
(ii1)

lowered-frequency pulses received by A 1)
raised-frequency pulses received by A ~ ¢,

=1.

(iv)
total number of pulses sent by A
total number of pulses received by A

_t2+t3_’7(1+ﬂ)t1+’¥(1—ﬂ)t1:,Y: 1

2t 2t V1i-p2
This is the same as the ratio of the number of pulses received by B to that
sent by B during the entire trip, as expected since counting of numbers is
invariant under Lorentz transformation.

3012

A spaceship has a transmitter and a receiver. The ship, which is
proceeding at constant velocity directly away from the mother earth, sends
back a signal pulse which is reflected from the earth. Forty seconds later
on the ship’s clock the signal is picked up and the frequency received is one
half the transmitter frequency.

(a) At the time when the radar pulse bounces off the earth what is the
position of the earth as measured in the spaceship frame?
(b) What is the velocity of the spaceship relative to the earth?
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(c) At the time when the radar pulse is received by the spaceship where
is the ship in the earth frame?
(UC, Berkeley)

Solution:

Let the spaceship and the earth be at the origins of inertial frames ¥’
and X respectively with ¥/ moving with velocity Bc relative to ¥ in the «
direction such that ' =z =0att =t =0.

(a) The velocity of the radar pulse is ¢ in all directions. So in ¥’ the
pulse takes a time % = 20 s to reach the earth. Hence the position of the
earth when the pulse bounces off the earth is 2’ = —20 ¢ = —6 x 10 m as
measured in the ship’s frame.

(b) In X the angular frequency w of the signal is observed to be

w = y(w' + Bck)

with w’ = wy, the proper angular frequency of the signal, kj, = —“2 as the

signal has to go in the —z’ direction to reach the earth, and v = ﬁ

Thus
w=7y(1-Bwo .

After reflection from the earth’s surface, the angular frequency will be
observed in ¥’ as

w" = y{w - Bek)

with k; = £, w = ¥(1 — B)wy. Thus

1-3 1
S =201 = B =71 - B0 = (155 ) wo = 3eu.
yielding
1
B=3-
Hence the velocity of the spaceship relative to the earth is

v——-%x3x108=108m/s.

{c) In ¥, when the signal bounces off the earth the time is

V= __2ﬂ()cc=60s
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as the earth moves with relative velocity —fc. When the signal is received
by the ship, the time is ¢’ = 60 + 20 = 80 s. As the ship is stationary at
the origin of ¥/, = 0. This instant is perceived in ¥ as a time

’
t:'y(t’+ﬂTx>='yt’:80'y.

As the ship moves away from the earth at a velocity fc = %c, its position
in ¥ at this instant is

0
a::ﬂct:%'yc:&5x109m.

3013

A point source S of monochromatic light emits radiation of frequency f.
An observer A moves at constant speed v along a straight line that passes
at a distance d from the source as shown in Fig. 3.7.

(a) Derive an expression for the observed frequency as function of the
distance x from the point of closest approach O.

(b) Sketch an approximate graph of your answer to (a) for the case of
¥ =0.80.

c —

(UC, Berkeley)

Fig. 3.7. Fig. 3.8.

Solution:

(a) Let the rest frames of the light source S and the observer A be ¥
and ¥’ respectively, taking the direction of the relative velocity v as along
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the z, z'-axes. The transformation of the wave 4-vector components is
ckl, = y(ck; — fw), ky, = k;, k., =k, w' = y{w — Bcks) ,
where [k| =¥, 8 =%, v= ﬁ As k; = ksinb, k = £, we have
W = y(w — Pwsing) = yw(1l — Bsinb) .

With sinf = 7?’17" w = 2nf, w = 2nf, the above gives the observed
frequency as

f’=(1— b ) .
vaz+az?) \/1-p2

1 4z
i
=-{5- = .
f 3 ( Vd? + a:7> !
To find the shape of 'fﬁ, consider the following:

t
T — —00, L:_ 54—} -3,
fo3 (&) +1

(4
(£)" +1
_ f_5
z =20, FT3"

An approximate sketch of the graph of %' is given in Fig, 3.8.

3014

Consider monochromatic radiation emitted at the sun with frequency
v, cps, and received at the earth with frequency v, cps. Use the Riemannain
matrix form

2®
goo = (1+-c7>, g1 = ga2 = g3z = —1, uzv =0,
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where @ is the gravitational potential energy per unit mass, to derive
the “gravitational red shift” L"—‘l;_‘ﬁl as a function of the difference of
gravitational potentials at the sun and earth.

(SUNY, Buffalo)

Solution:

In a gravitational field it is always possible to define a frame relative
to which the field vanishes over a limited region and which behaves as an
inertial frame. A frame freely falling in the gravitational field is such a
frame. A standard clock at rest in such a frame measures the local proper
time interval.

Consider the emission of monochromatic radiation by an atom at rest
at point P in a gravitational field and use a coordinate frame in which the
atom is at rest. If the period is t in the coordinate time, the period 7 in
the local proper time is

T=1 gOO(Pl) .

Suppose successive crests of the radiation emitted from P, at coordinate
times tg, to + t are received at another fixed point P, at coordinate times
to+T and to+ T +t, where T is the difference between the coordinate times
of emission at P, and reception at P,. If the gravitational field is static, T
is a constant and the period measured in the coordinate time is

(to+T+t)—(to+T)=t.

However, a standard clock measuring the local proper time at Py will give
the period as

7' = t\/g0o(P2) -

Hence the frequency v of the line emitted at P, and the frequency v/
observed at P,, as measured by identical standard clocks, are related by

voooT 9oo(P1)

v 7 goo(P2) ~

If P\, P, are on the sun and the earth respectively, this gives the gravita-
tional red shift as
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Ve ~— Vg _ gOO(ra) -1

Vg goo(re)

3015

A mirror is moving through vacuum with relativistic speed v in the =
direction. A beam of light with frequency w; is normally incident (from
Z = +00) on the mirror, as shown in Fig. 3.9.

(a) What is the frequency of the reflected light expressed in terms of w;,
c and v?

(b) What is the energy of each reflected photon?

(c) The average energy flux of the incident beam is P; (watts/m?). What
is the average reflected energy flux?

(MIT)

y ’y

;‘I——.— 14 .
} 2 - light

; — X, X

A

2
r I

Fig. 3.9

Solution:

(a) Let X, X' be the rest frames of the light source and observer, and of
the mirror respectively. The transformation for angular frequency is given
by

W' = y(w—PBcks), w =W +Pcky),
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where g = ¥, vy = ﬁ For the incident light, w = w;, ky = —%i the
mirror perceives
wi = Y(wi + Pw;) = v(1 + Bw; .
On reflection, w, = w;. The observer in ¥ will perceive
w, = y(w} + Bek;)

with &k, = w./c, or

wr = A1 + B)wy = Y2 (1+ B)’w;

_(1+B _fc+v)
- (129)-(:29)n

as the angular frequency of the reflected light.
{b) The energy of each reflected photon is

by = (°+”>nw,-.
cC—v

(c) If n is the number of photons per unit volume of the beam, its
average energy flux is nchw. The average energy flux of the reflected beam
is therefore

3016

As seen by an inertial observer O, photons of frequency v are incident,
at an angle §; to the normal, on a plane mirror. These photons are reflected
back at an angle 8, to the normal and at a frequency v’ as shown in Fig. 3.10.
Find 6, and v/ in terms of 6; and v if the mirror is moving in the x direction
with velocity v relative to O. What is the result if the mirror were moving
with a velocity v in the y direction?

(Princeton)

Solution:

Let 3, 3/ be the rest frames of the observer and the mirror, as shown in
Figs. 3.10 and 3.11 respectively and use the transformation relations
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Fig. 3.10. Fig. 3.11.

ek, =Y(cke ~ Bw), ks = (ck; + Bu') ,
cky, = cky, ck, = ck. ,
W' = y(w — Beky), w = y(w' + Bck,) .

With k; = & = 21 = @ — 21/ e have for the incident light

c ? c ?

—kcosf; = (-k,» cosf; — ﬂ:’) = —vk;(cosb; + ) ,
w} = y(w; + Bck; cos b;) = ywi(1 + Bcos ;) ,
or
k} cos 8; = vki(cos 6; + (3), k; = vki(1 + Bcos ;) .

On reflection, W/ = W}, 8. = 6}, so for the reflected light we have

1 r

Wy = (W], + Bk cos 6,) = y(w] + fu cos ) ,
kv cos 6, = YK, (cos B, + ) = vki(cos 6 + ) ,

or

kr = vk}(1 + B cos8})
= v?ki(1 + Bcos 8;) + 7> Bki(cos 6; + )
= v?k;(1 + 2B cosb; + %),
k. cos8, = V2 k;[(1 + §?) cosb; + 23] ,
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,_u(1+2ﬂcos€¢+ﬂ2)
v = - ,
0. — (1+ %) cost; +20
c08%r = 1+ 2Bcosé; + 32

If the mirror moves in the y-direction, the motion will have no effect on
the reflection process and we still have

3017

In a simplified version of the ending of one of Fred Hoyle’s novels, the
hero, traveling at high Lorentz factor at right angles to the plane of our
galaxy (Fig. 3.12), said he appeared to be inside and heading toward the
mouth of a “goldfish bowl” with a blue rim and a red body (Fig. 3.13).
Feynman betted 25 cents that the light from the galaxy would not look
that way. We want to see who was right. Take the relative speed to be
3 = 0.99 and the angle ¢ in the frame of the galaxy to be 45° (Fig. 3.12).

(a) Derive {or recall) an expression for the relativistic aberration and
use it to calculate (Fig. 3.13) the direction from which light from the edge
of the galaxy appears to come when viewed in the spacecraft.

(b) Derive (or recall) the relativistic Doppler effect and use it to calculate
the frequency ratio +’/v for light from the edge.

(c) Calculate ¢’ and v'/v at enough angles ¢ to decide who won the
bet.

(UC, Berkeley)

Solution:

(a) Let X', X be inertial frames attached to the spaceship and the galaxy
respectively with ¥’ moving with velocity v along the z-direction which is
perpendicular to the galactic plane as shown in Fig. 3.12. The velocities of
a point, u and u’, in ¥ and ¥’ are related by the transformation for velocity

u’=um_v u/=———uy_ u’=—uz—
A ey B
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Frame of
Galaxy

Fig. 3.12. Fig. 3.13.

where v = with 3 = 2. Consider light coming from a point at the

1-g2
rim of the galactic circle as shown in the figure, for which
U, = CCOS (Y, uy, = csing, u, =90.
Then CCOS G — ¥
or
cosp—f3 0.707 - 0.99

943 ,
1~ﬂcos<p 1-0.99 x 0.707 _ -0

cos =

giving ¢’ = 160.6°. This is the angle the direction of the light makes with
the direction of motion of the spaceship as seen by the traveler. This angle
is supplementary to the angle ¢’ shown in Fig. 3.13.

(b) The transformation for angular frequency,

= 7(w — Beks)
= y(w — PBckcos )
=yw(l - fcosyp) ,
gives
VoW 1-0.99 x 0.707
L= oq1- T 913,
y =W T fese) =

(c) The above result shows that the light from the rim is blue-shifted.
For light from the center, ¢ = 0 and

=v(1-p0)=0.071,

NI
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showing that it is red-shifted. The critical direction between blue shift and
red shift is given by v/ = v, or

08 1(1 1) 0.868
c == -—]1=0. ,
¥ B Y

ie. @ =29.8°
As the spaceship leaves the center of the galaxy, at first ¢ = 90° and

V/
; =v=709,

so all the light from the galaxy appears blue-shifted. As it gains distance

from the galaxy, light from the center starts to become red-shifted. As the

spaceship goes further out, light from a larger and larger central region

will appear red-shifted. Only light from the rim is blue-shifted. Finally

at a large distance away, ¢ = 0 and "7' = 0.071, so all the light from the

galaxy is red-shifted. Thus the statement of Fred Hoyle’s hero is correct

and Feynman loses the bet.

3018

As observed in an inertial frame S, two spaceships are travelling in op-
posite directions along straight, parallel trajectories separated by a distance
d as shown in Fig. 3.14. The speed of each ship is ¢/2, where c is the speed
of light.

1m |
|
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(a) At the instant (as viewed from S) when the ships are at the points of
closest approach (indicated by the dotted line in the figure), ship (1) ejects
a small package which has speed 3c/4 (also as viewed from S). From the
point of view of the observer in ship (1), at what angle must the package
be aimed for it to be received by ship (2)? Assume the observer in ship
(1) has a coordinate system whose axes are parallel to those of S and, as
shown in the figure, the direction of motion is parallel to the y-axis.

(b) What is the speed of the package as seen by the observer in ship
(1)?

(CUSPEA)

Solution:

(a) Consider the events in the frame S. The package must have u, = £
so that after traveling a distance Az = d it will have the same y-coordinate
as ship (2). Thus in S, the package must have velocity components

5wy =y ) 32 e
=g = 2

Let S’ be the inertial frame attached to ship (1) with its coordinate axes
z’,y', 2’ parallel to the corresponding axes z,y, 2 of S. As S’ has a velocity
v; = —£, which is in the y-direction, relative to S, the transformation for
velocity is given by

o = 2y — U U = Uz
e R o B
where
y= 1 _ 2
- V3
Hence
v itE 4
1 s
Yol+geg B
, e Vi5
uy = = c.

#+3-3) 10
Thus ship (1) must aim the package at an angle o with the direction of
ship (2) given by
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u! 8
tana = 2 = — s
w, 415
or
a=64.2°,

(b) The speed of the package as seen by the observer in ship (1) is

16 15 /79
[ — r2 2 — —_— —Cc= — C=VU. .
u /Uz + ] 5 + 100 100 © 0.889¢

3019

Two particles with the same mass m are emitted in the same direction,
with momenta 5mc and 10mc respectively. As seen from the slower one,
what is the velocity of the faster particle, and vice verse? (c = speed of
light).

( Wisconsin)
Solution:

In the laboratory frame Kj, the slower particle has momentum

mmun = mnpic = 5mc,

giving
Mmbh =4/ -1=5,
or
¥ =26.
Hence
B2 = —Elézg, or v = ;—20.

Similarly for the faster particle, the velocity is

vy = 1] 200
2T V101 ¢

Let K, K5 be the rest frames of the slower and faster particles respec-
tively, The transformation for velocity between Ky and K, which moves
with velocity v in the z direction relative to Ky, is
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' Uy —V

z Ug U °
11—

c2

Thus in K, the velocity of the faster particle is

/100 _ /25
vy — 0 101 26
’vé = = Cc= 0.5950 .
1-2% 1— /100 28
o2 101 26

In K5, the velocity of the slower particle is

v = —vl——v% = --0.595¢ .
e
3020

Observer 1 sees a particle moving with velocity v on a straight-line
trajectory inclined at an angle ¢ to his z-axis. Observer 2 is moving with
velocity u relative to observer 1 along the z-direction., Derive formulas for
the velocity and direction of motion of the particle as by seen observer 2.
Check that you get the proper result in the limit v — c.

(UC, Berkeley)

Solution:

Let K, K’ be the rest frames of the observers 1 and 2 respectively with
parallel axes such that the z-axis is in the plane of v and u as shown in
Fig. 3.15. The transformation for velocity gives
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;L Va—U vCosY — u
v, = U, UV COS  °
e e
: . u?
L v vsingy/1- o , v o
Vg = 1 uv,) T WS Uy = 1 uv,) =V,
7( c? c? 7( c?
ith v = l___. Hence
Y )

v = U2+

27,2 i 2
u?v?sin
\/v2+u2—2vucos<p———¢

— c?
= 1 UV COS P
-—a
: u’
’ vsingy/1 - —
t r_ Yz C
any = — = ———"———,
v, VCOSY — U

Thus observer 2 sees a particle moving with velocity v’ on a straight-line
trajectory inclined at an angle ¢/ to the z'-axis.
In the limit v — c,

. Vc?+u?—2cucosp—usin’gp c—ucosyp
v = UCOS P = ucosp - C-
1- 1-
c c

This shows that ¢ in any direction is transformed into c, in agreement with
the basic assumption of special relativity that c is the same in any direction
in any inertial frame, This suggests that our answer is correct,

3021

(a) A photon of energy E; is scattered by an electron, mass m., which
is initially at rest, as shown in Fig. 3.16. The photon has a final energy
Ey. Derive, using special relativity, a formula that relates £ and E; to 0,
where 0 is the angle between the incident photon and the scattered photon.
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(b) In bubble chambers, one frequently observes the production of an
electron-positron pair by a photon. Show that such a process is impossible
unless some other body, for example a nucleus, is involved. Suppose that the
nucleus has mass M and an electron has mass m.. What is the minimum
energy that the photon must have in order to produce an electron-positron
pair?

(Princeton)

Solution:

(a) The scattering is known as the Compton effect. Conservation of
energy gives
E; + mec®> = E; + E.

where E, is the energy of the electron after scattering. Conservation of
momentum gives
Pi =P f + Pe s

where P; and P are the momenta of the photon before and after scattering
respectively, P, is the momentum of the electron after scattering. We also
have from the contraction of the momentum 4-vector of the electron

E? = mic* + P2c?,

or
(mec? + E; — Ef)? = m2ct + (P; — Py)%c?.

For the photon, E; = P;c, Ef = Pjgc, and this becomes

2mec*(E; — Ef) + (E; — Eg)* = E} + E} — 2E;Ej cosf ,
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or

(Eif - El,> mec? =1—cosé .

(b) Suppose the reaction vy — e~ + e* is possible. Then the energy and
momentum of the system must be conserved in all inertial frames. Consider
a frame attached to the center of mass of the created pair. In this frame,
the electron and positron will move in a straight line passing through the
origin away from each other with the same speed v and the total momentum
in zero. Conservation of momentum requires that the momentum of the
original photon is also zero. However, each particle has energy m,yc?, where

v = \/11__2;_, and the system has total energy 2m.yc2. This must also be

the energ); of the original photon, by energy conservation. It follows that
the original photon must have a momentum 2m.~c, contradicting the result
obtained by momentum conservation. Hence the reaction is not possible.

Energy and momentum can both be conserved if another particle, say
a nucleus of mass M, is involved. In the case the photon just has enough
energy E to create such a pair and M is initially at rest, the pair will be
created at rest, i.e.

E + Mc?* = Mvyc? + 2m.c? ,

_ 1 . _ v . .
where v = Jim with § = 2, v being the velocity of the nucleus after the

pair creation. Momentum conservation give

%zM’yﬂc.

As v = /4% — 1, this gives

E 2
2:1 =
-1 (51a)

and the energy equation becomes
(E+ Mc* - 2m.c?)? = E? + M2,
giving

M-m
E=2(———% et .
(M—2m,3)mc
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As M > m,, the minimum photon energy required is just slightly more
than the rest energy of the created pair, 2m.c?.

3022

(a) A cosmic ray proton collides with a stationary proton to give an
excited system moving highly relativistically (y = 1000). In this system
mesons are emitted with velocity Bc. If in the moving system a meson is
emitted at an angle 8 with respect to the forward direction, at what angle
0 will it be observed in the laboratory?

(b) Apply the result you obtained in (a) above to mesons (rest energy
140 Mev) emitted in the moving system with momentum 0.5 GeV/c. What
will 8 be if § is 90°? What will be the maximum value of 8 observed in the
laboratory?

(UC, Berkeley)

Solution:

(a) Let 3, X' be the laboratory frame and a frame attached to the center
of mass of the excited system respectively with ¥’ moving with velocity G¢
relative to ¥ in the z-direction. The velocity of a meson emitted in ¥/ with
velocity (c at angle § to the z'-axis is transformed to ¥ as

_ufp+PBc _ (Bcosf+ P)c . Uy Bcsin
z 1+u;_ﬂ 1+pA3Bcosf’
c

7(1_{_#) (1 + BBcosh)

Hence the meson is emitted in ¥ at an angle 8 to the z-axis given by
Bsinf
¥(Bcosd + )’

tand =

where

v = 1000,

V=1 [ 1 1
o v 72 242

=1-0.5x 107% = 0.9999995 .
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(b) If 8 = 90°, the angle of emission 8 in X is given by

B

tan0=—ﬂ—== .
6 v2 -1

The momentum of the emitted meson is
p=mAPc =05 GeV/c ,

with 7 = ﬁ?’? m being the rest mass of the meson. Then

= 05
’)’ﬂ = m = 3.571 s

or 3.571 3.571

=" = " =0.963 ,

h ¥ V1 + 35712
since

(3 =7"~1.
Hence
.963
0~ tanf = % =963 x10"*rad =552x 1072 deg =3.31'.

The maximum value of 8 is given by

dtand
= 7=9,
do
i.e.
(Bcosf + B)cosf + Bsin®d =0,
or by
- B
cosf = —
B
Hence
= 0.963 o
6 = arccos (—m) = 1644 y
which gives

0.963 x sin 164.4°
1000 x (0.963 cos 164.4° + 0.9999995)

0 = arctan [ } =0.205° = 12.3' .
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This is obviously the maximum angle observed in the laboratory since the
minimum angle is 0° for § = 0° and = 180°.

3023

(a) Calculate the momentum of pions (7) that have the same velocity
as protons having momentum 400 GeV/c. This is the most probable
momentum that the produced pions have when 400 GeV/c protons strike
the target at Fermilab. The pion rest mass is 0.14 GeV/c?. The proton
rest mass is 0.94 GeV/c2.

(b) These pions then travel down a decay pipe of 400 m length where
some of them decay to produce the neutrino beam for the neutrino detector
located more than 1 km away as shown in Fig. 3.17. What fraction of the
pions decay in the 400 m? The pions’ proper mean lifetime is 2.6 x 10~8 sec.

(c) What is the length of the decay pipe as measured by observers in
the pion rest frame?

(d) The pion (7) decays into a muon () and a neutrino (v). (The neu-
trino has zero rest mass.) Using the relationship between total relativistic
energy and momentum show that the magnitude of the decay fragments’
momentum in the pion rest frame, g, is given by

qg M?-m?
c 2M
where M is the pion rest mass and m is the muon rest mass,

(e) The neutrino detectors are, on the average, approximately 1.2 km
from the point where the pions decay. How large should the transverse
dimension (radius) of the detectors be in order to have a chance of detecting
all the neutrinos that are produced in the forward hemisphere in the pion
rest frame?

(UC, Berkeley)

Solution:

(a) The momentum of a particle of rest mass m and velocity Bc is

p= m'Yﬂc y

= 1 Yo p o .
where vy = Sim For the same velocity Z is a constant. Hence the pion

momentum is
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'-*—t.tmm + 1000 m |

proton target - [~ T T T
beam il | pion decay pipe shietding 1 neutrino
400 GeV C detector
/[\ LL L L2222 y4
focusing
system
Fig. 3.17.

1
Pr = (m") py = 21 | 400 =506 GeV/c .

m, )P 0.94

(b) Let 3,%’ be the laboratory frame and the rest frame of the pions
respectively. As

/
At =1 (At’+ @) =AY,

the laboratory lifetime 7 of the pions is equal to y7p; where 7y is the proper
lifetime of the pions and 74 its Lorentz factor in ¥. If n is the number of
pions in the beam, we have

_dn_de
n T

t
n = ngexp (——) ,
p

ng being the number of pions at t = 0. For a pion of momentum 59.6 GeV/c,

59.6

or

and . , w0
Lo _ P
T Yo 1255 x3x 1P x 26 x 10-8 ~ 1206

Hence the fraction of pions that decays in the pipe is

1—e7 91205 — 01135 = 11.35% .

(c) The length of the decay pipe in ¥’ is by definition I’ = i, — z},
where z/, zi, are the coordinates of its two ends taken at the same instant
t'. As

oy = (e +Bet’), 32 =y(zh + Bet)
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we have
x9 — x1 = Y(zh — z})

or
l=9l',

ie,

I 400 400 400

el = Ty = ———
b=y =" ®35 " 155

(d) The energy of a particle of rest mass m, momentum p, velocity SBc,
Lorentz factor +y is

E = mvyc? = me?/926% + 1 = v/ m2c44282 + m2%ct
= /p2c? + m3ct
since p = m~yfBc. Consider the decay # — p + v in the rest frame of the
pion, As the momentum is initially zero, the momenta of the ; and v must

be equal in magnitude and opposite in direction, |p,| = |py| = ¢. Energy
conservation gives

=094m .

g%c® + m2ct + qc

use having been of the fact that the pion is at rest in ¥’ and that the
neutrino has zero rest mass, which in turn yields

M2 _ m2
¢= (__2 — ) c.
(e) A neutrino emitted with velocity 3’c at angle & to the z’-axis in the
rest frame of the pion, ¥/, is observed to move in a direction at angle 8 to
the z-axis in the laboratory frame X, where 4 is given by (Problem 3022)

B’ sin @ sin 8

- v(@ cosd +B) y(cosd + )’

as the neutrino, having zero rest mass, must always move with velocity c.
For ¢ < 7,

tan @

1 11
v(cos @ +B8) — vB 4255 °

Hence 4 < 2.35 x 1073 rad. For a detector at 1.2 km away to detect all the
neutrinos with 8’ < 7, it must have a transverse dimension

tanf <

R=12x10"%x235x10"%=282m.
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3024

In a simplified model of a relativistic nucleus-nucleus collision, a nucleus
of rest mass m; and speed (3, collides head-on with a target nucleus of mass
mq, at rest. The composite system recoils at speed §o and with center of
mass energy £9. Assume no new particles are created.

(a) Derive relativistically correct relations for gy and €g.

(b) Calculate By and £ (in MeV) for a “°Ar nucleus impinging at
/1 = 0.8 on a 28U nucleus.

(c) A proton is emitted with 3. = 0.2 at 6, = 60° to the forward
direction in the frame of the recoiling Ar + U system. Find its laboratory
speed B; and laboratory direction 8, to within a few percent, making
nonrelativistic approximations if they are warranted.

(UC, Berkeley)

Solution:

As implied by the question the velocity of light is taken to be one for
convenience.
(a) For a system, E? — p? is invariant under Lorentz transformation. In
g, . _ l
the laboratory frame X, writing v = \/—l_._._—ﬁ-?,

E? —p? = (mum + mp)? — (mumpB)? .
In the center of mass frame ¥/, E2 —p? = ¢2. Hence

6?) = (mm + m2)2 - (m1’71ﬂ1)2
miv (1 - B) + 2mamam +m3

=m?+ mZ+2mymym ,

or

2m1m2
g0 = \/m"{ +mi + =

In the laboratory, the system of m;, my has total momentum m;m 6 and
total energy m,y; + my. These are conserved quantities so that after the
collision the composite system will move with velocity

minp mif

Bo = = .
my + maey/1 - B7

o +my
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(b) The masses are approximately

my =40 x 0.94 = 37.6 GeV ,
mg = 238 x 0.94 = 223.7 GeV .

Then
2 x 37.6 x 223.7
= ,[3762+223. 72 + “
€0 \/ t+ T o6
= 282 GeV = 2.82 x 10% MeV

o 37.6 x 0.8
0T 376+ 2237 x V1064

(c) The velocity components are transformed according to
_ Bew+Bo _ 0.2c0860° +0.175

=0.175 .

= = =0.2
bz 1+ 8cz00 1+40.2cos60° x 0.175 0.270,,
P ﬂcy\/l—ﬂg 0.2sin 60°v/1 — 0.1752 0.168
ly = = =4 r

14 BezBo  1+0.2cos60° x 0.175

so the laboratory speed and direction of emission are respectively

B = 1/0.272 + 0.1682 = (.318 ,

6; = arctan (0'168> =31.9°.

0.27
Note that as
1 1
= = 0,983
14+ BB 1401 x0.175 ’
\/1—ﬂ§ . V1—-0.1752 0968 ,

1+ BB 1+0.1x0.175
both differing from 1 by less than 4%, applying nonrelativistic approxima-
tions we can still achieve an accuracy of more than 96%:
Brz ~ Bex + Po = 0.275 ,
ﬂly = ﬂcy =0.173 3
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3025

In high energy proton-proton collisions, one or both protons may
“diffractively dissociate” into a system of a proton and several charged
pions, The reactions are

) p+p—p+(p+nm),

(2)p+p— (p+nm)+(p+mn).

Here n and m count the number of produced pions.

In the laboratory frame, an incident proton of total energy E (the
projectile) strikes a proton at rest (the target). Find the incident proton
energy Fp that is

(a) the minimum energy for reaction (1) to take place when the target
dissociates into a proton and 4 pions,

(b) the minimum energy for reaction (1) to take place when the projec-
tile dissociates into a proton and 4 pions,

(c) the minimum energy for reaction (2) to take place when both protons
dissociate into a proton and 4 pions.

m, = 0.140 GeV , my = 0.938 GeV .
(Chicago)

Solution:

The quantity E? — p? for a system, where we have taken ¢ = 1 for
convenience, is invariant under Lorentz transformation. If the system
undergoes a nuclear reaction that conserves energy and momentum, the
quantity will also remain the same after the reaction. In particular for a
particle of rest mass m,

E? - p? =m?.

(a) The energy for the reaction
p+p—op+(p+4nm)

is minimum when all the final particles are at rest in an inertial frame,
particularly the center of mass frame ¥/. Then in the laboratory frame ¥,

E? - p? = (Eg + my)? — (E} — m2) = 2m,Eo + 2m |

and in ¥/,
El2 _ p/2 — (2mp + 4m1r)2 ,
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so that
2m,Eg = 2m2 + 16mpm, + 16m2
giving
m2 + 8m,m, + 8m?2
Ey= -2 rr T =2.225 GeV
mMp

as the minimum energy the incident proton must have to cause the reaction.
(b) Since both the initial particles are protons and the final state
particles are the same as before, the minimum energy remains the same,
2.225 GeV.
(c) For the reaction

p+p— (p+dm) + (p+4m),

we have
(Eo + m,ﬁ,)2 —(E2 - mf,) = (2m, + 8m,)? ,

giving the minimum incident energy as

m2 + 16m + 32m2
Ey= L :nm" ™ —3.847 GeV .
P

3026

Consider the elastic scattering of two spinless particles with masses m
and p as shown in Fig. 3.18. The Lorentz-invariant scattering amplitude
(S-matrix element) may be considered as a function of the two invariant
variables

s = (Ko + Py)?— (K +P)?

and
t = (K; — Ko)* — (K' — K)?

with K? = K? = 4% and P? = P'? = m?. Obtain the physical (i.e.
allowed) region in the (s,t) manifold. Compute the boundary curve t(s)
and make a qualitative drawing.

(Chicago)
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K p’
k P
mass K mass m
Fig. 3.18.
Solution:
In the elastic scattering
k+p—k'+p,

if the system is isolated, the total energy-momentum 4-vector is conserved:
K+P=K +P.
In the center of mass frame of the system, the total momentum is zero:
K+P=K+P=0.
Thus

3= (Ko + Po)? — (K+P)? = (Ko + Pp)?
(VK? + 12 + /P2 + m2)?
(,/K2 +M2 + ,/K2 +m2)2 ,

as P2 = K? in the center of mass frame, and

t = (Kp — Ko)* — (K' - K)?
- (K - K)?
= —(K?+K?-2K' - K)
= —2K?%(1 — cos¥) ,
where 0 is the angle of scattering of k, as the scattering is elastic.

To find the physical region in the (s,t) manifold, consider cos §, where
@ varies from 0 to m:
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=0, cosf =1, t

6=m, cosf = —1, t

I
o

—4K? ,

Hence the physical region is given by

2
t<90 and 32(\/;;2_%4_\/,”2_%) ,

the boundaries being ¢t = 0 and that given by

2
t t
8:(\/}12—14'\/;”2—1) s

or
‘- 4m2p2 _ (s—m2 _l‘2)2
= s~ (m +u)?)ls — (m— )]

The physical region is shown as shaded area in Fig. 3.19.

/N2
[ /im-p2 %'5

Fig. 3.19.

3027

Consider the pion photoproduction reaction
Y+p—p+n®,

where the rest energy is 938 MeV for the proton and 135 MeV for the
neutral pion.
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(a) If the initial proton is at rest in the laboratory, find the laboratory
threshold gamma-ray energy for this reaction to “go”.

(b) The isotropic 3K cosmic blackbody radiation has an average photon
energy of about 10~2 eV. Consider a head-on collision between a proton
and a photon of energy 10~3 eV. Find the minimum proton energy that
will allow this pion photoproduction reaction to go.

(c) Speculate briefly on the implications of your result [for part (b)] for
the energy spectrum of cosmic-ray protons.

(UC, Berkeley)

Solution:

(a) The quantity E? — P2¢? is invariant under Lorentz transformation
and for an isolated system is the same before and after a reaction. The
threshold v-ray energy is that for which the final state particles are all at
rest in the center of mass frame. Thus

E 2
(Ey + mPc2)2 - (Tﬂ,> ¢? = (myp + 'mvr)204 ’

where E. is the energy of the photon and %7- its momentum, giving

B - (m2 + 2m my)c

4
= = 144,
Y Smpc? 4.7 MeV

as the threshold y-ray energy.
(b) That the proton collides head-on with the photon means that their
momenta are opposite in direction. Then

E 2
(mp7c2 + E'y)2 - (mp'YﬂC - %) = (myp + 'mvr)2c4 )

1
N
energy to initiate the photoproduction reaction, giving

where v = Bc being the velocity of a proton with the minimum

(m2 + 2mamy)ct

= 1.447 x 10"!
2E, myc?

Y(1+8) =

with E, = 107° MeV. As this implies v > 1, we can take 8 = 1. Hence
v = 7.235 x 10'° and the minimum proton energy is

E, = 0.938 x 7.235 x 10'° = 6.787 x 10'% GeV .
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(c) The result implies that the part of the energy spectrum of cosmic-ray
protons with E > 6.79 x 10! GeV will be depleted to some degree due to
interaction with the cosmic blackbody radiation.

3028

A beam of 10° K mesons per second with 3 = ¥ = - is observed to
interact with a lead brick according to the reaction

K? + Brick — K? + Brick

with the internal state of the lead brick identical before and after the reac-

tion. The directions of motion of the incoming K} and outgoing K; may

also be considered to be identical. (This is called coherent regeneration.)
Using

m(K;) =5 x 108 eV/c?,
m(K;)) —m(K,) =3.5x10"%eV/c?,
give the magnitude and direction of the average force (either in dynes or in
newtons) exerted on the brick by this process.
(UC, Berkeley)

Solution:

Denote m(K;),m(K,) by m;, m, respectively. For an incoming K,
meson, the energy and momentum are respectively

2
myc
E =myc? = = V2mc?,

1
Vi-2

1
P, = myyBec = V2 —=myc=mc.
1 170 72 1 1

Since the internal state of the lead brick remains the same after the reaction,
the energies of the beam before and after the reaction must also be the same,
Thus

E =E,.

As
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Pt = E? —mic
= E? —m2c* = 2mict — [my — (my — m,))%c?

~mict + 2my(my — m,)ct

or
P,c = myc? + (m; —m,)c? = Pic+ (my — my)c? |

as m; — m, < m;. Hence
(Ps~P) = (m—my)c=35x10"%eV/c .
The change of momentum per second of the beam due to the reaction is

35x 1.6 x 10"
3 x 108

(P,—P)x10°=35eV/c/s = =1.87x107% N .

This is the average force exerted by the brick on the beam. As the
momentum of the beam becomes larger after the interaction, this force is
in the direction of the beam. Consequently the force exerted by the beam
on the brick is opposite to the beam and has a magnitude 1.87 x 10~27 N.

3029

A 7 meson with a momentum of 5m,c makes an elastic collision with a
proton {m, = Tm,) which is initially at rest (Fig. 3.20).

Fig. 3.20.

(a) What is the velocity of the c.m. reference frame?
(b) What is the total energy in c.m. system?
(c) Find the momentum of the incident pion in the c.m. system.
(UC, Berkeley)
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Solution:

(a) The system has total momentum P = p, = 5m,c and total energy
E = /p2 + m2ct + myc® = V26m,c® + Tmac* .

Hence it moves with a velocity ¥, which is also the velocity of the c.m.
system, in the laboratory given by

Pc? 5¢
P=— =——=0413c.
E V26 + 7

(b) E? — P%¢? is invariant under Lorentz transformation, so the total
energy E’ in the c.m. frame is given by

E2 . P2 02 . El2
- b
as the total momentum in the c.m frame is by definition zero. Hence

E? = (V26 + 7)?m2ct — 25m2ct = (14V26 + 50)m2c? ,

E' =4/ 14v/26 + 50 myc? = 11.02m,c? .

(c) The total energy in the c.m. frame is

E' = \/p2 + m2ct + 4/p2 + mict

= 2 +m2ct + /P2 +49m2ct

or

since [p),| = |p}| in the c.m. frame and m, = 7m,. From (b) we have

E' = /50 + 14/26 m,c?. Substituting this in the above and solving for

P, we have

= —%C—— = 3.18m,c .

p1r -
V50 + 144/26

3030

High-energy neutrino beams at Fermi laboratory are made by first
forming a monoenergetic 7t (or K+) beam and then allowing the pions
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to decay by #* — ut + v. Recall that the mass of the pion is 140 MeV /c?
and the mass of the muon is 106 MeV/c?.

(a) Find the energy of the decay neutrino in the rest frame of the 7+,

In laboratory frame, the energy of the neutrino depends on the decay
angle  (Fig. 3.21). Suppose the 7t beam has an energy of 200 GeV.

(b) Find the energy of a neutrino produced in the forward direction
(0 =0).

(c) Find the angle 8 at which the neutrino’s energy has fallen to half of
its maximum energy.

(Chicago)
v
_8 _
x* 4
p*
Fig. 3.21.
Solution:
(a) For convenience use units such that ¢ = 1 (m,E,p are all in

MeV). Consider the Lorentz-invariant and conserved quantity £? — p?. In
laboratory frame, before the decay

E*—p'=Ep —p; =my .

In the rest frame of the pion, after the decay
E? -p” = (E, + E|)’ — (p, + p.)’
=(E, + E'N? = pﬁf +mﬁ +p2 + 2p,\ /P2 +m2

= 2p7? + mj, + 2p),\ /P2 + m

as p,, = —p,, and E, = p|, assuming the neutrino to have zero rest mass.
Equating the above two expressions gives
m2 — m2

E, =p, =L2m——“=29.9Mev.
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(b) In the laboratory frame (Fig. 3.21), momentum conservation gives

or

Pr = Dv €088 + p,, cOs v,

P = p2 + P, — 2Pxp, COS

and energy conservation gives

E,=E,+E,.

b,

As p, = E,, p2 = E? — m2, the last two equations give
M u “

2 2
my —m;

Pv = 2(Ey — pycosf)

As E, > m,, we have

and hence

For neutrinos emitted in the forward direction, # = 0 and

(c) As

N

2
p,,:EM/l—%zE, [1—

°

(5)

(m2 —m2)E,

Eu=PuN

m 2
My

E, ~

2E2(1 - cos§) + m2 cosf

E, =854 GeV .

2E2 — (2E2 —m2)cosf ’

pysind =p,sina ,

E, is maximum for neutrinos emitted at # = 0. For E, at half the maximum

value, i.e.

we have

cosf =

(m12r - Eﬁ)EW

mZ—ml\ E,
m2 2~ 2E2 - (2E2 - m2)cosf’

_ 2B} —m3) 1 (%

~1—-
2E2 —m2 2\ E,

2
e

92

2
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as @ is obviously small. Hence

9= ’g" = 0.0007 rad = 2.4’ .

3031

(a) A particle of mass m; = 1 g traveling at 0.9 times the speed of
light collides head-on with a stationary particle of mass my = 10 g and
is embedded in it. What is the rest mass and velocity of the resulting
composite particle?

(b) Now suppose m; to be stationary. How fast should m,; be moving
in order to produce a composite with the same rest mass as in part (a)?

(c) Again, if m, is stationary, how fast should my be traveling in order
to produce a composite that will have the same velocity that you found for
the composite in part {a)?

(SUNY, Buffalo)

Solution:

(a) Let the composite have mass m and velocity Gc. Conservation of
energy and of momentum give

mye? = (mim + ma)c?,

where v = ﬁ, etc. Hence

__mnb mp - 0.9 = 0.168
m+ My my+my/1- 62 1+10v1-0.92

= (mY)? — (myB)? = (mam + ma)? — (Man B)?

myfc = mimpc .

2
= mf +m; + 2imams

as (78)2 =42 -1, etc., or

2 2
\/;1+m2 m‘"”— 14100+ 2 —121¢.

1-0.9?

Thus the composite has rest mass 12.1 g and velocity 0.168c.
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(b) The roles of m; and m, are now interchanged so that

9 2 2m2m1
m = m2+m1+_1—_ﬂ'v
Vi 7 M2

which is the same expression as before with 3, — (3. Then as m;,mq, m
remain the same, 8; must have the value of 3, before, that is, ms must

move with velocity 0.9c.
(c) As in {(b), we have

mafs
ma +myy/1— 55 ’
(m3 +mip*)B; — 2m3Bp2 + (m3 —mi)A* =0.
As m2 > m23?%, the above can be reduced to

m}B2 ~ 2miBPs + (m3 —m})p? =0,

or

i.e.
[m2Ba — (ma + my)Blmafs — (my —my)B] =0,
giving
By = (1+m>ﬂ=0.185, 8= (1—@>ﬂ=0.151 .
mo ma

Hence m4 should travel at 0.185¢ or 0.151c.

3032

A particle with mass m and total energy Ejy travels at a constant velocity
V which may approach the speed of light. It then collides with a stationary
particle with the same mass m, and they are seen to scatter elastically at
the relative angle 8 with equal kinetic energies.

(a) Determine 8, relating it to m and E,.
(b) Find the numerical value of ¢ in the following limits:
(i) low energy (V < c),
(ii) high energy (V ~ c).
(SUNY, Buffalo)
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Solution:

(a) As the elastically scattered particles have the same mass and the
same kinetic energy, their momenta must make the same angle g with the
incident direction and have the same magnitude. Conservation of energy
and of momentum give

0
me? + Eg = 2E, Po = 2p cos (§> ,
where E, p are the energy and momentum of each scattered particle. Squar-
ing both sides of the energy equation we have
m2c* + EZ + 2Egmc® = 4(p’c? + m®c?)

or
2.2 2 2,4
péc E§ — m?c
E? + 2Eymc® — 3m3ct = ‘2’ =2 U
cos? (£) cos? (£)

cos 6\ _ E2 —m2ct | Eg+mc?
2/ V(Eo—mc2)(Eo+3me?)  \ Eg+3me?2

(b) (i) V< c, EO ~ 'mc2,

giving

giving

(i) V = ¢, Eg » mc?,

giving 6 = 0.

3033

Of particular interest in particle physics at present are weak interac-
tions at high energies. These can be investigated by studying high-energy
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neutrino interactions. One can produce neutrino beams by letting 7 and
K mesons decay in flight. Suppose a 200 GeV/c 7 meson beam is used to
produce neutrinos via the decay # — p + v. The lifetime of a 7 meson is
To% = 2.60 x 1078 s in its rest frame, and its rest energy is 139.6 MeV. The
rest energy of the muon is 105.7 MeV, and the neutrino is massless.

(a) Calculate the mean distance traveled by the pions before they decay.
(b) Calculate the maximum angle of the muons (relative to the pion
direction) in the laboratory.
{c) Calculate the minimum and maximum momenta the neutrinos can
have.
(UC, Berkeley)

Solution:

(a) Let m be the rest mass of a pion. As myfc? = 200 GeV, we have

YVB=+/v2-1= 200 _ 1432.7

0.1396

and can take
B=1, v =1433 .

On account of time dilation, the laboratory lifetime of a pion is 7 = y7, =
1433 x 2.6 x 1078 = 3.726 x 107® 5. So the mean distance traveled by the
pions before they decay is

T¢=3726%x 1078 x3x108=1.12x10*m =11.2km .

(b) The total energy of the system in the rest frame ¥’ of the pion is
its rest energy m,c?. Conservation of energy requires that for m — p + v,

2 ¢ '
mqec*=FE, +E,,

the prime being used to denote quantities in the X/ frame. As the total
momentum is zero in ¥’, pj, = —p|, and E], = pjc = pj,c, assuming the
neutrino to have zero rest mass. Thus

2 IN2 22 022 2 2 4
(mxc® — E.) =ppc* =pic* =E; —m,c*,

giving
m2 + m2)c?
P B LT Y S YRV
2my,
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Take the z'-axis along the direction of motion of the pion. Transformation
equations for the muon momentum are

E/
pucosd =7 (chos0’+ gc—“> )

pusind = p) siné’,
giving
p, sin ¢’

tanf = .
BE]
o (PL cos§’ + —c‘")

For 6 to be maximum, we require

dtané
P
which gives
2 24
plc p.c E2 - mic
cosf = -t ot N B P g7,
BE,  E, E,

or § = 105.7°. This in turn gives
0 =0.0112° = 0.675" .

Note that this is the maximum angle of emission in the laboratory since
the minimum angle is 0, corresponding to 8’ = 0.
(c) The neutrino has energy

E, = m,c’ — Ej, = 139.6 — 109.8 = 29.8 MeV

and momentum p], = 29.8 MeV/c in ¥’. E!, can be transformed to the
frame by
E, =y(E, + (p,ccost’) .

As E, = p.c, E|, = pl,c, the above can be written as

pv =7(1+ Bcos@)p], .

Hence neutrinos emitted in the forward direction of the pion rest frame, i.e.

¢ = 0, will have the largest momentum in the laboratory of

2vE;,
c

(Pv)max = ¥(1+ B)p,, = = 8.54 x 10* MeV/c ,
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while neutrinos emitted backward in ¥’ will have the smallest momentum
in the laboratory of

' 1 E
(Pv)min =1 = B)p, = (v — V7* — Dp, ~ ’2771’ =1.04x 1072 MeV/c .

3034

A K meson of rest energy 494 MeV decays into a u meson of rest energy
106 MeV and a neutrino of zero rest energy. Find the kinetic energies of
the p meson and neutrino into which the X meson decays while at rest.

(UC, Berkeley)

Solution:

Conservation of energy gives

mic® = Ey + E, = \[p2c? + m2ct + pyc =y [pEc? + mEct + puc,

as py = —Pv, O P, = p,, for momentum conservation. Hence

2
Py = mi — ms .
o 2mk ’

Thus

2 2
mK'—'m
E, =puC=puc= (_ﬁ) c?

2my
= 235.6 MeV
e mi +m?
= 258.4 MeV .

Therefore the kinetic energy of the neutrino is 235.6 MeV, and that of the
muon is 258.4 — 106 = 152.4 MeV.
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3035

The dot product of two four-vectors
A* = (A° A) and B* = (B°,B)

is here defined as
A¥B,=A°B°-A-B.

Consider the reaction shown in Fig. 3.22 in which particles of masses m,
and my are incident and particles of masses m3 and my4 emerge. The p’s
and ¢’s are their four momenta. The variables given below are commonly
used to describe such a reaction:

s=(@+p)% t=(@-@)? uw=(q-p)?.
(a) Show that

4
s+t+u=Zm?.
i=1

(b) Assume the reaction is elastic scattering and let
m) =m3 =W, Mg =My =M.

In the c.m. frame let the initial and final three-momenta of the particle of
mass p be k and k' respectively. Express s, t and « in terms of k and k’,
simplifying as much as possible. Interpret s,t and u.

(c) Assume that in the laboratory frame the particle of mass m is
initially at rest. Express the initial and final laboratory energies of particle
1, as well as the scattering angle, in terms of s,t and u.

(SUNY, Buffalo)

Fig. 3.22.
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Solution:

Use units for which the velocity of light ¢ = 1 for convenience.

(a) ¢? is defined as q®q, with ¢* = (¢°,q), ¢» = (¢°, —q). The quantity
g¢*q, is invariant under Lorentz transformation. Evaluating it in the rest
frame of the particle:

q2:(q0)2_q2:E2_q2:m2.

Now

stt+u=(q+p)? + (01~ @)+ (@ —p2)?

=@+ +p?+p3+20 (@1 — g2 +p1 —p2)
=mi+mi+mi+mi+2q-(a—@+p—p).

As the 4-momenta satisfy the energy-momentum conservation law

Q+pr=¢q2+p2,

we have
4

s+t+u=Zm?.

i=1

(b) In the center of mass frame,

Q+tp1=q+p2=0.

Hence
a7 = (V? + k3, k), g5 = (Vu? + k2 X),
py =(Vm? +k?,-k), p;=(Vm?+k? -k,
and

s=(@+p)=q +p}+2q M
=2+ k224 m2+ k2 - K2+ 2/(12 + K2)(m? + k2) + 2k?
= p? + m? + 2¢/(u? + k2)(m? + k2) + 2k? ,
t=(n-a)"=a¢+9-20¢
=2p% - 24/(u2 + k) (u? + k2) + 2k - K’ ,
u= (@ —p2)? = ¢ +p5 - 201 - P2
=p? +m?—2y/(u? + k2)(m? + k'2) — 2k - kX’ .
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Thus
’ 2
s:( p?+ k% + m2+k2)

is the square of the total energy of the incident particles in the center of
mass frame, t is the square of the forward transfer and u is the square of
the backward transfer of 4-momentum during the collision. s, ¢, u which are
Lorentz invariant quantities are known as Mandelstam variables.

(c) In the laboratory frame, we have

qtlx = (qu), (h), ‘Ig = (qgv Q2)1 ptlx = (mv 0)

and
@G == G=u,
Q+pr=q+ps.
Then

s=(n+p)?=qal+pi+2q-p

=u? +m? +2¢im
t=(n-@)’=ad+d-2q ¢

=247 - 2¢7¢5 +2q1 - q2 ,
u=(qg—-p)=(@-p)’=0+pi-20-m

=p? +m? —2¢im .

Hence the initial laboratory energy of particle p is

o__s—p'2—m2
ql'— m ]

the final laboratory energy of u is

o —u+pl+m?
e

and the scattering angle 0 is given by

cosf =

Q- Q@ -1+ q0q3
lanl la2l — /[(@9)2 - 12 [(65)2 — 17]
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3036
The following question is a question on Newtonian gravity.

(a) Calculate the radius and density of a solar-mass star (M = 2x10% g)
from which light could not escape.

{(b) The universe can be thought of as a sphere of gas of uniform density
p(t) and zero total energy expanding against its self-gravity. Show that if
pressure can be neglected the interparticle distance increases as 2/3.

(UC, Berkeley)

Solution:

(a) By the equivalence of mass and energy, a photon of energy E = mc?
has an equivalent mass m. The potential of a particle of mass m at the
surface of a star of mass M and radius R is

V=""r -
where G is the constant of gravitation. Hence for the photon to escape the
star, we require £ +V > 0, or E > —V. Conversely the photon will be
confined to the star if £ < -V, i.e.

GMm

<
mc2_R,

or

< GM 667 x 1078 x 2 x 10%
= 2 (3 x 1010)2

R =148 x 10° cm = 1.48 km .

The density p of the sun must then be

4 -t 3 2 x 1033
>M(zaR?) =|—)x ————
p= (3”R ) (47r> * {148 x 105)3
33
— 147 x 107! x 2L _ 147 x 107 g/cm? .

1015
Note that this result is consistent with the gravitational red shift. A photon
of frequency v emitted by the star will have a frequency v/ at a large distance
from it, where
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For the photon to escape the gravitational field of the star we require that
v >0,or
r> N

(b) In the expansion of a gas under the condition of uniform density, the
distance between two given particles is proportional to the linear dimension
of the gas and the position of any gas particle can be taken to be the center
of expansion. Consider two gas particles A, B separated by a distance R.
We can treat A as at the center of expansion and B as on the surface of
a sphere with center at A. According to Newton’s law of gravitation, B
will suffer an attractive gravitational force toward A of — %A,’l per unit mass,
where M = %ngp, p being the density of the gas, is the mass of the sphere
of gas. Note that the mass of the gas outside the sphere does not exert a
net force on B. Neglecting pressure the equation of the motion of B is

d’R _ GM
da@? T R
Writing
@R _dRdR _1dR?
dt?  dRdt 2 dR
and noting that M does not change during the expansion, we have by
integration

R? GM
2= r T
or oo
R GM
K= -Fg =T+V,

T,V being the kinetic and potential energies of the particle per unit mass.
K = 0 if the total energy is zero. Hence

dR 2GM
a " E®m

The positive sign has to be taken for expansion. Integrating, we have, with
R= R() att = tg,

2
2 (R - R§) = V2GM(t - to) .
At large t > tg, R > Rg and

Roct? .



Special Relativity 723

3037

An astronaut takes an ordinary flashlight, turns it on, and leave it out
in space (spin-stabilized by some rotation about its axis). What additional
speed will this “photon-rocket” have gained by the time the batteries give
out in two hours?

(Columbia)

Solution:

Suppose the flashlight bulb is located at the focus of a paraboloid
reflector so that almost the entire light output goes out in one direction. If
the power of the flashlight is N watts and the time interval it is turned on
is t, the total energy of the photons emitted is £ = Nt. If the orientation
of the flashlight does not change, it will gain a momentum

_E Nt

mu ,
c c

or an additional speed

Nt
v=—,
me

m being the mass of the flashlight, since a photon of energy £ has a
momentum £.

For example, if N =1 W, m = 0.3 kg, t = 2 hours,

1 x2 x 3600

- - -5 /s |
= 03x3x108 X0 m/s

v

3038

A hypothetical flashlight emits a well-collimated beam and is capable of
converting a significant fraction of its rest mass into light. If the flashlight
starts at rest with mass mg, and is then turned on and allowed to move
freely along a straight line, find its rest mass m when it reaches a velocity
v relative to its original rest frame. Do not assume ¢ >> v.

(UC, Berkeley)

Solution:

Let the total energy of all the photons emitted before the light reaches

the velocity v = B¢ be E. Then the total momentum of the photons is %
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and is opposite in direction to v. Let the rest mass of the flashlight be m
when its velocity is v. Conservation of energy gives

myc? + E = mgc?
and conservation of momentum gives
E
myBc—- — =0,
c

. — l . . - -
with v = T Eliminating E from the above gives

my{l+8)=mg,

. my 1-8 c—v
mERaes M\ ies T ™V ew

or

3039

A particle of charge ¢, mass m moves in a circular orbit of radius R in
the zy-plane in a uniform magnetic field B = Bz.

(a) Find B in terms of ¢, R,m, and the angular frequency w.

(b) The speed of the particle is constant (since the B field does no work
on it). An observer moving with uniform velocity % does not, however,
see the particle’s speed as constant. What is uy ( the zero component of
the particle’s 4-velocity) as measured by this observer?

(c) Cealculate d—;‘;& and , thus, %”Tﬁ. How can the energy of the particle
change?

(Princeton)

Solution:

(a) The equation of motion of the particle in the laboratory is

dp
it =quxB.
As p and u are parallel,
1dp?
2l puxB=0.

dt 2 dt
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Hence p? and thus the magnitude of p and u are constant. It follows that

1
2
1- (%)
is also a constant. Then, as p = mvy,u, the equation of motion can be
written as

Yu =

du—uxw
dt

with w = ¢gB/mvy,,. As
u= (:i"’y-90)9 W = (0,0,W) 3

it becomes
i = yw, 9y = —fw, z2=0.

Since the motion is confined to the zy-plane, the z equation need not be
considered. The other two equations combine to give

5" + iwé =0
by putting = + iy = €. It has general solution
§=pe i) 1 g,

where p, ¢ are real constants and £; is a complex constant. This solution
is equivalent to

T —xo=Rcos(wt +¢), y-—yo=—Rsin(wt+y),

showing that the motion is circular with a radius R given by

u=+13? +9y?=Rw,

w being the angular velocity of revolution. Hence

B="T0w

mw 1 mw 1

(b) Let S5,.8" be respectively the laboratory frame and the rest frame
of the moving observer. The zeroth component of the velocity four-vector,
defined as u® = (y,¢, Y, u), transforms according to

Yol = Y(YuC — Brutn) ,
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where v = \/1-1:5 Thus

ug = V€ = Yyu(c — B)
= yvy,[c + BwRsin(wt + ¢)]
= YVulc + Busin(wyut +¢)]
where 7 is the proper time of the particle. Thus u{ is not constant in S’.
(c)

dug 2
— = yy; Bwu cos(wy, T + ¥)

dr
2
¢B g gBt
= — C + .
(m) i os( m ¢
If the four-momentum is defined as p® = (muyq, p), then, as m is a constant,

' ’ 2 p2
%zm%-:RqB b cos qBT+<p )
dr dr m 1-2

which signifies a change of energy

i _ dri
dr ~ Tdr
Note that in the S frame, the electromagnetic field is given by

El’le":O
E| =vyE, +vxB))
=yvx B,

= yBx x Bz = —yBBY ,

so that there is also an electric field in the S’ frame which does work on
the particle.

3040
When two beams of protons of kinetic energy T collide head-on, the
available energy for reactions is the same as for a single beam of what kinetic
energy colliding with stationary protons? (Use relativistic expressions).
(UC, Berkeley)
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Solution:

The quantity E2 — p? for a system is invariant under Lorentz trans-
formation. Consider the head-on collision of two protons, each of kinetic
energy T, and suppose that in the rest frame S’ of one of the protons the
other proton has total energy E/ and momentum p’. As in the laboratory
frame the total momentum of the two protons is zero, we have

(2mc? +2T)? = (E' + mc?)? — p'?c?

= (E' +mé*)? — (E? — m?c*)

= 2E'mc? + 2m?ct |
or
_2T? +4Tmc? + m?c!
N me?
where m is the rest mass of the proton. Hence the energy available for
reactions is

E/

_ 2T? 4+ 4Tmc?

E' —mc? 5
mc

3041

A photon of momentum p impinges on a particle at rest of mass m.

(a) What is the total relativistic energy of photon plus particle in the
center of mass frame of reference?

(b) What is the magnitude of the particle’s momentum in the center of
mass frame?

(c) If elastic backward scattering of the photon occurs, what is the
momentum of the final photon in the laboratory frame?

(UG, Berkeley)

Solution:
(a) Consider the quantity E2 — P2c? of the system which is invariant
under Lorentz transformation:
(pc +m02)2 —p202 — El2 ,

where E’ is total energy of the system in the center of mass frame, which
is by definition the inertial frame in which the total momentum vanishes.
Hence
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E' = +/2pmc® + m2ct .

(b) In the center of mass frame, the total momentum P’ = 0 and p the
momentum of the particle is equal and opposite to that of the photon p’.
Momentum transformation

E
eoen(e-

_ Pc pe _ 1
T E  pc+me?’ =

Vi

for the center of mass frame. The particle momentum in the center of mass
frame is then, using the transformation equation again,

gives

g

—pme

! = 4(0— fmc) = —y8mec = —————— .
p' =7(0 - Bmc) Y o

(c) Let the final momenta of the photon and the particle be —p, and p,
respectively. Conservation of energy and of momentum give

pc+mc? = pic+ y/pdc? + m2ct,

p=—p1+p:.

These combine to give

(p—p1)2+2(p—p1)mec=(p+m)?,

or
pmce

pl:2p+mc'

3042

We consider the possibility that one of the recently discovered particles,
the 1)’ (3.7), can be produced when a photon collides with a proton in the
reaction

Y+pop+y'.
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In this problem we shall take the mass of ¢ to be 4M,,, where M, is the
proton mass, which is a reasonable approximation. The target proton is
initially at rest and the incident photon has energy E in the laboratory
system.

(a) Determine the minimum energy E that the photon must have for
the above reaction to be possible. The answer can be given in units of M,c?
(=938 MeV).

(b) Determine the velocity, i.e. v/c, for the ¢’ particle when the photon
energy F is just above the threshold energy Fy.

(UC, Berkeley)

Solution:

(a) At threshold, the final-state particles p,4’ are stationary in the
center of mass frame. Using the fact that the quantity E%— P2c? is invariant
under Lorentz transformation and for an isolated system is conserved, we
have, as a photon of energy F has momentum %,

(Eo + Myc?)? — EX = (Mpc? + 4M,c?)?

giving
Eyg = 12Mp¢:2
as the threshold photon energy.
(b) Near threshold, the v’ is produced at rest in the center of mass

frame, so its velocity in the laboratory is the velocity of the center of mass,
i.e. of the system:

P02 Eoc 12

YSE T Eo+ M2 13°

3043

An antiproton of energy Ey interacts with a proton at rest to produce
two equal mass particles, each with mass m,. One of these produced
particles is detected at an angle of 90° to the incident beam as measured
in the laboratory. Calculate the total energy (E,) of this particle and show
that it is independent of m, as well as of Eg.

(UC, Berkeley)
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Solution:

Antiproton and proton have the same mass m, say. The collision is
depicted in Fig. 3.23. Momentum conservation gives

Do = pycosf, p1 = p2siné ,

or
Pi=p}+ps.

Es, Py

Eg.pg

Energy conservation gives

Ey+mc® = E, + \/P3c? + mZct .

Combining the last two equations gives
(Eo + mc?)? + E? — 2(Eg + mc?)E, = p3c? + pic? + mict,
or
2m?ct + 2Egmc? = 2(Ey + mc?)E, ,
since E = p3c? + m2ct, E2 = p?c? + m2c*. Hence
E, = mc? .

It is seen that E, depends only on the proton mass but is independent of
either m, or Ej.

3044

(a) A particle of mass m and charge e moves at relativistic speed v
in a circle of radius R, the orbit being normal to a static, homogeneous
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magnetic field B as shown in Fig. 3.24. Find R in terms of the other
parameters (radiation may be ignored).

(b) An observer O’ moving at fixed velocity v along the y-axis sees an
orbit that looks like Fig. 3.25. The points a,b,c,d,e on the two figures
correspond.

(i) What is the distance y}; — y; measured by O'?

(ii) What is the acceleration %zt—f”é of the particle at ¢, where it is instan-

taneously at rest?
(i) What causes the acceleration at c as seen by O’?
(Princeton)

Fig. 3.24. Fig. 3.25.

Solution:

(a) If p is the momentum of the particle, we have

(fi—lt) =evxB,
and thus p L do?
p 14
-Eziﬁzemyv-va——-O,
where v = 11 = Hence p and so vy and v have constant magnitudes. As

shown in Problem 3039, the orbit is a circle of radius R given by v = Rw,
where

eB
-

(b) Let £,%/ be the laboratory frame and the frame of the moving
observer respectively, with ¥/ moving relative to ¥ in the y-direction with
velocity —v. Lorentz transformation becomes
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Y =7y — Bet) = v(y +vt) ,

2=z, =z,

t’=7(ct~ﬂy):v(ct+vc—y) ,

T
Yd — yp = —2R, ta—tpy=—,
w

Y~ Yo = Y(ya — yp) + Y0(tg — tp)

o (ane )
(T =2)yw _ (m-2)mu
T o BB

ii) At point ¢ d—’”—O = _y
P 3

d*x  —v? . .
R (centripetal acceleration) ,
d*y . .
7 i 0 (tangential acceleration) .

The velocity component ¢ transforms according to

S A R ey
dt ~ dt/ \dt 7(1+viu)

In a similar way,
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(%)%
= 2 v2\3
Y(1-&
_ 2 __ —7evB
Y ow =
At point ¢,
d_y’: %ﬁ‘-i—v _ v+t
d/ 1+ %% 1-Y4

As 92 =0, 42 — ( also, the particle velocity u’ = 0.

(ili) The transformation equations for the electromagnetic field are

E,=E,=0, Bj=B,=0,
E, = y(E; — BcBs) =0,
E. = y(E; + BcB,) = —yvB

B;:'Y(Bz‘i’gEz) =18,
C
B;zy(Bz—gE,) =0.

(In the usual geometry let y replace x, 2z replace y, = replace z to obtain
the above). Then in &’ the Lorentz force acting on the particle at c is
F' =¢(E +u xB') =¢eE,

or
F' = F, = —yevB



734 Problems & Solutions on Mechanics

and the acceleration is —7%3, in agreement with (b). Hence the accelera-
tion arises because of the presence of an electric field in X',

3045

A charged particle (with charge e and rest mass m) moves in an electro-
magnetic field which is constant in space and time and whosc components
are E = (a,0,0) and B = (0,0,b) in a Lorentz frame S. It is assumed that
|E| # |B|. State the differential equations for the particle’s four-vector
velocity (as function of the proper time). Show that the solutions may be
expressed as superpositions of exponentials, and determine the exponents.
Under what conditions (on E and B) are all components of the four-velocity
bounded along every trajectory?

(Princeton)

Solution:

The motion of the particle is described by the 4-vector equation

4 _

ds

where ds = cdr, T being the proper time of the particle,

p* = mc?u® = mc? (%u,v) )

F* = (7F,1u.F),
C

1

with v = and u being the velocity of the particle.

u

1-%2
The force acting on the particle is the Lorentz force

F=e¢E+uxB).

With u = (uy, uy, u.), E = (q,0,0), B= (0,0,b), and u-F = eu-E = eau,,
we have

o _ — Wz
F® = ey (a-{—buy, bu,, 0, . )
= e(au4 + cbug, —cb'u.l,O, aul) .

Hence the equations of motion are
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du e
d_‘r'l = E(CbUQ + (IU4),
d’Uq
dr
dU3
dr

= —ebul s

=0 ,
duy eau
m_
dr c

Thus u3 is a constant and need not be considered further. To solve the
other equations, try

, i=124.
The equations now become

mAAL — ebAg — ZLaA4 =0,
ebAy +mAA; =0,
—%aA; +mAA, =0,

C

For a solution where not all A’s vanish, we require

mA —eb —%
eb ml 0 |=0,
-2 0 mA

[
i.e. 2
mA (m2/\2 +e2b? — %) =0.
C
The roots are

e e
A =0, A2 = —+va? —c2b?, A3 =——va?—c2?.
me me

The general solution for the equation of motion is a superposition of
exponentials with these exponents. For all components of the 4-velocity
to be bounded along every trajectory we require that the A’s are either
Zero or imaginary, i.e.

a < cb, or |E| < ¢|B| .
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3046

A particle of charge e, energy E, and velocity v moves in a magnetic
field generated by a magnetic dipole of strength M located at the origin
and directed along the z-axis. If the particle is initially in the zy-plane at a
distance R from the origin and moving radially outward, give the minimum
and maximum radii it will reach (assume the orbit is bounded).

(Chicago)

Solution:

A particle of charge e, rest mass m and velocity u moving in an
electromagnetic field of scalar potential & and vector potential A has
Lagrangian

2
L:—m’f——eé—i—eu-A.

1

where v = Since there is no electric field, & = 0. The vector

1-=
potential due to a magnetic dipole of moment M at the origin is

A:—ﬂMxV(l)—ﬂMxr.
47

r) 4m 13
In spherical coordinates as shown in Fig. 3.26, we have

M = (Mcos,—~Msin$,0) ,

r= (T,O,O) [
so that
_ po Msiné,
A_E 'I‘2 1¢.

With u = (7,7, r$sin 8), the Lagrangian is

L:_mc2 +ﬂeMsin20, '
vy 4 r

Note that as u2 = 72 +7262 +r2p2sin? 4, L does not depend on ¢ explicitly.
Hence
oL M
Py = 6—<p = (m7r2¢ + %%) sin?@ = constant .
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Fig. 3.26.

Initially the particle is at » = R and moves with velocity v = # in the
zy-plane, ie. r = R, 8 = 7, ¢ =0 initially, giving § L‘—Q"M for the constant.
Furthermore, as the only force on the particle is that due to the magnetic
dipole at the origin whose magnetic lines of force at the zy-plane are
perpendicular to the plane, the magnetic force is also in this plane and
the motion is confined to the plane. Hence § = 0, 8 = 7 at all times. Thus
uo eM Ho eM
Yt T T R

At the maximum and minimum radii, # = 0 and u = rgi,. Since

magnetic force does no work as

u-ux(VxA)=0,

the magnitude of u is equal to the initial speed v, i.e. 7 = +v, and vy is a
constant. Letting
ko eM
~ 4r meyw

’

we have
tRr?  —ar+aR=0.

For the upper sign the roots are

o 4R?
=—[1+x41-2 ).
r 2R( 1 «a )

For the lower sign the roots are
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o / 4R?
=—1|—-1% -
T 2R<1 1+ o ),

where the positive sign is to be used since r is positive. Examining these

roots we find
a i 4R?
Tmax_ﬁ(l"" I—T),
a / 4R?
min = T 5 -1 — .
T 2R ( +4/1+ o )

3047

It is well known that planets move in elliptical orbits around the sun
and the derivation of the orbit equation is a standard exercise in classical
mechanics. However, if the effects of special relativity only are taken into
account, the orbit is a precessing ellipse of the form

1 1
= = —{1 + ecos[a(d — 6o)]} ,
T To
where o = 1 corresponds to the classical result of zero precession.

(a) Derive this equation and express o and rg in terms of fundamental
constants of the orbit (such as energy, angular momentum, etc.)

(b) Given that the mean radius of the orbit of Mercury is 58 x 10° km
and that its orbital period is 88 days, calculate the precession of Mercury's
orbit in seconds of arc per century. (This effect does not, of course, account
for the total precession rate of Mercury.)

(Chicago)

Solution:

(a) Consider a planet of mass m and velocity v. As it moves in an
elliptical orbit, i.e. in a plane, use polar coordinates (r,8) with the sun at
the origin. The Lagrangian of the system is

me?  GmM

L=-——+
Y r

K
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—_1 ;
where'y—\/l_:ﬁmth
2_02_7;2_{_,.292
p T c?

M being the mass of the sun. As
o (1N _zyt 8 (1N _ v 8 (1)
o\y) <’ ao\y) & oar\y)

Lagrange’s equations
d (L) 9L
dt \ 9¢; 9g; -

give
d ) i GmM
a(m’yr)—m’yre + 2 =0,
m7r29 = b, a constant .
Letting u = 1, the last two equations combine to give
d (bdu .
— (2= g — 2 =
dt(odt>+bu GmMu* =0,
or
d?u tun GmMu? 0
Y (
* du  ,d
o _ gt
dt do
The total energy of the planet is
E = myc? — GmM .
r
Thus o P
mMu® mM(E—{—GmMp)

bé B2

and Eq. (1) becomes
dv , GmME
T T @

where
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A special solution of Eq. (2) is

_ GmME
U= g2
and its general solution is thus
GmME
U= ACOS[Q(O — 00)] + W ,

where A and 6, are constants. The orbit is therefore given by

L 10 b ecosla(8— 60)]}

== a(f —

r T °
with

Bc2a?  (bc)? — (GmM)? GmM\?
= = = A — —_— —_—
= GmME GmME 740 @ l(bc)’

A, 6p being constants, and b, F being the angular momentum about the sun
and the total energy of the planet respectively.

(b) Suppose r is minimum at #; and it next returns to this minimum
at 6. Then (8, — 8;) = 2r. Hence the perihelion advances an angle

A0:2—7r—21r:21r(l—1)
«a

(4

in one period of revolution. Note that there is no precession if a = 1. Since
the amount of precession is small compared with 27, « is close to unity and

can be expressed as
1 (GmM>2
axl— - ,

2 be
and we have

GmM\?
v )
per period of revolution. From a consideration of the gravitational attrac-
tion we have

AORﬂr(

GmM
,,72
where 7 is the mean radius of the orbit of Mercury. As

= my7d?

b=myid ,
Gt _ i _

be c Tc '’
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where 7 = 88 days is the period of one revolution. In a century there are

100 x 365
——— =414.8
88
revolutions, so that the total precession per century is
58 x 106 ?
0 =414. 3
414.8 4™ x (88x24x3600x3x105>

=3.326 x 107% rad

= 6.86 seconds of arc .

This is about % of the observed value, which can only be accounted for if
general relativity is used for the calculation.

3048

Derive the Hamiltonian of a particle traveling with momentum p =
Y when it is placed in the fields defined by

1-
¢

E:—Vé—laA

cot’
H=VxA.
(SUNY, Buffalo)

Solution:

The Lagrangian of the particle, assumed to have charge g,is in Gaussian

units
m062
Y

—q<I>+g-v-A,

and its Hamiltonian is defined as
H=) &p—L,
i

where &; is the velocity component given, in Cartesian coordinates, by

v = (&1, %2, Z3) and p; is the canonical momentum given by p; = g—a{:. As

1 i? + &3 + 12 i} (1)__7:5:,-

=1 It
v c?

’72 c? ! 8:i:,'
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and
v-A=) a4,
i
we have
* ._3L_m . _+_in
pl_ad)i_ O’sz C
and

. .2 "'nOC2
H=Y d&p—L=mey) &l + —tad
i i

2 2,.2

moc” [ Y°v

- 1 ®
¥ (02+)+q

= mgyc? + q® .

To write H in terms of p, we note that

> (movi)? =) (Pi - qTA,)2 )

i i
or .

A

m872v2 = (p - q——) )

C

and thus
2,2 A2
miyiet = md (7; + 1) ¢t = (p — qT) c? +mict .

Therefore

gA\’
H = (p'——z‘“) C2+mgc4+q(b.

3049
What is the velocity of a particle if its kinetic energy equals its rest
energy?
( Wisconsin)
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Solution:

The kinetic energy of a particle of rest mass my is
T=F —moc2 = moc2('y — 1) )

where v = 7-1%? As this equals mgc?, v = 2. Hence

v 1 3
o1 = =4/2
c v ~? \/"

or

3050

743

A beam of electrons is scattered by a fixed scattering target as shown
in Fig. 3.27. The electrons are elastically scattered. Each electron has an
energy F = -g-moc2 and the beam has a flux of Q) electrons per second.

(a) What is the velocity of the incident electrons?

(b) What are the magnitude and direction of the force on the scattering

target due to the electrons?

|

|

|

|
777/////‘/ TITTI777

Fig. 3.27.

(Wisconsin)
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Solution:

(a) As E = mgyc? = §moc?, y = § and ¥ = /1~ -y = §. Hence the
electron velocity is 0.8c.

(b) Since the electrons are elastically scattered, they have the same
speed before and after scattering and conservation of the momentum paral-
lel to the target requires that the incident and scattering angles are equal.
Then after scattering the normal component of the momentum changes sign
but remains the same in magnitude. Hence

42

Ap = 2p,, = 2mgyvcos45° = ~3~™Moc .
The force F' on the target due to the beam of electrons is equal to the
impulse given to it per unit time by the beam. As Q electrons impinge on
the target in unit time,

442
F =2p,Q = TQmoc ,

and it acts vertically onto the target.

3051

The principle of equivalence asserts that gravitational and inertial
masses are equal. Does a photon have nonzero gravitational mass? Explain.
Suppose a photon is falling toward the earth and it falls a distance of 10 m.
Calculate the effect on the frequency of the photon. What experimental
technique could be used to measure this frequency change?

( Wisconsin)

Solution:

The gravitational mass of a photon is not zero but is equal to the inertial

mass
_E h
meGE=
in accordance with the principle of equivalence, even though its rest mass
is zero. When the photon falls a distance [ in a gravitational field g, its

energy increases and so does its frequency:
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hu'%hu-i—mgl:hu(l-i—g—;) .

Writing v/ = v + Av, we have

Av gl 9.8 x 10 15
— a2 = —— — _ =11%x107",
v ¢ (3x108)? x10
Thus falling through a distance of 10 m in the gravitational field of the earth,
the frequency of a photon will increase (blue shift) by a factor 1+1.1x1071%,
The slight increase in frequency can be detected experimentally using the
Méssbauer effect.

3052

Consider a very high energy scattering experiment involving two parti-
cles with the same rest mass my, one initially at rest and the other incident
with momentum p and total energy F.

(a) Find the velocity of the center of mass §* = "T

(b) In the extreme relativistic limit pc > myc?, find the total energy
E* of the system in the center of mass frame (i.e. the frame in which the
total 3-momentum is zero).

( Wisconsin)

Solution:

(a) The system of two particles has total energy E + moc? and total
momentum p in the laboratory system. The velocity of the center of mass,
which is the velocity of the system as a whole, in units of c, is then

.__ P
h E +mgc? ’

(b) The quantities E? — p?c? of a system is invariant under Lorentz
transformation. In the laboratory frame it is

(E + moc?)? — p*c® = 2Emoc? + 2mic?

as E? — p2c? = mic. In the center of mass frame it is (2E)?, where E is
the total energy of each particle. Hence
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E* = 2E = \/2Emoc2 + 21’71%64

~ V2Emgc? = /2pmocd

2

in the extreme relativistic limit for which pc > mgyc®, since in this case

E = {/p2c? + m3ct = pc > moc? .

3053

A particle of rest mass m and initial velocity vy along the z-axis is
subject after t = 0 to a constant force F' acting in the y-direction. Find its
velocity at any time t, and show that |v| — c as t — 0.

( Wisconsin)

Solution:
The equation of motion
d
F=—(m ,
2 ™)

here v = —- can be written as
w Y /———5-1_%7 )

d . d .
0= Z(myd),  F=2(mvi)

with v = (£,9), F = (0, F). As F is constant for ¢ > 0 and initially £ = v,
¢ =0, F =0, the above integrate to give

myE = Mmoo, myy = Ft,

1

where vp = . Hence
Vi-s

A =d® +§? = —— (mPGef + F1%)

m2y?

or

_ 32 _ m2y3v + F2t?
1~ ﬂ-z m2c2 !

7?32
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giving
PP R s
m2y3v2 + m2c? + F2t2

2
As 3% =% — 1, we have

m2y3vf + F2t2
v=0c= “2722 532 C -
m2ygc? + F2t

The velocity components are

. YoVo . Ft
Tr=—, y=—-,
Y my

1 _ [m¥dc? + F2t2
Y - a2 Iz = m2c2 .

For t — 00, as mygvy, Myoc remain constant we have

v Ft C C
- { — =cC.
Ft

where

3054
An electron of energy E > mc? and a photon of energy W collide.

(a) What is W', the energy of the photon in the electron (e) frame of
reference?

(b) If W' <« mc?, the electron recoil can be neglected and the energy of
the photon in the e-frame is unchanged as a result of the scattering process.
What are the minimum and maximum values of the energy of the scattered
photon in the laboratory (L) frame?

( Wisconsin )

Solution:

(a) Suppose the photon makes angles 8, & with the initial direction of
motion of the electron, which is taken to be the direction of the z-axis, in
the L- and e-frames respectively. As (pc, E) forms a 4-vector, the photon
energy transforms according to
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w
W' =+~ (W - éc_ -ccos0) =v(1— BcosHW

where v = ;";5, B = & with p = 1/E? — m2c* being the momentum of
the electron in the L-frame. As E > mc?,

m2ct
~F — .
pc (1 2E? )

Hence

E m2ct
W' =~ oo [1 — (1 Y ) COSO:I |4
E 2
[ cost) + 7 cost | w )

(b) In the e-frame, the electron is initially at rest. If its recoil can
be neglected, the incident photons must be scattered back along the line
of incidence with the same energy in accordance with the conservation of
energy and of momentum. The transformation of energy and momentum
of the photon is given by

W' cos§ =~yW(cosb — 3), W'sind = Wsiné ,

or -
tang = ———" 2
an Y(cos 8 — 3) (2)

and
W =v(1+ Bcos§)W' =~ E (1+cos0')—m—200s0’ w'. (3)
mc? 2E

Equation (1) shows that for W’ to be maximum, cosf = —1 or § = and

2E

WI
e

Equation (2) gives 8 = m. The photon is scattered back so that after
the collision ¢ = 0. Equation (3) then gives the corresponding energy in

L-frame: )
2F | 2F
o = ()
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Similarly, for the minimum energy, cos = 1, or # = 0, and

2
hin ™ 5=W, 0/ =0.

After scattering = 7 and

mc? me? 2
Wiin & oY min ~ (?E—> w .
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