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Preface

In our experience, an understanding of the laws of physics is best acquired
by applying them to practical problems. Frequently, however, the problems
appearing in textbooks can be solved only through long, complex calcu-
lations, which tend to be mechanical and boring, and often drudgery for
students. Sometimes, even the best of these students, the ones who possess
all the necessary skills, may feel that such problems are not attractive enough
to them, and the tedious calculations involved do not allow their ‘creativity’
(genius?) to shine through.

This little book aims to demonstrate that not all physics problems are like
that, and we hope that you will be intrigued by questions such as:

How is the length of the day related to the side of the road on which
traffic travels?

Why are Fosbury floppers more successful than Western rollers?
How far below ground must the water cavity that feeds Old Faithful
be?

How high could the tallest mountain on Mars be?

What is the shape of the water bell in an ornamental fountain?
How does the way a pencil falls when stood on its point depend
upon friction?

Would a motionless string reaching into the sky be evidence for
UFOs?

How does a positron move when dropped in a Faraday cage?
What would be the high-jump record on the Moon?

Why are nocturnal insects fatally attracted to light sources?

How much brighter is sunlight than moonlight?

How quickly does a fire hose unroll?

vii
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e How do you arrange two magnets so that the mutual couples they
experience are not equal and opposite?

e How long would it take to defrost an 8-tonne Siberian mammoth?

e What perils face titanium-eating little green men who devour their
own planet?

e What is the direction of the electric field due to an uniformly
charged rod?

e What is the catch in an energy-generating capacitor?

e What is the equivalent resistance of an n-dimensional cube of resis-
tors?

e What factors determine the period of a sand-glass egg timer?

e How does a unipolar dynamo work?

e How ‘deep’ is an electron lying in a box?

These, and some 180 others, are problems that can be solved elegantly by an
appropriate choice of variables or coordinates, an unusual way of thinking,
or some ‘clever’ idea or analogy. When such an inspiration or eureka moment
occurs, the solution often follows after only a few lines of calculation or
brief mental reasoning, and the student feels justifiably pleased with him-
or herself.

Logic in itself is not sufficient. Nobody can guess these creative approaches
without knowing and understanding the basic laws of physics. Accordingly,
we would not encourage anybody to tackle these problems without first
having studied the subject in some depth. Although successful solutions to
the problems posed are clearly the principal goal, we should add that success
is not to be measured by this alone. Whatever help you, the reader, may seek,
and whatever stage you reach in the solution to a problem, it will hopefully
bring you both enlightenment and delight. We are sure that some solutions
will lead you to say ‘how clever’, others to say ‘how nice’, and yet others to
say ‘how obvious or heavy-handed’! Our aim is to show you as many useful
‘tricks’ as possible in order to enlarge your problem-solving arsenal. We wish
you to use this book with delight and profit, and if you come across further
similar ‘puzzling’ physics problems, we would ask you to share them with
others (and send them to the authors).

The book contains 200 interesting problems collected by the authors over
the course of many years. Some were invented by us, others are from the
Hungarian ‘Secondary School Mathematics and Physics Papers’ which span
more than 100 years. Problems and ideas from various Hungarian and
international physics contests, as well as the Cambridge Colleges’ entrance
examination, have also been used, often after rewording. We have also been
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guided by the suggestions and remarks of our colleagues. In particular, we
would like to thank Masaaki Kato for several helpful observations and
suggested clarifications and Alfonso Diaz-Jimenez for an interesting note
on the launching of space probes (see solution 17). It is impossible to
determine the original authors of most of the physics problems appearing in
the international ‘ideas-market’. Nevertheless, some of the inventors of the
most puzzling problems deserve our special thanks. They include Tibor Biro,
Laszl0 Holics, Frederick Karolyhazy, George Marx, Ervin Szegedi and Istvan
Varga. We thank them and the other people, known and unknown, who have
authored, elaborated and improved upon ‘puzzling’ physics problems.
PG. G.H.
Budapest 2000
K.ER.
Cambridge 2000



Physical constants

Gravitational constant, G
Speed of light (in vacuum), ¢
Elementary charge, e
Electron mass, me

Proton mass, m,

Boltzmann constant, k
Planck constant, h

Avogadro constant, Np

Gas constant, R

Permittivity of free space, &
Coulomb constant, k = 1/4neg
Permeability of free space, uo

Some astronomical data
Mean radius of the Earth, R

Sun—Earth distance (Astronomical Unit, AU)

Mean density of the Earth, p

Free-fall acceleration at the Earth’s surface, g

Some physical properties
Surface tension of water, y

Heat of vaporisation of water, L

Tensile strength of steel, o

6.673 x 10~! Nm? kg
2998 x 103 ms™!
1.602 x 10-1°C
9.109 x 10~3! kg
1.673 x 107" kg
1.381 x 10~ JK !
6.626 x 107347 s
6.022 x 10?3 mol™!
8.315J mol 'K !
8.854 x 10712CV~Im!
8987 x 10°VmC™!

47 x 1077Vs2Cm!

6371 km
1.49 x 103km
5520kgm™>
9.81 ms—2

0.073Nm™!
2256 kI kg™! = 40.6kJ mol~!
500-2000 MPa

Xiii



Xiv Physical constants

Densities?, p (kgm™)

Hydrogen 0.0899
Helium 0.1786
Air 1.293

Water (at 4°C) 1000

2 Densities quoted in normal state.

Optical Refractive Indices®, n

Water 1.33 Glass
Ice 1.31 Diamond
b At A =590nm.

Titanium
Iron
Mercury
Platinum

1.5-1.8
242

4510
7860
13550
21450



Problems

P1 Three small snails are each at a vertex of an equilateral triangle of
side 60 cm. The first sets out towards the second, the second towards the
third and the third towards the first, with a uniform speed of 5 cm min~!.
During their motion each of them always heads towards its respective target
snail. How much time has elapsed, and what distance do the snails cover,
before they meet? What is the equation of their paths? If the snails are
considered as point-masses, how many times does each circle their ultimate

meeting point?

P2 A small object is at rest on the edge of a horizontal table. It is pushed
in such a way that it falls off the other side of the table, which is 1 m wide,
after 2 s. Does the object have wheels?

P3 A boat can travel at a speed of 3 m s~! on still water. A boatman

wants to cross a river whilst covering the shortest possible distance. In what
direction should he row with respect to the bank if the speed of the water
is (i) 2 m s!, (ii) 4 m s~!? Assume that the speed of the water is the same
everywhere.

P4 A long, thin, pliable carpet is laid on the floor. One end of the carpet
is bent back and then pulled backwards with constant unit velocity, just
above the part of the carpet which is still at rest on the floor.

— v=1
—

Find the speed of the centre of mass of the moving part. What is the
minimum force needed to pull the moving part, if the carpet has unit length
and unit mass?
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P5 Four snails travel in uniform, rectilinear motion on a very large plane
surface. The directions of their paths are random, (but not parallel, i.e. any
two snails could meet), but no more than two snail paths can cross at any one
point. Five of the (4 x 3)/2 = 6 possible encounters have already occurred.
Can we state with certainty that the sixth encounter will also occur?

P6 Two 20-g flatworms climb over a very thin wall, 10 cm high. One of
the worms is 20 cm long, the other is wider and only 10 cm long. Which of
them has done more work against gravity when half of it is over the top of
the wall? What is the ratio of the amounts of work done by the two worms?

P7 A man of height hy = 2 m is bungee jumping from a platform situated
a height h = 25 m above a lake. One end of an elastic rope is attached to his
foot and the other end is fixed to the platform. He starts falling from rest in
a vertical position.

The length and elastic properties of the rope are chosen so that his speed
will have been reduced to zero at the instant when his head reaches the
surface of the water. Ultimately the jumper is hanging from the rope, with
his head 8 m above the water.

(i) Find the unstretched length of the rope.
(ii) Find the maximum speed and acceleration achieved during the jump.

P8 An iceberg is in the form of an upright regular pyramid of which
10 m shows above the water surface. Ignoring any induced motion of the
water, find the period of small vertical oscillations of the berg. The density
of ice is 900 kg m—3.

P9 The suspension springs of all four wheels of a car are identical. By
how much does the body of the car (considered rigid) rise above each of
the wheels when its right front wheel is parked on an 8-cm-high pavement?
Does the result change when the car is parked with both right wheels on
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the pavement? Does the result depend on the number and positions of the
people sitting in the car?

P10* In Victor Hugo’s novel les Misérables, the main character Jean
Valjean, an escaped prisoner, was noted for his ability to climb up the corner
formed by the intersection of two vertical perpendicular walls. Find the
minimum force with which he had to push on the walls whilst climbing.
What is the minimum coefficient of static friction required for him to be
able to perform such a feat?

P11 A sphere, made of two non-identical homogeneous hemispheres
stuck together, is placed on a plane inclined at an angle of 30° to the
horizontal. Can the sphere remain in equilibrium on the inclined plane?

P12 A small, elastic ball is dropped vertically onto a long plane inclined
at an angle o to the horizontal. Is it true that the distances between con-
secutive bouncing points grow as in an arithmetic progression? Assume that
collisions are perfectly elastic and that air resistance can be neglected.

P13 A small hamster is put into a circular wheel-cage, which has a
frictionless central pivot. A horizontal platform is fixed to the wheel below
the pivot. Initially, the hamster is at rest at one end of the platform.

When the platform is released the hamster starts running, but, because of
the hamster’s motion, the platform and wheel remain stationary. Determine
how the hamster moves.

P14* A bicycle is supported so that it is prevented from falling sideways
but can move forwards or backwards; its pedals are in their highest and low-
est positions. A student crouches beside the bicycle and applies a horizontal
force, directed towards the back wheel, to the lower pedal.

(i) Which way does the bicycle move?
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(if) Does the chain-wheel rotate in the same or opposite sense as the rear
wheel?
(iif) Which way does the lower pedal move relative to the ground?

P15 If the solar system were proportionally reduced so that the average
distance between the Sun and the Earth were 1 m, how long would a year
be? Take the density of matter to be unchanged.

I m

S .

Sun Earth

P16 If the mass of each of the members of a binary star were the same
as that of the Sun, and their distance apart were equal to the Sun—Earth
distance, what would be their period of revolution?

P17 (i) What is the minimum launch speed required to put a satellite
into a circular orbit?

(i1) How many times higher is the energy required to launch a satellite into
a polar orbit than that necessary to put it into an Equatorial one?

(iii) What initial speed must a space probe have if it is to leave the
gravitational field of the Earth?

(iv) Which requires a higher initial energy for the space probe —leaving the
solar system or hitting the Sun?

P18 A rocket is intended to leave the Earth’s gravitational field. The fuel
in its main engine is a little less than the amount that is necessary, and an
auxiliary engine, only capable of operating for a short time, has to be used
as well. When is it best to switch on the auxiliary engine: at take-off, or
when the rocket has nearly stopped with respect to the Earth, or does it not
matter?

P19 A steel ball with a volume of 1 cm? is sinking at a speed of 1 cm s~

in a closed jar filled with honey. What is the momentum of the honey if its
density is 2 g cm™3?

.i 1cms™!
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P20 A gas of temperature T is enclosed in a container whose walls are
(initially) at temperature Tj. Does the gas exert a higher pressure on the
walls of the container when Ty < T or when Ty > T?

P21* Consider two identical iron spheres, one of which lies on a
thermally insulating plate, whilst the other hangs from an insulating thread.

O

Equal amounts of heat are given to the two spheres. Which will have the
higher temperature?

P22 Two (non-physics) students, A and B, living in neighbouring college
rooms, decided to economise by connecting their ceiling lights in series. They
agreed that each would install a 100-W bulb in their own rooms and that
they would pay equal shares of the electricity bill. However, both decided to
try to get better lighting at the other’s expense; A4 installed a 200-W bulb and
B installed a 50-W bulb. Which student subsequently failed the end-of-term
examinations?

P23 If a battery of voltage V is connected across terminals I of the
black box shown in the figure, a voltmeter connected to terminals II gives a
reading of V' /2; while if the battery is connected to terminals II, a voltmeter
across terminals I reads V.

(o]

The black box contains only passive circuit elements. What are they?

P24 A bucket of water is suspended from a fixed point by a rope. The
bucket is set in motion and the system swings as a pendulum. However, the
bucket leaks and the water slowly flows out of the bottom of it. How does
the period of the swinging motion change as the water is lost?

P25 An empty cylindrical beaker of mass 100 g, radius 30 mm and neg-
ligible wall thickness, has its centre of gravity 100 mm above its base. To
what depth should it be filled with water so as to make it as stable as
possible?
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P26 Fish soup is prepared in a hemispherical copper bowl of diameter
40 cm. The bowl is placed into the water of a lake to cool down and floats
with 10 cm of its depth immersed.

A point on the rim of the bowl is pulled upwards through 10 cm, by a
chain fastened to it. Does water flow into the bowl?

P27 A circular hole of radius r at the bottom of an initially full water
container is sealed by a ball of mass m and radius R (> r). The depth of the
water is now slowly reduced, and when it reaches a certain value, hg, the ball
rises out of the hole. Find hy.

P28 Soap bubbles filled with helium float in air. Which has the greater
mass—the wall of a bubble or the gas enclosed within it?

P29 Water which wets the walls of a vertical capillary tube rises to a
height H within it. Three ‘gallows’, (a), (b) and (c), are made from the same
tubing, and one end of each is placed into a large dish filled with water, as
shown in the figure.

H ()

@ ®)

Does the water flow out at the other ends of the capillary tubes?
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P30 A charged spherical capacitor slowly discharges as a result of the
slight conductivity of the dielectric between its concentric plates. What are
the magnitude and direction of the magnetic field caused by the resulting
electric current?

P31 An electrically charged conducting sphere ‘pulses’ radially, i.e. its
radius changes periodically with a fixed amplitude (see figure). The charges on
its surface —acting as many dipole antennae —emit electromagnetic radiation.
What is the net pattern of radiation from the sphere?

P32* How high would the male world-record holder jump (at an indoor
competition!) on the Moon?

P33 A small steel ball B is at rest on the edge of a table of height 1 m.
Another steel ball 4, used as the bob of a metre-long simple pendulum,
is released from rest with the pendulum suspension horizontal, and swings
against B as shown in the figure. The masses of the balls are identical and
the collision is elastic.

Considering the motion of B only up until the moment it first hits the
ground:

(i) Which ball is in motion for the longer time?
(i) Which ball covers the greater distance?

P34 A small bob is fixed to one end of a string of length 50 cm. As a
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consequence of the appropriate forced motion of the other end of the string,
the bob moves in a vertical circle of radius 50 cm with a uniform speed of
3.0 m s~!. Plot, at 15° intervals on the circular path, the trajectories of both
ends of the string, indicating on each the points belonging together.

P35 A point P is located above an inclined plane. It is possible to reach
the plane by sliding under gravity down a straight frictionless wire, joining P
to some point P’ on the plane. How should P’ be chosen so as to minimise
the time taken?

P36 The minute hand of a church clock is twice as long as the hour
hand. At what time after midnight does the end of the minute hand move
away from the end of the hour hand at the fastest rate?

P37 What is the maximum angle to the horizontal at which a stone can
be thrown and always be moving away from the thrower?

P38" A tree-trunk of diameter 20 cm lies in a horizontal field. A lazy
grasshopper wants to jump over the trunk. Find the minimum take-off speed
of the grasshopper that will suffice. (Air resistance is negligible.)

P39" A straight uniform rigid hair lies on a smooth table; at each end
of the hair sits a flea. Show that if the mass M of the hair is not too great
relative to that m of each of the fleas, they can, by simultaneous jumps with
the same speed and angle of take-off, exchange ends without colliding in
mid-air.

P40 A fountain consists of a small hemispherical rose (sprayer) which
lies on the surface of the water in a basin, as illustrated in the figure. The
rose has many evenly distributed small holes in it, through which water
spurts at the same speed in all directions.

§\W/¢,

What is the shape of the water ‘bell’ formed by the jets?

P41 A particle of mass m carries an electric charge Q and is subject to
the combined action of gravity and a uniform horizontal electric field of
strength E. It is projected with speed v in the vertical plane parallel to the
field and at an angle 6 to the horizontal. What is the maximum distance the
particle can travel horizontally before it is next level with its starting point?

P42** A uniform rod of mass m and length ¢ is supported horizontally
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at its ends by my two forefingers. Whilst I am slowly bringing my fingers
together to meet under the centre of the rod, it slides on either one or other
of them. How much work do I have to do during the process if the coefficient
of static friction is pgat, and that of kinetic friction is pxin (Ukin < Ustat)?

P43 Four identical bricks are placed on top of each other at the edge of
a table. Is it possible to slide them horizontally across each other in such a
way that the projection of the topmost one is completely outside the table?
What is the theoretical limit to the displacement of the topmost brick if the
number of bricks is arbitrarily increased?

P44 A plate, bent at right angles along its centre line, is placed onto a
horizontal fixed cylinder of radius R as shown in the figure.

<

How large does the coefficient of static friction between the cylinder and
the plate need to be if the plate is not to slip off the cylinder?

P45 Two elastic balls of masses m; and m; are placed on top of each other
(with a small gap between them) and then dropped onto the ground. What
is the ratio m;/my, for which the upper ball ultimately receives the largest
possible fraction of the total energy? What ratio of masses is necessary if
the upper ball is to bounce as high as possible?

O-
()~

P46 An executive toy consists of three suspended steel balls of masses
M, u and m arranged in that order with their centres in a horizontal line.
The ball of mass M is drawn aside in their common plane until its centre
has been raised by h and is then released. If M #* m and all collisions are
elastic, how must u be chosen so that the ball of mass m rises to the greatest
possible height? What is this height? (Neglect multiple collisions.)

P47 Two identical dumb-bells move towards each other on a horizontal
air-cushioned table, as shown in the figure. Each can be considered as two
point masses m joined by a weightless rod of length 27/. Initially, they are not
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If the radius of the cylinder is R = 5 cm and the refractive index of the
glass is n = 1.5, where, on the table beyond the cylinder, will a patch of light
be found?

P56 How much brighter is sunlight than moonlight? The albedo (reflec-
tivity) of the Moon is o = 0.07.

P57 Annie and her very tall boyfriend Andy like jogging together. They
notice that when running they move at more or less the same speed, but
that Andy is always faster when they are walking. How can this difference
between running and walking be explained using physical arguments?

P58 A simple pendulum and a homogeneous rod pivoted at its end are
released from horizontal positions. What is the ratio of their periods of
swing if their lengths are identical?

F R 4%4 F

P59* A helicopter can hover when the power output of its engine is P.
A second helicopter is an exact copy of the first one, but its linear dimensions
are half those of the original. What power output is needed to enable this
second helicopter to hover?

P60* A uniform rod is placed with one end on the edge of a table in
a nearly vertical position and is then released from rest. Find the angle
it makes with the vertical at the moment it loses contact with the table.
Investigate the following two extreme cases:

(@

®) |
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(i) The edge of the table is smooth (friction is negligible) but has a
small, single-step groove as shown in figure (a).

(ii) The edge of the table is rough (friction is large) and very sharp, which
means that the radius of curvature of the edge is much smaller than
the flat end-face of the rod. Half of the end-face protrudes beyond
the table edge (see figure (b)), with the result that when it is released
from rest the rod ‘pivots’ about the edge. The rod is much longer
than its diameter.

P61* A pencil is placed vertically on a table with its point downwards.
It is then released and tumbles over. How does the direction in which the
point moves, relative to that in which the pencil falls, depend upon the
coefficient of friction? Will the pencil point lose contact with the table (other
than when the ‘shoulder’ of the pencil ultimately comes into contact with
the table)?

P62 Two soap bubbles of radii R; and R, are joined by a straw. Air
goes from one bubble to the other (which one?) and a single bubble of
radius Rj is formed. What is the surface tension of the soap solution if the
atmospheric pressure is po? Is measuring three such radii a suitable method
for determining the surface tension of liquids?

P63 Water, which wets glass, is stuck between two parallel glass plates.
The distance between the plates is d, and the diameter of the trapped water
‘disc’ is D > d.

D

What is the force acting between the plates?
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P64 A spider has fastened one end of a ‘super-elastic’ silk thread of length
1 m to a vertical wall. A small caterpillar is sitting somewhere on the thread.

Yo
- fanie

The hungry spider, whilst not moving from its original position, starts
pulling in the other end of the thread with uniform speed, vg = 1 cm s~ 1.
Meanwhile, the caterpillar starts flecing towards the wall with a uniform
speed of 1 mm s~! with respect to the moving thread. Will the caterpillar
reach the wall?

P65 How does the solution to the previous problem change if the spider
does not sit in one place, but moves (away from the wall) taking with it the
end of the thread?

P66 Nails are driven horizontally into a vertically placed drawing-board.
As shown in the figure, a small steel ball is dropped from point A and reaches
point B by bouncing elastically on the protruding nails (which are not shown
in the figure).

2m

J |

B

Is it possible to arrange the nails so that:

(i) The ball gets from point 4 to point B more quickly than if it had
slid without friction down the shortest path, ie. along the straight
line AB?

(i1) The ball reaches point B in less than 0.4 s?

P67 One end of a rope is fixed to a vertical wall and the other end pulled
by a horizontal force of 20 N. The shape of the flexible rope is shown in the
figure. Find its mass.

20N
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P68 Find the angle to which a pair of compasses should be opened
in order to have the pivot as elevated as possible when the compasses are

suspended from a string attached to one of the points, as shown in the figure.
Assume that the lengths of the compass arms are equal.

P69*

Threads of lengths hy, hy and hs3 are fastened to the vertices of a

homogeneous triangular plate of weight W. The other ends of the threads
are fastened to a common point, as shown in the figure.

What is the tension in each thread, expressed in terms of the lengths of
the threads and the weight of the plate?
P70*

A tanker full of liquid is parked at rest on a horizontal road. The
brake has not been applied, and it may be supposed that the tanker can
move without friction.

L
|

s J

In which direction will the tanker move after the tap on the vertical outlet
pipe, which is situated at the rear of the tanker, has been opened? Will the
tanker continue to move in this direction?



16 200 Puzzling Physics Problems

P71 Two small beads slide without friction, one on each of two long,
horizontal, parallel, fixed rods set a distance d apart. The masses of the beads
are m and M, and they carry respective charges of g and Q. Initially, the
larger mass M is at rest and the other one is far away approaching it at
speed vy.

_—
m, q mv =0 d

M, Q

Describe the subsequent motion of the beads.

P72 Beads of equal mass are strung at equal distances on a long,
horizontal wire. The beads are initially at rest but can move without friction.

One of the beads is continuously accelerated (towards the right) by a
constant force F. What are the speeds of the accelerated bead and the front
of the ‘shock wave’, after a long time, if the collisions of the beads are:

(i) completely inelastic,
(ii) perfectly elastic?

P73 A table and a large jug are placed on the platform of a weighing
machine and a barrel of beer is placed on the table with its tap above the
jug. Describe how the reading of the machine varies with time after the tap
has been opened and the beer runs into the jug.

P74 A jet of water strikes a horizontal gutter of semicircular cross-
section obliquely, as shown in the figure. The jet lies in the vertical plane
that contains the centre-line of the gutter.

Water jet

I~ ]

5

Calculate the ratio of the quantities of water flowing out at the two ends
of the gutter as a function of the angle of incidence « of the jet.
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P75" An open-topped vertical tube of diameter D is filled with water up
to a height h. The narrow bottom-end of the tube, of diameter d, is closed
by a stop as shown in the figure.

When the stop is removed, the water starts flowing out through the bottom
orifice with approximate speed v = ,/2gh. However, this speed is reached by
the liquid only after a certain time 7. Obtain an estimate of the order of
magnitude of 7. What is the acceleration of the lowest layer of water at the
moment when the stop is removed ? Ignore viscous effects.

P76* Obtain a reasoned estimate of the time it takes for the sand to run
down through an egg-timer. Use realistic data.

P77 A small bob joins two light unstretched, identical springs, anchored
at their far ends and arranged along a straight line, as shown in the figure.

B B

T —e— e

The bob is displaced in a direction perpendicular to the line of the springs
by 1 cm and then released. The period of the ensuing vibration of the bob is
2 s. Find the period of the vibration if the bob were displaced by 2 cm before
mdease. The unstretched length of the springs is £ > 1 cm, and gravity is
® be ignored.
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P78 One end of a light, weak spring, of unstretched length L and force
constant k, is fixed to a pivot, and a body of mass m is attached to its other
end. The spring is released from an unstretched, horizontal position, as in
the figure.

e

What is the length of the spring when it reaches a vertical position?
(Describing a spring as weak implies that mg > kL, and that the tension in
the spring is directly proportional to its extension at all times.)

P79* A heavy body of mass m hangs on a flexible thread in a railway
carriage which moves at speed vy on a train-safety test track, as shown in
the figure.

)

— : ﬁ

[0]®) 00

The carriage is brought to rest by a strong but uniform braking. Can the
pendulum travel through 180°, so that the taut thread reaches the vertical?

P80™ A glass partially filled with water is fastened to a wedge that
slides, without friction, down a large plane inclined at an angle o as shown
in the figure. The mass of the inclined plane is M, the combined mass of the
wedge, the glass and the water is m.

If there were no motion the water surface would be horizontal. What
angle will it ultimately make with the inclined plane if
(i) the inclined plane is fixed,
(ii) the inclined plane can move freely in the horizontal direction?
Examine also the case in which m > M. What happens if the handle of the

inclined plane is shaken in a periodic manner, but one that is such that it
does not cause the wedge to rise off the plane?

P81" If someone found a motionless string reaching vertically up into
the sky and hanging down nearly to the ground, should that person consider
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it as an evidence for UFOs, or could there be an ‘Earthly’ explanation in
agreement with the well-known laws of physics? How long would the string
need to be?

P82 There is a parabolic-shaped bridge across a river of width 100 m.
The highest point of the bridge is 5 m above the level of the banks. A car
of mass 1000 kg is crossing the bridge at a constant speed of 20 m s~ 1.

Using the notation indicated in the figure, find the force exerted on the
bridge by the car when it is:
(i) at the highest point of the bridge,
(i) three-quarters of the way across.
(Ignore air resistance and take g as 10 m s™2.)

P83 A point mass of 0.5 kg moving with a constant speed of 5 m s~!

on an elliptical track experiences an outward force of 10 N when at either
endpoint of the major axis and a similar force of 1.25 N at each end of the
minor axis. How long are the axes of the ellipse?

P84” A boatman sets off from one bank of a straight, uniform canal for
a mark directly opposite the starting point. The speed of the water flowing
in the canal is v everywhere. The boatman rows steadily at such a rate that,
were there no current, the boat’s speed would also be v. He always sets
the boat’s course in the direction of the mark, but the water carries him
downstream. Fortunately he never tires! How far downstream does the water
carry the boat? What trajectory does it follow with respect to the bank?

P85 Two children stand on a large, sloping hillside that can be con-
sidered as a plane. The ground is just sufficiently icy that a child would fall
and slide downhill with a uniform speed as the result of receiving even the

slightest impulse.
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For fun, one of the children (leaning against a tree) pushes the other with
a horizontal initial speed vy = 1 m s~1. The latter slides down the slope with
a velocity that changes in both magnitude and direction. What will be the
child’s final speed if air resistance is negligible and the frictional force is
independent of the speed?

P86 Smugglers set off in a ship in a direction perpendicular to a straight
shore and move at constant speed v. The coastguard’s cutter is a distance a
from the smugglers’ ship and leaves the shore at the same time. The cutter
always moves at a constant speed in the direction of the smugglers’ ship
and catches up with the criminals when at a distance a from the shore. How
many times greater is the speed of the coastguard’s cutter than that of the
smugglers’ ship?

P87 Point-masses of mass m are at rest at the corners of a regular n-gon,
as illustrated in the figure for n = 6.

How does the system move if only gravitation acts between the bodies?
How much time elapses before the bodies collide if n = 2, 3 and 10? Examine
the limiting case when n > 1 and m = My/n, where M is a given total mass.

P88 A rocket is launched from and returns to a spherical planet of radius
R in such a way that its velocity vector on return is parallel to its launch
vector. The angular separation at the centre of the planet between the launch
and arrival points is §. How long does the flight of the rocket take, if the
period of a satellite flying around the planet just above its surface is To?
What is the maximum distance of the rocket above the surface of the planet?
Consider whether your analysis also applies to the limiting case of 8 — 0.

P89* Two identical small magnets of moment u are glued to opposite
ends of a wooden rod of length L, one labelled C, parallel to the rod, and
the other labelled D, perpendicular to it.

L
C
. | o DH’
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(i) Show that the couples that the magnets exert on each other are not
equal and opposite.

(i1) Ignoring the Earth’s magnetic field, explain quantitatively what would
happen if the system were freely suspended at its centre of gravity.

P90 A point-like body of mass m and charge g is held above and close
to a large metallic fixed plane and released when a distance d from it. How
much time will it take for the body to reach the plane? Ignore gravity.

P91" A plastic ball, of diameter 1 cm and carrying a uniform charge
of 1078 C, is suspended by an insulating string with its lowest point 1 cm
above a large container of brine (salted water). As a result, the surface of
the water below the ball wells up a little.

How large is the rise in water level immediately below the ball? Ignore
the effect of surface tension, and take the density of salted water to be
1000 kg m™>.

P92 A point charge is at rest inside a thin metallic spherical shell, but is
not at its centre. What is the force acting on the charge?

P93 Boron atoms of mass number A = 10 and a beam of unidentified
particles, moving in opposite directions with the same (non-relativistic) speed,
are made to collide inside an ion accelerator. The maximum scattering angle
of the boron atoms is found to be 30°. What kind of atoms does the particle
beam consist of?

P94 A billiard ball rolling without slipping hits an identical, stationary
billiard ball in a head-on collision. Describe the motion of the balls after
the collision. Prove that the final state does not depend on the coefficient of
sliding friction between the balls and the billiard table. (Rolling friction is
negligible.)

P95* A long slipway, inclined at an angle « to the horizontal, is fitted with
many identical rollers, consecutive ones being a distance d apart. The rollers
have horizontal axles and consist of rubber-covered solid steel cylinders each
of mass m and radius r. Planks of mass M, and length much greater than d,
are released at the top of the slipway.
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Find the terminal speed vpmax of the planks. Ignore air resistance and
friction at the pivots of the rollers.

P96 A tablecloth covers a horizontal table and a steel ball lies on top of
it. The tablecloth is pulled from under the ball, and friction causes the ball
to move and roll.

What is the ball’s speed on the table when it reaches a state of rolling
without slipping? (Assume that the table is so large that the ball does not
fall off it.)

P97* If the law were changed so that traffic in Great Britain travelled
on the right-hand side of the road (instead of on the left), would the length
of the day increase, decrease, or be unaltered?

P98 In a physics stunt, two balls of equal density, and radii r and R = 2r,
are placed with the centre of the larger one at the middle of a cart of mass
M = 6 kg and length L = 2 m. The mass of the smaller ball is m = 1 kg. The
balls are made to roll, without slipping, in such a way that the larger ball
rests on the cart, and a straight line connecting their centres remains at a
constant angle ¢ = 60° to the horizontal. The cart is pulled by a horizontal
force in the direction shown in the figure.

(i) Find the magnitude of the force F.
(i) How much time elapses before the balls fall off the cart?

P99** The following equipment can be seen in the Science Museum in
Canberra, Australia. A disc of radius R has been cut from the centre of a
horizontal table, and then replaced into its original place mounted on a axle.
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As illustrated in the figure, the disc is spun and a solid rubber ball is
rolled onto the table. When it reaches the spinning disc, the ball leaves its
straight-line course and follows a curve. On leaving the disc, it continues its
original course, rolling without slipping, along a straight line. The final speed
of the ball is the same as it was before it reached the disc.

What are the conservation principles underlying this motion?

P100 A thin ring of radius R is made of material of density p and
Young’s modulus E. It is spun in its own plane, about an axis through its
centre, with angular velocity w. Determine the amount (assumed small) by
which its circumference increases.

P101* A light, inelastic thread is stretched round one-half of the circum-
ference of a fixed cylinder as shown in the figure.

A R

Q..

h

As a result of friction, the thread does not slip on the cylinder when the
magnitudes of the forces acting on its ends fulfil the inequality

%FA < Fp <2F4.

Determine the coefficient of friction between the thread and the cylinder.

P102** Charlie is a first-year student at university, studying integral
calculus in mathematics. As an exercise, he has to determine the position
C of the centre of mass of a semicircular arc which has radius R and a
homogeneous mass distribution.
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His younger sister, Jenny, only attends secondary school, but is studying
rotation in physics. She eagerly watches the calculations of her brother, but
as she has never heard of integral calculus, she does not understand much
of it. The only clear thing to her is the problem itself.

After thinking and calculating for a while, she calls out: ‘I have got the
result, and I can determine not only the position of the centre of mass of a
semicircle but also that of any part of a circle or any sector of it!

How has she done it?

P103* A table of height 1 m has a hole in the middle of its surface. A
thin, golden chain necklace, of length 1 m, is placed loosely coiled close to

the hole, as shown in the figure.
4

One end of the chain is pulled a little way through the hole and then
released. Friction is negligible, and, as a result, the chain runs smoothly
through the hole with increasing speed. After what times will the two ends
of the chain reach the floor?

I m

P104* A flexible chain of uniform mass distribution is wrapped tightly
round two cylinders so that its form is that of a stadium running-track, i.e.
it consists of two semicircles joined by two straight sections. The cylinders
are made to rotate and cause the chain to move with speed v.

For some reason, the chain suddenly slips off the cylinders and falls
vertically. How does the shape of the chain vary during the fall?

According to Steve, it takes a circular shape because of the centrifugal
force. Bob accepts this point, but he considers that the initially ‘elliptical’
chain will be deformed beyond the circular by this effect and become a
vertical ellipse with its new major axis at right angles to the original one. He
expects that this process will repeat itself and that the chain shape will cycle
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between the two ‘ellipses’. Frank guesses that the chain retains its original
shape, but he cannot give any reasons for his guess. Who is right—or are
they perhaps all wrong?

P105™* A heavy, flexible, inelastic chain of length L is placed almost
symmetrically onto a light pulley which can rotate about a fixed axle, as
shown in the figure.

What will the speed of the chain be when it leaves the pulley?

P106* A long, heavy, flexible rope with mass p per unit length is stretched
by a constant force F. A sudden movement causes a circular loop to form at
one end of the rope. In a manner similar to that in which transverse waves
propagate, the loop runs (rolls) along the rope with speed ¢ as shown in the
figure.

(i) Calculate the speed c of the loop.

(ii) Determine the energy, momentum and angular momentum carried
by a loop of angular frequency w. What is the relationship between
these quantities?

P107 Sand falls vertically at a rate of 50 kg s~! onto a horizontal
—1

conveyor belt moving at a speed of 1 m s™°, as shown in the figure.
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What is the minimum power output of the engine which drives the belt?
How is the work done by the engine accounted for?

P108** A fire hose of mass M and length L is coiled into a roll of radius
R (R K L). The hose is sent rolling across level ground with initial speed
vo (angular velocity vg/R), while the free end of the hose is held at a fixed
point on the ground. The hose unrolls and becomes straight.

M

(i) How much time does it take for the hose to completely unroll?

(ii) The speed of the roll continually increases and its acceleration a is
clearly a vector pointing in the same direction as its velocity. On
the other hand, the vector resultant of the horizontal external forces
(frictional force plus the restraining force at the fixed end of the hose)
points in the opposite direction. How are these two facts consistent
with Newton’s second law?

(To simplify the analysis, suppose the initial kinetic energy of the roll to be
much higher than its potential energy (v > \/gl_(), thus allowing the effect
of gravity to be neglected. Assume further that the hose can be considered
as arbitrarily flexible, and that the work necessary for its deformation, air
resistance and rolling resistance can all be neglected.)

P109 Where is gravitational acceleration greater, on the surface of the
Earth, or 100 km underground? Take the Earth as spherically symmetrical.
The average density of the Earth is 5500 kg m™>, and that of its crust is
3000 kg m™>. (The depth of the crust may be assumed to be at least 100 km.)

P110° The Examining Institute for Cosmic Accidents (EXINCA) sent
the following short report to one of its experts:

A spaceship of titanium-devouring little green people has found a perfectly
spherical asteroid. A narrow trial shaft was bored from point A on its surface
to the centre O of the asteroid. This confirmed that the whole asteroid is
made of homogeneous titanium. At that point, an accident occurred when
one of the little green men fell off the surface of the asteroid into the trial
shaft. He fell, without any braking, until he reached O, where he died on
impact. However, work continued and the little green men started secret



Problems 27

excavation of the titanium, in the course of which they formed a spherical
cavity of diameter AO inside the asteroid, as illustrated in the figure.

A A

Then a second accident occurred —another little green man similarly fell
from point A to point O, and died.

EXINCA asked the expert to calculate the ratio of the impact speeds and
the ratio of the times taken to fall from 4 to O by the two unfortunate little
men. What figures did the expert give in her reply?

P111* The titanium-devouring little green people of the previous prob-
lem continued their excavating. As a result of their environmentally de-
structive activity, half of the asteroid was soon used up and, as shown in
the figure, only a regular hemisphere remained. The excavated material was
carried away from the asteroid.

What is the gravitational acceleration at the centre of the circular face of
the remaining hemisphere if the gravitational acceleration at the surface of
the original (spherical) asteroid was gy = 9.81 cm s—2?

P112* The little green titanium-devouring people found another titanium
asteroid with a radius of 10 km and a homogeneous mass distribution. They
started to excavate and to convey the material of the asteroid to the surface.
The excavation of the metal was effected by boring shafts along a strip
1 m wide round the equator of the asteroid until they had cut the asteroid
completely in two. Then the accident happened; the props separating the
two hemispheres broke and the asteroid collapsed.
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The experts from EXINCA need to calculate the total force exerted on the
props just before they collapsed. Please help them.

P113* A metal sphere, of radius R and cut in two along a plane whose
minimum distance from the sphere’s centre is A, is uniformly charged by a
total electric charge Q. What force is necessary to hold the two parts of the
sphere together?

P114 A small positively charged ball of mass m is suspended by an
insulating thread of negligible mass. Another positively charged small ball is
moved very slowly from a large distance until it is in the original position of
the first ball. As a result, the first ball rises by h. How much work has been
done?

P115* Hydrogen gas is stored at high pressure in a small, spherical
container. The gas is introduced into a light balloon and its pressure becomes
equal to the external atmospheric pressure. Is it possible that the balloon
could lift the container in its final state? Assume that the temperature of the
gas remains constant.

P116 In olden times, people used to think that the Earth was flat. Imagine
that the Earth is indeed not a sphere of radius R, but an infinite plate of
thickness H. What value of H is needed to allow the same gravitational
acceleration to be experienced as on the surface of the actual Earth? (Assume
that the Earth’s density is uniform and equal in the two models.)

P117* Electrical charges are evenly distributed along a long, thin insu-
lating rod AB.
Ef

A C

N e e e s Y :

Show that at an arbitrary point C (see figure), the electric field due to the
rod points in the direction of the bisector of angle ACB.
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P118 Using the result of the previous problem, determine the direction
and magnitude of the electric field in a plane which is perpendicular to a
long, charged rod, and contains one of the rod’s endpoints.

P119 At the beginning of nineteenth century the magnetic field of wires
carrying currents was the focus of investigations in physics, both experimen-
tally and theoretically. A particularly interesting case is that of a very long
wire, carrying a constant current I, which has been bent into the form of a
‘V’, with opening angle 260.

"
=2

According to Ampere’s computations, the magnitude B of the magnetic
field at a point P lying outside the ‘V’, but on its axis of symmetry and
at a distance d from its vertex, is proportional to tan(6/2). However, for
the same situation, Biot and Savart suggested that the magnetic field at P
might be proportional to 6. In fact they attempted to decide between the
two possibilities by measuring the oscillation period of a magnetic needle as
a function of the ‘V’ opening angle. However, for a range of 6 values, the
predicted differences were too small to be measured.

(i) Which formula might be correct?

(i1) Find the proportionality factor in this formula and guess the most
likely factor appearing in the other one.

P120** A direct current flows in a solenoid of length L and radius R,
(L > R), producing a magnetic field of magnitude By inside the solenoid.

(i) What is the strength of the magnetic field at the end of the coil, i.e.
at the point P shown in the figure?
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(i) What is the magnetic flux at the end of the coil, i.e. through a virtual
disc of radius R centred on P?

(iii) Sketch the magnetic field lines in the vicinity of P.

P121 The inner surfaces of two close parallel insulating plates are each
given a uniform charge of +Q. What force is required to hold the plates
together?

P122 Two parallel plate capacitors differ only in the spacing between
their (very thin) plates; one, AB, has a spacing of 5 mm and a capacitance of
20 pF, the other, CD, has a spacing of 2 mm. Plates A and C carry charges of
+1 nC, whilst B and D each carry —1 nC. What are the potential differences
Vap and V¢p after the capacitor CD is slid centrally between and parallel
to the plates of AB without touching them? Would it make any difference if
CD were not centrally placed between 4 and B?

P123* The distance between the plates of a plane capacitor is d and the
area of each plate is A. As shown in the figure, both plates of the capacitor
are earthed and a small body carrying charge Q is placed between them, at
a distance x from one plate.

e

What charge will accumulate on each plate?

P124* A point-like electric dipole is placed between the earthed plates of
the plane capacitor discussed in the previous problem. Its dipole momentum
vector p is perpendicular to the plates and the distances of the dipole from
the plates are x and d — x, respectively.

How does the charge which accumulates on each of the plates depend on
x? (Ignore edge effects.)

P125" The refractive index of the medium within a certain region, x > 0,
y > 0, changes with y. A thin light ray travelling in the x-direction strikes
the medium at right angles and moves through the medium along a circular
arc.
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How does the refractive index depend on y? What is the maximum possible
angular size of the arc?

P126 A compact disc (CD) contains approximately 650 MB of informa-
tion. Estimate the size of one bit on a CD using an ordinary ruler. Confirm
your estimate using a laser beam. Can you suggest the shape of one unit of
information?

P127 When a particular line spectrum is examined using a diffraction
grating of 300 lines mm~! with the light at normal incidence, it is found
that a line at 24.46° contains both red (640-750 nm) and blue/violet (360—
490 nm) components. Are there any other angles at which the same thing
would be observed?

P128* A parallel, thin, monochromatic laser beam falls on a diffraction
grating at normal incidence. How does the interference pattern it produces
on a viewing screen change if the grating is rotated through an angle ¢ < 90°
around an axis, which is

(i) parallel to the lines of the grating; or
(ii) perpendicular to the lines of the grating?

P129 Two floating objects are attracted to each other as the result of
surface tension effects, irrespective of whether they are floating on water or
on mercury. Explain why this is so.

P130* Water in a clean aquarium forms a meniscus, as illustrated in the
figure.

Calculate the difference in height h between the centre and the edge of the
meniscus. The surface tension of water is y = 0.073 N m™.

P131* Is it possible to have a (spherical) drop of water that could
evaporate without taking up heat or losing internal (thermal) energy?

P132* Small liquid drops of various sizes are in a closed container, to
whose walls the liquid does not adhere. Over a sufficiently long time, the
size of the smallest drops is found to decrease whilst that of the larger ones
increases, until finally only one large drop remains in the container. What is
the explanation for this phenomenon?
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P133 A horizontal frictionless piston, of negligible mass and heat capac-
ity, divides a vertical insulated cylinder into two halves. Each half of the
cylinder contains 1 mole of air at standard temperature and pressure po.

A

A load of weight W is now suspended from the piston, as shown in the
figure. It pulls the piston down and comes to rest after a few oscillations.
How large a volume does the compressed air in the lower part of the cylinder
ultimately occupy if W is very large?

P134* How high could the tallest mountain on Earth be? And on Mars?

P135* The sealed lower half of a straight glass tube, of height 152 cm,
is filled with air. The top half contains mercury and the top of the tube
is left open. The air is slowly heated. How much heat has been trans-
ferred to the air by the time all the mercury has been pushed out of the
tube?

Make a plot showing how the molar heat of the enclosed air changes with
its volume during the process. (Atmospheric pressure is 760 mm Hg.)

P136 Vulcanism is very common in Iceland, but glaciers cover 11 per cent
of its surface area. This is why volcanic eruptions quite often occur under
glaciers, as one did in October 1996 under Vatnajokull, Europe’s largest
glacier. At the site of the eruption the glacier was 500 m thick and more or
less smooth and flat. After a day’s activity the visible sign of the eruption
was a deep crater-like depression on the surface of the ice cap, in the
form of a upside-down cone with a depth of 100 m and a diameter of
1 km. Explain the formation of the depression. What would have been
found under the ice crater at this time? Try to predict the subsequent
events.

P137* The most famous geyser in Yellowstone National Park is Old
Faithful. This geyser can be considered as a large underground cavity with
a narrow flue leading to the surface.
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The surrounding earth is warm as a result of residual volcanic activity
and boils the water in the cavity. After coming to the boil, the water in the
flue is expelled, and approximately 44 tons of steam leave the geyser in 4
minutes. After the eruption, underground springs refill the cavity and the
flue to ground level in 20-30 minutes, and the process then repeats itself. An
eruption occurs every 90 minutes.

Geological experiments show that the underground temperature in this
area increases by 1°C for each metre of depth. Determine the minimum
distance below the surface at which the cavity is situated. If the cavity is
assumed to be located at this minimum depth, what is its volume?

P138 The air above a large lake is at —2 °C, whilst the water of the lake
is at 0 °C. Assuming that only thermal conduction is important, and using
relevant data selected from that given below, estimate how long it would
take for a layer of ice 10 cm thick to form on the lake’s surface.

Data:

Thermal conductivity of water, Jw=056Wm™K!
Thermal conductivity of ice, 4=23Wm'K™!
Specific latent heat of fusion of ice, Li=33x10Jkg™!
Density of water, pw = 1000kgm™>
Density of ice, pi =920kgm™3

P139 If it takes two days to defrost a frozen 5-kg turkey, estimate how
long it would take to defrost an 8-tonne Siberian mammoth.

P140* A 0.6-kg block of ice at —10°C is placed into a closed empty
1 m? container, also at a temperature of —10°C. The temperature of the
container is then increased to 100°C. How much greater is the heat required
than that necessary to raise the empty container alone to that temperature?

P141® A strong-walled container is half-filled with water. The other half
contains air, initially at standard temperature and pressure. The container
is closed and slowly heated. When does the water in the container start
boiling? In what state(s) does the water exist, as the temperature rises?

P142 Two cobwebs each of length # and under a tension F are contained
in a glass case at temperature T. Because they are struck by air molecules
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they undergo random vibrations. What is the ratio of the amplitudes of these
motions if cobweb A4 has twice the mass of cobweb B?

P143 Outdoors at night, water vapour often condenses on cobwebs, on
which we can find periodical lines of very small identical water drops. Find
the minimum distance between these drops.

P144* Imagine a cylindrical body that can move without friction along
a straight wire parallel to its axis of symmetry, as illustrated in the figure.
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Tiny particles moving horizontally at speed vp bombard the body uniformly
from both left and right. Collisions with the right end of the cylinder are
perfectly elastic whilst those with the left are perfectly inelastic, though the
particles do not stick to the cylinder after the collision. What is the speed of
the cylinder

(i) after a long time, and
(ii) after a very long time?

P145 A totally black spherical space probe is very far from the solar
system. As a result of heating by a nuclear energy source of strength I
inside the probe, its surface temperature is T. The probe is now enclosed
within a thin thermal protection shield, which is black on both sides and
attached to the probe’s surface by a few insulating rods. Find the new
surface temperature of the probe. Determine also the surface temperature
which would result from using N such shields.
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P146 Two thermally insulated containers hold identical masses of water.
The water is at temperature T; in one of them, but at temperature T>,
(T2 > Ty), in the other. What is the maximum work that this system can
do if it is used as a heat engine? Take the specific heat of water as constant
over the working range.

P147 What is the change of entropy that occurs when two moles
of helium and three moles of oxygen, both at s.t.p. (T ~ 273 K and
P ~ 101 x 10° Pa) and in adjacent volumes, are allowed to mix by removing
the partition between them?

P148 By slowly pumping air into a 10-litre container, its pressure is
increased to ten times atmospheric pressure. How much work is done during
this process if the displacement of the piston in the pump is 1 litre? The
walls of the container and pump are all good heat conductors and so the
temperature can be taken as constant.

P149 A distant planet is at a very high electric potential compared with
the Earth. A metal space ship is sent from Earth for the purpose of making
a landing on the planet. Is this mission dangerous? What happens when the
astronauts open the door of the space ship and step onto the surface of the
planet?

P150 By what percentage does the capacitance of a spherical capacitor
change when its surface is dented in such a way that its volume decreases

by 3 per cent?
/O 3%

P151* A closed body, whose surface F is made of metal foil, has an
electrical capacitance C with respect to an ‘infinitely distant’ point. The foil
is now dented in such a way that the new surface F* is entirely inside or on
the original surface, as shown in the figure.

F

Prove that the capacitance of the deformed body is less than C.
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P152 The plates of a parallel-plate capacitor have surface area 4, and
are initially separated by d. They are connected to a voltage V. What work
is required to pull the plates apart to a separation of 2d? How does the
energy of the capacitor change during the process?

P153* What is the change in length of the spiral spring shown in the
figure, which has N turns, radius R, length xo and spring constant k, when
a current I is made to flow through it?

P154* A very short magnet A of mass m is suspended horizontally by
a string of length £ = 1 m. Another very short magnet B is slowly brought
closer to A in such a way that the axes of the magnets are always on the
same horizontal level as each other. When the distance between the magnets
is d = 4 cm, and magnet 4 is s = 1 cm away from its initial position, 4
spontaneously moves to attach itself to B.

(i) The dependence on distance of the interaction force between the
magnets is given by the relation Fpagnet(x) = K /x", the sign de-
pending on the relative orientation of the magnets. Using the given
data, find the value of exponent n.

(i) Magnet B is placed in a vertical glass tube, which is closed at the
bottom. Magnet A4 is then placed above it in the tube in such an
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orientation that the magnets repel each other. Although magnet A
may tend to reverse its direction within the tube, it is constrained by
the tube and cannot do so. Find the distance apart of the magnets
in static equilibrium.

P155 A battery consists of N identical cells, each of em.f. &. Is it true
that the energy wasted when using the battery to charge a capacitor through
a resistor can be reduced by charging it in N stages? That is by connecting
it first across a single cell, and then across two cells, and so on, rather than
across the whole battery in a single step.

P156 An ‘energy-generating device’ consists of a parallel-plate capacitor
with nearly all the space between the plates filled with an oil of relative
permittivity ¢ > 1. Calculate the stored energy in the capacitor when its
plates are given charges of +Q. The oil, which cannot come into direct
contact with the plates, is now poured out and replaced by air; calculate the
new stored energy and show that it has increased. Explain the catch in this
world-beater!

P157 An insulating sheet of relative permittivity ¢, is slowly slid between
the plates of a parallel-plate capacitor, completely filling the space between
the plates. What force acts on the sheet if (i) the charge, or (ii) the voltage
of the capacitor is kept constant during the process?

How does the insulating sheet affect the energy of the capacitor in cases
(1) and (ii)?

P158 Each element in the finite chain of resistors shown in the figure is
1Q. A current of 1 A flows through the final element.

00§ e

What is the potential difference V across the input terminals of the chain?
What is the equivalent resistance of the chain? How does the equivalent
resistance change if one or two more resistors are connected to it? Compare
this result with the equivalent resistance of an ‘infinite’ chain.

P159 All the elements in the ‘infinite’ grid shown in the figure are
of the same resistance R. What is the equivalent resistance between two
neighbouring grid points?
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What would be the equivalent capacitance between two neighbouring grid
points if all the elements in the grid were capacitors with capacitance C?
What would be the equivalent inductance if the elements were inductors of
inductance L?

P160* A grid in the shape of a regular polyhedron (tetrahedron, cube,
dodecahedron, etc.) is made up of identical, say 1-Q, resistors. What is the
equivalent resistance between two neighbouring grid points?

P161 The previous two problems were calculations about electrical net-
works consisting of identical resistors (an infinite grid or a regular poly-
hedron). Find the equivalent resistance of a grid between two neighbouring
grid points, if the resistor joining them is removed.

P162" A plane divides space into two halves. One half is filled with a
homogeneous conducting medium and physicists work in the other. They
mark the outline of a square of side a on the plane and let a current I in
and out at two of its neighbouring corners using fine electrodes. Meanwhile,
they measure the p.d. V between the two other corners. This is illustrated in
the figure.

How can they calculate the resistivity of the homogeneous medium using
this data?

P163® You are given a large complex electrical circuit containing a lot of
resistors and other passive elements and wish to determine the resistance of
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a particular resistor in the circuit without unsoldering it (i.e. without taking
it out of the circuit). A battery, an ammeter and a voltmeter, all of high
quality, are provided. How would you carry out the measurement?

P164" All the sides of a cube are made of 1-Q resistors. What is the
equivalent resistance of the cube between the two endpoints of one of its
body diagonals?

Examine one-, two- and four-dimensional ‘cubes’ as well. Find a general
formula for the n-dimensional case.

P165 A current of 1 mA flows through a wire made of a piece of copper
and a piece of iron of identical cross-sections welded end-to-end as shown
in the figure.

1 mA

—_—

Cu £ Fe

How much electric charge accumulates at the boundary between the two
metals? How many elementary charges does this correspond to?

P166 The Earth’s magnetic field approximates that of a dipole with a
field of 6 x 107> T at the North Pole. Over London, the magnetic flux density
is 5 x 1073 T and the angle of dip is 66°.

The wing span of a jumbo jet is 80 m, its length 60 m, and its depth 8 m.
Estimate the potential differences that could be detected over the surface of
the jet when it flies horizontally at 720 km h™!:

(i) over the North Pole,
(ii) northwards over the Equator,

(iii) eastwards along the Equator,

(iv) northwest over London.

P167 A homogeneous field of magnetic induction B is perpendicular to
a track of gauge ¢ which is inclined at an angle « to the horizontal. A
frictionless conducting rod of mass m straddles the two rails of the track as
shown in the figure.
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How does the rod move, after being released from rest, if the circuit formed
by the rod and the track is closed by:
(i) a resistor of resistance R,
(ii) a capacitor of capacitance C, or
(iii) a coil of inductance L?

P168* One end of a horizontal track of gauge ¢ and negligible resis-
tance, is connected to a capacitor of capacitance C charged to voltage Vj.
The inductance of the assembly is negligible. The system is placed in a
homogeneous, vertical magnetic field of induction B, as shown in the figure.

X X B X
X X X
F
. X X X
_— " 1
X x X

A frictionless conducting rod of mass m and resistance R is placed per-
pendicularly onto the track. The polarity of the capacitor is such that the
rod is repelled from the capacitor when the switch is turned over.

(i) What is the maximum velocity of the rod?
(ii) Under what conditions is the efficiency of this ‘electromagnetic gun’

maximal?

P169 A resistor and an inductor in series are connected to a battery
through a switch.

L R
[
|
14

After the switch has been closed:
(i) What is the magnitude of the current flowing when the rate of the
increase of magnetic energy stored in the coil is at a maximum?
(i) When will the Joule heat dissipated in the resistor change at the
fastest rate?

P170* (i) Sketch qualitatively, as a function of x = w/wo, the magnitude
of the current drawn from the source by the two circuits shown in the figure;

here wy = (LC)~1/2.
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(i1) Using three or more of the components shown in figure (a), construct
five new circuits, each of which shows current resonance (maximum current
drawn from the source at some frequency), but all at different frequencies.

P171* The circuit shown in the figure — consisting of three identical lamps
and two coils—is connected to a direct current source. The ohmic resistance
of the coils is negligible.

\(00000,——000000
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After some time, switch S is opened. What are the relative brightnesses of
the three lamps immediately afterwards?

P172 The turns of a solenoid, designed to provide a given magnetic flux
density along its axis, are wound to fill the space between two concentric
cylinders of fixed radii. How should the diameter d of the wire used be
chosen so as to minimise the heat dissipated in the windings?

P173" A solid metal cylinder rotates with angular velocity w about its
axis of symmetry. The cylinder is in a homogeneous magnetic field B parallel
to its axis. What is the resultant charge distribution inside the cylinder? Is
there an angular velocity for which the charge density is everywhere zero?

P174* Consider the result of the previous problem using a rotating frame
of reference, fixed to the cylinder. Describe the electric and magnetic fields
in this rotating (non-inertial) frame of reference.

(Assume that the angular velocity of rotation is much smaller than the
cyclotron frequency, wo = eB/m, where e and m are the elementary charge
and mass of the electron, respectively.)
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P175" Jack and Jill have been set a similar task to that in P173. They
have to calculate what charge distribution is formed in a metal bicycle
spoke, rather than a metal cylinder, when it is rotated in a homogeneous
magnetic field. The spoke rotates about a perpendicular axis at one end of
it.

Jill knows the solution to P173, and she simply adopts it. Ignoring the
electron mass she concludes that the charge density is p = 2¢9Bw. Jack’s
solution is based on the fact that a bicycle spoke is a thin metal rod; and so
he considers the problem to be one-dimensional. The induced electric field is
E(r) = rBw at a distance r from the rotational axis.

Applying Gauss’s law to a short section of the spoke of length Ar, Jack
finds the charge density: (p/eg)AAr = AEA = BwAr x A, where A4 is the
cross-sectional area of the spoke. From this equation he derives: p = gyBw,
which is only half of Jill’s value.

Comment on these differing results.

P176 A circular metal ring of radius of r = 0.1 m rotates about a
vertical diameter with constant angular velocity. As shown in the figure, a
small magnetic needle that can turn freely about a vertical axis sits in the
middle of the ring.

When the ring is stationary, the needle points in the direction of the
horizontal component of the Earth’s magnetic field. However, when it rotates
at the rate of ten turns per second, the magnet deviates by an average of 2°
from this position.

What is the electrical resistance R of the ring?

P177 A uniform thin wire of length 2na and resistance r has its ends
joined to form a circle. A small voltmeter of resistance R is connected by
tight leads of negligible resistance to two points on the circumference of the
circle at angular separation 6, as shown in the figures.
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A uniform magnetic flux density perpendicular to the plane of the circle
is changing at a rate B. What will the reading of the voltmeter be if the
voltmeter is positioned:

(a) at the centre of the circle, and
(b) on the chord joining the two points of attachment?

P178" A ‘twisted’ circular band (called a Moebius strip) is made from a
strip of paper of length L and width d. A wire running along the edge of
the strip is connected to a voltmeter, as shown in the figure.

L

What does the voltmeter register when the strip is placed in a homogeneous
magnetic field which is perpendicular to the plane of the strip and changes
uniformly with time, i.e. B(t) = kt?

P179 A long solenoid contains another coaxial solenoid (whose radius
R is half of its own). Their coils have the same number of turns per unit
length and initially both carry no current. At the same instant currents start
increasing linearly with time in both solenoids. At any moment the current
flowing in the inner coil is twice as large as that in the outer one and their
directions are the same. As a result of the increasing currents a charged
particle, initially at rest between the solenoids, starts moving along a circular
trajectory (see figure). What is the radius r of the circle?
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P180 Charge Q is uniformly distributed on a thin insulating ring of
mass m which is initially at rest. To what angular velocity will the ring be
accelerated when a magnetic field B, perpendicular to the plane of the ring,
is switched on?

P181" A metal disc of radius r can rotate with negligible friction inside
a long, straight coil, about a shaft parallel to the axis of symmetry of the
coil. One end of the coil wire is connected to the edge of the disc and the
other to the shaft. The coil has ohmic resistance R and contains n turns per
unit length. It is placed so that its axis is parallel to the Earth’s magnetic

field vector By.
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What current flows through the ammeter shown in the figure if the disc
rotates with angular frequency w? Plot the current as a function of w for
both directions of rotation.

Prove that the power needed to rotate the disc is equal to the rate of Joule
heating generated by the ohmic resistance of the coil.

P182" A thin superconducting (zero resistance) ring is held above a ver-
tical, cylindrical magnetic rod, as shown in the figure. The axis of symmetry
of the ring is the same to that of the rod. The cylindrically symmetrical mag-
netic field around the ring can be described approximately in terms of the
vertical and radial components of the magnetic field vector as B, = By(1—az)
and B, = Byfir, where By,a and f are constants, and z and r are the vertical
and radial position coordinates, respectively.

B

4
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Initially, the ring has no current flowing in it. When released, it starts to
move downwards with its axis still vertical. From the data below, determine
how the ring moves subsequently? What current flows in the ring?

Data:

Properties of the ring: mass m = 50mg

radius ro =0.5cm
inductance L =13x10"%H

Initial coordinates of

the centre of the ring: z=0
r=20

Magnetic field constants: . By=001T
a=2m"!
B=32m!

P183" A small, electrically charged bead can slide on a circular, friction-
less, insulating string. A point-like electric dipole is fixed at the centre of the
circle with the dipole’s axis lying in the plane of the circle. Initially the bead
is on the plane of symmetry of the dipole, as shown in the figure.

How does the bead move after it is released? Find the normal force
exerted by the string on the bead. Where will the bead first stop after being
released? How would the bead move in the absence of the string? Ignore the
effect of gravity, assuming that the electric forces are much greater than the
gravitational ones.

P184" A point-like body of mass m and charge g, initially at rest, is
released in a homogeneous gravitational field. What path does the body
follow if it is also acted upon by a homogeneous horizontal magnetic field?

P185" A long, thin, vertical glass tube is surrounded by a much wider
coaxial glass tube of outer radius r. Wound on the wider tube there are
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many separate circular conducting loops, each of resistance R and spaced a
distance h apart.

If a small magnet bar of mass m and magnetic moment y is dropped into
the thin tube, after a relatively short time it reaches a constant terminal
velocity v, with which it then sinks uniformly.

In the course of each later investigation only one the five quantities
mentioned above (m,u, h,R,r) is doubled, whilst the other four remain at
their original values. By what factor does the terminal velocity of the magnet
change in each case? Ignore mechanical friction and air resistance, as well
as the self- and mutual inductance of the conducting loops.

P186® In a vacuum chamber a current of 10A is flowing in a long,
straight wire, which has a very high conductivity. Electrons with an initial
velocity vg start moving perpendicularly towards the wire from a point which
is a radial distance ro away from the wire. Given that they cannot approach
any closer to the wire than ry/2, determine vg. Ignore the effect of the Earth’s
magnetic field.

P187" The distance between the plates of an initially uncharged capac-
itor is d. Parallel to its plates, there is a magnetic field of strength B, as
shown in the figure.




Problems 47

What voltage does the voltmeter connected to the plates of the capacitor
register when an electrically neutral liquid of relative dielectric constant &,
flows between the plates with velocity v?

P188 The energy released by the fission of uranium nuclei would be
higher if the uranium nucleus split into three parts rather than into two.
Despite this, the fission of uranium only produces two nuclei. Why is
this?

P189" "Be is a radioactive element with a half-life of 53.37 days. When
isotope 7 of beryllium is heated to a few thousand degrees, its half-life
changes. What is the explanation for this?

P190* Part of the series of isotopes produced by the decay of thorium-
232, together with the corresponding half-lives, is given below:

22Th mmmyzggkam 2§§Acm 2§§Thm ZggRam 2§2Rn;8>
Thorium-232 and thorium-228 in equilibrium are extracted from an
ore and purified by a chemical process. Sketch the form of the variation
in the number of atoms of radon-220 you would expect to be present
in 1073 kg of this material over a (logarithmic) range from 1073 to 103

years.

P191 Through what voltage must protons be accelerated if they are to be
able to produce proton—antiproton pairs when they collide with stationary
protons? The rest-mass energy of a proton is approximately 1 GeV.

P192* How does a positron move in a Faraday cage if it is ‘dropped’
with no initial speed? Consider the positron as a classical particle, acted on
by electrical forces and the gravitational field of the Earth, as indicated in
the figure.
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P193* Two positrons are at opposite corners of a square of side a = 1 cm.
The other two corners of the square are each occupied by a proton, as shown
in the figure.

Initially the particles are held in these positions, but all four are released at
the same time. What will their speeds be when they are a significant distance
apart? The particles can be considered as classical point masses moving in
each other’s electric fields. Gravity can be ignored.

P194 In an experiment on Compton scattering, stationary electrons are
bombarded by photons whose energy is equal to the rest energy of an
electron. For events in which the scattered photon and the recoil electron
have momenta of the same magnitude, find the angle between them. What
is the speed of the recoil electron in this case?

P195 X-ray photons are scattered through an angle of 90° by electrons
initially at rest. What is the change in the wavelength of the photons?

P196 Imagine a ‘classical electron’ as a small, spherical ball. What is its
minimum radius, if its electrostatic energy is not to be greater than its total
rest energy, mc?? What is its angular velocity if its angular momentum is
h/(4n)? To what ‘equatorial speed’ does this correspond, if the whole of the
electron’s rest energy is provided by the electrostatic field?

P197* An electron is enclosed in a large rectangular box. Estimate the
order of magnitude of the thickness of the layer (at the bottom of the box)
which, as a result of gravitational effects, is occupied by the electron.

P198* Classically, the Coulomb field of an atomic nucleus could confine
an electron to that nucleus. However, the Heisenberg uncertainty principle
prescribes such a high kinetic energy for an electron enclosed in such a small
space that it would escape from the nucleus in any case. What would be the
atomic number of a transuranic element able to confine an electron within
its nucleus for a significant time, if only the element itself were sufficiently
stable?

P199* Show how the size of water molecules can be estimated using the
speed of water surface (capillary) waves and the speed of sound waves in
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water? The speed of propagation of surface waves of wavelength 1 cm is
approximately 10000 times smaller than that of sound in water.

P200 Congratulations to the reader! You have reached the last problem
in the book and the proper manner in which to congratulate you would be
to drink your health in champagne. Unfortunately, this kind of recognition
is not really practical—though we can at least make the last problem one
about champagne.

The bubbles in champagne are familiar. They form almost exclusively at
particular points in the champagne glass, and from these points they rise
faster and faster. Why do the bubbles in champagne accelerate?
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H1 Resolve the velocity vectors of the snails into suitable components.
There is more than one way to do this, and they lead to different methods of
arriving at the same solution. The equation of the path can be determined
by expressing the velocity in polar coordinates.

H2 Calculate the maximum possible value of the coefficient of friction
if the object is not to stop on the table.

H3 The solution of part (i) is trivial, since the boat is faster than the
river. In part (ii), a suitably chosen vector addition can help determine the
directions in which the boatman could go; the direction corresponding to
the shortest path has still to be chosen.

H4 Although the whole of the moving part of the carpet has unit speed,
its centre of mass has a lower speed. The reason for this is the increasing
mass of the moving part.

HS Draw the ‘space-time’ world lines of the snails. The result can also
be obtained using the equivalence of different inertial frames of reference
(Galilean symmetry).

H6 Compare the amounts by which the centres of mass of the two worms
are raised.

H7 You can base your solution on the conservation of energy and the
conditions for static equilibrium.

H8 Determine how much additional volume is submerged if the berg is
depressed by a small distance x. Use the flotation condition to relate the
mass M of the berg to its overall dimensions.

50
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H9 The sum of the tensions in the suspension springs remains unaltered
by parking on the pavement, and the net torque about any axis must be zero.

H10 The trickiest part of the solution is to appreciate how frictional
forces can balance both Jean Valjean’s weight and the reaction forces of the
walls at the same time.

H11 The distance between the geometrical centre of the composite sphere
and its centre of mass cannot be greater than a certain distance. Find this
limiting distance.

H12 Describe the motion of the ball in terms of its components perpen-
dicular and parallel to the slope.

H13 Because of the acceleration associated with its motion, the hamster
exerts a force on the platform. The torque resulting from this force can
balance the torque about the pivot due to the hamster’s weight.

H14 Get a bicycle and try it.

H15 Use Newton’s law of gravitation and express the mass of the Sun
in terms of its average density.

H16 Compare the field produced by one of the stars at the position of the
other, to that experienced by the Earth as a result of the Sun’s gravitation.

H17 The space probes should be launched from the Equator and directed
eastward.

H18 Examine the energies involved.

H19 The centre of mass of the system, i.e. honey plus steel ball, moves
steadily downwards. The total momentum of the system can be calculated
using the speed of the centre of mass, and the momentum of the honey
obtained by then subtracting that of the ball.

H20 If the wall of the container is at a temperature different from that
of the gas, then collisions of the gas molecules with the wall either take
energy from the wall or give energy to it.

H21 The difference in temperature between the two spheres arises be-
cause their centres of mass are displaced in opposite directions.

H22 No student reading this book should need a hint.
H23 The situation is possible — and using only two resistors!

H24 Examine how the combined centre of gravity of the bucket and
water changes as the water leaks away.
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H25 Under what conditions does adding a little more water inevitably
raise the overall centre of gravity?

H26 Our assertion is that water does not flow into the bowl. In order to
prove this, the effects of both the force and the torque exerted by the chain
have to be considered.

H27 The only unusual part of the solution is the calculation of the
buoyancy force.

H28 The average density of the bubble has to be the same as that of air,
since the bubble floats.

H29 At the end of the capillary tube, the pressure of curvature bal-
ances the difference between the pressure inside the liquid and atmospheric
pressure.

H30 The whole system (the current distribution and the electric field)
is spherically symmetrical, and therefore the magnetic field also has to be.
Consider which spherically symmetrical magnetic fields are consistent with
the (experimentally observed) non-existence of magnetic monopoles.

H31 Make use of the symmetry of the charge distribution.

H32 It is not sufficient to simply compare the gravitational accelerations,
since it isn’t clear that the high-jumper would be able to take off with the
same initial speed. The movement of the high-jumper’s centre of mass during
the jump has to analysed.

H33 The time intervals of the motions and the lengths of the paths do
not have to be found exactly; only the inequalities relating them need to be
determined.

H34 Resolving the tension in the string into radial and tangential com-
ponents, the direction of the string can be calculated using the dynamical
conditions for uniform circular motion.

H35 Prove that, at any instant, bodies which started at the same time,
from the same point and slid down frictionless wires in different directions,
all lie on the surface of a common (imaginary) sphere.

H36 The problem can be solved in an elementary way using a rotating
frame of reference fixed to the minute hand.

H37 The stone moves away from the thrower until the component of its
velocity parallel to its position vector has decreased to zero. If this never
occurs, the condition imposed in the problem has been met.
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H38 It is false to assume that the trajectory of the grasshopper (with the
minimum take-off speed) just touches the trunk at its topmost point.

H39 They clearly cannot jump directly towards each other without
mishap, so consider jumping in some other direction whilst preserving the
symmetry of the situation. Note that the mass of the hair is given!

H40 The shape of the common surface of the water jets, their envelope,
has to be determined. They start from the same place, have the same initial
speed, and follow parabolic paths. Examine the condition for determining
whether any water jet passes through a given point in space.

H41 Show that

2 E
Range = Y lsin20 + —Q(l —cos20)|,
8 mg

and maximise with respect to 6.

H42 The normal reactions exerted on the rod by my fingers are not
equal in general. Thus the maximum static frictional force is smaller on one
side than on the other, and sliding will occur there first. However, because
of the increasing normal reaction at the finger where sliding is taking place,
the kinetic frictional force there increases, and the moment it becomes larger
than the static friction on the other side, slipping will stop at the first finger
and start at the second. During the process there is alternating slipping and
sticking at both fingers. The work done can be calculated from the length of
each stage.

H43 The process should be started from the top! The correct strategy
is to slide the topmost brick as far as possible and then do the same thing
with the two uppermost, considered as a unit, and so on downwards.

H44 Use the balances of forces and torques acting on the plate to find
connections between the frictional forces involved. A graphical method of
treating the linear equations so derived is recommended.

H45 The process has to be considered as a series of consecutive collisions.

H46 Show that in the first collision the fraction of the initial kinetic
energy transferred to the middle ball is 4uM/(u + M)

H47 During the collision, the momentum, energy and angular momen-
tum of the system are all conserved.

H48 Decompose the motion into that of the centre of mass and that in
the centre of mass system. Show, by considering the conservation of energy
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and angular momentum, that when the rope first tightens the centre of mass
velocities of both particles are unchanged in magnitude but turned through
n/2, with the result that they then travel parallel to the x-axis.

H49 The usual reasoning which assumes that one-third of the basin is
filled in 1 minute, and one-half of the basin empties in the same time, (and
hence that %—% = % of the basin becomes empty in 1 minute), is false. Water
flows into the basin uniformly from the tap, but (according to Torricelli’s
law of efflux) it flows out more quickly when the water level in the basin is

higher.

HS50 Show that the free surface is part of the paraboloid of revolution
z = w?r?/2g, where z is measured from the lowest point of the free surface
and r is the radial distance from the central axis. Consider the volume of
the air above the liquid but still inside the vessel.

HS1 In the context of mechanics, the car is not a closed system; it is in
contact with its surroundings, in this case, the Earth.

HS52 The focal length can be obtained using the relationship between
the lens formula and the magnification. The ratio of the brightness values
depends not only on the size of the images, but also on the amount of light
reaching the lens.

HS3 The apparent magnitude of the virtual image is not determined by
the size of the image itself, but by the angle it subtends at the eye.

H54 Obtain ngsin(0 + ¢) > ny, where ¢ is the angle in the glass between
the ray and the normal to the surface at the point where it enters the prism.

HSS5 No patch of light can be seen either right next to the quarter-
cylinder, or very far from it. The closer light patch is excluded by total
internal reflection. The distance of the furthest part of the light patch can be
determined by considering the part of the quarter-cylinder close to the table
as a plano-convex lens.

HS56 Suppose that the sunlight falling on the Moon is diffusely reflected
with the given coefficient. Calculate how much of it reaches unit area of the
Earth.

HS7 The most comfortable walking rate can be related to the period of
the human leg swinging freely like a pendulum. Running can be considered
as a forced oscillation, with its period dependent on the moment of inertia
of the leg and the torque applied by the muscles.

HS58 By choosing its length suitably, a simple pendulum can be made to
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have the same angular velocity, in any position, as that of the rod pendulum
given in the problem. Compare the periods of swing of this pendulum and
the actual simple pendulum of the problem. The ratio of the periods of two
simple pendulums of different lengths displaced through the same angle can
be deduced using dimensional analysis.

H59 Identify the physical quantities on which the power necessary for
hovering depends.

H60 Use conservation of energy to determine the rod’s angular velocity w
when its inclination is 0, and relate the components of the reaction between
the table and the rod to the accelerations they produce. In case (i), the
smooth horizontal and vertical walls of the groove can exert only vertical
and horizontal forces on the end of the rod, respectively. In case (ii), the
edge of the table is a very small quarter-circle, so the normal force is always
directed along the rod’s axis.

H61 When the coefficient of friction is small, the point of the pencil
moves ‘backward’. If the coefficient of friction is larger than a certain critical
value (which can be shown to be about 0.37), the pencil moves ‘forward’.
Using the fact that kinetic friction decreases the mechanical energies, it can
be shown that the point of the pencil never loses contact with the table.

H62 Use the ideal gas equation to express the conservation of air mass.
Also note that, after a sufficiently long time, the temperature of the system
will not have changed.

H63 Because of the surface tension (pressure of curvature) of the water,
the pressure inside the trapped water is lower than atmospheric pressure.

H64 Calculate the velocity of the points of the thread at any given
moment.

H65 Consider the (‘elastic’) frame of reference fixed to the thread.

H66 Find a simple — mathematically easy to treat—trajectory, in which the
ball reaches as high a speed as possible, and the time so gained compensates
for the longer path involved.

H67 From the figure you can determine the angle not given in the text.

H68 The centre of mass (CM) of the compasses is directly below the
attachment point. If the angle between the arms were changed, the horizontal
position of the CM would have to remain the same, although the positions
of the CM of the individual arms would change. Use this argument to find
the solution to the problem with a minimum of actual calculation.
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H69 Express the condition for equilibrium using vectors.

H70 Note that the system as a whole has no external horizontal forces
acting upon it. As well as keeping the centre of mass of the system fixed, you
will need to use the law of conservation of linear momentum. You should
be able to show that the tanker will initially move forward, but later reverse
its direction of motion.

It may seem surprising that the tanker alters its direction of motion, and it
might help to first consider the following, rather than the original problem:

A poor student and a zealous ticket collector, both of mass m, are in
a stationary, frictionless railway carriage of mass M. When the collector
realises that the student has no ticket, the student runs to the end of the
carriage with the collector, who moves with speed v relative to the carriage,
in pursuit. The student stops at the end of the carriage and jumps out. Find
the velocity of the carriage when the ticket collector reaches the open door,
stops there and watches the student making his escape.

H71 Consider the motion in the frame of reference of the common centre
of mass of the beads.

H72 In the case of the inelastic collisions, after a sufficiently long time,
a growing mass of the coalescing beads reaches a constant velocity. Apply
Newton’s law of motion to this cluster. For elastic collisions, first examine
what would happen if the external force acted only until the first collision
had occurred.

H73 Consider what is happening to the centre of gravity of the table
plus jug plus beer.

H74 The viscosity of the water can be taken to be small and the change in
potential energy of the liquid should be neglected compared with the kinetic
energy. Note that the gutter cannot change the horizontal momentum of the
jet of water and Bernoulli’s equation is applicable (several times!).

H75 Obtain expressions for the changes, over a very short time interval
At, in the potential and kinetic energies of the initially stationary liquid, as
it starts to move with (initial) acceleration a.

H76 Experience indicates that the rate at which the sand runs through
the constriction does not depend upon the amount of sand in the upper part
of the egg-timer. The explanation for this is that, due to the friction between
the grains of sand, the average speed of the emerging sand depends only
on its nearby environment, primarily on the diameter of the hole, and not
on effects originating from remote parts. (This is not true for liquids, where
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pressure effects are transmitted through large distances; see P49.) Thus the
time that the sand takes to run through the hole has to be proportional
to the cube of the initial height H of the sand. Find the other quantities
on which this time may depend and then apply the method of dimensional
analysis.

H77 For small displacements the net force exerted on the bob is F(x) =
—kx3/¢3, where k is the spring constant. Using dimensional analysis one can
deduce the dependence of the period on the spring constant, the mass of the
bob and the amplitude of its motion.

H78 In the given circumstances, both the horizontal and the vertical
motion of the body can be approximated by harmonic oscillations.

H79 Describe the motion in the (decelerating) frame of reference of the
train.

H80 Examine the motion in the frame of reference fixed to the wedge.

H81 Under what conditions would a long, thin thread move uniformly
above the Equator in a synchronous orbit, i.e. with the same angular velocity
as the Earth?

H82 The normal component of the acceleration of the car is a, = v?/p,
where v is the speed of the car and p is the radius of curvature of the
bridge. The latter can be deduced by considering the motion of a projectile;
it follows a trajectory which has the same shape as the surface of the bridge.

H83 Determining the radius of curvature of the track is the core of the
solution (see H82).

H84 In any time interval, the water carries the boat downstream by the
same amount as the remaining distance to the mark has been reduced.

H85 Calculate by how much the speed of the pushed child and its
velocity component down the slope change in unit time. Find a relationship
between the rates of change of these two quantities.

H86 Compare the rate of decrease of the distance between the smugglers’
ship and the coastguard’s cutter, to the speed at which the latter moves away
from the shore.

H87 Because of the symmetry of the problem, the bodies are always at
the corners of an ever-decreasing regular n-gon, and each of them moves
as if only the gravitational attraction of a centrally placed single body (of
a suitably chosen mass M,) acted on it. The time taken for the system to
collapse into the centre can be calculated using Kepler’s third law.
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H88 The solution needs the application of all three of Kepler’s laws of
planetary motion.

H89 Recall the strengths and directions of the field associated with a
magnetic dipole; B; = 2K/ L3 on its polar axis (A position of Gauss) and
B, = ku/L? on its equator (B position of Gauss), where x has been written
for uy/4m.

H90 The force acting on the charge can be found using the so-called
method of image charges. The force —analogous to gravitational attraction—
is inversely proportional to the square of the distance. Therefore, the body’s
behaviour is similar to the motion described by Kepler’s laws for a degenerate
elliptical orbit.

H91 Use the method of image charges to find the value of the electric
field and the induced surface charge density in the region below the ball.
The ‘negative pressure’ due to the electrostatic forces acting on the surface
of the brine below the ball is balanced by the hydrostatic pressure of the
water ‘hump’.

H92 Apply the method of spherical image charges. The basis of this
method is that the electric field produced by two point charges, of opposite
signs and different absolute values, has a sphere as its zero potential surface.

H93 You need to use both the laboratory and the centre of mass reference
frames.

H94 If the sequence of events were re-played in slow motion, it would
be seen that immediately after the collision, the first ball stops and rotates in
a fixed place, whilst the second ball moves on but without rotation. Thus, in
the overall collision, the first ball transfers linear but not angular momentum
to the second ball.

After the collision, friction moves the first ball forward, but slows its
rotation. On the other hand, friction slows the translational motion of the
second ball, whilst increasing its rotation. Thereafter, the angular momentum
of each of the balls about its point of contact with the table remains constant.

H95 Consider energy conservation, but don’t forget to include dissipation
as heat.

H96 Examine the angular momentum of the ball about a point on the
table which lies on the ball’s path, but is otherwise arbitrary.

H97 Convince yourself that it is only the east-west component of the
traffic momentum that matters.
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H98 Dynamical equations of motion and connections between transla-
tional and angular accelerations are central to the solution.

H99 From the point of view of energy and momentum, the system is
not closed and, therefore, these quantities are not conserved. Conservation
of angular momentum explains the strange phenomenon described in the
problem.

H100 Consider the forces acting upon a short length of the ring which
subtends an angle Af at the axis of rotation.

H101 Determine the difference, AF, in the force stretching the thread
around the surface of the cylinder at two points on the cylinder’s surface
whose azimuthal separation is Aoa. This change in the force is propor-
tional to the force acting normally on the cylinder, and this in turn is
proportional to F. Consider an equivalent phenomenon, in which the rate of
change of some quantity is proportional to the quantity itself, (e.g. radioactive
decay, capacitor discharge, etc.). Using the analogy, relations applying to the
friction of the thread can be obtained.

H102 Jenny suggests that Charlie considers a homogeneous ring rotating
with constant angular velocity about an axis perpendicular to its plane and
passing through its centre. He should determine which forces act on the ring,
and consider how Newton’s second law is satisfied for the centre of mass of
a piece cut from the ring.

H103 The gravitational force both accelerates the hanging part of the
chain and impulsively sets into motion the next link. This means that the
changing mass of the moving chain has to be taken into account.

H104 Gravitation can be ignored in the frame of reference moving with
the centre of mass of the chain; in this frame the chain will be weightless,
but not massless. Examine in which directions forces act on a small piece of
the chain, which has radius of curvature R and moves at a uniform speed
v, and consequently determine how the shape of the chain is deformed (see
also P100, P101 and P102).

We can reveal that Frank’s guess is right—the chain keeps its original
shape.

H105 Calculate the tension in the chain when it leaves the pulley. Use
the principle of conservation of energy (see also P104).

H106 Examine the motion of the loop in the frame of reference moving
at the same speed c as the centre of the loop. In this frame the pieces of
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the loop travel with uniform circular motion. The conditions governing the
dynamics of circular motion yield an equation for c.

H107 Examine the change in the horizontal momentum of the sand
falling onto the belt in unit time. Consideration of the energies involved is
also useful.

H108 Apply the law of conservation of energy; then find the force by
using the change in the momentum calculated from the speed of the roll as
a function of its position.

H109 The gravitational field of a thin spherical shell of uniform mass
distribution is zero inside the shell. Outside the shell, it is the same as if the
total mass of the shell were concentrated at its centre.

H110 The gravitational field inside a homogeneous sphere is directly
proportional to the radius of the sphere (see P109). The gravitational field
of the hollowed-out sphere can be found by superimposing the fields of a
homogeneous sphere and a smaller sphere of ‘negative mass density’.

H111 Divide the hemisphere into equally thick hemispherical shells.
Prove that these shells each produce the same gravitational field at the
point in question.

H112 Calculate the force a ‘mythical giant’ would have to exert to pull
the two halves of the asteroid (already cut in two) apart by 1 m.

H113 The electric field exerts a force whose magnitude is proportional
to the surface area exposed by the cut and is in a direction perpendicular to
that surface. Note that this force is similar to that caused by liquid or gas
pressure.

H114 At first sight several parameters seem to be missing. Don’t worry
about it! Find the equilibrium condition and calculate the electrostatic energy
of the system in that situation.

H115 Find the maximum amount of hydrogen that the container could
have contained initially without bursting. The material from which the
container is made may be chosen freely, but only from real materials.

H116 The laws of gravitational and electrostatic fields are very similar.
Make use of this similarity and apply Gauss’s law.

H117 Examine the electric field due to a rod element which subtends an
angle Ao at the point C.

H118 Consider two very long rods joined end-to-end.
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H119 You can distinguish between the correct and false formulae by
considering the case in which 6 approaches n. Apply the well-known expres-
sion for the magnetic field of a long straight current-carrying wire to find
the proportionality factors.

H120 Imagine that another identical coil is joined symmetrically to the
original solenoid at point P, and that the same current is also allowed to
flow in this second coil. Apply the principle of superposition.

H121 It is easy to find the force if one imagines changing the positive
charges on one of the plates into negative charges of the same magnitude.
On the other hand the electric field line structure of the positive—positive
plates is very different from that of the positive—negative arrangement.

H122 Remember that the total charge on an isolated plate cannot
change.

H123 The total charge induced on each plate would not change if the
point charge Q were considered to be spread uniformly over a plane a
distance x from the lower plate.

H124 The total electric field outside the plates must be exactly zero. What
are the consequences of this well-known fact for the charge distribution?

H125 Imagine that the medium is sliced into thin layers perpendicular
to the y-direction. The individual layers can be considered as plane-parallel
plates with different refractive indices, and the relation between the refractive
index of a layer and the angle of incidence of the light ray can be determined.

H126 Using simple geometry, you can measure the useful surface area of
a CD. To obtain the required result divide this area by 650 M and also by
8, because 1 byte = 8 bits. You can treat a CD as a reflection grating and
measure its diffraction pattern using a laser beam of known wavelength.

H127 Determine ni for the composite line and consider possible values
of n, the order of the diffraction spectrum.

H128 In case (i), the optical path difference consists of two parts; one
originates in front of the grating and the other behind it.

In case (ii), instead of considering an optical grating, investigate the
diffraction pattern from a single slit, which is tilted ‘forward’ through an
angle ¢.

H129 Draw diagrams showing liquid levels and pressures in the space
between the objects and on either side of them.

H130 Find the horizontal forces acting on the meniscus.
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H131 During evaporation, the surface area of the drop shrinks, and
its surface energy decreases. Compare this energy decrease with the energy
needed for evaporation.

H132 The equilibrium saturated vapour pressure is slightly higher near
the surface of a smaller drop than near the surface of a larger one. The
vapour pressure is uniform at the bottom of the container and its value
is therefore higher than the equilibrium value for large drops, but lower
than that for small drops. Consequently, vapour evaporates from the smaller
drops, making them smaller, and condenses onto the large ones, making
them larger.

The relationship between the equilibrium pressure of saturated vapour
and the curvature of the drop can be deduced by considering the pressure
balance in a vessel containing a capillary tube hanging into some of the
liquid.

H133 The increase in internal energy of the air enclosed in the container
is equal to the decrease in potential energy of the load hung from the piston.

H134 If a mountain is very high then its base melts because of high
pressure. Compare the energy needed to melt the bottom layer of a mountain
with the gravitational energy that would be released if the mountain then
sank.

H135 If the state of the enclosed air is plotted on a p-V diagram, a
straight line is obtained. The hidden elegance of the problem is revealed
when the implications of the straight line’s being tangential to an isothermal
or adiabatic curve at certain points is realised.

H136 Your explanation should be based on the interaction between the
molten magma and the ice.

H137 The hydrostatic pressure of the water in the flue increases the
pressure of the water in the cavity, and so it boils at a temperature higher
than the usual 100 °C. The relationship between the pressure and temperature
of the saturated water vapour can be obtained from tables or by using the
approximate law

p = Ae”Ln/RT),
Here p is the pressure of saturated water vapour at its boiling point T, Ly,
is the molar heat of vaporisation of water, R is the gas constant and A
is a constant with the dimensions of pressure. When the geyser erupts, the
superheated water in the cavity reaches equilibrium again by boiling until it
cools down to 100°C.
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H138 Consider the heat balance at the base of the layer when the layer
thickness is x.

H139 Establish that the time taken varies as the square of the linear
dimensions for similarly shaped bodies.

H140 The ‘trap’ hidden in this problem relates to the heat of vaporisation.
The heat of vaporisation of water at 100°C and a pressure of 1 atm (the
standard value of 2256 kJ kg~! found in tables) takes into account not
only the higher internal energy of the vapour but also the work done by
expansion against atmospheric pressure.

H141 A liquid starts boiling when its saturated vapour pressure reaches
or surpasses the pressure of the gas above the liquid.

H142 Consider how T could be incorporated in a formula for the
amplitude.

H143 Compare the surface energy of a long cylinder of water (assuming
that the cobweb is uniformly covered with water) and the surface energy of
the periodic water drops.

H144 The cylinder keeps accelerating until the net momentum received
per unit time, due to the particles colliding with it from both the left and
the right, becomes zero. However, after a very long time, the cylinder stops
moving, in agreement with the second law of thermodynamics.

H145 Take into account both the emission and the absorption of heat by
the space probe and the consecutive inner and outer surfaces of its protecting
shields.

H146 The entropy of the system cannot decrease during the process.

H147 Consider entropy from the point of view of the number of micro-
states available.

H148 Calculate the change in entropy of the air that is pumped into the
container.

H149 The electric field strength is zero inside the space ship, just as it is
inside a Faraday cage. Examine whether the electric potential of the space
ship changes during the journey.

H150 Examine the change in energy of the spherical capacitor when it
carries a set charge.

H151 Compare the energies of the electrostatic fields of the dented and
undented foils.
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H152 The opposite charges on the capacitor plates attract each other,
and therefore work has to be done to pull the plates apart. The capacitance
of the capacitor decreases, and as, at a given voltage V), the electrostatic
energy of a capacitor is proportional to its capacitance C, the energy of
the capacitor decreases! The solution to this paradox is that a capacitor
connected to a battery cannot be considered as a closed system.

H153 Because the current flows in the same direction in each turn, the
spring contracts. The force of contraction caused by the current can be found
by considering a superconducting spiral spring (at a very low temperature in
practice). A current can flow in such a superconducting coil even if its ends
are short-circuited. Examine the dependence of the energy of this closed
system on its length.

H154 Find the net force (the sum of the magnetic force, the weight and
the tension in the string) exerted on magnet A as a function F(x) of the
distance x apart of the magnets. Use F(x) to determine the conditions for
equilibrium and stability.

H155 Calculate the total work done by the battery.
H156 Remember that the charge is unchanged when the oil is removed.

H157 The energy (per unit volume) of the electrostatic field is pro-
portional to the square of the electric field strength and to the dielectric
constant of the medium: W = %soerz. The dielectric between the plates
of the capacitor decreases the electric field (as a result of its polarisation),
and therefore the energy of the system decreases as well. The force acting on
the dielectric can be calculated from this change in energy (using the work
theorem).

H158 Apply Kirchhoff’s laws, starting from the final element of the
chain. Look for a relationship between the currents flowing through the
consecutive resistors and the terms in the Fibonacci series.

H159 Consider two different cases. In the first case, a current I flows into
a grid point. In the second case, a current I flows out of the neighbouring
grid point. In both cases make use of the symmetry of the system, and then
superimpose the two current and voltage distributions.

H160 Apply the method of superposition as in the previous problem.
Be careful, since with a finite grid the current has to flow out of the circuit
somewhere in order to conserve charge. Solve this difficulty without spoiling
the symmetry of the problem.
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H161 The key phrase of the solution is ‘in parallel’.
H162 As in the previous three problems, superposition is a great help.

H163 The battery is to be connected to the terminals of the resistor
through the ammeter. You need to ensure somehow that all the current
measured by the ammeter flows through the particular resistor, and not
partly via other electrical elements.

H164 Establish sets of equipotential points on the cube, when a current
I is flowing in at one end of the diagonal and out again at the other end. The
circuit can then be simplified by notionally connecting together all points at
the same potential.

H165 Apply Gauss’s law.
H166 Use Fleming’s right-hand rule.

H167 The rod starts to accelerate down the slope under gravity. Electro-
magnetic induction causes a current to flow in the rod, which in turn brakes
its motion according to Lenz’s law. The equation of motion of the rod
(written in terms of the current) is the same in all three cases. The different
behaviours are due to the different relationships between the current flowing
in the rod and the induced electromotive force.

H168 The change in velocity of the rod is directly proportional to the
change in charge of the capacitor. The rod accelerates until the induced
e.m.f. balances the remaining voltage across the capacitor.

H169 You can answer question (i) without solving the differential equa-
tion for the circuit. Express the rate of increase of magnetic energy as a
function of the current.

For (ii), note that the time dependence of the current for this circuit is
well known and that the Joule heat is directly proportional to the square
of the current. If you sketch a graph of the square of the current as a
function of time, you can find qualitatively the time at which the rate of
change of dissipation in the resistor is the fastest. Using the result from (i),
the quantitative answer can be found without the need to use calculus.

H170 Consider first a circuit containing only one inductor and one
capacitor connected in series, and show that it has current resonance at a
particular frequency.

H171 According to the law of induction, the current flowing in a coil
cannot change suddenly.
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H172 Show that n, the number of turns per unit length of the solenoid,
is proportional to d~2, and consider the resistance of one turn.

H173 Examine the forces keeping the electrons in the metal in circular
orbits. If the electric field strength is known, Gauss’s law can be used to
determine the corresponding charge distribution.

H174 The electric field can be defined by the force acting on a unit
charge, and the magnetic field can be interpreted with the help of the
Lorentz force exerted on a moving charge.

H175 Jill’s result is correct, and Jack’s answer is wrong. The crucial point
is that the electric field lines within the rotating spoke are not parallel.

H176 The magnetic field of the Earth induces a current in the rotating
ring, which changes the average magnetic field at the centre of the ring. As
a result the magnetic needle moves.

H177 Let the current through the voltmeter be I and that through the
major arc of the ring be i. Then, using consistent conventions for current
directions and circuit traversal, apply Kirchhoff’s laws to two different closed
circuits.

H178 A Moebius strip is a surface that has no associated direction and
the law of induction must be applied only with great caution. Imagine the
wire marking the edge of the band to be laid out on a plane in such a way
that it does not cross itself. Determine the area of the plane enclosed by the
wire and find its equivalent for the Moebius strip.

H179 Consider not only the magnetic field and magnetic forces acting
on the charged particle, but also the effects of the induced electric field.

H180 As a result of the electromagnetic induction an electric field is
established in the charged ring, and its tangential component causes the ring
to experience a torque. One can show that the final angular velocity of the
ring depends only on the final field, and not on the way it is turned on.

H181 An electric field is induced in the rotating disc and this induces a
current in the coil. The total magnetic field is that due the Earth, increased or
decreased by that due to the coil, according to the direction of the rotation.

H182 The total magnetic flux through the superconducting ring (consist-
ing of that due to the external field and its own flux) must not change during
the motion. The flux of the external field changes during the motion, but the
change is balanced by the magnetic flux due to the current induced in the
ring. If the current is known, the Lorentz force can be calculated, and the
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net force acting on the ring can be found as a function of its position. This
resulting equation of motion is similar to a well-known mechanics equation.

H183 The electrostatic field of a dipole can be calculated from its po-
tential ® = K (cos 6/r?), where K is a constant proportional to the strength
of the dipole, r is the distance from the dipole and € is the polar angle
measured from the dipole’s axis. Calculate first the normal force exerted by
the string on the bead.

H184 Moving with velocity vy perpendicular to a magnetic field of mag-
nitude B, is equivalent to being in an electric field of magnitude voB. If vy
is suitably chosen, this electric field can be made to cancel the gravitational
field acting on the particle.

H185 The changing magnetic field induces eddy currents in the loops,
which brake the fall of the magnet. The terminal speed clearly depends
on the resistance of the conductors. The dependence on other parameters
can be found by applying dimensional analysis. Don’t forget that formulae
involving magnetism usually contain the vacuum permeability ug, which has
non-trivial dimensions.

H186 Although it is possible to solve this problem in a reference frame
fixed to the vacuum chamber, the solution is rather complex. It is much
easier to handle the problem using a different frame of reference that moves
with velocity vy parallel to the wire. In this frame of reference the motion
of electrons is subject to both an electric field and a magnetic field. On the
other hand, in this frame, when the electron is closest to the wire its velocity
is zero and the work—energy theorem can be used to solve the problem.

H187 Describe the phenomenon in the frame of reference of the liquid.
Consider first the transformation of the electric and magnetic fields when
they are viewed in two different frames of reference, one moving at speed vy
relative to the other. Take vy as being much less than the velocity of light
and ignore relativistic effects.

H188 Consider the initial (activation) energy required for three fission
products rather than two.

H189 7Be decays via electron capture.

H190 In equilibrium, abundances are proportional to half-lives. Use this
to show that the equilibrium value for the number of radon-220 atoms is
3.3 x 10°. Then consider how this element can be produced from the purified
sample.
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H191 Use the relativistic formulae for energy and momentum conserva-
tion.

H192 Examine the motion of the electrons in the wall of the Faraday
cage.

H193 The mass of the proton is much (nearly 2000 times) larger than
that of the positron. For this reason, the positrons move with a much larger
acceleration than the protons and there will be a period in the motion when
the positrons have already moved far from the square, whilst the protons
have hardly moved at all.

H194 Apply the (relativistic) conservation laws of energy and momen-
tum.

H195 In the course of this process (Compton scattering), the total energy
and momentum of the colliding particles (photons + electrons) remains
unchanged. It is convenient to take the rest energy of the electron Ey =
mec? ~ 510 keV as the unit of energy for the calculations.

H196 Consider the electron as a spherical capacitor with radius r and
a uniform surface charge distribution. The moment of inertia of a sphere
of mass m and radius r is I = Kmr?, where K is a dimensionless constant

depending on the mass distribution. For example, for a homogeneous sphere

_ 2
K=21

H197 Apply the Heisenberg uncertainty principle and consider the total
energy of the electron.

H198 When an electron is enclosed in a sphere of radius r, the uncer-
tainty principle prescribes a minimum momentum for it of p ~ #i/r. Using
approximate relativistic formulae, calculate the total energy (the sum of the
electrostatic and kinetic energies) of the electron as a function of the radius
r and find the minimum of this function.

H199 For small wavelengths, the speed of propagation of surface water
waves is determined by the surface tension. Examine the dependence of the
speed of these (capillary) waves on their wavelength and consider whether
this implies a lower limit for the wavelength.

H200 Take a bottle of champagne and try it. If you do not drink too
little (or too much!) of it, you will almost certainly spot the reason for the
acceleration.
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S1 Resolve the velocity of snail 2 into a component pointing towards
snail 1 and a component perpendicular to this (see Fig. S1.1). These two
snails approach each other at a relative speed of v+ %v = %v =7.5cm min"},
and therefore they meet after a time given by 60 cm/7.5 cm min~! = 8 min.
In fact, they must all meet after this time and, as they actually travel at a

speed of 5 cm min~!, they each cover a distance of 40 cm before doing so.

3

v v/2
Fig. S1.1
The same result can be obtained if the velocity vector of one of the snails is

resolved as shown in Fig. S1.2 into a component pointing towards the centre

of the triangle formed by the snails, and a component perpendicular to this.

This shows that the snails approach the centre of the triangle (it is obvious

that this is where they meet) at constant speed (/3/2)v = (5+/3/2) cm min~},

whilst travelling around this point at a tangential speed of %v.

3

69
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It is easy to show that the snails are initially at a distance of 60 (\/5/ 3) cm
from the centre of the triangle, and that therefore they meet in

60(+/3/3) cm

= 8 min.
5 (\/§/2) cm min~!
rAu ~Y
“Ar @
Au
u
Fig. S1.3

Because of the geometrical symmetry of the situation, each snail always
moves so that its direction of motion makes an angle of n/6 with the
line joining its current position to the centre of the triangle. However, it is
worth generalising the problem of calculating the trajectory. Consider the
motion of a body moving at constant speed v around a fixed point with
the angle between the velocity and position vectors equal to a fixed value «,
(0 < a < 90°). If the position vector, of initial length rg, moves through a
small angle A¢ and its length changes by —Ar (see Fig. S1.3), then, since a
remains constant,

Ar(¢) _
Ap —r(¢) cota.

This equation is very similar to the radioactive decay equation, dm(t)/dt =
—m(t) A, the known solution of which is m(t) = mge*¢. Using this analogy,
the equation of a snail’s path (in polar coordinates) is

r(g) = roe™® <ot

This is the equation of the so-called logarithmic spiral and implies that the
radius r tends to zero only after turning through an infinite angle, ie. a
point-like body reaches the centre in finite time and by covering a finite
distance, but only after making an infinite number of turns about the centre.

Note. Nocturnal insects try to follow straight flight paths by keeping a
constant bearing with respect to a distant light source (e.g. the Moon). If a
nearby lamp misleads them, then, according to the solution just found, they
will follow a spiral path to disaster. As neither the insects nor the lamp are
point-like, sooner or later the insects hit the lamp.
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S2 The average speed of the object is %m s~L. Since it decelerates uni-
formly, vaverage = %(vinitial + Vfinal), and thus its initial speed cannot be greater
than 1 m s™1, (since vgna = 0). It follows that the speed of the body decreases
by a maximum of 1 m s~! in 2 s. Thus the absolute value of its acceleration
la] is at most 0.5 m s~2, i.e. % times the gravitational acceleration. Therefore,
the coefficient of kinetic friction between the object and the table surface
cannot be greater than %. This is much smaller than the coefficients of
friction between ordinary materials and therefore it is very likely that the

object does not slide, but that all or part of it rolls.

S3 (i) The shortest path is one perpendicular to the bank and the boat
goes in this direction if the boatman rows in the direction shown in Fig. S3.1.

3ms™!

\/g ms™! Boat

2msYa

River

Fig. S3.1

The resultant speed of the boat (in the direction perpendicular to the
bank) is \/S m s~! ~ 2.24 m s~!. The boatman has to row upstream at an
angle o to the bank, where cosa = %; this gives o =~ 48°.

(ii) In this case, the current is so strong that the boat will move down-
stream even if the boatman rows at full speed against the stream. This
means, in contrast to the previous case, he cannot choose his direction with
respect to the bank and, in particular, he cannot travel across in a direction
perpendicular to the bank.

The possible directions he can take may be determined by adding all the
possible still-water velocities of the boat to the velocity of the river. Draw
the velocity vector of the river and, from the endpoint of this vector, draw
velocity vectors in all directions, with a magnitude equal to the speed of the
boat in still water. The endpoints of these vectors will form a circle as shown
in Fig. S3.2.

Boat
3ms™!

4ms’!
—

River /

Fig. S3.2
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The possible resultant velocities of the boat can be obtained by joining
the starting point of the velocity vector of the river to the points on this
circle. The resultant corresponding to the shortest path will be the one that
makes the greatest angle with the direction of the current, i.e. when the
line of action of the resultant velocity vector is a tangent to the circle (see
Fig. S3.3).

AN

Fig. $3.3

Thus, the velocity of the boat with respect to the shore is \/7 ms !~
2.65 m s~!. Again, the boatman has to row upstream, but this time at an
angle B to the bank, where cosf = %, yielding f ~ 41°. The figure also
shows that in this case the distance travelled by the boat will be ‘3‘ times the
width of the river.

S4 Let the position of the moving end of the carpet be x as shown in
the figure. It follows that the other end of the moving part is at x/2, and
hence that the coordinate of its centre of mass is 3x/4. Although dx/dt = 1,
the speed of the centre of mass of the moving part is only %!

| —

ol x2  x 1 2

X

The linear momentum of the moving part is p = mv, where v = 1 and m
is increasing uniformly with time. The net force acting on the moving part

is thus

dp dm dv dm
The rate of change of the mass of the moving part can be found with the
help of the following argument. The moving end of the carpet starts from
the origin and the whole carpet will be moving when it reaches x = 2; this
it does after two units of time, ie. dm/dt = % The corresponding minimal
force (neglecting all dissipative forces) is F = %

Note. (i) The centre of mass of the moving part of the carpet is initially

at the origin and after two units of time at x = 3, again showing that the

speed of the centre of mass (vcm) of the moving éart is %.
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(ii) Notice that the linear momentum of the moving part (p = mv) is not
equal to the product (mvcy) of its mass and the speed of its centre of mass.

(iii) It seems tempting to try to find the minimum force required by using
the conservation of energy, ie. F x 2L = mv?/2, where L is the length of
the carpet, (L = 1). The result would be F = %, which is only one-half
of the value calculated earlier. The error in this argument is to ignore the
continuous inelastic collisions which occur when the moving part of the
carpet is jerking the next piece into motion. Half of the work goes into the
kinetic energy of the carpet, but the other half is dissipated as heat.

S5 Solution 1. If space (planar) and time coordinates are established in an
orthogonal frame of reference with axes x,y and t (a space—time diagram),
the ‘world-line’ of a snail travelling with uniform rectilinear motion will
obviously be straight. Encounters occur when two snails are at the same
place at the same time, i.e. when their world-lines intersect as shown in the
figure.

According to the information given in the problem, the four world-lines
(a,b,c and d) definitely intersect in pairs at five ‘points’. Let us denote these
encounters by A, B, C, P and Q. Points A, B and C determine a plane (the
plane of world lines a, b and c¢). Since P and Q also lie in this plane, world
line d must do so as well. This means that world lines ¢ and d also cross
each other, implying that the sixth encounter will also take place.

Solution 2. As five encounters have already occurred, there has to be a
snail who has already met all three of his fellows. Let us denote this snail
by «. In our imagination, let us sit on the back of a, i.e. choose a frame of
reference in which « is at rest at the origin.

The three other (moving) snails, (B, y and J) have already met «, and
have therefore crossed the origin. Moreover, one of them (B say) has already
met his two other moving fellows (since five encounters have occurred).
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This is only possible if §, y and 6 are moving along the same straight line.
Consequently, sooner or later, y and § will have to meet as well.

S6 The work done against gravity can be calculated from the increases
in height of the centres of mass. The centre of mass of a worm ‘folded in
two’ is located at the middle of either half, i.e. at a point one-quarter of the
worm’s total length from one end. This is illustrated in the figure.

Centres
of mass

ST

Thus, the centre of mass of the narrow flatworm travels 5 cm up the wall,
whilst that of the broad one moves 7.5 cm. The ratio of the amounts of work
done is therefore 2 : 3.

Note. The centre of mass of the worm is not always in the same position
with respect to the worm; indeed, it need not be at any point of the worm
at all. The centre of mass of the straight worm is obviously at its centre, and
that of the worm folded in two is at its quarter-length point. Thus the centre
of mass of a flexible body does not remain at a fixed point within the body;
its relative position may change. This principle is used by high-jumpers;
when a high-jumper’s body arches over the cross-bar, the body’s centre of
mass remains below it (see also P32).

S7 (i) Let us denote the elastic constant (spring constant) of the rope
by k and its unstretched length by /9. The maximum length of the rope is
{1 = h— hy = 23 m, whilst in equilibrium it is 7/, = (23 —8) m = 15 m.
Initially, and at the jumper’s lowest position, the kinetic energy is zero. If we
ignore the mass of the rope and assume that the jumper’s centre of mass is
half-way up his body, we can use conservation of energy to write

1
mgh = Sk (¢1 — 4o)*.
In addition, in equilibrium,
mg =k ({2 — ).

Dividing the two equations by each other we obtain a quadratic equation
for £ 0>

L2+ 2h—11)lo + (¢F —2hts) = 13+ 449 — 221 =0,

which gives /o = 13 m.
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(i1)) When the falling jumper attains his highest speed, his acceleration must
be zero, and so this must occur at the same level as the final equilibrium
position (£ = £3).

Again applying the law of conservation of energy,

1 1
mv? + Sk (62 = £o)* = mg(£2 + ho),

where the ratio m/k is the same as that obtained from the equilibrium
condition, namely,

m _ {r— 1Yo
kg
Substituting this into the energy equation, shows that the maximum speed
of the jumper is v = 18 ms™' ~ 65 km h™!. It is easy to see that his
maximum acceleration occurs at the lowest point of the jump. Since the
largest extension of the rope (10 m) is five times that at the equilibrium
position (2 m), the greatest tension in the rope is Smg. So the highest net
force exerted on the jumper is 4mg, and his maximum acceleration is 4g.

S8 If the berg has base area 4 and height H, then M = %AHpice. If
the height showing above the surface is h, the flotation condition gives
(H? — 1®)pyater = H?pice. When the berg is depressed by a small amount
x the additional submerged volume is xA(h/H)?> and the upthrust is this
multiplied by pwaterg. This gives that the angular frequency of oscillation w
is determined by

2 _ 3h2pwaterg
piccH3

and, on substituting numerical values, that the period of oscillation is about
11 s.

w

S9 First of all we note that the right front suspension spring will be
further compressed as a result of parking on the pavement. We can measure
both the change of tensions in the suspension springs and the rise of the
car body in centimetres, and will let the sign be positive if the spring is
further compressed. The net torque must be zero about any axis, including,
for example, the diagonals of the rectangle formed by the wheels; so the
changes in tension at the opposite ends of a diagonal must be equal. This is
why the springs of the right front (rf) and left back (Ib) wheels are equally
compressed, by an amount x, and the left front (If) and right back (rb)
suspension springs each lengthen by x. This equality of changes in length
ensures that the net force provided by the springs to support the weight of
the car does not change.
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The rises of the car body both at the If and rb wheels are x, at the Ib
wheel the rise is —x and at the rf wheel (on the pavement) it is 8 — x. The
frame of the car is rigid, so, because of the equal movements at the If and
rb wheels, the midpoint of the chassis also rises by x. Similarly, the other
chassis diagonal remains a straight line, and so the rise at the rf wheel must
be the same as the fall of the body at the 1b wheel relative to the midpoint
of the chassis, i.e. (8 —x) —x = x — (—x). From this very simple equation we
get x = 2 cm. We conclude that above the wheel on the pavement the body
of the car rises 6 cm, above the left back wheel it sinks 2 cm and above the
other two wheels it rises 2 cm.

Applying the same calculational technique, it is easy to show that com-
pressions in the suspension springs cannot change when the car is parked
with both right wheels on the pavement. It follows that then the right side
of the car body simply rises 8 cm, the height of the pavement. You can also
show that the result does not depend upon the number and the positions of
the people sitting in the car; this is because we have only investigated the
relative displacement of the body of the car before and after parking on the
pavement.

Note. In the solution above, a slight rotation of the body of the car was
ignored.

S10 Fig. S10.1 shows Jean Valjean’s location on the wall. Figure S10.2 is
a sketch showing his weight (mg), the normal reactions of the walls (N) and
the static frictional forces (Ffr) acting on his limbs.

Fig. S10.1 Fig. S10.2
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F sinh Fsinh
Y
N N
Top view
Fig. S10.3

Let the static frictional forces make a common angle 6 with the vertical.
The conditions for static equilibrium (see Fig. S10.3) are

mg = 2Fpcosf and N = Fsinf.

From these equations we can express the normal component, N, of the
force exerted by the prisoner on the wall whilst climbing as

N = %mg tan@.
Thus the total force required, F, is given by

2 .2
2 a2 2 _(m8 1+ sin“ 6
F=N"+Fg (2) cos26

We can also find the minimal force using the inequality
Fr < poN,
from which it follows that

. 1 1
sinf > — or tanf > ——,
Ho N% -1
where pyg is the coefficient of static friction. Using either of these inequalities
we find the minimal force to be

Foo_mg [+
min 2 ,u(z)—l

This expression shows that the coefficient of static friction must be greater
than unity if Jean Valjean is not to fall off the wall. If the coefficient of static
friction approaches infinity, the force on each of his hands is equal to half
of his body weight; this situation corresponds to his being glued to the wall.

S11 If static friction is large enough, the sphere will not slide down
the slope. However, this by itself is not sufficient for equilibrium; it is also
necessary that the sphere does not roll down the inclined plane.
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The sphere is made of two hemispheres, implying an inhomogeneous mass
distribution. If the distance between its centre of mass and geometrical
centre is less than %r, where r is the radius of the sphere, then, whatever
the orientation of the sphere, its weight will produce a torque about P, the
point of contact with the inclined plane (see Fig. S11.1), which will make the

sphere roll.

307
P

(30°

Fig. S11.1

It will now be shown that this is the situation for any sphere made of two
homogeneous hemispheres — whatever the densities of the two halves.

Fig. S11.2

Consider the shaded area in Fig. S11.2. By symmetry, the centre of mass of
this part is obviously at point A, i.e. at a distance %r from the centre, O. The
rest of the sphere moves the centre of mass S of the whole even closer to
point 0, i.e. 0S < %r. From our previous considerations, this implies that the
sphere cannot remain in equilibrium on the 30° inclined plane. In obtaining
the solution, we have assumed that rolling resistance is small, i.e. no resistant
torque can act at point P. In the case of a surface covered with Velcro, this
is obviously not true, and the sphere may even adhere to a vertical surface.

S12  Viewed within a rectangular coordinate system which has one axis
parallel to the inclined plane, the ball is seen to bounce on a ‘horizontal’
plane in a ‘vertical’ field of gravitational acceleration g’ = g cosa. It also
experiences an additional constant ‘horizontal’ acceleration (of magnitude
gsina). The ‘vertical’ motion consists of bounces of identical heights, i.e.
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of identical periods. Meanwhile, since the ‘horizontal’ acceleration is con-
stant, the ball’s average speed between bounces increases uniformly, and so
the distances between two consecutive bounces increase in an arithmetical
progression.

S13 Let the midpoint of the platform be a distance h below the pivot
and the hamster’s distance from that midpoint be x, as shown in the figure.

Because of gravity the hamster exerts a torque mgx about the pivot of the
wheel-cage. On the other hand, as the hamster moves it accelerates using
friction with the platform. When its acceleration is a this produces a reaction
force of ma on the platform, directed away from its midpoint. The torque
due to this force is mah. The wheel-cage (and the platform) remains in static
equilibrium if these two torques are equal, i.e.

mgx = mah.

After making due allowance for its direction, the acceleration can thus be
written as a = —(g/h) x. This shows that the required motion of the hamster
is simple harmonic motion with an angular frequency w = /g/h.

S14 (i) The bicycle moves in the direction of the net force (the sum of the
applied backward force and the frictional force directed forwards). In usual
gearings the bike moves backwards, but extremely low gearings can cause
forward displacement. Because the work done is always positive, it follows
that the student’s hand moves backwards relative to the ground. Normally
the gearing N is greater than one, i.e. the rear wheel rotates more rapidly
than the pedals. However, in the unusual case N <r/R < 1 (where R is the
radius of the wheel and r is the length of the pedal arm), the bicycle could
move forwards despite the oppositely applied force.

(i1) The chain-wheel rotates in the same sense as the rear wheel.

(iii) Usually backwards and upwards; the superposition of (i) and (ii), but
with (i) larger because of the gearing and wheel sizes.

Note. It is interesting to note that there is one position of the pedals at
which an arbitrarily large force can be applied without moving the bicycle
either way.
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S15 Equate the force of attraction between the Sun and the Earth to the
centripetal force that keeps the Earth in its approximately circular orbit, and
express the angular velocity w in terms of T, the period of revolution. This
gives

mM 4n?
G_r2 = mro? = mrﬁ,
where m and M are the respective masses of the Earth and Sun, and r is the
average distance between them. Divide by m and express M in terms of the
average density p and radius R of the Sun as follows:

This yields —

for the period of revolution.

It can be seen that the Earth’s rotation period only depends on the
universal gravitational constant G, the average density of the Sun and the
ratio r/R. Therefore if the density of matter remains constant, any scaling of
the solar system leaves the length of a year unchanged. It can also be seen
that only the density and size of the Sun are relevant; the Earth’s data are
not. Any body that is small in size relative to the Sun would have the same
period and follow the same orbit.

Note. This result can also be obtained using Kepler’s third law T?/a® =
472/GM, where a is the semi-major axis of the Earth’s elliptical orbit. If
the mass of the Sun is expressed in terms of its average density then it is
clear that a proportional reduction does not change the period of planets
in elliptical orbits.

S16 The gravitational acceleration produced by the Sun at the position of
the Earth is the same as that due to one of the stars at the position of the
other. This is because, according to Newton’s law of gravitation, g (the
gravitational force acting on a unit mass) depends only on the mass at the
centre of attraction and the distance of the second body from it. These
quantities are identical in the two systems.

Thus, the members of the binary star move with the same acceleration as
the Earth but in an orbit of radius only half that of the Earth’s orbit. This
means that, since (a = rw?), the square of their angular velocity has to be
twice as large as that of the Earth. The period of the binary star therefore
equals that of the Earth around the Sun divided by ﬁ, ie. 8% months.
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S17 (i) The acceleration of a satellite moving at speed v in a circular orbit
of radius R is g = v?/R. If R is the radius of the Earth (or more precisely, a
slightly larger value), then g has to be the gravitational acceleration at the
Earth’s surface; this defines the ‘first cosmic speed’, v; = \/Rg = 7.9 km s
for the speed of the satellite.

All of this speed is not strictly necessary for launching a satellite if the
‘initial speed’ provided by the rotation of the Earth is taken into account.
This help is greatest at the Equator, approximately 0.5 km s~!, and means
that an initial speed of 7.4 km s~! with respect to the Earth is sufficient, but
only if the satellite is launched eastward from on or near the Equator.

(ii) The angular momentum of satellites in polar orbits (passing over the
poles) is zero with respect to the axis of rotation of the Earth. This condition
has to be fulfilled right from the launch, since the angular momentum will
not change later. The ‘help’ described above cannot therefore be utilised.
Indeed, the rotation of the Earth is a drawback, since, not only must the
satellite receive the speed of 7.9 km s~! in a north-south direction, but, in
addition, the unacceptable west—east speed due to the rotation of the Earth
has to be cancelled. The latter would not have to be taken into account if the
satellite were launched from the neighbourhood of one of the poles; there
are obvious technical difficulties in doing this!

The initial speed necessary to put a satellite into a polar orbit is therefore
at least 7.9/7.4 ~ 1.06 times greater, i.e. the necessary kinetic energy is at
least 1.13 times as great. This does not seem a big difference, but in reality
the slightest increase of the initial speed requires an enormous effort. The
reason for this is that the carrier rocket has to be accelerated as well as
the satellite, and the mass tp be launched increases exponentially with the
intended final speed.

(iii) In order to escape the attraction of the Earth (i.e. to move far from
the Earth), the probe has to acquire the escape or ‘second cosmic’ speed,
vy = /28R = 2v; ~ 11.2 km s, The rotation of the Earth can again be
used. Launching eastward from the Equator, a launch speed of 10.7 km s~!
relative to the Earth is sufficient.

(iv) The Earth revolves around the Sun at a speed of approximately
30 km s™'. In order to reach the Sun, a space probe has to be launched
at an initial speed of 30 km s™! (or more exactly, 29.5 km s™!; smaller by
0.5 km s~! due to the rotation of the Earth). If the aim is to leave the
solar system, the space probe has to reach /2 times the speed of 30 km s~/
but the ‘initial speed’ of the Earth in its orbit can be subtracted from this
value if the launching is well timed and directed, i.e. a speed of 12 km s7! is
sufficient.
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Thus, it is easier to make a space probe leave the solar system than
to send it into the Sun. (The former has been successfully attempted, the
latter we are still waiting for.) The situation is even more favourable if the
possibilities offered by the outer planets (Mars, Jupiter, Saturn, ...) are taken
into account. A space probe launched at the right time and in the right
direction can be significantly ‘pushed by’ (i.e. receive energy from) these
planets, a phenomenon known as ‘gravitational slingshot’. Designed in this
way, the space probe does not have to propel itself very far, it only has to
reach Mars or Jupiter and the rest happens ‘automatically’.

Note. If the rocket driving the probe can be fired in two stages, one to
induce an elliptical orbit and the other to bring the rocket to rest at the
aphelion of the orbit, less total energy is needed to hit the Sun than that
calc&lated above.

S18 The rocket has to reach the highest possible total energy. If the zero
level of gravitational potential energy is ‘infinitely’ far away, then the energy
of the rocket standing on the surface of the Earth is negative. The energy
released during the operation of the engines increases the total energy of the
rocket, and the rocket can leave the Earth’s gravitational field if the sum of
its potential and kinetic energies becomes positive.

The energy released in the course of the operation of the principal and
auxiliary engines increases the total energy of the rocket and its ejected
combustion products by a fixed value; this increase is independent of the
moment when the engines are switched on. However, the speed at which
the combustion products fall back to the Earth does depend on the timing
of the rocket’s operations. Indeed, if the auxiliary engine starts working
when the rocket is at a greater height, the combustion products fall further
and their speed and total energy are higher when they hit the ground. This
means that the sooner the auxiliary engine is switched on, the higher the
energy ultimately acquired by the rocket. The same argument is valid for
the principal engine, and if only energy considerations apply, it is best to
operate the engines for the shortest time and at the highest thrust.

S19 The mass distribution, and thus the position of the centre of mass,
changes from moment to moment as the ball sinks. In a time ¢, the centre
of mass is displaced by

poV —pnV
= t——’

Y
where M is the total mass of the system, V' the volume of the ball, and
pn and py, are the respective densities of the honey and the ball. This is so
because when the ball has moved through a distance vt, it can be considered

N
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to have changed places with a ‘honey ball’ of identical volume. Thus the
total momentum of the system is

Ms
Ptotal = e =vppV —vpnV.

The first term on the right-hand side is the momentum of the steel ball, and
therefore the second is that of the honey:

Phoney = —0pnV = —2 g cm s7h

The negative sign shows that the direction of the honey’s momentum is
upwards. Its magnitude is the same as that of a honey ball moving upwards
with a speed equal but opposite to that of the steel ball.

S20 The (average) kinetic energy of the gas molecules is proportional to
the square of their velocity. The internal energy of the gas is proportional
to the temperature. Therefore v> ~ T. If the wall is warmer than the gas
(T > T) then the average speed of the rebounding gas molecules will be
increased by the collision (the wall warms the gas). If the wall is colder than
the gas (T; < T) then the situation is reversed; the molecules rebound with
a lower speed (the gas cools down).

From a molecular point of view, gases exert a pressure on the walls of
their container because of the changing momentum of molecules that hit the
wall and rebound from it. For a given initial momentum and collision rate,
the rate of change in the momentum of molecules rebounding from a warm
wall is greater than that of molecules rebounding from a cold one. Thus, the
gas exerts a higher pressure on a warm wall than on a cold one.

Note. This phenomenon explains the unexpected rotation of a radiometer
(‘light wheel’). If one side of each blade of a wheel mounted on a delicate
bearing is black and the other one is shiny, then the wheel starts to turn
when it is illuminated. At first sight, one might be tempted to think that
the pressure associated with the reflection of the light turns the wheel. This,
however, is not true, since experience shows it is, in fact, the shiny side
(the one reflecting rather than absorbing the light, and hence causing the
greater change in photon momentum) of the blades that moves forwards!
The correct explanation is that the black side of the blades warms up more
and therefore the pressure of the air molecules rebounding from that side
is greater than on the colder shiny side.

S21 As a result of thermal expansion, the size of both spheres increases.
The centre of mass of the sphere lying on the plate rises, whilst that of the
sphere hanging on the thread sinks. Thus, the potential energy of the first
sphere increases, whilst that of the second one decreases as shown in the
figure.
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According to the first law of thermodynamics, the heat transferred to
the spheres produces not only an increase in internal energy and the small
amount of work done in expanding against the atmospheric pressure (this
is the same for both spheres), but also a change in gravitational potential
energy. The potential energy of the sphere lying on the insulating plate in-
creases a little, therefore its internal energy increases by less than the residual
heat transferred. Conversely, the decrease in potential energy of the hanging
sphere contributes positively to the increase in its internal energy. In sum-
mary, the temperature of the sphere suspended from the thread will be higher.

It is worth giving a numerical estimate. If the temperature of the two iron
balls, each with a radius of 10 c¢m, is increased by 100°C, a temperature
difference of AT ~ 5x 1076 °C will result from this effect. This is undetectable
in practice.

S22 For quantitative purposes we assume that the resistances of the bulbs
do not depend upon the voltages across them. This is far from accurate,
but will give the correct qualitative conclusion. If the (r.m.s.) supply voltage
is V, the resistance r; of a bulb is V2/w;, where w; is the nominal rating
of the bulb. When the two bulbs are connected in series across the supply,
the (r.m.s.) current drawn is V' /(r4 + rg) and the power dissipated in bulb
i(i=AorB)is

V2 14 2

wi L(V2/wa) +(V2/wp)]

According to the original agreement (w4 = wg = 100 W), both P4 and Pg
should be 25 W. Actually, P4 = 8 W and Pg = 32 W, and so A clearly failed
his examinations. By comparison, student B might be considered a double
winner: he gets 32 W, but pays for only (8 4+ 32)/2 = 20 W. On the other
hand, 32 W is still a very poor light to study by and B also could well have
failed his examinations.

P;

S23 A simple circuit consisting of two identical resistors connected as
shown in the figure would behave as described.

o O

Iiﬂ:n
C:-—-—x:

]
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S24 When the bucket is full of water, the centre of gravity of the water
is above that of the bucket and therefore the common centre of gravity is
at its highest; correspondingly, the period is at its shortest. As the water
starts leaking out, the common centre of gravity moves downwards and the
period becomes longer. When the bucket is half full, the centre of gravity
of the water is below that of the bucket and the common centre of gravity
has moved even lower, significantly lower than the centre of gravity of the
bucket. Thus the period has increased further. When there is no water left
in the bucket, the centre of gravity coincides with that of the empty bucket,
which is higher than in the previous cases, i.e. the common centre of gravity
stopped moving downwards at some point and started to move upwards
again. In summary: the longest period occurs when the common centre of
gravity is at its lowest position. As is shown in the next problem, this occurs
when the common centre of gravity lies in the water surface.

S25 Clearly, the first water to be added is placed below the centre of
gravity of the empty beaker and therefore lowers the overall centre of gravity.
If at some stage water is added above the current overall centre of gravity,
the latter will be raised. Therefore for maximum stability the overall centre
of gravity must lie in the water surface.

Thus \

107! x 107 + 7 (3 x 10—2)2 1032 = x [10—1 +7 (3 x 10—2)2 103x] ,
2
giving x = 55.9 mm.

S26 Assume first that the centre of mass of the bowl remains at the same
height as originally. Then the bowl only turns about its centre (and perhaps
moves sideways) but does not sink any deeper into the water. Under these
circumstances, the rim of the bowl is lowered to the water surface on the
side opposite the chain, and water flows into the bowl. We will now prove
that this cannot occur.

The upthrust acting on the body in the assumed situation remains the
same as in the initial one, i.e. it equals the total weight of the bowl and
soup. Thus, the chain cannot be exerting any force on the bowl. On the
other hand, the centre of mass of the bowl is not on the line of action of
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the upthrust when the edge of the bowl is being raised, and the torques can
only be balanced if the chain does exert a force and pulls the bowl upwards.

The two contradictory conditions show that our initial assumption was
wrong. The geometrical centre of the bowl cannot stay in the same place
but has to rise (since a smaller upthrust is sufficient when the chain exerts
an upward force). This implies that even the lowest point of the rim of the
bowl has to(ke‘r\r:‘jin above the surface of the water.

The possibility of the soup flowing out into the water has also to be
considered. This could occur if the level of the soup in the bowl were higher
than the water level in the lake, ie. if the density of the soup were lower
than that of water. Realistically this would not be the case.

S27 The forces acting on the ball are the gravitational force mg, the
buoyancy force of the water and the normal force exerted by the rim of the
hole. When the buoyancy force just equals the weight of the ball, the normal
force becomes zero and the ball leaves the hole.

We first calculate the buoyant force exerted on the ball when the water
depth is h. Denote the volume of the ball immersed in water by V, where
V = V(r,R). Now, imagine the ball to have that part of it which protrudes
through the hole removed and the space under the container filled with
water. The buoyancy force would then be

Fy = pg V(r,R),

where p is the density of water. As in reality there is no water under the
hole, a contribution

F, = pgh x nr?
is missing. Thus the actual buoyancy force exerted on the ball is
F = pg V(r,R) — pgh x nr?.

It is clear that, for sufficiently large h, F can be negative and then the
‘buoyant’ force is directed downwards. Decreasing h causes F to increase,
and, provided the top of the ball is not uncovered, it will rise when F = mg
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and the corresponding water depth is hg. Thus
_V(r,R) _m
T qr? nrip’

ho

Straightforward integration, or geometry books, give the volume of a
spherical calotte (truncated sphere) as

V(r,R) = g [2R3 + (2R2 + r2) JRZ = r2| ,

and using this formula we can express hg as
3 24,2

_ 2R +2R +r RE_2__ M

3r2 3r? rinp

Don’t forget that the formula above is only valid if the top of the ball is
still covered by water, that is h > R++/R? — r2. Otherwise we have to modify
V(r,R); instead of a spherical calotte we have to calculate the volume of a
sphere truncated at both ends of a diameter. This leads to a cubic equation
for the critical hy,

ho

B (3VR =7 —hg) = 2

np’
Note. When calculating the buoyancy force F, instead of using the radius
of the hole r we can work with another variable: £ = \/R2 —r? (see Fig.
S27.1).

AN

=r

Fig. S27.1

Either by applying the previous argument or by integrating the vertical
component of the upthrust over the submerged part of the sphere, we can
calculate the buoyancy force to be

32 (h—¢)+ 203 — (h—¢)°
3

3 3\ _ 2_ g2
2(R + ) g(h DR =) e it h=R+s

npg, f h< R4/,
F(h) =

The expression for the buoyancy force F as a function of h consists of
two parts; in the interval 0 < h < R + ¢ the force is a cubic function
of h, whilst in the range h > R + / it decreases linearly, as shown in
Fig. S27.2.
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Fig. $27.2

We can find the critical water depth hy from the intersection of the graph
of F(h) with the line F = mg. Differentiating F(h) shows that it has a
maximum value of (4¢°npg/3) at h = 27. If the weight of the ball is larger
than this value (which is just the weight of a water sphere of radius ¢), then
the ball will not float out of the hole, whatever depth of water we have.

S28 The soap bubble floats and therefore the combined mass of its wall
and the helium inside it is equal to that of the displaced air. Since the density
of helium is less than half the density of air, the mass of the helium is less
than half of the mass of the displaced air. Thus, the wall of the bubble has
to be heavier than the gas it encloses.

S29 In case (a), it is clear that the water cannot flow out of the tube. If it
could, a perpetuum mobile (perpetual motion machine) could be established
using a paddle rotated ad infinitum by the outflowing water.

Cases (b) and (c) are not so simple. The ends of both tubes are lower than
the water level and the water pressures there are consequently lower than
the atmospheric pressure. In each case, the water wells to such an extent
that the pressure corresponding to its radius of curvature equals the pressure
difference between it and the air. The water surfaces corresponding to cases
(a), (b) and (c) are shown in the figure.

(@) ()] ©

The greatest curvature (smallest radius of curvature) occurs for the hemi-
spherical shape and corresponds to the pressure of a column of water of
height H, since this is the height reached by the water in a vertical tube. If
the air-water pressure difference is greater than pgH, then surface tension
cannot hold the water in the tube and it flows out. This is what happens
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in tube (c) (assuming that the figure is to scale and H' > H); on the other
hand, water does not flow out of tube (b).

S30 The system described in the problem is spherically symmetrical.
Therefore the magnetic field that is built up has to be spherically symmetrical
as well. A spherically symmetrical vector field has to be radial everywhere
and its magnitude can depend only on the distance from the origin: B(r) =
B(r) r/|r|.

On the other hand, a magnetic field contains no sources (magnetic mono-
poles) and the magnetic flux crossing any closed surface has to be zero at
any given moment. In particular, consider a spherical surface of radius r
around the capacitor. The consequences of sourcelessness can only be met
if B(r) = 0 for any r. This means that the current described in the problem
builds up no magnetic field, either inside or outside the spherical capacitor.

Note. It is worth examining how the basic laws of electrodynamics are
satisfied between the plates of the spherical capacitor. Is it true that a
magnetic field builds up around a current flowing in a conductor, and that
the rotation (curl) of this field is proportional to the current?

S31 The radiation has to be spherically symmetrical, since both the
distribution and the motion of the charges are spherically symmetrical. The
magnetic field is always radial and should have the same magnitude at
any given distance from the sphere, irrespective of direction. This, however,
is impossible, since such a magnetic field (unless of zero magnitude) would
imply the presence of a magnetic charge (magnetic monopole), something
that experimentally is found not to exist in nature. Similar reasoning shows
that the electric field is also spherically symmetrical and that its magnitude
depends only on the total surface charge of the sphere and not on the pul-
sation parameters. Therefore, only the static Coulomb field can be observed
outside the sphere, and the sphere emits no radiation at all!

If individual parts of the sphere are examined, they are found to behave
like dipole antennae and emit radiation. But the radiation from different
parts has to be summed, taking into account phases as well as magnitudes.
The individual radiations from the many dipole antennae cancel each other
out, a result which can be proved by direct (but lengthy) calculation without
referring to spherical symmetry.

S32 No high-jump competition has yet been held on the Moon. However,
here we try to estimate the expected result. The men’s high-jump record on
Earth is over 240 cm. A good male high-jumper is more than 190 cm tall
and has a mass of around 80 kg, with his centre of mass approximately



90 200 Puzzling Physics Problems

110 cm above the ground. For a successful jump, all of his body must
rise to the height of the cross-bar, but his centre of mass need not. This
achievement requires a special jumping technique (the Fosbury flop), which
can be studied in slow-motion video recordings. The centre of mass of the
high-jumper remains approximately 20 cm below the cross-bar, even when
he is at the apex of his jump. For the western roll and straddle jumping
techniques, the jumper’s centre of mass has to rise above the bar.

The most difficult part of our estimation is comparing the movement of
a jumper at take-off on the Earth to that of a jumper leaving the ground
on the Moon. Assume that the centre of mass of the high-jumper rises by
s = 40 cm from its lowest point (in the crouch just before the jump) to
the highest point (when he has just left the ground) both on Earth and on
the Moon. Then his muscles must have done enough work to subsequently
carry his centre of mass from 110 to 220 cm, i.e. raise it by 4 = 110 cm on
Earth. Any effect of the run-up has been ignored, or has been assumed to
be identical in both places.

The basis of our estimate is the assumption that the same work is done
and the same jumping technique is employed in both cases. The work done
is the sum of the kinetic energy of his body and the potential energy of his
centre of mass, W = %mv2 + mgs. His speed when leaving the ground can be
calculated using the relation v? = 2gh. Thus, the total work done is

W =mgh+s)=80kgx10ms~2x 1.5m=1200]J.

We assume that the work done by the high-jumper on the Moon is the
same, and that the rise s of his centre of mass before leaving the ground
is also unaltered. The gravitational acceleration on the Moon is only one
sixth of that on Earth, i.e. the energy equation of the jump on the Moon is
1200 ] = % mg (s+h"), which yields /' = 8.6 m. This is the vertical height by
which the jumper’s centre of mass rises on the Moon. To this must be added
the initial height of his centre of mass, 110 cm, and the extra 0.2 m resulting
from his special technique, to give an estimated record of 9.9 m ~ 10 m.

Note. This question is usually answered — recognising only the difference
in the gravitational accelerations — by saying that the world record on the
Moon would be six times that on the Earth, i.e. approximately 14—15 metres.
According to the above analysis this is an optimistic expectation. Even our
estimate is probably over-optimistic, since in our model the high-jumper
has to do the same amount of work in a shorter time, i.e. a greater power
output is needed. It can be shown that the jumper has to increase his power
output by nearly 15 per cent when on the Moon. If, instead, the speed at
which he leaves the ground is taken to be the same as on Earth, a result
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of 8 m is obtained; this will be too low a value. All things considered, the
most probable value seems to be a height of about 9 m.

S33 (i) The vertical acceleration of ball B falling from the table is always
g, which makes it possible to determine the time (approximately half a
second) it takes to fall 1 m. The motion of the bob of the simple pendulum
is rather complicated, as no small amplitude approximation is possible, and
therefore the time during which it is in motion is not easy to determine. What
can be stated with certainty is that, since the thread exerts an upward force
on it, its vertical acceleration is always less than g. Therefore the vertical
motion of ball A takes a longer time than the vertical free fall of ball B. Ball
A stays in motion for longer.

(if) The bob of the pendulum describes one-quarter of a circle (a path of
approximately 1.5 m). The other ball, B, follows a parabolic path, the length
of which cannot be determined by elementary methods. However, it is easy to
see that it hits the ground at a distance of vt = (2 X g x1,/2x1/g=2m
from the edge of the table. The length of its path is therefore not less than
the shortest distance between the beginning and end points of its motion,
namely /5 m ~ 2.2 m.

In summary: ball B moves on a longer path, but in a shorter time, than
the bob of the pendulum.

S34 For uniform circular motion the tangential acceleration of the body
is zero, but the radial acceleration is v?/R, where v is the speed of the
body and R is the radius of the circle.

Fig. S34.1

As the radial and tangential components of the gravitational force are
mgsin@ and mgcos0, respectively, as shown in Fig. S34.1, the force F
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exerted by the string PQ on the bob must have components:

mp? .
Fi =mgcos0 and F, = R~ mgsin 0.

From these expressions we can deduce the direction of the force F, and
hence the direction of the string, characterised by ¢:

F; v?

cotp = an0=£—tan9.

L=  _t
F; gRcos0 cos@

18 19 20

Fig. $34.2

In Fig. S34.2 corresponding positions of the two ends of the string are
shown. The angle 6 increases in 15° steps and the position of the other end
(Q) of the string has been plotted from point P by marking off the length
of the string in the direction of the calculated angle ¢.

S35 Look at the two lines drawn in Fig. S35.1. The acceleration (g) is
greater for the one in the vertical direction, but the path length involved
is longer. The path perpendicular to the inclined plane is the shorter one,
but the corresponding acceleration is less. We can presume that the path of
shortest time lies somewhere between these two lines.
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Fig. $35.1
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We next prove the following auxiliary theorem: bodies starting at the same
time ¢t = 0, from the same point, and following frictionless slopes in different
directions, all lie on a circle at any subsequent time.

P

N\

Fig. $35.2

As shown in Fig. S35.2, the topmost point of any such circle C is the
starting point P. After time t, a body following a vertical wire and in free
fall will have fallen through d = %gtz, and this must be the diameter of C. A
body moving along a wire at an angle a to the vertical has an acceleration
of g cosa. In the same time ¢ it will have covered a distance, measured from
P, of %g cosat? = dcosa. But this is precisely the length of the chord of C
cut off by the wire. Thus, independent of a, the second body also lies on
C-and the auxiliary theorem is proved.

The original problem is easily solved using the auxiliary theorem. Bodies
starting at the same time from point P and travelling in different directions,
always form a circle that grows with time and has P as its topmost point.
After some time, the circle will touch the inclined plane, with the plane
tangential to the circle at the contact point P’. A body starting from point
P reaches the plane in the shortest time by travelling along the line PP’. In
fact, the problem is three-dimensional, and bodies starting from point P lie
on a sphere at any one time. The shortest time direction is found by joining
P to the point of the sphere that first touches the inclined plane. However,
it is sufficient for the question in hand to examine the vertical cross-section
through P parallel to the plane’s line of greatest slope, as we have done so far.

P

P’
a

Fig. $35.3

It is clear from Fig. S35.3 that in the case of a plane inclined at angle «
to the horizontal, the line PP’ corresponding to the shortest time makes an
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angle «/2 with the vertical, i.e. the optimium direction bisects those of the
two lines mentioned in the first paragraph of the solution.

S36 The solution to the problem is surprisingly easy using a rotating
frame of reference fixed to the minute hand. In this reference frame the
minute hand is at rest, whereas the hour hand is moving ‘anti-clockwise’. The
separation between (the ends of) the minute and the hour hands increases at
the highest rate when the line of action of the velocity vector of the end of
the hour hand passes through the end of the minute hand. In this situation,
the two hands and the line joining their ends form a right-angled triangle,

as shown in the figure.
/ s

/I’//

x

Since the minute hand is twice as long as the hour hand, the angle between
the hands will be 8 = cos~!(1/2) = n/3. We can now calculate the exact time
after midnight when the angle between the hands is 6. As the minute hand
moves 12 times as fast as the hour hand, the angle ¢ between the hour hand
and the 12 o’clock position is given by 12¢ —¢ = 0, ie. ¢ = 1—110. Thus, since
midnight, the minute hand has moved through an angle of %0 = 14—171: and the
time is just before 11 minutes past midnight. There are several subsequent
times (twice in each hour) when the angle between the hands is the same.
The second occurs when the ends of the hands approach each other at the
fastest rate.

Note. Using calculus this problem can also be solved by brute force. From
an expression for the distance between the ends of the hands of the clock,
their relative velocity can be found, and hence the angular positions at
which its stationary values occur determined.

S37 Using the coordinate system shown in the figure, the motion of the
stone can be described by the following relations:

X =wptcosa, y =vptsina— %tz,

Ux=1pCOS®, U, =UvpSina— gt.
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The stone is at the greatest distance from the origin when its velocity is
perpendicular to its position vector. The condition for this is

y

5
X Dy

which yields a quadratic equation for the time ¢ at which this happens:

3 si 3
o sna, Wy _
g g

If this is not to happen, the discriminant of this equation must be negative, i.e.

<3vosinoc)2 -4 ﬁ '

4 b4

Thus, for the stone to be permanently moving away from the thrower, we
must have sina < 1/8/9 = 0.94, i.e. o < 70.5°.

S38 The trajectory of the grasshopper is a parabola, which touches the
trunk at two symmetrically placed points, B and B*, on the two sides of the
trunk (at the moment we don’t know anything about these points—they may
or may not coincide at the topmost point E of the trunk). The grasshopper
takes off from point A with an initial speed v; and at an angle 6 with the
horizontal, as shown in the figure. At the tangential points B and B* the
grasshopper’s velocity is v, making an angle § with the horizontal.
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For the sake of simplicity we choose f as the independent variable of the
problem. At point B the vertical component of velocity is

vy 8in f = gty,

where ¢, is the time of flight for the BC section of the trajectory (C is the
peak of the parabola). The corresponding horizontal displacement BF is

vty cos f = Rsin .
Multiplying these equations together we obtain

2 — &R
27 cosp’

Conservation of energy between points 4 and B of the trajectory gives

1
Emv% = %mv% + mg(R + R cos f),

and so
v} = v3 +2gR(1 + cos f)

gR
cos B + 2gR(1 4 cos f)

2gR (1 +cosf +

7)
2cosB/’
We can calculate the minimum value of v using differential calculus. How-

ever, there is a less complicated method available which uses the inequality
between arithmetic and geometric means:

1 1 [ 1 V2
2 (COSB+ZCOSB> = COSﬂZcosﬁ T

So the minimum value of cos f + 1/(2cos B) is equal to /2 and, therefore,
B = 45°. The case B = 0 requires a larger initial velocity, since 1.5 > /2; it
follows that the trajectory with the minimum initial speed does not in fact
touch the trunk at its topmost point. The gravitational potential energy of
the grasshopper is greater at the peak of the parabola than at the uppermost
point of the trunk, but its kinetic energy and total energy are smaller than
they would be for a top-touching trajectory.
The numerical value of the minimal initial speed is

oltin — \ [2gR (1 +2) ~22ms7",
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Note. (i) It is not very difficult to show that the part of the parabolic
trajectory above B does not intersect the trunk.

(ii)) We can also determine the take-off angle as § = 3n/8 = 67.5°, and
the take-off distance as

AD = R(1 +/2/2) = 17 cm.

(i) It is interesting to note that point F is the focus of the parabola.

S39 The fleas jump in directions making angles %(n — ) with the initial
direction of the hair. During the period in which they are in the air, the hair,
reacting to the impulsive couple it receives, rotates in the opposite direction
through an angle of = — 0, so that both fleas land on the hair but with each
at the opposite end from that at which it started.

Fig. $39.1

Let v and o be the take-off speed and angle, respectively, and 2L be
the length of the hair. The time of flight ¢ is, as usual, 2vsina/g and the
range vtcosa. From geometry (see Fig. S39.1) the range must also equal
2L sin(6/2). Now, each end of the hair receives an impulse, but only the
horizontal part of the tangential component contributes to the impulsive
couple acting on the hair. Thus

1

2mvL cosacosg =Jw, with I = §ML2.

It is also necessary that wt =7 — 6.
Eliminating a,t and o from the equations obtained so far, shows that 0
must satisfy the equation

6T’/’;—sin6+0=1t.



98 200 Puzzling Physics Problems

p
p —h
/ M sinn
M
6m>M /
6m<M

jo) h

Fig. S39.2

The function f(0) = nsin6 + 6 has the property f(n) = mn, whatever the
value of n. In addition, f'(f) = ncosf +1 =0 has a solutionin0< 6 <=
provided n > 1. Thus, if n is strictly greater than 1, f(0) has a maximum for
some value of 6 strictly less than 7. This, combined with our observation
about f(x), shows that f(6) = = has a solution for some value of @ strictly
less than n provided n > 1. In the context of the question, this condition
becomes m > M /6. This is illustrated in Fig. S39.2.

S40 The water ‘bell’ is cylindrically symmetrical about the vertical and
so it is sufficient to solve the problem by considering a cross-section. Let the
point-like rose be at the origin of an x—y coordinate system. The jets of water
then follow parabolic paths starting from the origin, and our mathematical
task is to find the ‘envelope’ (shown dotted in the figure) to this set of
parabolas.

It is well known that the equation of the path of a body projected with
initial speed v at an angle o to the horizontal is

g 2

=xtano — ————X
y 2v2cos?a” ’

which can also be written as

2 2
8X~ 9 gx"\ _
2—0214 —XU+<y+F>—0,

where u = tano.
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If a point (x,y) is fixed, then the above relation is a quadratic equation
for u, which has a real solution if its discriminant is non-negative, i.e.

x _4gx <y+gx ) >0,

202 202
1.€.
2
v g 2
< — — 2.x%
V=3 T 22"

This inequality divides the x—y plane into two regions separated by a
parabola. Water can reach the points under the parabola (a paraboloid
of revolution in three dimensions), but not those above it. The limiting
parabola is the sought-for envelope.

The water ‘bell’ is therefore a paraboloid of revolution. It is clear from
the equation for the limiting curve that the height of the ‘bell’ is v?/(2g),
as one would expect from considering an object thrown vertically upwards.
The water ‘bell’ defines a circle on the surface of the basin water, the radius
of which can be found using the condition y = 0; it is r = v?/g. This means
that the diameter of the basin should be at least four times the height of the
water ‘bell’ if no water is to be lost.

S41 There is uniform acceleration in both horizontal and vertical direc-
tions giving, in an obvious notation,

EQ, 1

= vtcos ——t and y=vtsinf — =gt

X=v + 3 m y = vtsin 2

When y = 0, elimination of ¢ results in the equation for the range given in
the hint. It has a maximum value of

2

7 <EQ+\/m2g +E2Q2) when tan26——£

mg?
The negative sign of tan 20 for positive Q indicates that 0 needs to be more

than /4 to take advantage of the ‘following wind’ provided by the electric
field.

Note. It will be clear that this problem is essentially equivalent to that of
finding the maximum range on an inclined plane of a mass projected with
a given speed.

2

S42 To satisfy the static equilibrium conditions for the rod (net vertical
force and net torque each equal to zero) the reactions of my fingers at
distances x and y from the centre of mass of the rod are (see figure):

X

x+y

Fy. =mg and Fy, =mg

x+y’
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Assume that the rod first slips on my left finger. At any moment the frictional
force exerted on the finger is

Fr = pin Fx = pgin mg '_;)I‘)__y

For slow movement (the horizontal acceleration is negligible) this force is
equal to the static frictional force acting on the right finger, which has a
maximum value of

X
F mg ——
Ustat I'y = Ustat MG Xty

Thus the left finger can slide so long as

Mkin Y < Hstat X,  1e€. X = ky,

where k = ﬂkin/#stat <L

Initially xo = yo = %/, so my left finger slides to the position x = x; = k£/2
whilst working against a continuously changing frictional force. The work
done during this sliding can be found using integral calculus:

W(xo — x1) = —/xx‘ HxinFx dx

0 ke/2 - ¢/2 2

/2 m k+1
At the second stage my right finger is sliding; while x = x; and is constant,

y is changing from £/2 to y; = kx; = k2¢/2.
The work done is

l
= —Ukin MG = Mg Hkin 5 In

w o Xy Ckin
Yo—y1)= —/yo ,ukmmgm y = mg Ukin 3 nE.

In the same way we can calculate the work during all of the following stages
during which the rod slips alternately on my left and right finger. The total
work done is

2 213t
R )lnk]
2 ko1

=mg#kinf In—-+ —1In-
2 1+k 1—-k 'k

/
W=mm5h
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If pyin < pstar (i€. k < 1), the work is done in just one step and its value is

W ~ Hkin™E , 102,

2
On the other hand, if pga = pkin (i€. k ~ 1), then
k 1
g~ b

which can be confirmed either with a calculator, or by writing k = 1 — §,
using In(1 — §) ~ —0, and then letting § — 0. Thus

vvz@%@&

S43 Take the length of the bricks to be unity and start the process from
the top. The topmost brick can be displaced until half of it protrudes beyond
the table, then the upper two have to be moved relative to the third one
as shown in the figure. The combined centre of gravity of the upper two
bricks must not be beyond the edge of the third one. Thus the second brick
can only be displaced by %. The general strategy is to move each subpile of
bricks until its combined centre of gravity is just above the edge of the brick
below it.

Before the third displacement, the combined centre of gravity of the top
three bricks has to be found. That of the two uppermost bricks is over the
edge of the third, and has to be given a double weighting, i.e. the distance
of % has to be divided in the ratio 2 : 1; with the third brick being displaced
by only %.

For the following (fourth) brick, the three placed above its edge carry
triple weighting, and the distance of % between the centre of gravity of the
fourth brick and its edge has to be divided in the ratio 3 : 1, i.. the fourth
brick can be displaced by only % Adding up the displacements, the result is
I+++141=2>1, in other words, the topmost brick can hang beyond
the table.
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In the above solution, critically unstable equilibrium positions have been
considered at each step. In practice, the displacements should be chosen to
be a little smaller than those calculated above, but it is still possible for the
topmost brick to hang outside the table.

The solution can be extended to an unlimited number of bricks. The
distance of % between the centre of gravity and the edge of the kth brick
has to be divided in the proportion (k — 1) : 1, since the common centre
of gravity of (k — 1) bricks is situated above its edge. The kth brick can
therefore be displaced by a maximum of ﬁ units. If a total of n bricks is
available then the displacement of the topmost one can be calculated as

1(1+1+1+l+...+1+...+1)'
2 2 3 4 k n
Since the sum of the reciprocals of natural numbers tends to infinity, as is
shown by considering
1 1 1 1 1 1 1 1

1+§+§+2+§+6+7+§+§+“'

>1+1+(1+1)+<1+1+1+1>+..._1+1+1+.../\
22 4 4 g8 8 8 8 222 ’

an arbitrary displacement can be realised by using a suitable number of
bricks, i.e. there is no limit.

S44 Let the mass of the plate be 2m, and denote the normal reactions
and frictional forces by Nj, N, and Fi, F,, respectively, as shown in Fig.
S44.1. The equilibrium equations for the horizontal and vertical forces are

Ni+ F, =2mg, F;=N,.

—
3
o

mg

Fig. S44.1
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Balancing torques about the corner of the plate gives
(mg + N2)R = NiR.
The conditions controlling the frictional forces are
Fy < uN; and F> < uN,.

Using the above equations, the following three relations can be derived.

F1 + F; = mg,
F2 S#Fla
. m
Fy < uNy = p(mg + N2) = pmg = pF1, ie F1 < %'

In deriving the last of these relationships we have assumed that p < 1.
These three relations can be plotted in an Fj—F, coordinate system. If
the coefficient of static friction is quite large, the situation is as shown in
Fig. S44.2.
g

mg

.

“umg mg A
I-u
Fig. S44.2

In this case the problem does not have a unique solution; in the region
represented by the straight line segment between points 4 and B the static
equilibrium conditions can be satisfied by a range of frictional forces.

k

mg




104 200 Puzzling Physics Problems

If the coefficient of static friction is too small, the situation is as shown
in Fig. S44.3 and the problem has no solution at all. The minimal possible
value of the coefficient of static friction can be found by making p such that
the crossing point of the boundaries of the two inequalities occurs on the
F{ + F, = mg straight line graph as shown in Fig. S44.4. In this case, instead
of inequalities we can use equalities, and after some calculation we find the
minimal value of static friction to be u = /2 — 1 ~ 0.414.

g

mg

Fig. S44.4

The possibility of F, being negative should also be recognised. When p is
greater than 0.5 the upper limit for F; is larger than mg and this makes it
possible for F, to have negative values, as shown in Fig. S44.5.

g

mg

Fig. S44.5

S45 Air resistance is neglected and the balls are considered as perfectly
elastic. If the balls are dropped from height h, they reach the ground with
speed v = ,/2gh. The bottom ball first hits the ground, and then collides
with the top ball, which receives the largest possible energy if the lower ball
is at rest after the two collisions.

The bottom ball rebounds with speed v and collides with the top ball
moving downwards at speed —v. Since the speed of the ball of mass m; is
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to be zero after the collision, the equations expressing the conservation of
momentum and energy are
v? u?

(my — my)v = mu and (my + mz)? = m1—2—.
The speed u of the top ball after the collision and the ratio of the masses
can be calculated from these equations, giving u = 2v and m;/m; = %
With its speed doubled on rebounding, the upper ball rises to a height
of 4h.

Surprisingly, the top ball could bounce even higher than this. If my > m;
then the top ball only takes a very small fraction of the total energy after
the collisions, but its speed is 3v and the height of the bounce is, in an ideal
case, 9h. This may sound rather incredible, but it is in agreement with the
principle of conservation of energy.

Readers interested in theoretical problems may generalise the problem to
n balls, while those interested in practical experimentation may try dropping
sets of non-identical balls—they bounce in very amusing ways!

S46 For the first collision, momentum and energy conservation give

M+/2gh = MV + w,
Mgh = %MV2 + %uvz.

Eliminating V gives v as 2M \/Z_gﬁ/ (M + ) and the kinetic energy transferred
to the middle ball as 4uM?gh/(u+ M)?. As a fraction of the initial energy of
the first ball, this is 4uM /(u+ M)?. The fractional energy transfer to the final
ball, is the product of two such expressions using different pairs of masses.
Thus in order to maximise the energy of the final ball u should be chosen to
maximise ?/(u + M)*(u+ m)?, ie. u = /Mm. With this choice the overall
fractional energy transfer is 16 Mm/(\/M + \/ﬁ)“ and the height attained by
the final ball is 16 M?h/(\/M + ﬁ)".

S47 Since the dumb-bells approach each other at identical speeds, the
sum of their momenta is zero in the reference frame of the air-cushioned
table (the same as that of their combined centre of mass). Thus, conservation
of momentum implies that the centres of mass of the two dumb-bells always
move at identical speeds and in opposite directions.

When the dumb-bells collide, both their energy and their angular momen-
tum are conserved, since the collision is perfectly elastic and no external
torque acts on them. The states before and after the collision are shown in
Fig. S47.1.
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Fig. S47.1

Before the collision the dumb-bells have only translational kinetic energy,
while a rotational term appears after the collision. When writing down the
conservation of energy and angular momentum equations for the dumb-bells,
we calculate the latter with respect to their point of contact, P:

2 (1 2va) =2 (l omy? 4 L 2m/2w2)
2 2 27 '
Before the collision the dumb-bells only have orbital angular momentum, but

a term describing their spin about their centres of mass has to be included
after the collision, i.e.

A¢mv = 4¢/mV + dm*w.

The non-trivial solution (V' # v, @ # 0) of the above set of equations
is found to be V = 0, and w = v//. That is that the centres of mass of
the dumb-bells stop moving after the collision, and that the colliding point
masses change velocities while the non-colliding ones keep their original
velocities. This can be interpreted in the following way: point masses joined
by a rigid but weightless rod are not aware of each other’s presence in the
course of a momentary collision. The rod only exerts a force directly after
the collision, when the dumb-bell rotates about its stationary centre of mass.

The hidden point of interest in the problem is that the dumb-bells collide
again after half a turn of each, i.. after a time, t = n/w. Using the previous
results, the resulting motion can be predicted without writing equations. The
rotation of the dumb-bells stops, and they move again with the same speeds
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as before the first collision. Their path is the same straight line but they are
now travelling ‘upside down’. In other words the dumb-bells spend the time
between the two collisions turning round. The speed of the dumb-bells as a
function of time is shown in Fig. S47.2.

Fig. S47.2

S48 (i) At this time the two masses are travelling parallel to the x-axis
in the centre of mass system and are both crossing the y-axis, one in each
direction. This situation must be superimposed on that due to the motion
of the centre of mass, which has moved along the line x = L/2 through a
distance L and has a speed of V' /2 in the y-direction. Block A is at (%L, %L)
with velocity (%V, %V); block B is at (%L, %L) with velocity (—%V, %V).

(ii) Establish that the centre of mass motion is cyclic with period 8L/V.
Block A4 is at (L, 50L) with velocity (0, V); block B is at (0, S0L) at rest.

S49 Let x denote the ratio of the actual water level to the level at the
top of the basin; the same number shows the ratio of the current volume of
water to the maximum possible volume.

During filling, x increases uniformly with time and, since it reaches the

value x =1 in time T},
(@7
de in B Tl'

When water flows out, the speed of efflux—and therefore the rate of
decrease of x —is proportional to the square root of the height of the column
of water, i.e. to the square root of x,

(?j_):)out N _K\/;. M

The coefficient of proportionality has to be chosen so that x just decreases
from 1 to 0 in time T>.

Since the equation for the efflux is of the same form as the relation between
the speed and the displacement for uniform acceleration, v = \/2a—x, it can
be concluded that the liquid level decreases to zero at a uniformly changing
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speed. The initial rate of decrease is K, the final rate is zero; therefore the
average rate of decrease of x equals K /2. This deceleration can be expressed
in terms of the total time: K /2 = 1/T>. The same conclusion can be reached
by integrating the differential equation (1) and applying the initial and final
conditions.

When both the tap and the plug-hole are open, the net rate of change
caused by the water flowing both in and out is

() (&) JL 2
de — \dt /i, dt Jou T T2V

In a state of equilibrium, the water level does not change. The condition

for this is
X = Xe = (—2 )2
€ 2T '

For example, if the basin fills up in the same time as it empties, (T; = T»)
then the stationary state obtained by opening the tap and the plug-hole
together corresponds to x = %, regardless of the initial conditions. With the
data given in the problem, this ratio is %. It can also be seen that overflow
can only be a danger if it takes more than twice as long to empty the basin,
as to fill it (T, > 2TY).

Note. One condition for the validity of Torricelli’s law of efflux is that the
size (diameter) of the orifice be much smaller than the depth of the water.
This condition is certainly not satisfied when the basin is nearly empty, and
therefore our results are only approximate. If the orifice is very small the
viscosity of the water (neglected so far) also plays an important role.

S50 When the vessel is rotating the free surface of the liquid must be
an equipotential surface for the system; for if it were not, the energy of the
system could be lowered by changing the surface profile. The total potential
energy per unit volume at any point (r,z) in cylindrical polar coordinates,
is made up of two parts, the gravitational potential energy pgz and the
centrifugal potential energy. Since the centrifugal force is pw?r directed
away from the axis, the potential energy at r is the integral of this with
respect to r, i.e. —3w?r?. Both potentials are relative to arbitrary zeros. With
the origin of z chosen as in the Hint and r = 0 taken as the zero for the
centrifugal potential, the equation of the free surface is pgz — %,owzr2 =0.

If Z is the vertical distance of the lowest point of the surface below the
rim of the vessel when the liquid is on the point of overflowing, then both a
and Z lie on the free surface, and the volume of air in the paraboloid above
the liquid but within the vessel is still one-third of the volume of the vessel.
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Integrating to find this volume, [ nr2 dz with r? = 2gz/w?, gives ngZ2/w>.
Thus we have

w?a?

Z = 2 and pe) 3

leading to Q = (4gh/3a?)!/2.

S51 Solution 1. Whilst accelerating, a car ‘pushes’ the Earth back a little
and changes its rotational angular velocity. This very small effect has to be
considered in order to resolve the paradox.

For the sake of simplicity, consider the car, of mass m, to be travelling on
a body of mass M (M > m) that can move freely in the direction of the
motion of the car. In the actual situation, the Earth can rotate freely under
the car. A stationary observer would say that if the car accelerates to some
speed vp and then subsequently to 2vg, the body of mass M reaches a speed
uy = —mvg/M and then u; = —2mvy/M, whilst its kinetic energy increases
from an initial zero to Mu?/2 and then to Mu3/2. Since M > m, the kinetic
energy of the body of larger mass and the change in its energy can be
neglected. Thus the ratio of the fuel consumption values has to be 1 : 3.

The situation is different for the observer moving with speed vyg. He can
see the speed of the car increasing from vy to 2vy and then to 3wy, while,
in accordance with the law of conservation of momentum, the speed of
the other body changes from the initial —vg to (1 — m/M)vg and then to
(1 — 2m/M)vy. The changes in the kinetic energy of the whole system (car
plus Earth) are, therefore, firstly

ngZ?  ma’h

2, 1M2~1 2

m
= 2

%m [(200)% — v§] + %M ( o

[\

and, then, secondly

2 2

%m [(300)2 - (200)2] + %M (1 - %’1) g — %M (1 - %) v~ —z—mvg.

It can be seen that the energy (fuel consumption) ratio is 1 : 3 for both
observers.

Solution 2. Friction pushes the ground backwards, i.e. it accelerates the car
forward through its wheels. In the Earth’s frame of reference (Peter’s frame),
work is done only on the car and not on the ground. On the other hand,
in the train’s frame of reference (Paul’s frame), static friction acting on the
ground also does work. Viewed from this frame, the ratio of work done on
the car in the two stages is 3 : 5, since the displacements of the car in time
t are 3vot/2 and Svgt/2, respectively. The work done on the ground is —2
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units, as the displacement of the ground is vgt. The total work done is thus
3 —2 =1 unit in the first stage of acceleration and 5 —2 = 3 units in the
second; their ratio, when viewed from the train, is therefore again 1 : 3.

S52 Since the object and image distances, respectively u and v, can be
exchanged in the lens formula, the square of their ratio gives the ratio of
the image sizes as (v/u)®> = 9 (or §), implying that v/u = 3 (or 1). Thus,
the object distance is 30 cm (or 90 cm) and the image distance is 90 cm
(or 30 cm). The focal length can be calculated from the lens formula as
f=225cm.

If the same amount of light passed through the lens in both cases, the
nine-times smaller image would be 81-times brighter, as the smaller image
occupies a surface area 81-times smaller on the screen than the larger one.
However, when the lens is placed at the greater distance from the source it
receives only one-ninth of the light reaching it when it is close to the source.
As a result, the small image is only nine-times brighter than the large one.

It can be shown in general, for such pairs of images, that the small image
is always as many times brighter than the large one, as the large one is
bigger in linear dimension than the small one.

S53 The lenses of the glasses of short-sited people are divergent. Let —f
denote the (negative) focal length of a divergent lens, d the distance between
the object and the eye, and O the size of the object (see figure). According
to the lens formula, the distance between the (virtual) image and the lens is
given by

d-u+v
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The apparent size of the image is determined by the angle ¢ it subtends
at the eye, which, assuming the object is small, is
1 f

¢=d—u+v =u(d—u)+fd0'

This angle is smallest as a function of u when the denominator on the right-
hand side of the above formula is a maximum. This condition is satisfied
when u = d/2. In other words, the apparent size of the object is smallest
when the lens is equidistant from the eye and the object. It is interesting that
this condition is independent of the focal length of the lens.

S54 With ¢ as defined in the Hint, Snell’s law applied to the initial
entry into the glass gives sin(3 — 0) = ngsin¢. Straightforward geometry
then determines the angle between the incident ray and the normal to the
glass—water interface at the point where the ray meets the boundary as 6+ ¢.

Water

For total internal reflection to occur this must exceed sin™!(ny/ ng). These
two conditions can be combined using the formula sin(6 4 ¢) = sinf cos ¢ +
cos 0sin ¢ to eliminate ¢ and obtain

3 — my, > cos 0(ng + 1 —2ny).

Substitution of the given values for the refractive indices yields the stated
result.

S55 Consider the light beam as consisting of parallel light rays. They
cross the vertical plane face of the quarter-cylinder without changing their
direction, and strike the curved surface of the cylinder at various angles of
incidence. The normals at the points of incidence of the rays are radii of the

cylinder.
a\\ R X
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The higher the position of a light ray entering the quarter-cylinder, the
larger is its angle of incidence at the cylinder’s curved surface. The angle
of incidence for the ray shown in the figure is the critical angle for total
internal reflection. Therefore only light rays closer to the table than this one
can leave the quarter-cylinder (refracted to different extents). The limiting
case is determined using the figure:

1 2 R

ing=- == d
Sin o " 3 an R+ x

= cosa,

which yield x = 1.71 cm. This is the closest to the quarter-cylinder that light
can reach the table.

As the angle of incidence of light rays close to the table top is smaller, they
are deviated less from their original direction by refraction, and therefore
might reach the surface of the table further away. One is inclined to think
that, in principle, the light patch could reach to any distance along the table,
since the direction of a light ray travelling adjacent to the surface of the
table is not altered. This, however, is false; the path of each light ray can be
parameterised (e.g. as a function of the angle of incidence), and it can then
be shown that each ray does not get very far up the table.

Instead of through tedious calculation, the furthest point of the light patch
can be found by means of a simple ‘trick’. Consider the part of the quarter-
cylinder close to the table as a plano-convex lens. The cylinder material
before the lens behaves like a plano-parallel plate and can be ignored. The
focal length of the plano-convex lens can be calculated using the thin lens
formula:

1 n—1
f R
This yields f = 10 cm, and this is the distance from the quarter-cylinder of
the furthest point of the light patch.

S56 If Ry is the Moon’s radius and R is the Moon-Earth distance, the
light power diffusely reflected into a solid angle of 2n is anR}E, where E
is the intensity of direct sunlight (on either the Earth or the Moon). The
intensity received on Earth as moonlight is this divided by 2zR?. The Moon’s
diameter subtends about %o, or 9 x 1073 rad, at the Earth’s surface, and so
the ratio of moonlight intensity to that of direct sunlight is

aRy 007 1 _3\2 6
W_szx(wm ) ~ 107S.

Thus sunlight is about one-million-times brighter than moonlight.
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Note. In fact, the reflectivity of the Moon was actually measured by com-
paring the brightnesses of sunlight and moonlight. Moreover, the albedo
of the Earth could be similarly determined by measuring the (very low)
brightness of the dark part of a new moon illuminated by reflected light
from the Earth.

S57 Let us approximate comfortable walking by a model in which the
human leg is a freely swinging pendulum. The period of a freely swinging
body supported at its upper end is

T =2n L,
v mgs

where I is the moment of inertia of the body, m is its mass, and s is the
distance between the pivot and the centre of mass of the body. Now introduce
the so-called effective length L.g = I /ms by expressing the period as

T =2=n ﬂ.
V g

We can assume that the effective length is directly proportional to the actual
length of the leg and, for different people with the same leg length, we will
find only very slight differences in the effective length.

Using this result for the natural period, we can now estimate a person’s
natural gait—the one involving the least muscular effort. To a first approx-
imation, we assume that the length of a stride is proportional to the length
of the leg. The time for a single stride is one-half the period given above,
and the walking speed v depends on the leg length:

L
Dwalk OC 717/_2 oc \/Z

This equation predicts that people with longer legs have a more rapid natural
walking gait. The prediction is made on the basis of an oversimplified
model that assumes minimum energy expenditure and ignores differences
in anything (e.g. shape, strength, etc.) other than leg length. However, the
prediction is borne out by common experience.

When analysing a person running, an important change must be made
to our model. During running, the leg does not swing freely but is subjected
to a torque acting about its pivot. The torque is produced by a force F
supplied by the muscles. This force is roughly proportional to the cross-
sectional area of the muscles involved, and if we assume that, for people
of different size, the relative proportions of the leg are the same, then the
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cross-sectional area, and therefore the force F, depends on the square of the
length L. The torque is then proportional to the product of F and L:

toc FLoc L2 x L = L2

The moment of inertia I is proportional to the mass and to the square of the
length. Again, we assume that all legs have essentially the same proportions;
that is, width and thickness are proportional to length. Thus the mass varies
as the cube of the length and

I oc mL? oc L.

It can generally be shown that for a body oscillating about a fixed point
and subject to a periodic torque, the period T depends on the maximum
torque 7 and the moment of inertia I of the body about that point, and is

given by
I
T o \/j
T

Upon substituting for I and z, we find

LS
TOCHEOCL.

The speed of running is the product of the frequency of taking steps and the
length of a single step, and hence

vmnocfoocéoc%=l.
So the model predicts, in accord with Annie and Andy’s experience, that the
speed of running does not depend on leg length. Whilst its predictions are
not, of course, strictly accurate, the model does offer some explanation for
the observation that the ordinary walking rate of people with long legs is
usually greater than that of people with short ones, whereas the speed at

which they can run is often not significantly different.

S58 Consider a simple pendulum of length L and a pendulum consisting
of a uniform rod of length / pivoted at one end. If both are released from
a horizontal position, what are their angular speeds after they have each
travelled through an angle «?
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The principle of conservation of energy yields

%mLza)2 =mgL sina, ie o= \/ %g sina

for the simple pendulum, and

1 me? ¢ . : 3g .
ET(I) =mg§ S o, 1.€. w = 751110(

for the rod. If L = %t’, then the angular velocities of the two motions are
equal for all values of «. It then follows that the two motions are identical
at all times and their periods are equal.

How can the period of this equivalent pendulum be calculated? The
formula T = 2n+/L/g, valid for small oscillations, cannot be applied as
the amplitude here is large. Exact calculations would require complicated
mathematical analysis, but this is not necessary if, instead of calculating the
period T, we only wish to determine its dependence on L.

The period of swing of the simple pendulum may depend on its length
L, the mass of its bob m, the gravitational acceleration g and the maximum
angle of deviation ama. If the dimensions of the quantities involved are
taken into consideration, this functional dependence can only be of the form

T(L, m, ga amax) = f(amax)\/§~

To justify this assertion, we note the following points. The dimension of mass
is the ‘kilogram’, and since the ‘kilogram’ does not occur in the dimensions
of any of the other quantities, the period (which has dimension ’seconds’)
cannot depend upon the mass of the bob. On the other hand, ‘seconds’ occur
only in g, and therefore the required dimension of ‘seconds’ in T can only
be obtained if T is inversely proportional to the square root of g. Finally,
in order to settle the ‘metre’ dimension, the period has to be proportional to
the square root of L. The form of the function f(omax) cannot be determined
via dimensional analysis, since the angle is dimensionless. The only available
information is that for small angles f(amax) = 27.

From the above reasoning, it can be concluded that (with the same initial
displacements) the period of a simple pendulum of length (2/3)¢ is 1/2/3
times that of a simple pendulum of length /. Thus, the period of a pivoted
rod of length / is approximately 82 per cent of that of a simple pendulum
of the same length. This conclusion is valid not only for horizontal release,
but for any common initial starting position.
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S59 The required power for the hovering helicopter depends on the
gravitational acceleration g, the linear size of the helicopter L, the average
density of the helicopter ppe;, and the density of air pa;;.

It is reasonable to assume that the mechanical power needed depends only
on these quantities and that the dependence is a power relationship:

P oc g% x LF x phy x ply.

The dimensions of the left- and right-hand sides must be equal:

kg m? m\* kg\? /kg\’
= (3) (@) < (&)

which yields

y+6 =1,
a+pB—-3(y+9d) =2
—2a = —3.

The solution of this system of linear equationsis f = J,a =3 and y = 1—46.

It can be seen that the mechanical power needed is proportional to the %
power of the linear size. Consequently, the second helicopter should have an
engine producing power (1/2)7/2 P = 0.088P.

Note. (i) The efficiency of a mechanical engine can be characterised by the
ratio of the power produced to the mass of the engine. According to the
above result the ‘specific power’

P P
m <<V

i.e. the efficiency required increases as the linear size increases. This means

that the smaller a helicopter is, the more easily it can hover. There are many

small animals (bees, dragonflies, hummingbirds, etc.) that can hover like a

helicopter, but larger birds are unable to do so.

(i1) Using simple dimensional analysis we could find only the sum of the
exponents y and &. However, it is clear that P can depend only on the
product of the density of the helicopter and g, because, when the helicopter
is hovering, the relevant quantity is not its inertial mass, but its weight.
Thus y must be equal to a, ie. y = 3 with § = —3. Finally, we get

P oc (gpna)”? x LT/? x P;:/Z = (L’pnag) x v/Lg x \/ ?
air

Here, on the surface of the Earth, we can change only the size and density
of the helicopter. Nevertheless, for a space mission using robot helicopters,
it could be useful to know how P depends on the gravitational acceleration
and the atmospheric density of the target planet.
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S60 The gravitational potential energy lost as the rod falls through an
angle 0 is M gé(l —cos ), and this is converted into rotational kinetic energy
about the edge of the table. Either by direct calculation or by using the
parallel axes theorem, the relevant moment of inertia of the rod is found to
be %M/z. Combining these two results gives

w? = 37$(1 —cosf).

The centripetal acceleration a., is //2 times w? and therefore equal to
% g(1—cos 0). Using the same moment of inertia and the instantaneous torque
of Mg4sin6 gives the tangential acceleration of the rod as a, = 2gsin 6.

(i) The smooth (frictionless) horizontal and vertical walls of the groove
can exert only positive vertical and horizontal forces, V and H respectively,
on the end of the rod, (see Fig. S60.1). The rod will lose contact with the
table as soon as one of these falls to zero and is required by the equations
of motion to become negative, i.e. to become a (physically impossible) force
of attraction.

Fig. S60.1

Resolving forces and accelerations horizontally and vertically (Fig. S60.1)
gives
H = M(a¢cos @ — a.sin 8),
Mg —V = M(a.cos0 + a;sin 0).
Solving these two equations for H and V we obtain

H = %Mgsin9(3cos(9—2),

V = %Mg (3cosf — 1)
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The first reaction component to vanish is H and this happens when 6 =
cos™! % ~ 48°. At larger angles, H would be negative, so the rod really loses
contact with the table because the smooth groove is not able to pull back
the end of the rod.

(ii) As the edge of the table is now a very small quarter-circle, the normal
force N is always directed along the rod’s axis. The static frictional force Fy;
is tangential to this quarter-circle and can have any arbitrary value because
of the rough edge (see Fig. S60.2).

Fig. $60.2

The sum of the component of the rod’s weight along the rod and the
normal force of the table gives the centripetal force:

Mgcos@ — N =Ma, = Mng = %Mg(l —cosB).

We can thus express the normal force as
M
N = —Z-g—(S cos @ — 3).

The reaction of the table on the rod becomes zero when N = 0, i.e. when
0= cos‘lg ~ 53°. At larger angles the normal force should be negative,
which is impossible, and thus the rod loses contact with the table. Because of
the rough edge, the static frictional force is always large enough to prevent
slipping except when the normal force becomes zero; consequently, it has no

effect on the motion.

Note. In this problem we considered two extreme cases represented by (i)
and (ii). In general, the direction of the normal force is perpendicular to the
common tangent to the table’s edge and the bottom of the rod; this means
that the normal force can act in virtually any direction. This shows that the
motion of the falling rod strongly depends on the geometrical details of the
touching surfaces, as well as on the value of the coefficient of friction (see
also P61).
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S61 Suppose, first, that the surface of the table is very smooth (the
coefficient of friction is very small). Just after the pencil is released, its centre
of mass accelerates in the direction of the fall and acquires both horizontal
and vertical velocities. The horizontal component of the acceleration is
produced by the frictional force between the pencil point and the table, but,
since the surface of the table is smooth, the point soon slips, in the direction
opposite to that of the fall.

If the friction is very large, the pencil does not slip for a relatively
long time. Initially, the horizontal velocity of the centre of mass, which
is moving on a circular path, increases in the direction of the fall, but
later it starts to decrease and, if the pencil continued moving this way
until it was horizontal, it would tend to zero. The sign of the horizon-
tal acceleration of the centre of mass, and thus also that of the fric-
tional force, changes during the motion. If the pencil does not slip during
the first stage, then it can only slip ‘forward’, i.e. in the direction of the
fall.

In the following we are going to prove that the pencil will slip in some
way (‘backward’ or ‘forward’) but the point of the pencil never loses contact
with the table. For sake of mathematical simplicity let us use quantities with
a value of unity for the length and mass of the pencil, as well as for the
gravitational acceleration: / = M = g = 1. Thus the weight of the pencil
is 1, its centre of mass (CM) is % measured from either end, its moment of
inertia about its CM is %, and its moment of inertia about one of its ends

o 1
lSj.

Fig. S61.1

During the first stage of the motion the point of the pencil does not slip,
and so the pencil rotates about its point (Fig. S61.1). We can find the angular
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velocity of the pencil with the help of the conservation of energy:

1 1 1,
5(1 —COSG) = 5 X 5(0 .
which yields w = ./3(1 — cos 0). The instantaneous torque of %sin@ gives

the angular acceleration of the pencil:

1. 1 . 3.
3 sinf = §°" ie o= 3 sin 6.

Vertically there are two forces acting on the pencil: its weight and the
normal force of the table, N. The vertical component of the centripetal
acceleration of CM is %wz cos O and that of the tangential acceleration is
%oc sin@. Thus the vertical component of the equation of motion is

1 . 1,
l—N—Eocsm0+§a> cosf,

which yields:

2

It seems that the normal force is never negative, and that the point of the
pencil cannot lose contact with the table during the rotational phase of the
motion. The normal force is zero when 6 = cos™! 1 ~ 70.5°, which means
that the frictional force is also zero at this angle, and the pencil will slip
there if it has not done so before.

The horizontal component of the equation of motion is

N = (30030—1)2.

1 1, .
F—Eacose—iw sin 0,

where F is the frictional force. Substituting the angular acceleration and
velocity into this expression, we get

F = ?_l sinf(3cos 0 — 2).

The condition for slipping is |F| > uN, where u is the coefficient of (static)
friction. We can reformulate the condition for slipping with the help of a
function f (), defined as the absolute value of the ratio of the forces F/N,

3sinf(3cos O — 2)
(3cosf — 1)

The function f(0) is plotted in Fig. S61.2.

16)= |5 =
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f)

0.37

i h (d
35 48 51 70.5 (deg)

Fig. S61.2

The frictional force changes sign at 6 = cos“% ~ 48°, implying that
‘backward’ slipping can occur in the region 0 < 6§ < 48°. Using numerical
methods it can be shown that in this region f(6) has a maximum value of
Uerit = 0.37 at an angle of 6 ~ 35°. It means that the pencil slips ‘backward’,
if p < Yerit-

If u > peie then the pencil slips ‘forward” before it reaches the angle
of 8 ~ 70.5°, where f(0) approaches infinity. (Note that the pencil cannot
start slipping in the range of 35° < 6 < 51°.) The ‘backward’ and ‘forward’
motions of the pencil are shown in Fig. S61.3. In both cases the slipping
point of the pencil can stop again.

1<1

crit

Fig. S61.3

Finally, it will be shown that the point of the pencil does not lose contact
with the table. Let us consider first the case of ‘forward’ slipping shown in
Fig. S61.4. According to the work—energy theorem and the cosine law for
(vector) triangles,

1 1 1, 1o\ , 1
5(1 —cosf) = Wy + 3 X ﬁw + 5\3 + Vpoint T 20point X Eco cos@|.
If we neglect the work of friction and the two terms containing the velocity,
vpoint Of the point of the pencil, (all three terms are positive), then we obtain
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Fig. S61.4

an inequality for the angular velocity: w? < 3(1 — cos 6). The instantaneous
torque about CM gives

| 1
EN(sm 0+ pcosf) = %
whilst the vertical component of the equation of motion is

1 . 1,
l—N—Eocsm9+§w cos 6.

(It will be recognised that this equation is the same as for the non-slipping
case. The reason for this is that the point of the pencil experiences only
horizontal acceleration, and so the vertical component of acceleration of
CM remains unaltered, see Fig. S61.5.)

X, a

Fig. S61.5

From the two equations above we can express the normal force as a
function of @ and w?. However, we have an inequality for w? which yields

1—(1/2)w?cos 6 - (3/2)[cos 8 — (1/2)1* + (5/8)

N= 1+ 3sinO(sin 0 + ucos 6) 1+ 3sin6(sin 6 + pcos6)
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Thus the normal force is always positive, and the point of the pencil does
not lose contact with the table.

Fig. S61.6

For the case of ‘backward’ slipping our method is very similar. Figure S61.6
shows the horizontal and vertical components of the velocity of CM, v, and
vy, respectively. As the point of the pencil has zero vertical velocity, there is
a connection between v, and @, namely v, — %a) sin @ = 0. We can again use
the work—energy theorem to give

1 1/1 5 5 5
5(1 —COSO) = Wfr + 5 ('1—2(0 +Ux +Uy) ,
in which we (again) neglect work against friction and another positive term
containing vy to obtain
2 1—cosf
0 < —5—.
(1/12) + (1/4)sin” 6

Considering again the net torque about CM and the vertical component of
the equation of motion, we obtain a further inequality for the normal force,
namely:

1 —(1/2)w?cosf 14 3(cos@ —1)2
N = T T > N . e
14+ 3sind(sinf — ucosf)  [1 4 3sinf(sinf — ucos B)](1 + 3 sin* 0)

The numerator is always positive and the denominator is positive (for
0<60<90°),if u< %. However, in the ‘backward’ slipping region u < 0.37,
so, again, the point of the pencil does not lose contact with the table.

If the pencil point stops slipping at some stage, it cannot lose contact
again, because then w? < 3(1—cos ), and thus N > (3cos § —1)2/4 > 0 (see
the first part of this solution).
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S62 The pressure in a soap bubble of radius R is greater than the
atmospheric pressure py by Ap = 4y/R. The factor of 4 arises because both
directions of curvature and the fact that the film is two-sided have to be
taken into account. Clearly, the pressure is higher in the bubble of smaller
radius and, therefore, the air flows into the larger bubble, as if inflating it to
finally form a single bubble of radius Rj.

The volume of air in the bubbles is proportional to R, and therefore the
ideal gas equation and the conservation of mass require that

4\ 3 %)3 ( 4” 3
)R - = - .
<po+Rl)1+<po+R2 Ry po+R3 R3

For bubbles of ordinary size, the pressure of curvature is many orders of
magnitude smaller than the external atmospheric pressure. If the pressure of
curvature is neglected the radius of the resulting bubble is

3
Ry ~ \/R% -I-R%.

If the radii are measured ‘accurately’, in order to determine the surface
tension, the formula
_ PR —R R}

"TYRTR-R
is appropriate. In practice, however, this method cannot be applied, as the
numerator is, as shown, almost equal to zero and thus would carry a large
fractional uncertainty as a result of measurement error. Any measured data
are likely to provide only a rough estimate of the surface tension.

S63 The cross-sectional edge of the disc of water is a semicircle of radius
r= %d (see figure). Thus, the curvature of the surface of the water is 2/d,
which corresponds to a pressure of curvature of Ap = 2y/d, where 7y is the
surface tension. (The other component of the curvature is negligible because
D>d.)

The pressure inside the disc is therefore po — 2y/d when the atmospheric
pressure is po. This pressure difference acts over a surface area between the
water and each of the glass surfaces of 7D?/4. This implies that a force,

pom22
4 d

‘pulls’ the glass plates together.
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Note. If d is much smaller than D, this force can be quite considerable. It is
in fact very difficult (if not impossible) to separate two parallel glass plates
by pulling them in a direction perpendicular to their common plane when
there is water between them. In order to be separated, they have to be slid
in a direction parallel to that plane.

S64 The velocity of the thread at a distance of x metres from the wall is
obviously proportionately smaller than the velocity of the end of the thread,
1.e. it is xvg.

UO XU

1

Im X m

If this value is greater than the speed of the caterpillar, then the latter will
move away from the wall. Its situation will become more and more hopeless,
and it will never reach the wall.

On the other hand, if veaterpillar > Xvo, the net velocity of the caterpillar
is towards the wall and increases as time passes, with the consequence that
the caterpillar will certainly reach the wall. The limiting case corresponds
t0 X = Ucaterpillar/V0 = 0.1 m. Starting at this point, the caterpillar does not
move in either direction.

S65 Imagine signs attached to points on the thread and labelled with
the ratio of the distance from the wall to the total length of the thread.
These figures are precisely the coordinates x mentioned in the solution to the
previous problem: x = 0 corresponding to the position of the wall and x = 1
to that of the spider. Now, however, these ‘stretch’ as the thread stretches.

We first calculate how long it takes the caterpillar to get from a point x to
a nearby point x — Ax when the spider has been moving for a time t. Since
the distance between the points in question is (1 + vot)Ax and the caterpillar
moves at speed c, the relationship

_ cAr
1 + vot

holds. Summing (integrating) this relationship for the whole motion of the
caterpillar, which starts from xo and reaches the wall in time T, gives

cAt T ¢ c
xo_zl+vot ~/0 1+votdt_ %ln(1+voT).

Since the above integral can be made arbitrarily large by a suitable choice of
T, the perhaps surprising result is that however quickly the spider pulls the

Ax
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end of the thread (i.e. with an arbitrarily large vg, an arbitrarily small ¢ and
an arbitrary xg), the caterpillar will still reach the wall within a finite time.

S66 (i) Suppose that the ball falls freely for 1 m, then reaches point B
by bouncing practically horizontally along a row of closely spaced nails near
the bottom edge of the drawing-board. The duration of the vertical fall is
t1 = 0.45 s, at the end of which the ball has reached a speed of v; = 4.4 ms™!,
and covers the remaining distance of 2 m in a time ¢, = 0.45 s. As the ball
would have reached point B in a time t3 = 1.01 s by sliding down the straight
line AB (with acceleration g/ \/3), the answer to the first question is that the
quickest way for the ball to get from A4 to B is not by following the shortest
route.

Note. It can be proved by means of complicated mathematics (the calculus
of variations) that the curve along which the transit time is the shortest is
a cycloid.

(ii) A body dropped from rest at point A has maximum vertical velocity
if it is in free fall. Its maximum kinetic energy, and therefore its maximum
speed, is determined solely by the magnitude of its vertical displacement.
Thus, a bouncing ball cannot reach the bottom of the drawing-board faster
than a body in free fall, i.e. in less than t; = 0.45 s. The answer is therefore
no!

S67 The puzzling aspect of the problem is that insufficient data have been
given in the text. However, the figure can be used as a source of information.
Using a protractor you can measure with sufficient accuracy that the tangent
to the fixed end of the rope makes an angle of 30° with the vertical, as
shown in the figure. This means that the tension at the fixed end of the rope
is T =20 N/sin 30° = 40 N. Similarly, the weight of the rope is equal to the
vertical component of the tension there; mg = T cos30° = 34.6 N, giving
the mass of the rope as m = 3.5 kg.

T —mg

20N
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Note. Further information can be obtained from the figure. The centre of
gravity of the rope must be vertically above the point P, because the lines
of action of all three forces acting on the rope must meet at a single point.

S68 Using the argument described in the Hint it is possible to prove
that the compasses have to be opened to the extent necessary to make the
lower arm hang horizontally when the compasses are suspended, as shown
in Fig. S68.1.

Fig. $68.1

Starting from that situation, let us imagine for the moment that the upper
arm of the compasses is fixed. If the lower arm is then bent either upwards
or downwards, the horizontal position of the CM of the compasses moves
towards the pivot. After the release of the upper arm the pivot moves
downwards, because that is the only way that the CM of the compasses
can again position itself below the attachment point. So, in either case,
the vertical position of the pivot is lowered, and we can conclude that the
originally described situation is the one required.

Instead of a real pair of compasses let us consider a simplified model of
two identical thin rods joined by a pivot of negligible mass as shown in
Fig. S68.2.

Fig. S68.2

Let the angle between the arms of the compasses be 20, and the length of
each of the arms be 2 units. It is easy to find congruent angles in Fig. S68.2
and to apply the sine rule to the shaded triangle. Figure S68.3 shows a
magnified version of this triangle.
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90 -26
1

sin

Fig. S68.3

According to the sine rule it follows that
sinf  sin(90° — 20)

1 sin0
After a simple calculation we obtain

1
\/g’

so 6 ~ 35.3°, that is to say the compasses should be opened to 26 ~ 70.5°.

sinf =

Note. The result 20 = 2 sin™"! (1 / \/§) = cos~1(1/3) is so simple, one might
suppose that a more elegant solution exists. Actually, it is possible to find
the angle 20 with the help of the theorem of parallel transversals.

D F G
Fig. S$68.4

In Fig. S68.4 two verticals are drawn, one through the overall centre
of mass C of the compasses, and the other through the centre of mass
E of the upper arm alone. By considering the lines forming the angle 20,
it can be seen that the equality of OF and EB implies that FG = GO.
Similar consideration of the angle ¢, and the fact that DC = CE, shows
that FG = DF. Thus points F and G trisect the section OD, which in turn
is equal to OE, thus implying that OE = 3GO. As EGO is a right-angled
triangle, it follows that 20 = cos™!(1/3) ~ 70.5°.

S69 Clearly, the centre of mass S of the triangle has to be below the
point of suspension. Denote the vectors pointing from the centre of mass
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S to the vertices of the triangle by ry,r; and r3, and that to the suspension
point by m (see figure). The forces Fi,F, and F3 exerted on the plate by
the threads can now be expressed in terms of the vectors defining the thread
directions:

Fi =l,~(m—ri), i= 1,2,3.

Since the plate is in equilibrium, the vector sum of the forces acting on it
is zero, i.e.

Fi+F,+F3;+W=0.

Making use of the fact that the vector pointing to the centre of mass of the
triangle (the origin of the vector reference frame) is the arithmetic mean of
the vectors pointing to its vertices, we have

ri+rn+r3=0.

We note that W and m are parallel and, therefore, W = —km. Eliminating
r3 from the above equations gives

(A3 —Ari + (A3 — A2 + (A1 + A2 + 23 —k)m = 0.

Since ry, r, and m are not in the same plane, a linear combination of them
can only be zero if the coefficient of each is zero.

Thus 4; = 13 = 13, which implies that the tensions in the threads are
proportional to their lengths. This deduction would become invalid if one
of the threads were slack, since the plane of the plate would then become
vertical and m would lie in it.

S70 Initially the tanker and the liquid in it are at rest. As the outlet pipe
is at the rear of the tanker, when the tap is opened the centre of mass of the
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liquid will move backwards. As the centre of mass of the whole system is fixed,
the tanker itself must move forward. However, the outlet pipe is vertical and
so the emerging liquid will acquire a forward horizontal-velocity component.
This does not contradict the law of conservation of linear momentum,
because the liquid inside the tanker will be moving backwards (relative to
the ground). Nevertheless, the forward direction of motion of the tanker
must subsequently change to backwards, since if it did not, the position
of the centre of mass of the whole system would ultimately start to move
forwards. The dynamical reason for the change in the direction of motion
is the force exerted on the rear of the container by the backward-moving
liquid as it is brought to rest relative to the tanker just before discharge.

Note. (i) It could be that the direction of travel of the tanker changes several
times during the motion, but a detailed analysis is virtually impossible as it
depends on too many parameters.

(ii) Finally, we give the solution to the scenario proposed in the Hint
to this problem. Consider the situation when the student has reached the
end of the carriage and stopped, but the ticket collector is still moving
backwards with speed v relative to the carriage. In accord with linear
momentum conservation, the carriage must be moving forward with speed
u = mv/(M + 2m). So, when the student jumps out, he carries away a
forwards-directed momentum of mu = m?v/(M + 2m). When the collector
stops, the carriage (with the collector aboard) changes its direction of motion
and moves backwards, having a total linear momentum of —mu. Thus the

final velocity V of the carriage is
[ mz v
(M +2m)(M +m)

S71 Taking motion to the right as positive, the initial velocities in the
centre of mass frame of the beads (see Fig. S71.1) are

M m
m+MvO and UM=_m+M
Since their centre of mass is at rest in this frame, the ratio of the two
velocities remains constant (at M /m) throughout the motion.

Uy = 0o.

m

—
mq $CM M\ M Q d
—
~

Fig. S71.1
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As the beads approach each other, their speeds will decrease if ¢ and Q
have the same sign, but increase if their charges are opposite. In the latter
case, when they are finally sufficiently far apart, their speeds will return to
their initial values, since their energies are conserved. In the original frame
of reference, after a temporary acceleration, the body of mass m slows until
its speed has the original value vy, while the body of mass M is finally at
rest having been displaced (to the left) through a certain distance.

If the beads repel each other, a more detailed discussion is required. If
their initial energy is sufficient, the beads pass by each other, and as they
part their speeds return to their original values (as viewed from either the
centre of mass frame or the ‘lab’ frame). If, on the other hand, their initial
kinetic energy is too low for them to approach within a distance d, they ‘turn
back’. In the centre of mass system, the body of mass m then moves to the
left at speed —v,,, whilst the body of mass M moves to the right with speed
—vpy (Fig. S71.2).

e
—0 :
mq ¢CM T\ M, Q d
> Uy
Fig. S71.2

The condition for this to happen is

1

1 1
—mv,zn + —MU%/I < Fﬁo %dg,

2 2

ie.

1 mM , 1 q0

= < =.

2m+M % dney d
The quantity mM/(m + M) is called the reduced mass of the system. The
velocities of the bodies in the laboratory frame can be obtained by adding
those in the centre of mass frame to the relative velocity of the two frames;
the latter is |vp|. Explicitly,

bt = m—M 2M
" m4+M m+ M
In the limiting case, when the initial kinetic energy is just sufficient to allow

the two beads to approach within a distance d, the two beads stop with respect
to each other (Fig. S71.3), i.e. when viewed in the ‘lab’ frame, they move on

vo and vy =

0.
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with a common speed v,,, = vyy = mvy/(m + M). In fact, this theoretical final
situation is unstable, since any small disturbance of the relative positions
will grow as a result of the mutual repulsion between the beads.

M|
m, qA Stopped
/M d

M, Q\;/Stopped

Fig. S71.3

Note. The three cases discussed above model one-dimensional mechanical
collisions. The limiting case, when the two bodies move on together, models
an inelastic collision. In this case only the mechanical momentum remains
constant; the mechanical energy decreases. The velocities in the case in
which the bodies approach each other and then move away again are the
same as those calculated from the laws of elastic collisions (conservation of
energy and momentum). The motion in which the bodies pass each other (in
essence, they do not collide and keep their original velocities) is obviously
in agreement with the conservation laws. The solution corresponding to this
case is usually not used for mechanical collisions since bodies cannot pass
through each other.

S72 (i) Let vp denote the asymptotic common speed, d the original
distance between the beads and m the mass of one bead.

In a given time interval At, the cluster collides with vgAt/d further beads,
which increases its mass by Am = muypAt/d and its momentum by Ap =
voAm = mv(z)At/d. According to Newton’s law of motion,

g dp _mug

At d’
which yields vp = \/Fd/m for the ultimate speed in the case of inelastic
collisions.

(ii) In an elastic collision between two equal mass bodies with one of
them initially at rest, their velocities are exchanged. The initially moving
body stops, whilst the second one moves away with the same velocity as that
initially possessed by the first.

The leftmost bead accelerates uniformly and reaches a speed of

2Fd
U] = — =/ 21)()
m
before the first (elastic) collision takes place. It then transfers its speed to the
second bead and stops, after which it starts accelerating again as a result of

the external force. What happens to the bead it has set in motion? It moves
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at a constant speed vj, collides with the third bead and stops. The third and
subsequent beads behave similarly, and a ‘shock wave’ propagates forward
at speed v;.

Meanwhile, the leftmost bead is again accelerated to speed vj, collides
with the second bead, which is now at rest, and the process is repeated,
thus starting a new ‘shock wave’. The speed of the accelerated bead varies
uniformly from zero to vy, its average value is vy /2 = vo/ \/5 = +/Fd/(2m).

Note. The case of partially elastic collisions is also interesting. In this case
(according to the results of computer simulations) it can be stated that
sooner or later, the interacting beads condense into a single cluster that
behaves like a perfectly inelastic body with a final speed of vy = \/Fd/m.
The time necessary for the cluster to condense depends upon the degree of
inelasticity (the coefficient of restitution). The more elastic the elementary
collisions, the longer the time necessary for an inelastic cluster to condense.

S73 At any time, the weight of the beer that is in free fall will not be
registered by the weighing machine, although the momentum destroyed as
the beer is brought to a halt by the jug will be, as will the force experienced
by the tap as the direction of the beer flowing through it is changed; there
are several such effects to consider. However, if the overall system of table
plus jug plus beer is considered these are internal actions and reactions
and the only two external forces (ignoring air resistance) are gravity and
the upward reaction from the weighing machine. The net result of these
two has to be such that the centre of gravity of the system falls, initially
accelerating (until the first beer reaches the jug), then sinking with constant
velocity, and finally (when the beer runs out) decelerating. Consequently the
machine reading, relative to the original, will be: increasingly negative—no
change —increasingly positive —no change.

S74 If the cross-section of the incoming water jet is A and its speed
is v, then the mass of water of density p flowing into the gutter in unit
time is of pAv. This quantity of water has a kinetic energy of pAv3/2 and
a horizontal momentum of pAv?sina. These quantities cannot change if
viscosity is neglected, and so

1 1 1
EpAv3 = EpAlvf + E'OAZU%’ (1)
pAv? sina = pAv? — pAyw3. ()

The law of conservation of matter has to hold as well, and so we also have

pAv = pA1v; + pArvy, (3)
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where A; and A, are the respective cross-sectional areas of the water flowing
out of the gutter to the right and left, while v; and v, are the corresponding
speeds.

Equations (1), (2) and (3) are insufficient to determine the four unknown
quantities (the two cross-sectional areas and the two speeds); a further
relationship has to be found. According to Bernoulli’s law, the quantity
pv?/2+p+ pgh is constant along a streamline of a non-viscous liquid. Inside
the liquid and far from the initial impact point, the pressure is constant and
equals the atmospheric pressure. If the difference in the heights of the streams
or, more exactly, the change in the energy corresponding to that difference,
is neglected (this is correct for a rapidly flowing liquid), the consequence of
Bernoulli’s equation is that v = v; = v,. This means that the liquid leaves the
gutter at the same speed at both ends! This is rather surprising, but correct,
within the accuracy of the above approximation.

The equations for the conservation of mass and momentum therefore take
the forms A = A; + A> and Asina = A; — A, which yield

ﬂ _ 1+sina
A,  1—sina’

This ratio can be examined experimentally and surprisingly good agreement
with the calculated values found, which suggests that the approximations
made were reasonable.

S75 In a time interval At, the level of the liquid with initial acceleration
a decreases by Ah = a(At)?/2 and the corresponding mass of liquid which
flows out is Am = (D?1/4)(Ah)p. This is equivalent to a decrease of (Am)gh
in the potential energy of the liquid as a whole (see figure). Meanwhile, the
whole of the liquid is accelerated to a speed Av = aAt and its kinetic energy
increased by (D?m/4)hp(Av)?/2. The speed of the emerging liquid is higher
than this, but its effect can be neglected as the quantity of water involved is
small compared with the total.
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According to the law of conservation of energy, the changes in the potential
and kinetic energies are the same:

nD? a

nD" a _ nD?hp (aAt)?
4 2 B

2
(At)"pgh 7] 5

which yields a = g.

This means that initially some of the water starts to free fall. According to
the mass conservation law, the speed of the emerging water is (D/d)*-times
higher than that of the water surface. Consequently, its acceleration must be
greater than g by the same factor. For example, if the diameter of the orifice
is one-tenth of that of the tube, then the initial acceleration of the emerging
liquid is 100g!

For how long is it true that the liquid is practically in ‘free fall’? Ac-
cording to Torricelli’s law of efflux, the speed of the efflux is \/2—gﬁ and
the rate of decrease of the liquid level is (d/D)z\/2g_h. The time interval t©
between the start of the efflux and the attaining of (nearly) constant veloc-
ities by the surface and the emerging water can be estimated roughly using
the relationship

d2
gT =~ ﬁ\/2 h.
If, for example, h = 20 cm and the ratio of the diameters is 1 : 10 then
7 =~ 0.002 s, which is negligible for most purposes.

S76 The sand flows through the aperture almost uniformly, and therefore
the total operating time T of the sand-glass is proportional to the volume
H?3 of the sand. (As our aim is to obtain only a rough estimate, the difference
between the volumes of a cone and a cube is ignored.) The time T may also
depend on the gravitational acceleration g, the diameter d of the aperture
and the density p of the sand, and so T =~ H? x f(g,d, p).

As T is a time and only g contains a time dimension, the function f has to
be proportional to the reciprocal of the square root of g. Similar reasoning
shows that T cannot depend on p, but is proportional to d=>/2; in summary,
T ~ H?/\/d5g. The coefficient of proportionality is a dimensionless number,
and since it does not depend on anything, can be assumed to be of order
1 (though such assumptions are notoriously dangerous in some branches of
physics!).

Consider some realistic data. If, for example, H is a few centimetres and d
is around a millimetre, T is a few minutes, which is indeed the sort of time
for which an egg should be boiled.

Note. In principle, the average diameter of the grains of sand could be
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included in the formula. However, this is in general much smaller than
the other dimensions involved, therefore (in the same way as the size of
the atoms constituting the sand is ignored) it does not play a role in the
dimensional reasoning. The trickiest point in all dimensional analysis is that
of choosing the relevant parameters for the phenomenon in hand.

S77 Let the displacement of the bob be x and let us calculate the net
force (F) exerted on it (see Fig. S77.1).

Fig. S77.1

The length of the extended spring is
2

/=J@+ﬂ~@+%3

and so the tension in it is

x2

2y
The net force acting on the bob (see Fig. S77.2) is

F spring = k

k
= ———x3,

x
£o /(2)

Fspring .!l Fspring

Fig. $77.2

F = —2Fspring sinf ~ —2Fspring

and the resulting equation of motion is

d2x k 3

Mm—=——Xx".
2 2
dt 45

This is a differential equation which cannot be solved by elementary methods.
However, to solve the problem as posed it is not necessary to solve the
equation explicitly, only to apply dimensional analysis to it. Writing the
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equation in the form
d2x k 3
iy K
de mey

we can suppose that the period of the motion T, depends only on C and A4,
the amplitude of the vibration. The dependence can be written as

—Cx3,

T oc C* x AP,
implying the dimensional relationship
kg 1 1\* _ _
= = o ﬂ - { =2 - i ﬂ — 20 2a+ﬁ
s = [T] = [C]* x [A] ( kgxm)xm 7% x 2,

This equation is satisfied if —2¢ = 1 and —2« + = 0. Therefore « = —%
and f = —1, implying that T oc 1/A. Accordingly when the amplitude is
doubled (2 cm), the period is halved (1 s).

Since for dimensional analysis the choice of variables to include appears
more or less arbitrary, thus casting some doubt on the validity of the
conclusions reached, we now give another method for the solution of the
current problem.

The velocity of the bob as a function of its position can be calculated
from the law of conservation of energy. The stored energy in the two springs
when the bob is at rest at its maximum displacement must be equal to the
sum of the kinetic energy of the bob and the stored spring energy for a
general displacement. As the elongation of each spring is

1 x?
Al = 270
the equality may be written as
kA* 1 (42 1 1 (2
4{2 =04+2x k<2/0) —2E;‘1‘,§1’;g—2mv +2x k(%'o) ,

where A is the maximum displacement (amplitude) of the bob. From this
equation the velocity of the bob can be expressed as

Zo\ 2m

dt

After separating the variables we get

/\/2—m/A—dx = T/4dt—I
N Jo JAr—=x4 o T4
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Using y = x/A as a new variable, our final result becomes

T—¢ 32_'"1/‘ dy

This expression shows directly that the period is inversely proportional to
the amplitude, again leading to the conclusion that doubling the amplitude
of the motion to 2 cm, reduces its period to 1 s.

Note. The definite integral in the final expression for the period can be
evaluated using no more than a programmable calculator:

f dy ~ 131,
0 1—y*

thus giving the complete solution to the problem.

S78 Because of the weakness of the spring, the body falls virtually
freely at first. The length of the spring is soon several times larger than
its unstretched length (which can be neglected during subsequent motion).
With this approximation, the body executes simple harmonic motion, both
vertically and horizontally. As it is released with no initial speed, it arrives
vertically under the suspension point after a quarter of the period of the
horizontal motion. Meanwhile, the vertical motion has also completed a
quarter-cycle, and the body has sunk to its equilibrium position at a depth
of mg/k (this is much larger than L).

The motion can be described quantitatively. In the coordinate system
shown in the figure, the equations of motion of the body at point (x, y) are:

X
may = —k (vxz +y2 - L) —,2—-|_y_§,

X
ma, = —k (1/x2 + 2—L>—y——+m.
= k(e e

During the first part of the motion, whilst the extension of the spring is not
much larger than L, the force exerted on the spring can be neglected. On the

other hand, when
Vx2+y2> L

the original length of the spring can be neglected and the equations of
motion take the following simple forms:

may = —kx and ma, = —ky + mg.

These equations describe harmonic oscillations of identical periods, about
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the origin in the x-direction and about the equilibrium position yg = mg/k
in the y-direction. Incorporating the initial conditions gives the solution:

x(t) = Lcos (\/gt) R y(t) = Tkg {1 — Cos (\/gt)} .

The body is under the point of suspension when x(t) = 0, and y = yo = mg/k,
in agreement with our previous conclusion.

L
X
F i
5
o i|me
/

Note. For the early part of the motion ¢t € /m/k (when the assumed
equations of motion are not strictly valid), the above expressions for x and
y can be approximated by x(t) ~ L and y(t) ~ gt*/2, which are in agreement
with the formulae describing free fall, as is appropriate to that part of the
motion.

S79 If the carriage brakes with deceleration a, then in the carriage
reference frame, a ‘virtual inertial force’ of magnitude ma, in the direction of
the carriage’s motion, will appear to act on the body.

If this inertial force acted permanently, the pendulum could certainly
not reach the vertical, since, if it did, the net work done by the inertial
force would be zero (the net displacement of its point of application would
be perpendicular to its line of action) and the gravitational force would
be negative, implying that the kinetic energy of the pendulum should be
negative. This is impossible.

Consider now the fact that the carriage only brakes for a certain length of
time (until it stops). If it stops when the thread of the pendulum is horizontal,
the work done by the inertial force is W = maR, where R is the length of the
thread. If the pendulum subsequently reaches a vertical position with speed
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v then, from the conservation of energy,

2
maR — 2mgR = %
For the thread to remain taut, even at the topmost point, requires mv?/R >
mg, which, together with the above relation for the velocity, implies that the
deceleration of the railway carriage a > 2.5g. The conclusion is, therefore,
that the taut thread can reach the vertical provided the deceleration is great
enough and vy is large enough for the pendulum to have time to reach the
horizontal before the carriage has come to a halt.

S80 The forces acting on the wedge are its weight mg and a force K,
perpendicular to the inclined plane; the magnitude of the latter may change
with time. As a result of these two forces, the only component of the
wedge’s acceleration a parallel to the inclined plane is g sina (as measured
in an inertial frame). Newton’s equations of motion remain valid in an
accelerating frame of reference fixed to the wedge only if an ‘inertial force’
—m’a is added to the forces actually causing the motion of a body. Here m’
is the mass of the body under examination (e.g. that of a small volume of
water).

The resultant of the gravitational and inertial forces acting on the mass
m’ must be perpendicular to the inclined plane as the components parallel
to it cancel each other. The bodies on the wedge (the glass and the water in
it) ‘feel’ as if they were in a gravitational field perpendicular to the inclined
plane, with the consequence that the surface of the water lies parallel to the
plane.

This statement does not depend on the motion of the plane; it can be
fixed or move freely or even—as the result of a small force—be shaken to
and fro. As long as the friction between the inclined plane and the wedge is
negligible and the wedge does not rise off the plane, the shape of the water
surface cannot be other than a plane parallel to the inclined surface.

The case m > M deserves an additional comment. In this case, the wedge
‘pushes away’ the inclined plane, and falls nearly freely. The weight of the
bodies on the wedge (including the water) are nearly completely ‘lost’; but



Solutions 141

even so, the small force keeping the water inside the glass is still sufficient to
set the water surface parallel to the inclined plane.

Note. The water surface would only become parallel to the inclined plane
after a long time, and on a correspondingly long plane. This is why this
interesting phenomenon cannot be observed experimentally in normal cir-
cumstances.

S81 Assume that the string is of uniform cross-section and mass distri-
bution, and is free at both ends. It orbits the Earth in such a way that its
position relative to the Earth is always the same. Obviously, if the string is
in a vertical position, the phenomenon could only occur at the Equator.

In the Earth’s reference frame a body of mass m orbiting above the Equator
at a distance r and with angular velocity w experiences a gravitational force
of —GMm/r? and a centrifugal force of mrw?. Here M is the mass of the
Earth and G is the gravitational constant. The condition for the equilibrium
of the string is that the net force due to gravitation, which varies with 7, is
equal to that due to the centrifugal effect, which also changes from point to
point. This condition can easily be derived using integral calculus, but it can
also be found without using such sophisticated mathematics.

Imagine that the string is pulled down a little by some external force. Since
(in the rotating frame of reference) the string was initially in equilibrium, it
can be displaced from its equilibrium position by an arbitrarily small force
and, to first order, the net work done in the course of the change must be
zero. The displacement of the whole string—from the point of view of the
work done —is equivalent to the slow migration of a small piece of the string,
of mass Am, from its top to its bottom. The work done is the sum of two
terms, the change in the gravitational potential energy and the work done
by the average centrifugal force (since the centrifugal force changes linearly).
If the bottom end of the string of length L just touches the Earth’s surface,
the work in question is

_ 1 1 R+(R+L) ,,
W—GMAm(R L+R> Am > w“L =0,

where R is the radius of the Earth. This is a quadratic equation in L, which

gives
R | 8GM

using known data. This length is several times rs = (GM /w?)!/3 ~ 42000 km,
the distance of telecommunications satellites from the centre of the Earth!
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What is the maximum stress in the string? It is easy to establish that the
greatest stress omax occurs at the position r = rs, and satisfies opmax/p =
4.8 x 10’ N m kg~!, where p is the mass density of the string. This figure for
the ratio of tensile strength to density is much greater than that for known
materials (for steel it is 2.6 x 10%, and for carbon 1.7 x 10°). Therefore, whilst,
in principle, a ‘hook to the sky’ is consistent with Newton’s laws, at the
present time it is impossible (at least with a string of constant cross-section)
to find suitable materials from which to build it.

S82 (i) At the highest point of the bridge the equation of motion of the

car is
2
v
mg— N =m—,

where N is the normal force acting on the car (and the negative of the
required answer), v = 20 m s~! and p is the radius of curvature of the
bridge there. The most difficult part of the problem is to find this radius of
curvature.

If we could find a motion with this trajectory for which the normal accel-
eration is well known, the radius of curvature could be easily calculated. For
a parabolic trajectory the flight of a projectile offers the required analogue.
Let the projectile have an initial velocity of vy making an angle o with the
horizontal.

The range (d = 100 m) and height (h = 5 m) of the projectile can be
expressed using the initial data,

202 sina cos o 2 sin® o
=-20> - and h=-9"" "

g 2g
The quotient h/d gives tana = 4h/d (so « ~ 11.3°), and the horizontal
component of the initial velocity is

vx=vocosoz=d‘/% =50ms .

Now the radius of curvature at the highest point can be calculated as
p=10v/g =250 m.
So the normal force at the highest point is

d

2
N=m g—;)— = 8.40 kN.

(ii) The force exerted on any other part of the bridge can be calculated in
the same way, i.e. using the radius of curvature. At a point three-quarters of
the way across the bridge, the radius of curvature is approximately 254 m
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and the normal force about 8.37 kN. Away from the centre of the bridge
there is also a tangential (frictional) force; here its value is 995 N, and so
the net force acting on the bridge is approximately 8.43 kN.

S83 We can prove that the radii of curvature of the ellipse at the
endpoints of its axes are b%/a and a?/b, where 2a and 2b are the lengths
of the major and minor axes, respectively. This geometrical result can be
deduced using calculus or by considering one of a number of physical
situations; what follows is one possibility.

Consider a planet orbiting the Sun in an ellipse. Newton’s second law of
motion applied at the endpoint of the major axis, a distance r from the
Sun, gives

2

M _v

r R
where R is the radius of curvature at the endpoint and M is the mass of the
Sun. According to Kepler’s third law the period of the orbit is 27y/a3/GM
and the radius vector sweeps out area at a constant rate. The area of the
ellipse is mab, and so equating two expressions for that constant rate when

the planet is at the endpoint of the major axis, we obtain

or _ab [GM

2 2\ &
Comparing the above two equations we conclude that R = b?/a. For this
argument we utilised the fact that the foci of the ellipse are on the major
axes; we cannot therefore apply the same proof at the endpoints of the
minor axis. However, in respect of their corresponding radii of curvature,
the two axes are symmetrical.

The uniformly moving point mass of the problem obeys the equation of
motion F = mv?/R, where R is the appropriate radius of curvature. Using the
data given we obtain: b?/a = 1.25 m; a*/b = 10 m and, hence, 2a = 10 m;
2b=5m.

Note. The radii of curvature of the ellipse could also be calculated using well-
known formulae from SHM. Consider the point mass moving in the x—y
plane around an ellipse with semi-axes a and b according to the equations

X = acoswt and y = bsinwt.

At t = 0 the mass is moving at the end of the major axis with velocity
v = bw and acceleration 4 = aw?. On the other hand, the acceleration is
A = v?/R; so the radius of curvature is R = b?/a. Similarly, we find the
radius of the curvature at the end of the minor axis to be a?/b.
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S84 Denote the width of the canal by d and draw a straight line perpen-
dicular to its banks a distance d downstream from the boat’s starting point
A (see figure).

d 4

The boat is initially at distance d both from the mark F on the opposite
bank and from this straight line. As both the speed of the water and that of
the boat with respect to the water are v, the water takes the boat downstream
by the same distance as is covered by the boat in the direction of F.

This means that the boat is always equally far from point F and the
straight line. The path of the boat is therefore a parabola, with F as its
focus and the straight line as its directrix. After a very long time, the boat
approaches the opposite bank at a point d/2 from F. Because the speed of
the current equals that of the boat, the boatman cannot land closer than this.

S85 If, after the slightest of pushes, the child would slide (straight)
downhill at a steady speed, the component F of its weight parallel to the
inclined plane must have the same magnitude as the frictional retarding force
S,ie. F=S.

The force of kinetic friction—the direction of which is always opposite
to that of the instantaneous velocity —causes the speed to decrease, while
the force F increases the component of the velocity parallel to the inclined
plane. These two effects are of course present together and result, in general,
in a rather complicated motion (on a curved path and with a changing
acceleration). Despite this, the final speed can be determined without the
need for a detailed description of the motion.

The figure shows a coordinate system for the general situation in which
the child’s trajectory is not straight downhill. Denote the magnitude of the
instantaneous velocity of the sliding child by v, and its component in the
y-direction by v,. We first calculate the change in these two quantities in a
short time interval At. According to Newton’s second law:

mAv = (—S + F cos a)At, mAv, = (F — S cos a)At.
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Y

Adding these two equations and using F = S gives
Av + Avy, = A(v +vy) =0,
ie.
v + vy, = constant.

From the initial conditions, the value of this constant is v9 = 1 m s~
The final speed vmax of the sliding child is directed down the slope, and its
magnitude is determined by the above ‘conservation law’ with v = v, = vpay,
ie.
U
vmax = 50' = 0.5 m S—l.

S86 Let kv denote the speed of the coastguard’s cutter, ie. k is the
required ratio of the speeds of the two vessels.

Y

o
£ <

a

At a general time ¢, as shown in the figure, the distance d between the
ships (initially a) decreases by

Ad = kvAt —v sina At (1)
in time At. Meanwhile, the distance of the cutter from the shore increases by

Ay = kvsina At, (2)
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where o is the angle the instantaneous velocity of the cutter makes with the
shore.

We now sum the small displacements occurring in equations (1) and (2),
knowing that the three sums Y Ad, >~ Ay and ) vAt must all equal a. The
potentially awkward angle « can be eliminated prior to the summations and
a surprisingly simple quadratic equation is obtained for k,

. 1 5
K—k—1=0, with k= +2‘/_ ~ 1618
as its positive root. This figure is the famous ‘golden mean’ associated with
the Fibonacci series. In the current situation, it is the ratio of the speeds
of the coastguard’s cutter and the smugglers’ ship if they are to meet as
described in the problem.

S87 From the symmetry of the layout and initial conditions, we deduce
that all the bodies fall towards the centre of the n-gon with the same
non-uniform acceleration. The formation keeps its original shape, but the
distance r from the centre decreases at a non-uniformly accelerating rate.
The resultant force acting on one (say the nth) body when it is at distance r
from the centre is

m? =1 1
F) =627 ,; 4sin(nk/n)’

This force, made up of the gravitational forces exerted by all the other
bodies, or, more precisely, of those components of these forces which are
directed towards the centre, is identical to the gravitational attraction of a
fixed body situated at the centre, and of mass

m 1
Mn=7 kZ«: sin(nk /n)’
The values of the masses M, (in units of m) can be calculated numerically
for all values of n as

M, =025 M3=058  M;=096, ..., M;=3.86,

The time T of the collapse from an initial distance R onto a central
mass M can be considered as half of the period T, for a severely flattened
(degenerate) elliptical orbit of major semi-axis R/2. The period T. of a
circular orbit of radius R can be calculated directly from the dynamical
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equation for circular motion,

Mm 2m . | R
GF = mR <?c> . giving Tc =2n m

But, according to Kepler’s third law,

(7)=(%)
T.) \ R )’
Thus, finally, we obtain T = ny/R3/8GM, for the time.

Note. The limiting case n > 1 is interesting. As the number n of bodies
increases, M, increases even if the total mass of the system is fixed at
My, i.e. m = My/n. The more finely a given amount of matter is spread
around a circle, the shorter the time it takes for it to collapse under
its own gravitational attraction. However, there is no point in examining
a continuous matter distribution spread along an arbitrarily thin line;
the extent of the matter in the transverse, i.e. radial, direction cannot be
neglected.

S88 According to Kepler’s first law the orbit of the rocket is an ellipse
with one of its foci at the centre of the planet. The launch and return
velocities are parallel to each other (though in opposite directions) if the
launch and return points are at the ends of the minor axis of the ellipse.
But, for an ellipse, the distance from a focus to either end of the minor

axis is equal to the length a of its major semi-axis; consequently a = R (see
Fig. S88.1).

Fig. $88.1

From Kepler’s third law, satellites in orbits having different eccentricities,
but the same lengths of major axis, have equal periods, and so in our case
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the period for a full orbit would be the given Ty. The rocket, however, covers
only one-half of the ellipse. The time required for this is not half of the full
period, but proportional to the fractional area swept by the radius vector
joining the rocket to the focus (Kepler’s second law). The area of the whole
ellipse is

2

Ao = nab = na” sin g

The swept area for the half orbit is

_mab 1 b, 0 5.0 0
A1—T+§x2bc—§a nsm§+a smi cos—2—.
So the flight time is

Ay 1 1 0
Ti=—Ty=To{=+— =].
: AoO 0(2+TCCOSZ)

The maximum distance above the surface of the planet is
2a—a—(a—c) =c=Rcos§ <R
If the angle between the launch and arrival points is allowed to approach
zero (0 — 0), the calculated flight time approaches a maximum value of

1 1

and the maximum height achieved approaches the radius of the planet
(¢ = R). But, in fact, if the take-off and landing sites are the same (6 = 0),
the rocket can reach any arbitrary height, large or small. This implies that
the period and maximum height are not continuous functions of 6 at the
point 6 = 0.

v v
1 2

‘

Fig. $88.2

If the launch speed is sufficiently great (equal to or larger than the first
cosmic speed, v = ,/Rg) and the initial velocity is tangential to the surface
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of the planet, then the orbit shown in Fig. S88.2 is possible. Again the return
velocity is parallel to the launch one, but this time in the same direction. The
maximum height achieved can be anything, but the period must be af least
To. These are the orbits corresponding to the special case 6 = 0.

S89 (i) Writing x for uo/4n, the couple on C due to D is xu?/L3 anti-
clockwise; that of C on D is 2ku?/L>, also anti-clockwise.

(i1) Couples are not the only potential result of the magnetic fields; forces
will result if a dipole is positioned in a non-uniform magnetic field. The force
on C due to D is non-zero as the strength of B is slightly less at the position
of one of the poles of C than at the other. The magnitude of the net force is
1 x OB, /0r where the derivative is evaluated at r = L, and is thus 3xu?/L*;
its direction is the same as that of B,. This force and its reaction on D
produce a couple on the rod which has magnitude 3xu?/L? and acts in the
clockwise sense. It thus exactly cancels the other two couples acting on the
rod and when the system is suspended, nothing at all happens —something
that must be clear on the grounds of symmetry and the impossibility of free
perpetual motion!

Note. This is an unusual example of a non-central force and its reaction,
which act along parallel, but not identical, lines.

S90 The charge distribution induced on the plane by the charge g,
produces (in the region above the plane) an electrostatic field identical to
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that of a charge —q situated below the plane at the point which is the mirror
image of the body’s position, if the plane were considered as a mirror. This
is the principle of image charges. Thus, the force of attraction acting on the
body (moving non-relativistically) can be calculated using Coulomb’s law as

e

F(x) = ks,

where k is the Coulomb constant and x is the distance between the plane and

the body at any given instant (initially the body is a distance 2d from the

image charge). This expression for the force can be treated as the analogue

of the gravitational force exerted by a body of mass M = kq?/(4Gm) on

another body of mass m situated a distance x from it, ie. F = GMm/x?,

In this analogy, Kepler’s third law gives the relationship between the period

of revolution T of a planet and the major semi-axis a of its elliptical orbit,
namely,

T _a

a3 GM’
If the charged body is released at a distance d from the metal plane then
its orbit can be considered as a very flat (degenerate) ellipse with major
semi-axis a = d/2. The time at which the charge hits the plane Ty, is half of

the period of the degenerate orbit, and can be calculated by substituting the

corresponding variables:
T = |md
Th=—==—\—.
=TV &

S91 Brine is a good conductor, because positive and negative ions can
move easily within it. When the charged plastic ball is placed close to the
surface of the water, opposing charges are induced in the surface, whilst like
charges are repelled from it. The resulting electric field lines above the water
surface will be perpendicular to it, whilst beneath it the net electric field
vanishes.

The charged ball attracts the water below it, and the surface wells up in
a hump. The electrical forces exerted on the hump are balanced mainly by
gravity and the effect of surface tension can be ignored. We don’t know the
shape of the hump exactly, but can be sure that the rise in water level will
be small and there will be only a slight deviation from a plane surface; this
is why we can use the so-called method of image charges. It will be sufficient
to consider the maximum effect and find the rise at the point P shown in
Fig. S91.1.
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At P the electric field due to the charge Q is
10

'™ dmey (Gry

The effect of the unknown surface charge distribution can be replaced by
that due to an image charge of —Q situated at a depth below the surface of
3r (see Fig. S91.2). The electric field at P due to the image charge has the
same magnitude and direction as Ej, and so the net electric field is

Foeo L 2
2mey (3r)
\Q
3r
P
3r
-Q e
Fig. S91.2

According to Gauss’s law the surface charge density at P is

At the water surface the force exerted on a unit area is the product of the
surface charge density ¢ and the electric field E; due to the ball:

-§=O'E1.

This is the upward force at P per unit area and is balanced by the hydrostatic
pressure associated with the maximum rise h in water level:

F
1= pgh.
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Substituting for the electric field and surface charge gives an expression

for h as
_ 11 e 1 9
pg 21 (3r)? 4meo (3r)>
Inserting the numerical data into this equation, yields 4 ~ 0.29 mm, which

is very small compared to the diameter of the ball and justifies our treating
the water surface as being close to flat.

S92 The method of spherical image charges can be applied. Let two
point charges of opposite signs be +Q; and —Q». In the field produced by
them the locus of points of zero potential is given by

AURAY

z2 -0,
r r

where r; and r, are the distances from the two charges of a general point
on the locus. A straightforward rearrangement gives Q1/Q> = ry/rs, i.e. the
distance ratio r;/r, is constant. According to Apollonios’s theorem, points

with this property lie on a sphere (the Apollonios sphere). Therefore the zero
potential surface is a sphere.

Fig. $92.1

If the spherical metal shell mentioned in the problem is earthed, then it is
at zero potential. The point charge +Q inside it induces an inhomogeneous
charge distribution on the inner surface of the shell as shown in Fig. S92.1.
The electric field inside the shell, due to the actual charge and the induced
charge distribution, is the same as if it were caused by the actual charge
and a negative point charge outside the spherical shell. The latter is what is
called a spherical image charge.

The charge distribution inside the spherical metal shell is independent
of the potential of the shell. If the shell were not earthed then charge +Q
would appear uniformly distributed over its outer surface, regardless of the
inner charge distribution. This is because the electric field strength is zero
everywhere inside the material of the shell and therefore the charge on the
outer surface is not aware of the presence of that on the inner one. The
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external electric field makes it appear as if the enclosed charge were at the
centre of the sphere.

Fig. $92.2

The force acting on the charge Q inside the shell is equal to the Coulomb
force acting between the charge and the corresponding image charge. Using
the notation in Fig. $92.2, the charge +0Q is a distance d from the centre of
the sphere of radius R, while the image charge —nQ is a distance x from
the shell. The ratio of the charges is therefore n, an expression for which
can easily be found using the two points 4 and B in which the straight line
connecting the charges intersects the spherical shell:

_x _x+2R

" R—d  R+d’

This yields for n and x that n = R/d and x = R(R — d)/d. The force acting
on the charge inside the spherical metal shell is therefore

nQ? Rd

—_ —_— == — 2__..—
F=tarr—ap - CrR—ar

It is clear that this force is zero when d = 0 and tends to infinity as d — R.
The negative sign shows that it is directed towards the position of the
(imaginary) image charge.

n

Note. The electric charge distribution on the inner surface of the spherical
metal shell can be calculated using Gauss’s law. The magnitude of the
surface charge density is proportional to the electric field strength obtained
by superimposing the fields of the real and image charges.

S93 Denote the mass of the boron atoms (actually boron ions) by M
and that of the unknown colliding particles by m.
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Before the collision the particles have opposing velocities of the same
magnitude Vy as measured in the laboratory (LAB) frame of reference.
We can easily transform to the centre of mass (CM) frame of the colliding
particles shown in Fig. S93.1. The total linear momentum of the two particles
in the LAB frame is M Vy — mV), thus the velocity of CM in this frame is

_M—m

u_M+m

Vo.

In the CM frame the total momentum is always zero and the two particles
must always move in opposite directions with linear momenta of equal
magnitudes. However, in accord with conservation of energy, the magnitude
of the momentum and therefore the velocity of each particle must be the
same before and after the collision—only their directions can change. The
speed of the boron atoms in the CM frame before the scattering is

M—m 2m

Vo,

and so it must also have this value after the collision (Fig. S93.2).

1C—M

Fig. $93.2

We can return to the LAB frame by adding u, the relative velocity of the
frames, to the CM velocity vectors. In the LAB frame the velocity of the
boron atom after scattering u+V, is a vector pointing to some point on the
circle shown in Fig. S93.3. The maximum angle between the final and initial
velocities of the boron atom occurs if u+ V is tangential to this circle of
radius V, ie. V is perpendicular to u+ V.
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In this case

2m I1M—m

V| = sin 30° |u], 1.e. Mt 0=§M+m

Vo.

This gives m = %M . Thus the unknown particle has a mass number of 4 = 2,
and is actually not unidentified any longer; the particle is the deuteron, the
nucleus of deuterium.

S94 Friction between the two balls is negligible, and so, during the
collision, they can only exert forces normal to their surfaces. Thus, the first
ball stops after the collision, while the second acquires the first’s initial speed
vo. The rotation of the balls, however, does not change, and so, immediately
after the collision, the first ball rotates on one spot and the second slides
without rotation at speed vy.

Fig. S94.1

The friction between the balls and the table is of course important and
affects the motion of the balls. The first is accelerated forward by the force
of kinetic friction Fy, = umg, whilst the second is slowed by the same force,
as shown in Fig. S94.1. The rotation of the first ball is reduced by friction,
that of the second one is increased. The part played by the frictional force
lasts until both balls reach the state of rolling without slipping. After that
their motion is unchanged.

It will be shown that the final motion of the balls depends neither on the
frictional coefficient, nor on the possible variation of it with position. After
the collision, the initially moving ball rotates with an angular velocity w =
vo/r. Its angular momentum about its axis is therefore Iw = %mr2 (vo/r) =
%mvor. The angular momentum about the point of contact with the table P,
must be the same, since the centre of mass of the ball is at rest, i.e. the angular
momentum attributable to translation is zero. The angular momentum of
the ball about P cannot be changed by friction any more, as the line of
action of this force runs through P. (The sum of the gravitational force and
the reaction of the table is zero, and so they can produce no net torque
either.)
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0="Y /r _v/r

Fig. $94.2

The angular momentum of a ball, rolling without slipping at speed v, is the
sum of its own angular momentum %mvr and the angular momentum mor
due to the motion of its centre of mass. Figure S94.2 shows (on the left) the
initially moving ball and the forces acting on it shortly after the collision. On
the right of the figure, the ball is shown ultimately rolling without slipping.
According to the law of conservation of momentum 5mvor = §mvr + mor,
which yields v = 7vo Similar reasoning shows that the final speed of the
other ball has to be 700, regardless of the magnitude of the coefficient of

friction.

S95 When travelling a distance L, the plank causes L/d rollers to acquire
an angular velocity wmax = Umax/r. The decrease in potential energy of
the plank is MgLsina, whilst the kinetic energy of each roller becomes
Hw?,, = jmvk,,. Notice that the final tangential surface speed of each
roller is equal to the terminal speed of the plank, and the moment of inertia
of each roller is I = Jmr?.

It is false reasoning to suppose that the lost gravitational potential energy
of the plank is simply converted into kinetic energy of the rollers. This would

lead to concluding from the equation
L1
MgLsina = Pl 4 rznax (1)
that the terminal speed of the plank is

4dMg sina
Umax = —771—

However, this result is wrong, because it does not take into account the fact
that the speeding-up of the rollers involves kinetic friction and, consequently,
there is heat dissipation in the process.

Denote by F(t) the kinetic frictional force between a single roller and the
plank. (It is not necessary to assume that this force is constant in time.)
During a short interval At the change in the angular momentum of the
roller is

IAw = rF(t)At. (2)
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These changes can be summed to give an equation containing the final
angular velocity of the roller

rS F() At = [omay =1 ”";a*. 3)

On the other hand, during time interval At the work done against friction
(heat gain) AQ is the product of the kinetic frictional force and the relative
displacement of the surfaces involved:

AQ = F(t) [vmax — ro(t)] At.
From (2) and (3), the total dissipated energy is
Q = > F(t) [vmax — ro()] At
= rwmaxZF(t)At -1 ZwAa)

2 2
2 Omax Omax
—Icomax—l—2 —I—2

In the final line we have used the fact that w Aw = %A wz). This result
shows that the dissipated heat is equal in magnitude to the kinetic energy
acquired by the rollers. It is remarkable that the result depends on neither
the magnitude of the frictional force nor its time-dependence. The correct
energy balance is not equation (1), but

. L1 L1
MgLsina = 7 vaﬁm +Q0=2 7 va,znax,

which shows that the terminal velocity is

/ 2dMgsina
Umax =4/ ——————-
m

S96 Treating the problem as two-dimensional, choose a point P on the
surface of the table and examine the angular momentum of the ball about
this point. The line of action of the frictional force passes through this point,
and so there is no frictional torque about P. The gravitational force and the
supporting reaction of the table nullify each other. No other force acts on
the ball, which therefore has constant angular momentum about the chosen
point. As the ball is initially at rest, the value of that angular momentum is
Zero.

X
mv
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When the tablecloth is pulled out from under it, the ball starts sliding and
rolling. Following the notation in the figure, its angular momentum J can
be written as the sum of two terms:

J=1w+r x (mv).

Here I is the moment of inertia and m the mass of the ball. The first term
in the expression is the internal spin, and the second the orbital angular
momentum due to the linear motion of the centre of mass. Taking into
account the directions of the vectors involved, the magnitude of the angular
momentum can be written as J = Iw + mvR, where R is the radius of the
ball.

It is easy to see that, when any ball is rolling without slipping, the sign of
its orbital angular momentum has to be the same as that of its spin. On the
other hand, here the sum of the two has to be zero at all times. These two
conditions can only be fulfilled at the same time if the body has stopped.
The reader can check this experimentally.

The final state depends neither on the size of the frictional force, nor
on how the tablecloth is pulled out. (It can be pulled out evenly, with a
uniform acceleration, or by means of several sudden movements.) However,
it is important that air resistance and rolling resistance are negligible since
their effects can change the angular momentum about P.

S97 Taking the Earth’s actual direction of rotation (from west to east)
as positive, the angular momentum of the traffic about the axis of rotation
would increase if the change were made. This is because the traffic that is
travelling eastward would move to a greater distance from the Earth’s axis
thus increasing its (positive) contribution to the total angular momentum;
conversely the westward-bound traffic would reduce its negative contribution.
Assuming equal amounts of east-west and west—east traffic, the moment of
inertia of the system is unchanged and, since the total angular momentum
of the system cannot change, the Earth’s rate of rotation must decrease. The
length of the day would therefore increase—but you would hardly notice it!

Note. One can also arrive at the same conclusion in a different way. In Great
Britain there are a lot of traffic roundabouts. Any change in the direction in
which these were negotiated would cause a change in the angular momentum
of the traffic, which in turn would cause a small change in the rotation of
the Earth. The whole traffic system can be considered as a series of many
roundabouts.

S98 Let the angular acceleration of the smaller ball be «y, that of the
larger one ajy, their common horizontal acceleration a; and the acceleration
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of the cart a;. As the balls are rolling without slipping, we have
Roy = ay —ay and Roy = roy,

and, because R = 2r,
a —ag

oy = 20 = .
r

The moment of inertia of the smaller ball is %mrz, while that of the larger

one with the same density is % x 8m x (2r)? = 6—54mr2. Using the notation of

the figure, we can write the following dynamical equations of motion:

F_Ffl‘=Ma29
8mg+N1 —N=O, Ffr—Nz =8ma1,

mg—N1=0, N2=ma1,

. 2
Nircos¢ — Norsing = gmrzocl,

2rFg + 2rNorsing — 2rNijrcos ¢ = 6—54mr2a2.

From these equations we can express the force F as

F= (9m+zM> OS¢ 79N,

2 1+sin¢
The acceleration of the balls relative to the cart is
5 cos¢

Aa=a2—a1=§1+sin¢ g
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At the time ¢t when the balls fall from the cart, the distance they have moved
relative to the cart is L/2. As their initial velocities are zero,

| L
t= ZZ=OSSS

Note. It is interesting that this stunt can also be performed with the smaller
ball in the horizontal position, ¢ = 0. In this situation the frictional force
between the balls balances the entire weight of the smaller ball. What is
more, it is even possible for ¢ to be negative, if the coefficient of friction
between the balls is sufficiently large!

S99 Consider the motion of the ball with respect to an arbitrary point
P in the plane of the table. Since the forces acting on the ball due to
gravity and the normal reaction of the table are equal and opposite, and the
frictional force acts in the plane of the table, their total moment about P
has no horizontal component. Consequently, the horizontal component of
the angular momentum of the ball about P must remain constant.

When the ball is rolling without slipping, the horizontal component of its
angular momentum is perpendicular to its velocity v and its magnitude is
directly proportional to |v|. (For a solid ball of radius R, the total horizontal
component of its angular momentum is J = IQ + mvR = %va see also P96
and S96.) At the end of the motion, when the ball again rolls on the table
without slipping, this component of the angular momentum must therefore
be the same as it was at the beginning. It then follows that the direction and
magnitude of the ball’s velocity v are also unchanged.

Thus, the ball leaves the table at the same speed, and with the same
momentum vector, as it had originally. Further, its total kinetic energy is
unchanged. This last fact is especially strange, as both when the ball arrives
at the disc and when it leaves it, friction does work on the ball and changes
its kinetic energy. However, the algebraic sum of the work done on the ball
is zero; this is not a consequence of the conservation of either momentum
or energy, but of the conservation of angular momentum.

Note. Rather more complicated calculations (using the equations of trans-
lational and rotational motion) show that when the ball is on the rotating
disc it moves uniformly along a circular path, as viewed from the reference
frame of the table. (To obtain this result it is assumed that the coefficient
of kinetic friction is large enough that we can ignore the period during
which the ball slips on the disc. For the solid rubber ball used in the Science
Museum, this assumption is quite reasonable.) The circle, however, is not
centred on the axis of the disc, and the motion’s angular velocity is different
from that of the disc, being % times smaller. If the disc rotates steadily, the
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ball ultimately continues along the extrapolation of its original track. This
is not true if the disc does not rotate uniformly, or the period of slippage
is not negligible; in either case, the magnitude of the ball’s momentum is
unchanged, but its track deviates sideways as a result of its encounter with
the disc.

S100 Let the tension in the ring be T. Its resolved component acting
along the radius towards the centre of rotation is 27 sin(Af/2) ~ TAO and
this must balance the centripetal force of RAOApRw? (see figure).

An2 T T

2T sin Ah/2

It follows that the longitudinal stress in the ring, T /A4, is pchuz; the strain
¢ is E~! times this. Finally, the increase in circumference, given by 2nRe, is
2npR3w?/E.

S101 When one end of the thread is pulled by a force Fy, let the maximum
force with which the other end can be pulled without the thread slipping
on the cylinder be Fpx. Specify a general point of the thread in contact
with the cylinder by the angle o, which the radius of the cylinder at that
point makes with a fixed radius. When the thread wound onto the cylinder
is tightened, it exerts a normal force on the cylinder resulting in a frictional
force which opposes any relative motion of the thread and the cylinder. The
tension in the thread increases as o increases, but the excess tension at one
end of a piece of the thread is balanced by the frictional force acting on that
piece.

R Aa

P
AT

Fig. S101.1

Consider a small length of thread that subtends an angle Ax at the centre
of the cylinder. If, as shown in Fig. S101.1, the tension at one end of the
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small piece is F whilst it is F + AF at the other, then the excess force AF is
balanced by a frictional force, which can be calculated as

AF = N, (1)

where N is the force exerted by the thread normal to the surface of the
cylinder and p is the required coefficient of friction.

Fig. $101.2

The normal force can be determined as the vector resultant of the forces
F and F + AF ~ F, shown in Fig. S101.2. This is

N = 2F'sin % =~ FAa. (2)
Substituting this into equation (1) shows the relationship between F and the

angle o to be
AF(a) = pF(a) Aat.

This relationship is formally similar to the equation governing radioactive
decay,

Am(t) = —1 m(t) At,
where m(t) is the mass of radioactive material, ¢ the elapsed time, and A the

decay constant. As is well known, the mass of radioactive material decreases

exponentially with time, i.e.
m(t) = mye .

Thus, using the established correspondence, with —1 replaced by p, the law
of ‘thread friction’ can be expressed as

F(a) = Foet*. (3)

Both of the inequalities stated in the problem are equivalent to

2F(0) = F(n) = F(0)e*™, which yields p = %mz ~0.22.
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Note. The force exerted on the thread increases exponentially with the angle
o. The ratio of the forces at the two ends of the thread can reach a large
order of magnitude after only a few turns. Climbers make use of this
interesting fact when they anchor the ropes that prevent them from falling.
Sailors use the same technique to stop large boats with their bare hands!

S102 Jenny considers a homogeneous ring of radius R and linear density
p, rotating with constant angular velocity w about an axis perpendicular
to its plane and passing through its centre. The centripetal acceleration of
points on the ring is Rw?, and so unit length of it experiences a centripetal
force of p = pRw?. If a cylindrical container of height 1 m were surrounded
by a gas at pressure p then the force exerted by the gas on the wall of

the cylinder would be exactly the force required to sustain the rotation (see
Fig. S102.1).

Fig. $102.1

In reality, the elements of the ring are not kept in their circular orbit by
some imaginary external pressure, but by the ring’s own internal tension,
whose magnitude is

F= pR2 w>.

This can be proved by referring to P100 or by examining, for example, a
1-m length of a container with a semicircular base, surrounded by a medium
at pressure p (see Fig. S102.2). A force of 2Rp acts on the rectangle of area
2R, and has to be balanced by a force of magnitude 2F acting tangentially
within the wall.

\\S\\l ////p
TW Hw?

2Rp
Fig. $102.2
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Now examine an arc of the ring which subtends an angle at its centre of
20, and see how Newton’s second law of motion is fulfilled, continues Jenny.
The resultant of the forces acting on a body of mass m = 2R p« is 2F sina,
and the acceleration of the centre of mass is a = sw?, where s denotes the
distance between the centre of mass of the arc and the centre of the ring
(see Fig. S102.3).

la

Fig. $102.3

According to Newton’s law,
2F sino = ma,

which, using the previous formulae, yields s = (Rsina)/a. For a semicircle,
as in Charlie’s original problem, a = n/2 and, therefore, s = 2R/m.

If the centre of mass of a sector has to be determined, it can be divided
into thin arcs and each one replaced by a point-like body of appropriate
mass positioned at the centre of mass of the arc. The same procedure could
be adopted to find the centre of mass of a triangle made up of thin stripes.
This implies that the centre of mass of a sector has to be in exactly the
same place as that of a symmetrical triangle of height sy.x = (Rsina)/a
(see Fig. S102.4), i.e. at a distance of %(R sina)/o from its vertex. With this
deduction Jenny concludes her display of extraordinary logic.

S103 Let us denote the common height of the table and total chain
length by L (= 1 m) and the length and mass of the vertically moving part
of the chain by x and m. The equation of motion (taking into account the
changing mass of the moving part) is

d(mv) dv dm
mg = =

a - "ata”
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which on rearrangement gives

m@—m —d—ml)
a Mg

The left-hand side is the product of the instantaneous mass and acceleration
a, whilst the right-hand side can be converted and simplified using dm =
(m/x)dx and dx/dt = v to yield

v2

a=g—;

This result shows that the acceleration of the chain is less than g. The second
term on the right-hand side can be simplified further, since v?/x = 2f in
the case of rectilinear motion with constant acceleration f and zero initial
velocity. This means that in the current problem the acceleration of the chain
is constant and satisfies

a=g—2a, yielding a =

w o9

As the chain runs down from the table during a time of ¢, its first link
falls a distance L with acceleration g/3. Consequently,

Va Vg

When the lower end of the chain reaches the ground, the whole chain is
vertical and its velocity is

/ /2
vl=at1=§ %= %=2.56ms‘1.

From this moment on, the chain goes into free fall. Its last link has an initial
velocity vy, accelerates with g, and covers a distance L in time ¢,. Thus

1
L=uvit+ Egt%'

From this equation we obtain

/2L t
= @—3—0268

So the final link of the chain reaches the floor at a time
t1+1t= gtl =104s

after the start of the process.
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Note. (i) Attempting to apply the law of conservation of energy leads to
false results. For example, setting

1 , L

Sy = mg =,

where L/2 is the loss of height of the centre of mass of the chain, and then
substituting v; = /2Lg/3 leads to the contradictory result

2
L 1 , 1 2 L
ng = zmvl = Em §Lg = mg?

It would appear that one-third of the energy has disappeared. This is, in fact,
accounted for by the energy dissipated in the series of inelastic collisions
occurring when the chain jerks the successive links into motion.

(ii) The problem can also be solved in a different way. Let M be the total
mass of the chain. When the hanging part of the chain of mass m = (M /L)x
causes the next piece, of mass (M /L)Ax = (M /L)vAt, to move, it accelerates
the piece from rest to a velocity v in a time interval of At. This acceleration
needs a force of

[(M/LyAdo _ M,

At L
The corresponding reaction decelerates the hanging part of the chain, so we
can write
ma=m Mv2
=mg I .

Inserting m = (M /L)x into this equation, we recover the earlier solution.
(iii) Assuming that the chain consists of n links with an otherwise uncon-
strained separation of ¢ = L/n between links, leads to the correct answer in
the limit n — oo.
(iv) It is possible, using calculus techniques, to solve the (non-linear)
differential equation
2

a=g—;,

subject to the initial conditions v = 0, x = xo (xo < L) at t = 0. The

solution
]2 X0\ 3 _[* dx
v(x)—\/ggx[l—(;) ], t—/x‘)@

approaches our more heuristic result in the limit xo — 0.

S104 It will be shown that a chain (flexible rope), moving at a uniform
speed along a closed curve of arbitrary shape, continues moving in the same
way even if no constraints (e.g. pulleys, cylinders, etc.) are placed on it.
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Fig. $104.1

Consider the chain (shown in Fig. S104.1) moving steadily along some
closed, winding space-curve at speed v. The force stretching the chain has to
have the same magnitude, F, everywhere, as the tangential acceleration of its
links is zero. If the radius of curvature of the chain, of mass per unit length
p, is R at some point (R can vary from place to place), then the mass of a
piece of length RA« is Am = pRA«, whilst its acceleration is v2/R, as shown
in Fig. S104.2. Its equation of motion is

2
pRAx % = FAa,

which leads to the relation F = pv?.

FKa

Fig. $104.2

Notice that R does not occur in this equation, i.e. F is independent of the
radius of curvature. The resultant of the tangential forces, F, is just the right
force to make the chain curve as it does at the given place. If the chain is
straight, the resultant force acting on a small piece of it is zero. The more
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curved the chain, the greater the resultant force acting on each small piece.
The direction of the resultant force is also just what is needed.

This means that the chain falls keeping its original shape and speed, just
as Frank guessed.

S105 As shown in the solution to the previous problem, a flexible chain,
or rope, of mass p per unit length moving with a speed v has an internal
tension of

F=pv2

if it is not contact with any other body. It should be noted that this result is
independent of the radius of curvature R of the arc formed; it also applies
to chains or ropes moving in a straight line when R can formally be taken as
infinite. In the present case, the chain becomes detached from the pulley, as
a result of its accelerating motion, when this freedom condition is satisfied.

Denote the displacement of the chain by x and the acceleration of the
right-hand side of the chain by a. The equations of motion for the two sides

are
L L
F—p(i—x)g=p(5—x)a,

(oemres(br

The speed of the chain for any x can be determined, without using inte-
gration, from the conservation of energy. The decrease in potential energy
relative to that of the original situation (for which negligible speed is as-
sumed) is the same as if a piece of the chain of length x had been lowered
by x (see figure). Hence

1
png = Evaz'
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The displacement and speed when the chain leaves the pulley can be
calculated by eliminating F and a from the above equations:

x=—LLzO.35L, 0=E.
2.2 2
Thus, the chain becomes detached from the pulley when 15 per cent of its

length is still moving upwards and its speed is less than one would obtain by
naively substituting x = L/2 into the conservation of energy equation. (This

false value would be \/Lg/2 =~ 0.71,/Lg.)

Note. The subsequent motion of the chain is also interesting. After the
chain has become detached from the pulley, it is in the form of two vertical
sections of unequal length joined by a semicircular arc, with the left-hand
section, whose links move upwards, getting shorter at an increasingly rapid
rate, whilst the right hand section correspondingly accelerates downwards.
If the radius of the pulley is negligible, the speed of the links in its left-hand
vertical section, which has decreasing mass, tends, in principle, to infinity.
In reality, the finite pulley radius and link size, together with air resistance,
place an upper limit on the speed. The kinetic energy of the piece of chain
moving upwards remains finite despite its rapidly increasing speed because
the decrease in the mass of the relevant part of the chain is more rapid than
the increase in its speed. The same phenomenon can be observed when a
whip cracks; a section (of decreasing length) of the whip moves at an ever
increasing speed, and when it reaches the speed of sound, it causes a sharp
supersonic bang.

S106 (i) Examine the motion of the loop in the frame of reference, which
moves with the loop at speed c. In this system, the pieces of a circular loop
of radius R rotate uniformly. The acceleration of a piece of the rope, which
subtends central angle Ax and has mass pR Aq, is ¢2/R, whilst the net force
due to the tension in the rope is F Aa (see S105). The Newtonian law of
motion yields

A A i
F = R _
o p o R,

ie. the ‘loop-wave’ moves with speed ¢ = \/F/p,—identical to the speed at
which small transverse waves would propagate along the same rope.

(ii) The angular frequency of the rolling loop of radius R is w = ¢/R,
and the loop has mass, m = 2nRp. The energy carried by the loop can be
expressed in terms of these quantities as

1
E = Etanst + Erot = 5 (2nRp) (C2 + R? (1)2),
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which can be written in the form

1 1
E(w) =2nFc— =K —.
) )
The quantity K = 2nFc is a constant, characteristic of the rope and the

tension in it. Of course, several (n) loops can be simultaneously excited and
their total energy is

En(w) = nKé (n=0,1,2,3,...).
The momentum of the loop(s) can be calculated in a similar way,
Py(w) = n(2nRp)c = nK% n=0,1,2,3,..),
as can the angular momentum
Jn(w) = +n(2xRp)Rc = inKalf n=0,1,2,3,...).

In this latter formula, the two signs correspond to loops moving ‘above’ and
‘below’ the rope, i.e. to the two possible ‘polarisations’.

It can be seen that—provided only circular excitations of a single fre-
quency are allowed-the energy, momentum and angular momentum can
only assume discrete values, those that can be written as the product of an
integer and a basic ‘quantum’. The following relationships are valid between
these (frequency-dependent) ‘quanta’:

E(w) = cP(w) = wJ(w).
It is not difficult to recognise that the same relationships are valid for photons
Ephoton = h(l), Pphoton = h(D/C, Jphoton = ih

Naturally, this formal analogy must not be taken too seriously, e.g. by
thinking of a photon as equivalent to a loop. However, the similarity can
be used to show that, even in classical physics, there are objects more
complicated than a point mass which are easy to understand, but which can
still be excited to many discrete energy, momentum and angular momentum
levels.

S107 A volume of sand of mass Am = 50 kg reaches a speed of v =
1 m s~!in time At = 1 s. The change in its horizontal momentum is therefore