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§1 Introduction

This handout' is not meant to provide a rigorous introduction to lagrangian mechanics presented
in undergraduate physics. However, it will go through a practical step by step process such that
a person who understands the theory and examples presented in this handout will be able to
solve olympiad physics problems through the usage of lagrangian formalism. For those who want
more in depth discussions about lagrangian and hamiltonian mechanics, here are a few other
resources available:

e Introduction to Classical Mechanics: With Problems and Solutions by David J. Morin.
e C(lassical Mechanics by Herbert Goldstein.

e David Tong’s Notes on Lagrangian formalism.

§2 Basic Theorems and ldentities

Definition 2.1. The lagrangian of a system is defined by
L=T-V
where T is the kinetic energy and V is the potential energy.

Definition 2.2. The generalized coordinate ¢ describes how the entire system moves with
respect to a certain coordinate. For example, the generalized coordinate of a ball rolling down a
ramp would be the distance that the ball travels parallel to the ramp.

As to their name, generalized coordinates are coordinates for every aspect of a system.
This includes coordinates such as translational components x and angular components 8. The
generalized coordinate can be collected as an n dimensional vector
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however this vector doesn’t have much meaning as each component of the vector may have
different units.

4 ™\
Theorem 2.3

To find the acceleration § of the generalized coordinate ¢, we can express the potential energy
V' of the system as a function V (q) of ¢ and the kinetic energy in the form 7" = %MQQ
where the coefficient M is the effective mass. We then see that the acceleration of the
system will be defined as

Gg=-V"(q) /M.
\ Y,

Proof. By conservation of energy,
1 '2
§Mq + V(gq) = const.
differentiating with respect to ¢ gives us
Mg +V'(q)¢ = 0.
Dividing over by ¢ and then isolating gives us

G=-V'(q)/ M

Note that theorem 2.3 only works in a system with one degree of freedom.

Definition 2.4. The action of a system” along a path q(t) between two times ¢; and to is
defined as

t2

t1

Quantitatively, the action has the units of E'xt where F is the energy and ¢ is the time.

Theorem 2.5 (Hamilton's Principle)

The evolution q(t) of a system between two times ¢; and ty is the path that yields a
stationary value of the action.

The motivation for Hamilton’s principle is discussed in Appendix A6, but for now, we can just
take this principle to be for granted.

4 N
Theorem 2.6 (Euler Lagrange Equations)
The Euler-Lagrange equations are given by
d(ocy _oc
dt\0oq) 9q
where ¢ and g are the generalized velocity and coordinate respectively.
. J

2Note that the action S is a functional integral which means that it depends on the functions q has.
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The Euler-Lagrange equations are really important because they hold in all frames. With
Newton’s laws, we would have to modify the forces to include other ones such as fictitious forces
in non-inertial frames but with the Euler-Lagrange equations we only have to write the kinetic
and potential energy of the system in any frame and we will get our desired equation of motion.
Why this is true is because the Euler-Lagrange equations are derived by Hamilton’s principle
(which we will do below) which doesn’t depend on what reference frame the evolution of q(t)
happens in.

Proof. Note that readers who just want to know how the Euler-Lagrange equations are applied
can skip this proof.

The Euler-Lagrange equations are a consequence of Hamilton’s principle or to be more specific,
the Euler-Lagrange relations come when q(¢) yields a stationary value (i.e an extrema) of the
action S. We can use variational analysis to derive the integral of S. Let us assume that the
function ¢ yields a stationary value of §. Then any slight variation of ¢ must either increase
or decrease g depending on whether it is a minima or maxima of S. Let us then consider the
function

q=(t) = q(t) + en(t)
where ¢ is really small and 7n(¢) is a function that satisfies n(t1) = n(t2) = n(0). Let us then
define S, to be such that
Se = S(QE(t)a (ia(t)v t)-

For ¢ to yield a stationary value of S, we require that there is no change in S: in the first order
of €. In other words, we need to find how S; depends on . By differentiating, we yield

0 d [* 9L,

%86 = & " E(QE)QEvt)dt: " Oe

It follows that the total derivative is given by

Z oL dg; B 0L dg. 855% aﬁeg
0¢; dt ~ 9q. de ' 9¢. de ot de’

The last term cancels out and we are left with

o (9L dg.  OLe dg.
&&Z;<%ﬂk+8%&>&'

Remember that from what we have established,

dge g .
d€ - (t)7 85 _n(t)

and once again, we can rewrite our integral to be

0 t2 oL, 0L,
&&-Alﬁwwgmm%)a

We can apply integration by parts on the second term of the integrand to result in

oL o, [(doL.
Jiogza=nog: - [ (G55 ) o

Replacing this into the second part of our previous equation leaves us with

2 +/tz <a£€ B d8£€>
t t1 9qe dt 0¢. )

0 oL,
7O — t .
525 = 1l )3q5
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The first term in this expression cancels out to zero and since we require the derivative of S, we
require the integral to evaluate to zero (at € = 0) which means that

a(ocy _oc
dt \9q /) 9q

and hence the Euler-Lagrange equations are proved!* O

Sometimes when we are applying to the Euler-Lagrange equation for more than one generalized
coordinate, we will result in coupled differential equations which are two or more equations
that depend on each other as a function of time. For example,

M3, = —kx1 + Kxo
Mo

kx1 — ka1

are coupled differential equations. In a coupled differential equation we generally have three
quantities. One is the M matrix which is a n x n dimensional matrix that determines the mass
distribution of all the n coupled differential equations we have. It has m; in the jth row and the
jth column with zeroes everywhere else. In other words, M is determined as

m 0 ... 0

0 meo 0
M = )

0 O my,

We also define the K matrix as an n x n matrix that has a coefficient K in its jth row and
kth column:

Ky Ko ... Ky

Ko1 Ko ... Ky
K=1 . . .

K, K. ... Ky

Finally, we write the column vector X which has x; in it’s jth row:
T
%)
X —

Ln

We now introduce our theorem that we use to solve coupled oscillators:

4This is still not the most general proof available. For one, we have assumed that £ is twice differentiable.
We could go about proving the Euler-Lagrange equations for this less general case but this is not what this
handout is for. Luckily, mathematicians and physicists have deduced that Euler-Lagrange equations still work
in that case.
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4 N\
Theorem 2.7

If we have a n X n dimensional matrix M and K and a n dimensional vector X which
described all n coupled differential equations in a system of the form of

MX = —-KX,
our solution can be described as
det(M™'K —w’I) =0

where [ is the identity” matrix.

%The identity matrix is simply just a matrix that has 1s in all of it’s eigenvalues.

- J

Proof. We move into complex notation Z = e*“+®) A where A is a column vector (Ay, As, Az)
and X; = Re(Z;). Our equation of motion then transforms into

MX=-KX = MZ=-KZ.
Substituting our solution of Z, we result in
Mw?Z = KZ = Mw?A=KA
dividing the equation by M and factoring out A results in
(M'K —w?A=0.
To get a solution, we then need to solve
det(M 'K — w’I) = 0.
O

The solutions for the frequencies of these coupled differential equations upon using this identity
is called the eigenfrequencies of the system. If you feel a bit lost after this introduction to
coupled oscillators, don’t fret as we’ll go over a couple examples on solving them after applying
the Euler-Lagrange equations.

Exercise 2.8. Solve the previous coupled differential equations

Mi1 = —kx1 + kxo

M.fz = RT1 — k‘iﬁl

for their eigenfrequencies.

§3 Examples

I'll try providing many examples of where lagrangian formalism can be used in olympiads.
This is mainly because not many people are aware of how this technique is used in olympiads.
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Example 3.1 (2017 China Semi-Finals)

A solid cylinder of mass m and radius 7 rests on the inside of a thin-walled cylinder of mass
M and radius R. The solid cylinder is made to oscillate around the equilibrium position.
Assuming g to be the gravitational acceleration, find the frequency of this oscillation for the
following cases:

1. The large cylinder is fixed, and the small cylinder rolls without slipping in the bottom
of the cylinder.

2. The large cylinder is permitted to rotate about an axis through its fixed center, and
the small cylinder rolls without slipping in the bottom of the cylinder.

Solution. We start this solution by thinking of each individual types of energy.

1. Let the total angle the smaller solid cylinder move through an angle ¢ with respect to the
walls of the larger hollow cylinder and let # be the angle with respect to the vertical that
the smaller cylinder moves through.

Our rolling without slipping constraint is then
(R—r)=rp = (R—1r)0 =r¢.

Noting that the moment of inertia of a cylinder through its axis is I = %mrz, we can write
the lagrangian as

1 . 1
L=T-V = imr292 + Zmngbz + mg(R — 1) cosé

and using our constraint condition, we can write

L= zm(R —7)26% + mg(R — r) cos .

Applying the Euler-Lagrange equation for a general coordinate 6 then tells us that

d foL\ oL 3 925 :
(it<69>_(39 — 5m(R—r)G_ mg(R —r)siné.

Rearranging, gives us a standard differential equation for harmonic oscillations:

0= 3<R—r>9 — Y= 3<R—r>

by using the small angle approximation sin 8 ~ 6.
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2. By adding the kinetic and potential components of the larger mass M and applying
lagrangian fomalism once again (you are advised to work this out) we result in the
differential equation

- 2mg(R — 1) B B 2mg(R —r)
b= <2m(R—7‘)2+MR2>0_0 — w_\/Qm(R—r)2+MR2'

Now that we are done solving this problem, I want to talk about how this solution could have
gone wrong. By using the rolling without slipping constraint, we have reduced the number of
degrees of the system from (z,6,¢) — (x,0). If we had used another constraint condition to
reduce (z,0) — (z), we would have gotten an incorrect answer from the Euler-Lagrange equations
as there would have been many more trajectories from the initial 1 to the final xo. In other
words, do not use the Euler-Lagrange equations if you reduce a two degree system
to one degree by using constraint conditions as they will lead to the wrong answer. We
were saved here in this problem because we had three constraint conditions which got reduced
to two which is fine. The only reason we have used a constraint condition in this case is because
we can have more simple equations to write (you are welcome to try this problem with the more
general lagrangian if you wish). If you find that you can reduce the number of degrees to one by
using constraint conditions, you can use theorem 2.3 instead. O

Example 3.2 (2018 F' = ma B, 1998 BAUPC)

Two particles of mass m are connected by pulleys as shown.

AU

1%

The string passes over a set of massless pulleys of negligible size. The masses are at rest a
distance ¢ away from the pulleys. The mass is given a very small velocity such that it swings
back and forth with an amplitude € (where ¢ < ¢). It turns out that after a long time, one
of the masses will eventually rise up and hit its pulley. Which mass hits its pulley?

Solution. The Lagrangian of this system after a small deviation # of the left mass is given by

1 ., 1 . .
L= imEQ + 5m(£2 + 026%) — mgl + mgl cos 6.

Applying the Euler-Lagrange equations for each respective generalized coordinate gives us

d <8£> oL = 2ml = mlf* — mg(1 — cos )

dt\oi )~ ot
d (0L oL 95 .
o (89) =25 = ml“0 = —mglsin 6
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If we do a small angle approximation of

1
sinf ~ 0, cosf~1-— 592

we result in the equations

= ~06% — — gp?
2 19
.. g
6=—-29
¢

Our second equation is a simple harmonic oscillation equation and tells us that the mass has a
function of 0(t) of
0(t) = ecos(wt + )

where w = y/g/¢. This means that upon substitution with
0(t) = ewsin(wt + )

we result in the equation

1 1
0= 5@62002 sin?(wt + @) — 1629 cos?(wt + )

| 1
= 5629 <sin2(wt +¢)— 5 cos®(wt + (p))

Averaging this function for a long time, tells us that

. 1,

gavg = ge g

which is positive and means that the right mass slowly oscillates upwards vertically and will hit
the pulley first. O

Example 3.3 (2003 EstAcadPhO)

Two coaxial rings of radius R = 10 cm are placed to a distance L from each other. There
is a soap film connecting the two rings as shown in figure. Derive a differential equation
describing the shape r(z) of the film, where r is the radial distance of the film from the
symmetry axis, as the function of the distance z along the axis. Show that cosh(z) is one
of its solutions. When the distance between rings is slowly increased, at a certain critical
distance Lg, the soap film breaks. Find L.
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Solution. We want to minimize the energy of the soap film E = S~. This is achieved when the
area S is at a minimum. The area is:

L)2
S = / 2mry/ 1+ r2dr

~L)2

We want to minimize rv/1 + 7’2 which we can take to be our Lagrangian. We can apply the
FEuler Lagrange equations, except instead of r being dependent on time, it’s dependent on z.

This equivalent is:
d (oL _oL
de \or')  Or

d r’ )

which can be simplified to:
1+ = Ar?

where A = 1/r2. The solution is well known. Motivated by the fact that 1 + sinh?® 2z = cosh? z,
we can guess the solution:
r(z) = rocosh(z/ro).

_ r x
x = rgcosh 1 <> —> r = rgcosh <>
To To

If the separation is L, we get:

Therefore,

R = rocosh(L/2rg) = L = 2rgcosh™ (R/ro)

where R is the radius of the ends. Finding the maximum value of L by using a calculator gives

us[13.3 cm | 0

Example 3.4

A block of mass m is attached to a wedge of mass M by a spring with spring constant
k. The inclined frictionless surface of the wedge makes an angle « to the horizontal. The
wedge is free to slide on a horizontal frictionless surface. What is the natural frequency of
oscillations?

Solution. Let the length of the spring that connects the mass m on top of the ramp at a certain
time t be . The mass m will then have coordinates of time as

(x,y)em = (v +Lcosa,h — sina).

If we take z, @, and ¢ to be the generalized coordinates, the kinetic energy of this system is then

. 1 .2_1 . p 2 ) 2
T—iMx 2m<(m+€cosa) + (sin ) )

The potential energy on the other hand is
1
V= —ik(é — lo)*mg(h — £sina)
where ¢ is the relaxed spring length. We can then write the lagrangian as

L=T-V = %Ma':2 + %m ((i+écosa)2 + (fsina)2> + %k(ﬁ—ﬁo)z —mg(h — {sina).
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Rewriting this tells us that

L= %(m + M)i% + %mﬁ + mli cos o — %k(ﬂ —£p)? —mg(h — £sina).

We can then apply the Euler-Lagrange equations for each respective generalized coordinate:

d (0L oL . -
dt(f)x) = = (m+M)i+mlcosa=0
d (0L oL . . :

dt((%> =57 = ml+micosa=k({y—{) —mgsin«

We can find the equilibrium position of the mass by balancing forces. We have by Newton’s
laws that

mgsina — k(l' —ly)) =0 = (' = @ — 4.
We then set the position of the mass £ as

By rewriting our two equations above, we yield two coupled differential equations:

(m + M)i 4+ mf cosa =0
micosa+ml +kl' =0
By applying the matrix identity
det(M 'K —w’I) =0
we yield the following determinant
‘—(m + M)w? —mw?cosa

=0.
—mw? cos a k — mw?

Upon applying the determinant and solving for w we yield

" k(m + M)
~\m(M +msin?a)

8§84 When to use Lagrangian Formalism

After all this discussion about lagrangian formalism, there still remains the question on when
you should use lagrangian formalism and what benefits it has over other techniques. First, let us
think about the benefits and advantages of lagrangian formalism:

e Usually when using lagrangian formalism, we have the advantage of there being scalar
quantities that we have to worry about instead of vector quantities that are usually related
with Newtonian mechanics.

e Lagrangian formalism is the most useful when there is only conservative forces and no
non-conservative forces involved (such as friction). You can still use the lagrangian in cases
with friction but it gets much more messy.

10
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e Lagrangian formalism is very useful when there are a lot of constraints. The more
constraints there are in a system, the easier it becomes to write the lagrangian and the
harder it becomes to the Newtonian form.

e As you will see in the problems, lagrangian formalism is very accessible in the way that
you can use it for aspects other than mechanics i.e electric circuits and optics.

e In many olympiad problems, it becomes the easiest to use lagrangian formalism when
there is more than one degree of freedom.

Therefore, when there are a lot of constraints involved in a system, and there is more than
one degree of freedom, you can start thinking about applying the lagrangian. Many times, the
lagrangian technique can be overkill, however, the lagrangian technique also requires the least
thinking to apply.

8§85 Problems

Problem 5.1 (2015 F' = ma). A U-tube manometer consists of a uniform diameter cylindrical
tube that is bent into a U shape. It is originally filled with water that has a density p,. The
total length of the column of water is L. Ignore surface tension and viscosity. The water is
displaced slightly so that one side moves up a distance x and the other side lowers a distance x.
Find the frequency of oscillation.

Problem 5.2 (2019 F' = ma). A uniform rope of length L and mass M passes over a frictionless
pulley, and hangs with both ends at equal heights. If one end is pulled down a distance x and
the rope is released, what will be the acceleration of the end of that instant?

Problem 5.3 (Krotov, Kalda). A small block with mass m lies on a wedge with angle o and
mass M. The block is attached to a rope pulled over a pulley attached to the tip of the wedge
and fixed to a horizontal wall (see the figure). Find the acceleration of the wedge. All surfaces
are slippery (there is no friction).

= 9} . 1
/ _‘ﬂ'— "M._H

A A A Car s /'l

Problem 5.4 (Krotov, Kalda). Two slippery (u = 0) wedge-shaped inclined surfaces with equal
tilt angles are positioned such that their sides are parallel, the inclines are facing each other
and there is a little gap in between (see fig.). On top of the surfaces are positioned a cylinder
and a wedge-shaped block, whereas they are resting one against the other and one of the block’s
sides is horizontal. The masses are, respectively, m and M. What accelerations will the cylinder
and the block move with? Find the reaction force between them.

2

M

11
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Problem 5.5 (1984 IPhO). Problem 2

Problem 5.6 (Kalda). An empty cylinder with mass M is rolling without slipping along a
slanted surface, whose angle of inclination is @ = 45°. On its inner surface can slide freely a
small block of mass m = M /2. What is the angle 3 between the normal to the slanted surface
and the straight line segment connecting the centre of the cylinder and the block?

Problem 5.7 (2020 OPhO). In this problem, we will explore the true gravitational model of
the earth, not the one that is claimed in most textbooks. Contrary to popular belief, the Earth
is a flat circle of radius R and has a uniform mass per unit area o. The Earth rotates with
angular velocity w.

(a) A pendulum of length ¢ that is constrained to only move in one plane is placed on the ground
at the center of the Earth. The pendulum has more than one angular frequency of small
oscillations. Find the value of each angular frequency of small oscillations €2(0), 2;(0), ...
in terms of o, w, ¢, and physical constants and the equilibrium angle 6,64, ... that the
frequency occurs at. Assume for all parts that ¢ < R.

An equilibrium angle corresponds to the angle with respect to the vertical where there is
an equilibrium point.

(b) The entire pendulum is moved a horizontal distance r < R away from the center of the
Earth. It is oriented so that it is constrained to only move in the radial direction. Now,
find the new angular frequency Q(r) of small oscillations about the lowest equilibrium
point in terms of the given parameters, assuming that w?r is much less than the local
gravitational acceleration.

Note that the parts that don’t use lagrangian formalism have been taken out. You can view the
whole problem here.

Problem 5.8 (1971 IPhO). A wedge with mass M and acute angles o; and ay lies on a
horizontal surface. A string has been drawn across a pulley situated at the top of the wedge, its
ends are tied to blocks with masses m; and mo. What will be the acceleration of the wedge?

There is no friction anywhere.
m, ——
M m
A e

iy Ly L i / £ £ £

Problem 5.9 (1986 IPhO). Problem 3, (note that this problem is about coupled oscillators
instead of applying lagrangian formalism).

Problem 5.10 (2012 Physics Cup). Determine all the eigenfrequencies (=natural frequencies)
of the circuit shown in Figure. You may assume that all the capacitors and inductances are
ideal, and that the following strong inequalities are satisfied: C; < Co, and L1 < L. Note that
your answers need to be simplified according to these strong inequalities.

12
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L

§6 Appendix A: Virtual Work and Hamilton’s Principle

Hamilton’s principle may have come out of the blue, so in this section we will discuss the basis
for how this principle came about. A lot of Hamilton’s principle was based on the work done
by D’Alembert and the principle of virtual work. Some of you may not be familiar with the
principle of virtual work, so we can introduce that principle here. Consider a system that is in
equilibrium. If we displace this system by a small virtual displacement'® dr;, it will result in a
force F; acting onto system and doing work at different amounts for different times. We consider
the virtual work done on this particle F; - dr;. The system is in equilibrium, or in other words,
>, F; =0 and since the virtual displacement means that no resultant force actually happens on
the particle, we require that
Z Fl’ . (5I'i =0
7

when the system is in equilibrium.

4 )
Theorem 6.1 (Virtual Work)

If we consider a virtual displacement dr; of a system in equilibrium, we require by the
principle of virtual work that
i

- J

In D’Alembert’s work, he considered when a system was accelerating. When an object is
accelerating, we add in an ”inertial force” equal to ma, then the virtual displacement of the
particle would again have zero dot product with F' = ma. This gives

(F(q(t)) —ma) - 6q(t) = 0.

Similar to the proof2 of the Euler-Lagrange equations, we once again use variational analysis in
this system. Let us consider a small displacement , it is then written that

ge = q(t) +dq(t).

where d¢q(t1) = dq(t2) = 6q(0). Using D’Alembert’s generalized principle of virtual work between
two times t1 and to tells us that

to
/t F(g(t)) — mi(t)] - Sq(t)dt = 0

1

5The displacement is virtual because no displacement actually happens. We are considering that this displacement
happens with no time passing so we can consider the physics that happens because of this.

13
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for all d¢(t). Noting that F' = —VV means that

[ 9V s - i) -dcoja

t1

and we can rewrite

and

so that our integral is written as

/: (—W(q(t)) + ;md(q(t))2> dt = 0.

This integral can then be rewritten as

5 ([ ey - viatenjar) =o.

t1

This itself is the action .
2

S= [ Llgq(t),t)dt
t1
which implies that
08§ =0

which is Hamilton’s principle itself! Joseph-Louis Lagrange produced this type of calculation
and published it in his own paper and that is why today the lagrangian is known as L=T — V.
From this proof, you can see that Hamilton’s principle is a generalization of nature itself and
today remains as one of the most beautiful principles of all time.

14
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