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Modern I: Semiclassical Mechanics

The basics of quantum mechanics can be found in chapters 46 and 47 of Halliday and Resnick,

and are covered more thoroughly in chapters 3 through 6 in Krane. Chapter 10 of Krane covers

quantum statistical mechanics as used in the final section. For a complete, but advanced treatment

of the WKB approximation, see chapter 9 of Griffiths’ Introduction to Quantum Mechanics (3rd

edition). For some nice conceptual discussion, see chapters I-37 and I-38 of the Feynman lectures,

or if you’re ambitious, essentially all of volume III. There is a total of 82 points.

1 The WKB Approximation

A proper introduction to quantum mechanics would take a whole book. Luckily, there is a “semiclas-

sical” regime of quantum mechanics which can be handled with much less machinery. Historically,

this regime was discovered first, by scientists like Bohr, and it suffices to explain many quantum

effects. To introduce the WKB approximation, we’ll start by considering classical standing waves.

Idea 1

A classical wave has a phase φ, and its wavenumber and frequency give its rate of change,

k =
dφ

dx
, ω =

dφ

dt

As covered in W1, the group velocity is

v =
dω

dk
.

A standing wave can form if the wave’s phase lines back up with itself after one round trip,∮
k dx = 2πn, n ∈ Z.

A simple case is a string of length L with fixed ends, where we have

2kL = 2πn

which gives the wavenumbers kn = πn/L and hence the standing wave frequencies ωn =

πvn/L, as we saw in W1.

[1] Problem 1. A slightly more subtle case is the case of a string of length L with one fixed and one

free end. Verify that in this case, the standing wave frequencies are

ωn =
πv

L
(n+ 1/2).

The reason our principle above doesn’t give the right answer is that a wave picks up an extra phase

shift π when it reflects off a fixed end, so we really should have written∮
k dx = 2π(n+ 1/2)
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in this case. We didn’t run into any problems for two fixed ends, because in that case we get two

phase shifts of π, which have no overall effect.

[2] Problem 2. Suppose a string of length L is hung from the ceiling. The string has mass density µ,

and the bottom of the string is held fixed and pulled down with a force F � gLµ. If the string were

weightless, then the standing wave frequencies would simply be πvn/L, where v =
√
F/µ. However,

the weight causes the tension and hence the wave speed to vary throughout the rope.

(a) Explain why the wave’s angular frequency ω is uniform, i.e. why standing wave solutions are

proportional to cos(ωt).

(b) Find the frequencies of standing waves, including corrections up to first order in gLµ/F .

This is a more quantitative version of a problem we encountered in W1.

In quantum mechanics, the state of a particle is described by a wavefunction ψ(x, t) which obeys

the Schrodinger equation. When a particle is confined in a finite volume, there are standing wave

solutions analogous to those of classical wave mechanics, which have discrete frequencies.

Idea 2: WKB Approximation

The momentum and energy of a quantum particle obey the de Broglie relations

p = ~k, E = ~ω

where E and p are related just as in classical mechanics,

E =
p2

2m
+ V (x).

For a particle with reasonably well-defined momentum, the wavefunction is a wavepacket

which travels at the group velocity

vg =
dω

dk
=
dE

dp
.

This corresponds to the classical velocity of the particle in the classical limit. (For example,

you should check that the above equations imply p = mvg, or p = γmvg when the relativistic

momentum and energy are used.)

Just as for a classical standing wave, ω is the same everywhere for quantum standing waves.

Since energy is related to frequency, these standing waves are also states of definite energy.

In the semiclassical limit, the standing waves must satisfy∮
p dx = (2πn+ α)~ =

(
n+

α

2π

)
h

where the extra phase α depends on the boundaries. We get a phase shift of π for a “hard

wall”, where the potential suddenly jumps from below E to above E, and a phase shift of

π/2 if the potential slowly increases from below E to above E.
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Remark

The left-hand side of the quantization condition above is precisely the adiabatic invariant

from M4, which stays the same if we change the system parameters slowly. This ensures the

quantization condition is preserved over time, as it must be for self-consistency. If you instead

change the system parameters quickly, the integral is not preserved, but that’s because the

change causes transitions from one energy level to another (i.e. to waves with different n).

[2] Problem 3. Consider a one-dimensional box of length L, with hard walls.

(a) Find the energy levels of a particle of mass m.

(b) Now suppose the particle is replaced with a photon, with E = pc. Find the allowed energies.

The frequencies you found in part (b) corresponds to the standing wave frequencies for electromag-

netic waves in a box with appropriate boundary conditions. (What are they?)

[2] Problem 4. Show that the energy levels of a particle of mass m on a one-dimensional spring of

spring constant k are

En = ~ω0

(
n+

1

2

)
, ω0 =

√
k

m
.

This system is called the quantum harmonic oscillator, and remarkably, this is the exact answer,

even though we used an approximation to get it. This result will be used in several problems below.

[3] Problem 5. �W10 USAPhO 2015, problem A1.

[5] Problem 6. �h10 IPhO 2006, problem 1. This is a neat problem which illustrates the effect of a

gravitational field on quantum particles, as well as the basics of interferometry, a subject developed

further in W2. Give this a try even if it looks tough; only the ideas introduced above are needed!

Idea 3: Bohr Quantization

In general, p dx may be replaced by any generalized momentum/position pair. For example,∮
Ldθ = nh.

When angular momentum is conserved, the left-hand side is simply 2πL, immediately giving

L = n~

which is Bohr’s quantization condition. Note that unlike the other n’s above, this n can be

positive or negative, representing a particle going clockwise or counterclockwise. In a system

of particles rotating together, L stands for the total angular momentum of the system.
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Example 1

Find the energy levels and orbit radii of the electron in the hydrogen atom using Bohr

quantization.

Solution

We postulate a circular orbit, and quantize the angular momentum. We have

mv2

r
=

e2

4πε0r2
, L = mvr = n~.

Solving the second equation for v and plugging into the first gives

r =
4πε0~2

me2
n2 = a0n

2

where a0 = 5.3× 10−11 m is called the Bohr radius; these are the allowed orbit radii. To get

the energies, we use the standard result for circular motion with an inverse square force that

the total energy is half the potential energy, so

E = − e2

8πε0r
= − me4

2(4πε0)2~2
1

n2
.

Evidently, they get more and more closely spaced together as n increases. The big constant

in front is called the Rydberg, and is equal to 13.6 eV.

[1] Problem 7. Find the energy levels of positronium, a bound state of a positron and electron.

[2] Problem 8 (USAPhO 2004). Electrons are accelerated from rest through a potential V into a

cloud of cold atomic hydrogen. A series of plates with aligned holes select a beam of scattered

electrons moving perpendicular to the plates. Immediately beyond the final plate, the electrons

enter a uniform magnetic field B perpendicular to the beam; they curve and strike a piece of film

mounted on the final plate.

When the film is developed, a series of spots is observed. The distances between the hole and

the two most distant spots are measured. You may assume that the film is large enough to have

intercepted all of the electrons, i.e. that there are no spots farther from the hole than those shown.

The number of spots shown is not necessarily accurate.

Make the approximation that the mass of the hydrogen atom is much larger than the mass of the

electron. Assume that each electron scatters off only one atom, which is initially in the ground state
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(lowest energy state) and has negligible thermal velocity. Determine B, V , and the total number of

spots on the film.

[3] Problem 9. A rotor consists of two particles of mass m connected by a rigid rod of length L.

(a) Find the energy levels if the particles are not identical.

(b) Find the energy levels if the particles are identical. (Hint: recall that the closed loop integrals

in the previous ideas are over paths that take the system back to its original state.)

You might find it disturbing that the result is so different if the particles are or aren’t completely

identical, but it’s a well-verified fact about molecular rotational energy levels. Without the effect

of part (b), many predictions of quantum mechanics come out totally wrong!

[3] Problem 10. �h10 INPhO 2020, problem 3.

[3] Problem 11. INPhO 2016, problem 6. Unfortunately, this question automatically comes with the

solutions, but it’s still useful to work through.

Remark

In popular science, people sometimes speak of “quantizing” a system as similar to making

everything discrete. But as you’ve seen above, it’s more complicated than that. For instance,

position never becomes discrete; instead, we integrate over it.

The general rule in quantum mechanics is that confinement to a finite “size” causes the

conjugate variable to become discrete. For example, above you looked at several examples of

particles bound to potentials. These are confined in space, and hence have discrete orbits in

phase space by idea 2, and thus discrete energies. But a free particle not bound to a potential

can have any energy, because E = p2/2m and there is no condition at all on p. On the

other hand, angles are always confined to the finite range [0, 2π], which is why the angular

momentum of any system is quantized.

2 Higher Dimensions

Idea 4

For a system with more than one degree of freedom, the WKB quantization condition holds

for each individually, ∮
pi dxi = nih.

In this case, there can be multiple quantum states with a given energy, in which case we say

that energy level is degenerate; the number of states with that energy is called the degeneracy.

[2] Problem 12. Consider a particle of mass m in a two-dimensional box of width and length L, with

hard walls. This is the two-dimensional analogue of problem 3.

(a) Write down the energy of the state corresponding to n1 and n2.
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(b) What is the lowest energy level with a degeneracy of greater than 2?

[4] Problem 13. Consider a particle of mass m in the potential V (x, y) = kr2/2. This is the two-

dimensional analogue of problem 4.

(a) By working in Cartesian coordinates, find all of the energy levels, as well as the number of

states within each energy level, called the degeneracy.

(b) [A] Now repeat the exercise in polar coordinates. In this case the integrals∮
pr dr,

∮
Ldθ

are quantized. Find the energy levels and their degeneracies. Note that for the radial motion,

you will have to use the effective potential, as covered in M6. You will run into a difficult

integral, so you may use the fact that∫ C+
√
C2−D2

C−
√
C2−D2

dx

√
2C

x
− D2

x2
− 1 = (C − |D|)π

valid for |D| ≤ C. How does your answer compare to that of part (a)?

Remark

Sommerfeld applied an analysis like that of part (b) of problem 13 to the Bohr model,

yielding the semiclassical orbits which are ellipses with the nucleus at the focus. (In fact, if

you’re so inclined, you can do this too, using the same provided integral.) This accounted

for the quantum numbers n and ` in hydrogen. The quantum number m comes from

additionally quantizing Lz, which implies that the elliptical orbits can only occur in certain

planes, an idea known as “space quantization”. Sommerfeld even managed to compute

the first relativistic corrections to the energy levels, explaining their so-called “fine structure”.

With all this included, the Bohr theory provides a complete description of the energy

levels of hydrogen, except that (1) the ` = 0 orbitals are missing, since they would have

to go straight through the nucleus, (2) space quantization seems artificial and breaks

rotational symmetry, and (3) the number of states isn’t quite right, a deficiency that would

later be fixed by including spin. Many complicated attempts were made to patch these

problems, or to extend the theory to multi-electron atoms, but they were forgotten af-

ter the modern theory of quantum mechanics (in terms of the Schrodinger equation) appeared.

However, what you’ve learned above is not completely irrelevant today. The correspondence

principle is the idea that quantum results should yield smoothly transition to classical ones

in the limit ~ → 0, which in this context means sending the quantum numbers to infinity.

And that’s exactly what happens. For high quantum numbers, you can superpose atomic

orbitals of nearby energy to create a sharply peaked wavefunction, just like how we could

create wavepackets from plane waves in W1. These peaks act like localized classical particles,

following the Bohr model’s orbits. Thus, intuition from the Bohr model is used when studying

Rydberg atoms, which are hydrogen-like atoms excited to very high energy levels.
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[3] Problem 14 (Grad). A crude model of an electron bound to an atom is a particle of mass m

attached to a one-dimensional spring, with spring constant k and hence frequency ω =
√
k/m.

Consider two such atoms.

(a) Write down the energy levels of the system, assuming the atoms are completely independent.

How many states correspond to each energy?

(b) Let the electrons have positions xi relative to their respective equilibrium positions. Now

suppose the atoms are brought close together, causing the electrons to repel. For simplicity,

we represent this in terms of an extra potential energy term k′x1x2, where k′ is small. Find

the new energy levels of the system exactly. (Hint: this can be done with a clever change

of variables. However, you have to be careful because changing to new coordinates x′i also

requires changing the momenta; after all, if we didn’t, then the quantization condition of

idea 2 would change, leading to different energy levels! If K is the kinetic energy, and you are

using momentum variables xi, then the momenta should be defined as pi = ∂K/∂ẋi.)

(c) Your answer should not make sense for large k′. Physically, what is going on?

Part (b) gives a simple example of how energy levels “split” in the presence of interactions.

Example 2

Consider a particle of mass m in a cubical box with side length L and hard walls. Find the

approximate number of quantum states with energy at most E0, where E0 is large.

Solution

Using the same reasoning as in previous problems, we apply “hard wall” boundary conditions,

requiring the wavefunction to go to zero at the boundary. Thus, the wavefunction is

ψ ∝ sin(kxx) sin(kyy) sin(kzz)

where

ki =
π

L
ni, ni positive integer

and the energy is

E =
p2

2m
=

~2k2

2m
.

The simplest way to proceed is to think in terms of “momentum space”, an abstract space

whose axes are px, py, and pz. The allowed states form a grid in the first octant of momentum

space, with a volume of (π~/L)3 for each state. The surface E = E0 corresponds to a sphere

of radius
√

2mE0. Therefore the number of states with energy at most E0 is approximately

N =
1

8

(
4

3
π(2mE0)

3/2

)(
π~
L

)−3
.

Now let’s solve the problem a slightly different way: suppose the box has periodic boundary

conditions, so that the right side is identified with the left side, and so on. In this case, the

wavefunctions can all be written in the form

ψ ∝ exp(i(kxx+ kyy + kzz))
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but now the allowed values of the wavenumbers are

ki =
2π

L
ni, ni integer.

The allowed states form a grid in all of momentum space, not just the first octant, with a

volume of (2π~/L)3 for each state. That is, while the volume around each state is eight times

as large, the states now occupy eight octants instead of one. Then the overall density of

states is still the same, and the number of states with energy at most E0 is approximately

N =

(
4

3
π(2mE0)

3/2

)(
2π~
L

)−3
which matches the result for hard walls. The point of this computation is to show that

when we care about the statistical properties of many states, the boundary conditions won’t

matter. In practice, you’ll see both kinds of boundary conditions quite often.

If you find the differences between the two boundary conditions confusing, you’re not alone.

In his original derivation of blackbody radiation, Lord Rayleigh used “hard wall” boundary

conditions but allowed negative ni, leading to a factor of 8 error. Jeans corrected it, which

is why the result is now called the Rayleigh–Jeans law.

[4] Problem 15. �@10 Do the following JPhO problem. This pedagogical problem introduces the WKB

approximation and phase space, reviewing everything covered above, and applies it to “clusters” of

atoms. You can skip sections I and III, which are covered elsewhere on this problem set.

[5] Problem 16. �h10 APhO 2014, problem 2. A nice problem on matter wave interference; background

from W2 will be helpful. If you want to see the actual data that shows that electrons act like waves,

you can see one of the classic papers here.

3 The Uncertainty Principle

Idea 5: Heisenberg Uncertainty

So far we have treated a quantum particle as having a well-defined position and momentum,

but in reality the uncertainties in the position and momentum obey

∆x∆p ≥ ~
2

where, as in P2, the uncertainties may be interpreted as standard deviations. The “semi-

classical limit” used in the rest of this problem set simply corresponds to the case where the

required uncertainty is relatively small, which is reached for energy levels n� 1. Occasionally,

Olympiad questions will ask you to use the Heisenberg uncertainty principle to make a very

rough estimate. In these cases, the constant factors will not matter.
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Idea 6: Energy-Time Uncertainty

There are two commonly used versions of the energy-time uncertainty principle. If the energy

of a system is only measured for a finite time ∆t, it must have a finite uncertainty ∆E in

its energy. In addition, if a system significantly changes its state in time ∆t, then its energy

must have been uncertain by a finite amount ∆E. In both cases, we have

∆E∆t ≥ ~
2
.

A third common statement of the energy-time uncertainty principle is “for a short time ∆t, a

system can violate energy conservation by an amount ∆E”. This is wrong, because quantum

systems always conserve energy; systems that naively seem to violate energy conservation

simply didn’t have a well-defined energy in their initial state to begin with. However, thinking

this way will usually get you the right answers, essentially because of dimensional analysis.

Example 3

Consider once again a particle of mass m attached to a one-dimensional spring, with natural

frequency ω. Use the uncertainty principle to estimate the minimum possible energy of the

particle, and compare it with the result of problem 4.

Solution

Suppose the uncertainties in position and momentum are ∆x and ∆p. Then the potential

energy is of order k(∆x)2/2 and the kinetic energy is of order (∆p)2/2m. Dropping constants,

E ∼ k(∆x)2 +
(∆p)2

m
& k(∆x)2 +

~2

(∆x)2m

where we applied the uncertainty principle. The ground state minimizes the energy, which is

achieved when (∆x)2 ∼ ~/
√
km. In this case, the energy is of order k~/

√
km ∼ ~

√
k/m ∼ ~ω,

which is just what we found earlier. (A similar derivation can be used to derive the energy

of the ground state of hydrogen, along with the Bohr radius; try it!)

Remark

We can also “solve” the above problem with the energy-time uncertainty principle incorrectly.

The only timescale in the problem is 1/ω, so

∆E &
~

∆t
∼ ~ω

so E & ~ω. However, in reality the ground state has no energy uncertainty; its energy is

simply the ground state energy. Another way of saying this is that a particle can hang out

in the ground state forever, so ∆t is infinite and hence ∆E is zero. This incorrect derivation

gives the right answer just because it’s the only possible answer by dimensional analysis.

Thus, a sloppy problem might ask you to do it.
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Example 4

Consider a single slit diffraction experiment, where photons of wavelength λ pass through a

slit of width a. If the screen is a large distance D away, roughly how wide is the resulting

diffraction pattern on the screen?

Solution

The photon has a momentum px = ~k = h/λ, and passing through the slit necessarily gives

it a transverse momentum uncertainty of

∆py ∼
h

a

where we dropped order one constants, which means an angle uncertainty of

∆θ ∼ ∆py
px
∼ λ

a
.

Therefore, using basic geometry, the size of the pattern on the screen is

∆y ∼ D∆θ ∼ Dλ

a
.

This is the approximate width of the central maximum for single slit diffraction, as we found

in W2. The reason the result is the same is that light acts like a wave both classically and

quantum mechanically; the quantum version of the derivation is just the same as the classical

version, but with “everything multiplied by h”. What’s new about this derivation is that it

also applies for matter particles, which have λ = h/p.

Example 5

The Higgs boson has a mass of 125 GeV and a lifetime of about τ = 1.6 × 10−22 s. About

what percentage uncertainty must a measurement of a Higgs boson’s mass have?

Solution

Decay is a significant change in the particle’s state, and this change happens over a time τ ,

which means the energy uncertainty is

∆E ∼ ~
τ

= 7× 10−13 J = 0.004 GeV.

When we measure the Higgs boson’s mass, we really measure the E = mc2 energy released

when it decays, so the unavoidable uncertainty of the mass is ∆E/E ∼ 0.003%. (But the

actual measured uncertainties are much higher, due to a variety of other effects.)

[1] Problem 17 (Krane 4.39). An apparatus is used to prepare an atomic beam by heating a collection

of atoms to a temperature T and allowing the beam to emerge through a hole of diameter d in
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one side of the oven. Show that the uncertainty principle causes the diameter of the beam, after

traveling a length L, to be larger than d by an amount of order L~/d
√
mkBT , where m is the mass

of an atom.

[2] Problem 18 (Insight 8.26). When helium is cooled to extremely cold temperatures, it becomes a

superfluid, an exotic type of liquid that can flow with zero dissipation. These strange properties

occur because quantum mechanical effects are large, making the quantum uncertainty in the position

of each helium atom on the same order as the separation between atoms.

(a) Given that superfluid helium has density ρ and a helium atom has mass m, estimate the

temperature T at which helium becomes a superfluid. This is closely related to, but not quite

the same thing as Bose–Einstein condensation, a phase transition that bosons undergo at low

temperatures.

(b) Numerically evaluate T , given that ρ ∼ 100 kg/m3 and m ∼ 7× 10−27 kg.

[4] Problem 19. A neutron is inside a small cubical box of side length d. Ignore gravity.

(a) Estimate the minimum possible pressure on the walls using the uncertainty principle, dropping

all numeric factors. In the next two parts, we’ll calculate the pressure more carefully.

(b) Calculate the average pressure on the walls by treating the neutron as a classical particle

bouncing back and forth, with the same momentum as expected for the ground state in the

WKB approximation.

(c) Calculate the average pressure on the walls by finding the energy E of the ground state using

the WKB approximation, and the definition of pressure, P = −∂E/∂V . (This actually gives

the exact answer. Of course, by dimensional analysis, taking P ∼ E/V would also produce

the right answer, up to a constant factor.)

(d) Now suppose that N � 1 neutrons are inside the box. Neutrons are fermions, as explained

in the next section, and hence no two can share the same quantum state. Neglecting any

interactions between the neutrons, estimate the minimum possible pressure on the walls, using

either the method of part (b) or (c). How does it scale with the number density n = N/V ?

The large pressure you will find in part (d) is known as degeneracy pressure. It supports compact

objects such as white dwarfs and neutron stars, as you’ll investigate in X3.

[3] Problem 20. �̂10 USAPhO 2018, problem B2.

[3] Problem 21. Classically, an electron orbiting a proton with frequency ωo emits radiation with

frequency ωc = ωo, as covered in E7. On the other hand, quantum mechanically the energy levels are

discrete, and using the de Broglie relation ∆E = ~ω indicates the frequencies of radiation emitted

when the electron drops between energy levels are discrete as well. The classical and quantum

models thus seem to be radically different, but in the limit n→∞ where quantum effects become

negligible, the two should match.

(a) Suppose that the electron can orbit the proton in circular orbits with discrete radii rn. For the

nth orbit, compute the frequency ωc of the emitted radiation according to classical mechanics.

(b) Now suppose the electron drops from the nth energy level to the (n−1)th energy level. Compute

the frequency ωq of the emitted radiation according to quantum mechanics, assuming the

orbits have radii rn.
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(c) In the limit n→∞, the results of parts (a) and (b) should coincide. Therefore, by equating

these results, infer how rn depends on n, and thus how L depends on n. If all goes well, you

should recover the result of Bohr quantization.

The reasoning here is exactly how Bohr came up with Bohr quantization in the first place. (The de

Broglie relation we had to use was motivated earlier through Planck’s law, as we showed in T2.)

[4] Problem 22. �@10 IPhO 2005, problem 3. You may skip part 4, since it’s quite similar to another

problem on this problem set.

4 Bosons and Fermions

So far, we’ve only solved for the energy levels of individual particles. Now we’ll consider what

happens when we put many of these particles together. We will assume the particles do not interact,

which means their energy levels are just the same as the energy levels for individual particles. If

the particles are fermions, they obey the Pauli exclusion principle, which means no two can occupy

the same energy level. If they are bosons, there is no such restriction; we’ll consider bosons first.

[3] Problem 23. This problem is a modification and clarification of USAPhO 2011 A4. (In fact, the

answers differ, so don’t compare against the USAPhO solution!) Consider a simplified model of the

electromagnetic radiation inside a cubical box of side length L at temperature T . In this model,

modes of the electric field have spatial dependence

E(x, y, z) = E0 sin(kxx) sin(kyy) sin(kzz)

where one corner of the box lies at the origin and the box is aligned with the x, y, and z axes. For

simplicity, we will treat the electric field as a scalar.

(a) The electric field must be zero everywhere at the sides of the box. What condition does this

impose on the ki?

(b) Each permitted value of the triple (kx, ky, kz) corresponds to a mode, which can be occupied

by any number of photons. Each photon has an energy E = ~ω, where ω = ck is the frequency

of the mode. How many modes have an energy per photon of at most kBT?

(c) As a crude approximation, suppose that in thermal equilibrium, each mode with energy per

photon at most kBT contains exactly one photon, while all other modes contain no photons.

Compute the total energy of the photons in the box. (Answer: (kBT )4L3/8π2~3c3.)

Note that the procedure here is different from what we did above. Before, we started with particles

and quantized
∮
p dx to get the allowed quantum states. Here, we’re treating a situation with many

particles (photons), which are excitations of an underlying field (the electromagnetic field). In this

case, we found the (normal) modes of the classical field, then quantized by saying that photons

could occupy these modes. This is the methodology of quantum field theory.

[4] Problem 24. The final result of the problem above is correct dimensionally, but has incorrect

numerical factors because of the crude approximations made. In this problem we’ll do a more

careful analysis to get the right result. This question is self-contained, but background from T1

and T2 will be helpful.
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(a) Consider a quantum mode that can support photons of energy E. The mode can be occupied

by any whole number of photons. Thus, using the Boltzmann distribution, the probability of

having n photons is

pn ∝ e−nE/kBT .

Show that the expected number of photons in the mode is

〈n〉 =
1

eE/kBT − 1
.

This is the Bose–Einstein distribution.

(b) Sketch 〈n〉 as a function of E. How does it behave at high and low E, and do those results

make physical sense?

(c) Using the Bose–Einstein distribution, show that the total energy is

U =
L3~
π2c3

∫ ∞
0

dω
ω3

e~ω/kBT − 1

where ω is the frequency. You’ll have to multiply by a factor of two, because there are two

independent photon polarizations for each mode we found above. (Note that if we open the

box, the photons will fly out, and the frequency distribution of the emitted light will be given

by the integrand; this yields Planck’s law for blackbody radiation.)

(d) [A] Using an appropriate substitution, show that U is a dimensionful constant times the

dimensionless integral ∫ ∞
0

dx
x3

ex − 1
.

To evaluate this integral, expand the denominator as a power series, integrate each term

individually, and use the fact that the Riemann zeta function obeys

ζ(s) =
∞∑
n=1

1

ns
, ζ(4) =

π4

90
.

When the smoke clears, you should find that

U =
π2

15

(kBT )4 L3

(~c)3
.

[5] Problem 25. �h10 APhO 2002, problem 1. This useful problem covers the other common example

of a quantized bosonic field. In the above problems, we quantized the electromagnetic field to get

photons. Here, we quantize a displacement field to get phonons.

Idea 7

In problems 23 and 24, we handled a system of bosons (specifically photons) by considering

the modes the photons could occupy, then calculating how many photons were in each mode.

This was the easiest route. If we had instead fixed the number of photons, then counted

the ways they could be distributed among the mode, the combinatorics would have been a
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complete nightmare, because multiple photons can occupy the same mode.

Fermions, which obey the Pauli exclusion principle, are simpler, because no two can be in

the same state. For instance, if there are n noninteracting fermions in a system, then the

lowest energy state of the whole system consists of having one fermion occupy the lowest

energy state, the second occupy the second-lowest energy state, and so on. (Accounting for

interactions makes the problem much more complicated, because it means the energy of a

state depends on whether other states are occupied. However, you can explain a surprising

amount while completely neglecting interactions.)

[2] Problem 26. Consider a system with many noninteracting fermions, and many quantum states.

Each quantum state can be either empty or occupied by a fermion. We want to find the probability

that a given quantum state, of energy E, is occupied.

(a) To put a fermion in this state, we need to remove a fermion from some other state. Suppose

the energy released by doing this, suitably averaged, is µ. (This is the chemical potential, and

it depends on the temperature, the number of fermions, and the number of states and their

energies.) Using the Boltzmann distribution, show that the probability of occupancy is

〈n〉 =
1

e(E−µ)/kBT + 1
.

This is the Fermi–Dirac distribution.

(b) Sketch 〈n〉 as a function of E for small but nonzero temperature, as well as the limit attained

for zero temperature.

[3] Problem 27. In this problem we’ll consider the energy of the conducting electrons in a solid at low

temperatures. Model a solid as a cubical box of side length L with periodic boundary conditions.

(a) Find the number of quantum states with energy at most EF , making sure to account for the

two spin states of the electron.

(b) Suppose there are N electrons in total. They will fill all of the energy levels up to µ = EF ,

where EF is called the Fermi energy. Show that

EF =
h2

2m

(
3N

8πV

)2/3

.

(c) A sodium crystal has one conduction electron per atom. The density and molar mass are

ρ = 0.971× 103 kg/m3, M = 0.023 kg/mol.

Find N/V and EF , and use this to evaluate the typical speed v of an electron.

[3] Problem 28 (MIT). [A] This is a very advanced problem that is only placed here because the

final result is neat. An integer N can be partitioned by writing it as a sum of positive integers, and

the partition function p(N) is the number of unique ways this can be done. For example,

4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2 = 1 + 3 = 4
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which implies p(4) = 5. Counting the number of partitions of an integer is an extremely hard

combinatorics problem, well beyond the scope of Olympiad mathematics, but we can get an estimate

for large N using physics.

(a) Consider an ideal string with hard boundary conditions and fundamental frequency ω. Show

that the number of distinct quantum states with energy N~ω is p(N).

(b) Now suppose the string is at temperature T , where T is chosen so that the expected energy

is N~ω. In the thermodynamic limit N � 1, find a relation between N and T . You may use

the result ζ(2) = π2/6.

(c) By using fundamental definitions, show that

~ω
kT

=
d log p(N)

dN
.

Combine this with your previous result to find an estimate for p(N).

To check your answer, the celebrated Hardy–Ramanujan formula (which is more accurate than the

very rough treatment we give above) is

p(N) ∼ 1

4
√

3N
exp

(
π

√
2N

3

)
.
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