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Mechanics VII: Fluids
The fundamental material is covered in chapters 15 and 16 of Halliday, Resnick, and Krane, and at

a somewhat higher level in chapter 9 of Wang and Ricardo, volume 1. For a neat explanation of lift

and the Coanda effect, see this video. For interesting discussion, see chapters II-40 and II-41 of the

Feynman lectures. For a much more advanced introduction which uses vector calculus heavily, see

chapters 2–5 and 12–15 of Physics of Continuous Matter by Lautrup. There is a total of 82 points.

1 Fluid Statics

Idea 1

In equilibrium, the pressure in a static varies with height as

dp

dy
= −ρg.

This always holds in equilibrium. For instance, if we squeeze a sealed container of fluid,

increasing the pressure locally, then this pressure increase must propagate throughout the

entire fluid to maintain dp/dy = −ρg. This is Pascal’s principle.

Idea 2: Archimedes’ Principle

An object in a fluid experiences an upward buoyant force due to the different pressures on

its top and bottom sides. The force is equal in magnitude to the weight of the water that

would fill the volume of the immersed portion of the object.

This can be surprisingly tricky, so we’ll begin with some conceptual questions.

Example 1

A large rock is tied to a balloon filled with air. Both are placed in a lake. As the balloon

sinks, how do the air pressure in the balloon, the average density of the balloon, air, and

rock system, and magnitude of the net force on the system vary?

Solution

For simplicity, we ignore the elastic force in the balloon itself. Then for the balloon to be in

equilibrium, its pressure must match that of the water pressure, so the air pressure in the

balloon increases. As the balloon sinks, the rock stays the same volume but the balloon is

squeezed smaller, so the density of the system increases. Finally, since the density of water is

very approximately constant, the buoyant force on the system is decreasing since its volume is

decreasing, so the net force is increasing; the system accelerates downward faster and faster.

[1] Problem 1 (HRK). The average human body floats in water. SCUBA divers wear weights and a

flotation vest that can fill with a varying amount of air to establish neutral buoyancy. A diver is

originally neutrally buoyant at a certain depth. How should the diver manipulate the amount of

air in their flotation vest to move to a lower depth, then stay there at neutral buoyancy?

1

https://knzhou.github.io/
https://www.youtube.com/watch?v=6H6EP-AmMFM&list=PLt5AfwLFPxWI9eDSJREzp1wvOJsjt23H_&index=3


Kevin Zhou Physics Olympiad Handouts

Solution. To move to a lower depth, the amount of air should be decreased. To stay at neutral

buoyancy, the amount of air should be increased. In fact, the amount of air in the vest should end

up greater than the original amount, because at a lower pressure, the same amount of air would be

squeezed to a smaller volume, making the vest less buoyant.

[2] Problem 2. A beaker is contains liquid water at its freezing point and has an ice cube floating in

it, also at its freezing point. If the ice cube

(a) is solid ice,

(b) contains a small metal ball, or

(c) contains olive oil (which floats on water),

then how does the fluid level change when the cube melts? In all cases, neglect the density of air.

Solution. (a) The water level does not change. The ice cube creates a “hole” in the water that

it sits in, and when it melts it exactly fills this hole.

(b) Initially the metal ball displaces its weight in water, which is large, but after the ice cube

melts it falls to the bottom and only displaces its volume in water. Hence the water level goes

down.

(c) Initially, the oil displaces its weight in water, but after the ice cube melts it sits on top, thereby

occupying its whole volume. Since the oil is less dense than water, the fluid level goes up.

(Specifically, the water level goes down, and an oil layer sits on top of it, at a height greater

than the original water level.)

As a sidenote, if we accounted for the density of air, then the answer to part (a) would actually be

that the water level goes up a tiny bit. The reason is that part of the ice cube poking out above

the water surface experiences an extra buoyant force from the air itself, which means the ice cube

is not as deep in the water as one would expect. So when it melts, it slightly more than fills the

hole, causing the water level to go up.

[2] Problem 3 (Povey, Moscow 1939). Consider a pair of scales with identical vessels in which there

are equal quantities of water.

In the left-hand vessel you suspend a very light ping-pong ball on a thin, light wire attached to the

base of the vessel. In the right-hand vessel you suspend a ping-pong ball filled with lead, again by

a light thin wire. Do the scales stay level, go down on the left, or go down on the right?

Solution. The ball on the right experiences an upward buoyant force, so it exerts a downward

force on the water. As for the ball on the left, it has no effect whatsoever on the force on the scale,

because this force is simply equal to the weight of all the water. Hence the scales go down on the

right.

2

https://knzhou.github.io/
http://olympiads.mccme.ru/mfo/


Kevin Zhou Physics Olympiad Handouts

[2] Problem 4 (BAUPC). Two trapezoidal containers, connected by a tube as shown, hold water.

Assume that the containers do not undergo thermal expansion.

(a) If the water in container A is heated, causing it to expand, will water flow through the tube?

If so, in which direction?

(b) What if the water in container B is heated instead?

Solution. (a) The pressure at the bottom of the containers is P = ρgh = mgh/V , where h is the

height of the water level above the container, V the volume, and m is the mass of the water

in the container. When A is heated and the water level in A rises, V/h (average area) will

increase as seen by the shape of the container. Thus PA = mgh/V will decrease, and water

will flow from B to A.

(b) In this case, V/h for B will decrease, since when the water level rises we include a section with

a smaller cross-sectional area. Thus PB will increase, and water will flow from B to A again.

[2] Problem 5 (MPPP 85). A solid cube of volume Vi and density ρi is fastened to one end of a cord,

the other end of which is attached to a light bucket containing water, of density ρw = ρi/10.

The system is in equilibrium.

(a) Find the volume Vw of the water in the bucket.

(b) What would happen if more water were poured into the bucket?

(c) What would happen if some or all of the water evaporated?

Solution. (a) There is a buoyant force of ρwVi on the block, which pushes the block up and

the bucket down. In equilibrium, the tension in the cord T must balance against the weight

of the block and the buoyant force: T = (ρiVi − ρwVi)g. Similarly for the water/bucket,

T = (ρwVw + ρwVi)g. Equating the two gets

ρwVw = ρiVi − 2ρwVi

Vw = 8Vi
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(b) The effective weight on the left side won’t change, but the bucket will be heavier. If the

final volume of water Vf is less than 10Vi, where Vf = 10Vi is when the system will be in

equilibrium if the block is out of the water, then the system will be in equilibrium at some

point with the block partially submerged. Once Vf > 10Vi, the bucket will just keep falling.

(c) The cube will fall until it hits the bottom of the bucket (the amount of evaporation doesn’t

matter), and then the system will be stuck there since the cube can’t pass through the bucket.

Example 2

A perfectly spherical, nonrotating planet is covered with water. Geological activity causes a

small underwater mountain to form, made of rock that is denser than water. Does the ocean

surface above this mountain become higher or lower?

Solution

Systems minimize their energy in equilibrium. This means that in hydrostatic equilibrium,

the surface of the water is an equipotential. Since the gravitational field of the mountain

increases the gravitational potential near it, the water surface is higher near the mountain.

Example 3

Robert Boyle is best known for Boyle’s law, but he also invented a remarkably simple perpetual

motion machine, called the perpetual vase.

Since the volume of the vase is much greater than the neck, the pressure in the neck cannot

possibly hold up all of the water in the vase. Hence the water will flow through the neck and

fall back into the vase, causing perpetual motion. Why doesn’t this work?

Solution

This is an example of the hydrostatic paradox. Most of the upward force on the water is

not provided by the pressure in the water in the neck, but from the normal force from

the walls; each piece of wall provides enough normal force to hold up all of the water

above it. (Of course, ultimately each piece of the glass is held in place by internal forces

with other pieces of the glass, which ultimately are balanced by whatever is holding the glass.)

Thus, the water in the neck only supports the water directly above it. That’s precisely what

is balanced by the heightened pressure in the neck, so the water doesn’t start moving.
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[2] Problem 6. Below is another perpetual motion machine, in both original and modern form.

The balls are less dense than water. The balls on the left are pulled downward by gravity, while the

balls on the right are pushed upward by the buoyant force. Why doesn’t this work? Moreover, can

you explain why it still wouldn’t work if the balls and chain were replaced with a flexible tube of

constant thickness?

Solution. Let the balls have volume V , and the column have height h. The positive work done on

a ball by the buoyant force, as it climbs the length of the column, is

Wup = F∆x = (ρgV )h.

On the other hand, it costs work to insert the ball into the column at the bottom,

Win = P ∆V = (ρgh)V.

Thus, the energy you get from letting a ball go all the way up is just the energy you put in by

pushing the ball in at the bottom, so there’s no free energy.

What this means in practice is that if you actually set up the system, it will start moving a bit

until the first ball hits the bottom of the column, and then it won’t be able to go in. If you push it

in, then the chain will start going around, but only at a constant speed, until friction slows it down.

Now suppose we use a tube of constant thickness. The appeal of this setup is that we don’t have

any P∆V energy costs, so Win = 0. However, it doesn’t work because the buoyant force vanishes,

so Wup = 0 too. This is because the buoyant force is only ρgV if the entirety of the object with

volume V is surrounded by water. Since the tube just goes right through the bottom of the column,

there’s no water present to push up on the bottom of the tube, and hence no buoyant force.

[2] Problem 7 (HRK). A fluid is rotating at constant angular velocity ω about the vertical axis of

a cylindrical container. Show that the liquid surface is a paraboloid, i.e. a vertical cross section of

the surface is the curve

y =
ω2r2

2g
+ const.

Since a paraboloid focuses incoming light, a rotating fluid can be used as a telescope, as was

first pointed out by Isaac Newton. Liquid-mirror telescopes are cheaper than comparably sized
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conventional telescopes, which require a large piece of glass to be carefully ground into the right

shape. The main disadvantage is that the liquid mirror can only point up.

Solution. On a cylindrical shell of radius r and height h, force balance gives

dp(2πrh) = ω2r(ρ(2πrh dr)) =⇒ dp

dr
= ρω2r.

Thus, the dependence of pressure on radius is p(r) = p(0) + ρω2r2/2. On the other hand, we also

know that in hydrostatic equilibrium, the pressure must be p = p(0) + ρgy(r). Equating these two

expressions,

p0 +
1

2
ρω2r2 = p0 + ρgy(r)

gives the desired result.

[3] Problem 8. �W10 USAPhO 2013, problem A4. In order to make measurements, print out the

problem before starting.

2 Fluid Mechanics

Next we’ll consider some situations involving fluids and other objects, where the fluids can be

treated at least quasistatically but the objects must be treated dynamically.

Idea 3

The buoyant force can be regarded as acting at the center of gravity of the fluid displaced by

the submerged part of a floating object, called the center of buoyancy. A floating configuration

is stable if, when the configuration is slightly rotated, the buoyant force provides a restoring

torque about the center of mass.

[2] Problem 9 (Kalda). A hemispherical container is placed upside-down on a smooth horizontal

surface. Water is poured in through a small hole at the bottom of the container. Exactly when the

container fills, water starts leaking from between the table and the edge of the container.

Find the mass of the container if the water has density ρ and the hemisphere has radius R.

Solution. Note that right when the water is full, the normal force between the ground and the

container is 0. Thus, the weight of the container and water is balanced by the normal force on the

water. However, this is just ρgR(πR2), so we have(
M +

2

3
πR3ρ

)
g = ρgπR3,

so M = ρπR3/3 . Note that the atmosphere has a negligible effect here, because if all atmospheric

effects are accounted for, the net effect is just a tiny buoyant force on the container and water.
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[2] Problem 10 (MPPP 89). A thin-walled hemispherical shell of mass m and radius R is pressed

against a smooth vertical wall.

It is filled with water through a small aperture at its top, with total mass M . Find the minimum

magnitude of the force that has to be applied to the shell to keep the liquid in place.

Solution. We consider the system of the water and shell. The external force F exerted must

counteract the vertical force of gravity, and the horizontal force of the hydrostatic pressure from

the wall. First, vertical force balance gives

Fy = (M +m)g.

Evaluating horizontal force balance is slightly trickier. However, note that by symmetry, the average

pressure at the part of the wall touching the water is precisely the pressure at the vertical center of

the hemisphere, so

Fx = PA = (ρgR)(πR2) = πR3ρg =
3

2
Mg.

Thus, the total force needed is

F =
√
F 2
x + F 2

y = g

√
13

4
M2 + 2Mm+m2.

Note that we ignored the effect of the atmosphere in this question, which would be tiny in any case;

one can tell that it should be ignored since the problem statement never specified the density of air.

Technically, we should verify that the torques can be balanced too, by choosing an appropriate

point to apply the force F . Take the origin O to be the center of the hemisphere, so that the radial

pressure of the curved part produces no torque. The applied force needs to cancel the torques from

gravity and the pressure from the wall. It turns out there always exists a point of application for F

that does this, but showing it explicitly is messy and unenlightening. In this problem, you’re just

meant to see intuitively that torque can be balanced.

[3] Problem 11. �W10 USAPhO 2002, problem A4.

[3] Problem 12. �W10 USAPhO 2004, problem A2.

[3] Problem 13. A log with a square cross section and very low density will float stably with one of

its sides parallel to the water.

(a) If the density of the log is increased, show that when

ρlog =
3−
√

3

6
ρwater
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the orientation becomes unstable. (Hint: to keep the calculations short, choose a good

coordinate system and work to the lowest relevant order everywhere.)

(b) How do you think the orientation of the log varies as ρlog is varied? In particular, what’s the

orientation when ρlog/ρwater = 1/2? How about when ρlog ≈ ρwater?

Finding the stable orientation of the log for general values of ρlog is quite complicated, but you can

play with a nice simulation here; you can also use this to check your answer.

Solution. For simplicity, we’ll set the side length of the log to 1.

(a) The task reduces to finding how the center of mass and center of buoyancy move after an

infinitesimal rotation dθ. For simplicity, we align the coordinate system with the log and place

the origin at the center of mass.

The fraction of the log submerged is α = ρlog/ρwater. To compute the coordinates of the center

of buoyancy we split it into two pieces as shown above. Then

xB =
1

α

(
1

6
· dθ

2
+ 0 ·

(
α− dθ

2

))
=

dθ

12α

and

yB =
1

2
− α

2
+O(dθ).

where y is positive downward. For neutral stability, (xB, yB) must lie on a vertical line from

the center of mass, which implies xB/yB = dθ, so

1

12α

(
1

2
− α

2

)−1
= 1.

This is a quadratic equation with solution α = (3−
√

3)/6.

(b) When ρlog/ρwater = 1/2, it’s fairly intuitive that the log sits at a 45◦ angle, with a corner

facing directly down. And when ρlog ≈ ρwater, the result is the same as in the low density case:

the log sits with a side parallel to the water surface. However, it’s much less intuitive for other

values of the density. As you can see in the linked simulation, the equilibrium orientation can

actually be at any angle, depending on the density.

This is a subtle and unintuitive result. In fact, an entire paper has been written on this

problem, which you can see if you want more details!
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Remark

Some Olympiad questions involving oscillating fluids, which are more subtle. These questions

are usually impossible to solve exactly, because one must keep track of the entire motion of

the water to know how much kinetic and potential energy are in play. In M4, you solved

IPhO 1984, problem 2, which only asked for an order of magnitude estimate. Physics Cup

2018, problem 4 asks for the exact frequency of oscillation in a V -shaped container, which

can be done exactly, though it requires mathematical tricks.

[4] Problem 14. �@10 EuPhO 2022, problem 1. A nice fluid oscillations problem which can be solved

nearly exactly without too much trouble.

Solution. See the official solutions here.

Idea 4: Virtual Mass

When an object moves through water, it effectively has extra inertia because it forces water

to move as well. This is the “virtual mass” effect (also called added mass, or hydrodynamic

mass) which we first mentioned in M4. It can be computed exactly in a few special cases:

∆m =

{
ρV/2 sphere

ρV long cylinder moving perpendicular to axis

where ρ is the water density and V is the volume of the object. You don’t have to memorize

these results, but the idea of virtual mass does occasionally show up. For instance, IPhO

1995, problem 3 involves oscillations of a cylindrical buoy of mass m which is only partially

submerged in water; they ask you to simply assume a virtual mass m/3. Furthermore, Physics

Cup 2019, problem 1 introduces a slick method, based on vector calculus analogies, which

can be used to compute the virtual mass exactly for a few more special shapes.

Example 4

Derive the expression for the virtual mass of a sphere.

Solution

Consider a spherical object of radius a moving uniformly with speed v0 through water

of density ρ. The object forces the water to move: the water ahead of it has to get out

of the way, while the water behind it needs to fill the space it leaves behind. By the

ideas of M4, the total kinetic energy of the water is (∆m)v20/2, where ∆m is the virtual mass.

It turns out the fluid’s velocity field v(r) has to satisfy∇·v = 0, reflecting the incompressibility

of water, and ∇ × v = 0, reflecting the absence of vorticity. It also has to go to zero far

from the sphere, and have zero relative normal velocity at the sphere itself. These differential
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equations and boundary conditions turn out to yield the unique solution

v(r) =
v0a

3

2r3
(2 cos θ r̂ + sin θ θ̂)

in polar coordinates, where we placed the origin at the center of the sphere and aligned the

ẑ axis with its direction of motion. If you’ve done E1, you might notice this is just like

the electric dipole field; this coincidence isn’t too surprising because that field satisfies the

similar equations ∇ ·E = 0 and ∇×E = 0, which are quite restrictive.

Now, to derive the virtual mass, we just have to carry out the kinetic energy integral, which

is easiest in spherical coordinates,

K =

∫
ρv2

2
dV

=
ρv20a

6

8

∫ ∞
a

r2 dr

r6

∫ 2π

0
dφ

∫ π

0
(sin θ dθ)(4 cos2 θ + sin2 θ)

=
ρv20a

6

8

(
1

3a3

)
(2π)(4).

This yields a virtual mass of (2π/3)ρa3 = ρV/2, as stated above.

Example 5

What is the initial upward acceleration of a spherical air bubble in water?

Solution

The upward buoyant force on the bubble is ρV g, and the mass of the bubble is negligible, so

if we didn’t know about virtual mass, we would be tempted to conclude the acceleration is

enormous. Instead, the buoyant force is used to move the virtual mass ρV/2 out of the way,

so the upward acceleration is 2g.

Like most things in fluid dynamics, this isn’t an exact result. The usual expression for the

buoyant force assumes no motion at all, while the virtual mass derivation assumes uniform

motion, neither of which are true for an accelerating bubble. For the result above to be

accurate, the bubble has to be small, so that the pressure and flow fields have time to reach

a quasi-steady state, but not too small, so that we can still ignore viscous forces.

3 Fluid Dynamics

Idea 5: Continuity

In steady flow, the quantity ρAv is constant along tubes of streamlines.

10

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Idea 6: Bernoulli’s Principle

Assuming steady, nonviscous, incompressible flow, the quantity

p+
1

2
ρv2 + ρgy

is constant along streamlines.

Example 6: HRK

A tank is filled with water to a height H. A hole is punched in one of the walls at a depth h

below the water surface as shown.

Find the distance x from the foot of the wall at which the stream strikes the floor.

Solution

The flow isn’t perfectly steady, but it’s close enough since the hole is small. We thus apply

Bernoulli’s principle along a streamline, where one point is at the water’s top surface, and

the other point is just outside the hole. Both points are at atmospheric pressure, because

they are directly exposed to the atmosphere. Since the hole is small compared to the tank,

the velocity at the first point is small by continuity, so we neglect it, giving

1

2
ρv2 = ρgh

which implies Torricelli’s law,

v =
√

2gh.

The time t to fall is t =
√

2(H − h)/g, so

x = vt = 2
√
h(H − h)

which incidentally is maximized at h = H/2.
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Remark

In example 6, we invoked Bernoulli’s principle to derive Torricelli’s law in the case of flow out

of a small hole. Bernoulli himself was aware that the answer was different for a large hole, and

treated the general case in his 1738 book, Hydrodynamica. The method is to apply energy

conservation to all of the water at once (i.e. equating the rate of decrease of gravitational

potential energy to the rate of increase of total kinetic energy), rather than attempt to apply

it along streamlines. You can see this general analysis here.

Example 7

Why should you close your barn door during a storm?

Solution

The wind in a storm can flow into the barn, at which point it stops. By Bernoulli’s principle,

this increases its pressure by ρv2/2. On the other hand, the wind that doesn’t enter the

barn has to flow faster along the top to get around it, which decreases its pressure. These

two effects both create a net upward force on the roof, which can tear it off the barn. The

latter effect caused my trampoline to achieve liftoff during Hurricane Sandy, destroying a

backyard fence.

Incidentally, this example brings up a little puzzle about Bernoulli’s principle. We argued

that the air slows down when it enters the barn, so the pressure goes up. But in the reference

frame moving with the wind, the air speeds up when it enters the barn – so shouldn’t its

pressure go down? The issue with this reasoning is two-fold. First, in the wind’s frame, the

barn is moving, so the flow isn’t steady and Bernoulli’s principle doesn’t apply. Second, even

if the barn were moving slowly, so that the flow were almost steady, the barn’s motion would

still be doing work on the air, and this changes Bernoulli’s principle because it is ultimately

a restatement of energy conservation. So in either case, the reasoning fails. When obstacles

are present, Bernoulli’s principle should always be invoked in the frame of the obstacles.

Example 8: JEE 2020

When a train enters a narrow tunnel, your ears pop because of the pressure change. Find

the pressure change, assuming the air has constant density ρ, the atmospheric pressure is P0,

the train speed is v, and the cross-sectional areas of the train and tunnel are At and A0.

Solution

We work in the reference frame of the train. In this frame, the air in the tunnel begins

moving towards the train at speed v. When it gets to the train, it has to speed up to speed

vf because it flows through a smaller area A0 −At, and this causes its pressure to decrease

by Bernoulli’s principle. Specifically, we have

A0v = (A0 −At)vf , Pf +
1

2
ρv2f = P0 +

1

2
ρv2
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which gives a pressure drop of

Pf − P0 = −1

2
ρv2

(
1

(1−At/A0)2
− 1

)
.

We neglected the change in density of the air, which is a good approximation when the train

is much slower than the speed of sound. We’ll treat fluid flow with changing density in T3.

Example 9

A whirly tube is a long, narrow, flexible tube that produces musical tones when swung. Model

a whirly tube as a cylinder of length L, rotated about one end with angular velocity ω. For

simplicity, neglect gravity. What is the speed of the air when it shoots out the other end?

Solution

The air is slowly sucked from all directions around the entry hole, and shot out at the exit

hole. Applying Bernoulli’s principle between a point near the entry hole, and the exit hole,

Patm ≈ Patm +
1

2
ρv2out.

But that implies vout ≈ 0, which doesn’t make sense. The problem is that Bernoulli’s

principle applies to steady flows, and this situation is definitely not steady: by the time the

air goes through the tube, the tube has rotated by a significant amount.

Instead, we apply Bernoulli’s principle in a reference frame rotating with the tube. The

centrifugal force gives an addition term, turning it into

P +
1

2
ρv2 − 1

2
ρω2r2 = const.

Applying Bernoulli’s principle between the same two points gives

Patm ≈ Patm +
1

2
ρv2 − 1

2
ρω2L2

from which we conclude v = ωL. Transforming back to the original reference frame, the exit

speed of the air is
√
v2 + (ωL)2 =

√
2 v.

[2] Problem 15 (HRK). A siphon is a device for removing liquid from a container that is not to be

tipped. It operates as shown.
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The tube must initially be filled, but once this has been done the liquid will flow until its level drops

below the tube opening at A. The liquid has density ρ and negligible viscosity.

(a) With what speed does the liquid emerge from the tube at C?

(b) What is the pressure of the liquid at the topmost point B?

(c) What is the maximum possible h1 so that the siphon can operate?

(d) Would the siphon still work if h2 were slightly negative? How negative can it be, for the

siphon to keep on working?

Solution. (a) Applying Bernoulli’s principle between the surface of the water and point C gives

1

2
ρv2 = ρg(h2 + d)

which implies

v =
√

2g(h2 + d).

(b) By continuity the speed v in the tube is constant. Applying Bernoulli’s principle between

points B and C gives

patm = pB + ρg(h1 + h2 + d)

which gives

pB = patm − ρg(h1 + h2 + d).

(c) For the siphon to just barely work, the flow speed v should be tiny, so h2 + d ≈ 0. The

highest value of h1 is when the pressure is zero at point B, since pressure can’t be negative, so

h1 ≤ patm/ρg. (If we start with this maximum possible value of h1 but then increase h2 + d

above zero, then the siphon will stop working, because the water flow will break up along the

exit tube.)

(d) Yes. It is still energetically favorable for water to flow through the siphon as long as point C is

below the surface of the water. As mentioned above, the siphon works as long as h2 + d > 0.
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[2] Problem 16 (HRK). Consider a uniform U-tube with a diaphragm shown below.

(a) Suppose the diaphragm is opened and the liquid begins to flow from left to right. Show that

applying Bernoulli’s principle yields a contradiction.

(b) Explain why Bernoulli’s principle doesn’t apply if the diaphragm has a very wide opening.

(c) Explain why Bernoulli’s principle doesn’t apply if the diaphragm has a tiny opening.

For a similar idea to this problem, see F = ma 2018 A22.

Solution. (a) Since the pressures and velocities at points 1 and 3 are the same, Bernoulli’s

principle would imply the heights are also the same, which is false.

(b) Bernoulli’s principle is just energy conservation, applied to water moving along a streamline.

In this case, the liquid just oscillates back and forth, with point 1 and point 3 alternating

periodically in height. Bernoulli’s equation can’t be applied between points 1 and 3 because

water never moves all the way from point 1 to point 3; it just wiggles back and forth.

(c) In this case, viscous effects are not negligible. Energy is dissipated to heat, so Bernoulli’s

principle doesn’t apply. This should be intuitively clear, but more formally, the result of

problem 26 shows the pressure loss ∆p ∝ v/R2, where v is the fluid velocity through the

diaphragm, and here R is small.

But what if we used a very nonviscous fluid? In that case, you would still lose energy, but

to turbulence; the flow pattern after the diaphragm’s opening would look like the setup of

problem 17. Energy in turbulent eddies eventually dissipates to heat, so we again lose energy

and Bernoulli’s principle doesn’t apply.

But what if the diaphragm is also shaped like a smooth curve, to prevent turbulence? In that

case, you don’t lose energy, but the flow isn’t steady. The fluid continually accelerates as it

goes through the diaphragm; in the long run the heights of points 1 and 3 alternate, as in

part (b). Fluid does go all the way from point 1 to point 3, but Bernoulli’s principle can’t be

applied because the flow isn’t steady.

[2] Problem 17 (HRK). Consider a stream of fluid of density ρ with speed v1, passing abruptly from

a cylindrical pipe of cross-sectional area a1 into a wider cylindrical pipe of cross-sectional area a2
as shown.
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The jet will mix with the surrounding fluid and, after the turbulent mixing, will flow on almost

uniformly with an average speed v2.

(a) Without referring to the details of the mixing, use momentum ideas to show that the increase

in pressure due to the mixing is approximately

p2 − p1 = ρv2(v1 − v2).

(b) Show from Bernoulli’s equation that in a gradually widening pipe we would get

p2 − p1 =
1

2
ρ(v21 − v22).

(c) Find the loss of pressure due to the abrupt enlargement of the pipe. Can you draw an analogy

with elastic and inelastic collisions in particle mechanics?

Solution. (a) Multiplying both sides by a2, we see that the left hand side is the force on the

region bounded by the two circles, and the right-hand side is the change in momentum, since

ρv2a2 is the mass per unit time, which is the same before and after.

(b) This is simply a direct application of Bernoulli’s principle.

(c) The extra loss of pressure is the difference,

∆p =
1

2
ρ(v1 − v2)2.

As in an inelastic collision, the loss of energy (reflected in the loss of pressure, which is

essentially like elastic potential energy) goes as the square of the relative speed.

[2] Problem 18 (PPP 49). After a tap above an empty rectangular basin has been opened, the basin

fills with water in a time T1. After the tap has been closed, opening a plug at the bottom of the

basin empties it in time T2. If both the tap and plug are open, what ratio of T1/T2 can cause the

basin to overflow?

Solution. Let water come out of the tap at a volumetric flow rate of V̇ , so that the rectangular

basin with cross-sectional area A and height h0 will can be filled in time T1 = Ah0/V̇ .

When the plug at the bottom with cross sectional area a has been opened, water will flow out at

a velocity of v =
√

2gh giving a volumetric flow rate of −a
√

2gh, where h is the water depth. Then

d

dt
(Ah) = A

dh

dt
= −a

√
2gh,
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−
∫ 0

h0

dh√
2gh

=

∫ T2

0

a

A
dt,√

2h0
g

=
a

A
T2.

In order to overflow the water basin, the tap needs to add water faster than the plug drains water

when water is draining at the fastest (when the basin is almost full). The overflow condition is then

V̇ =
Ah0
T1

> a
√

2gh0.

Plugging in our result for T2 gives
T1
T2

<
1

2
.

This differs from the naive answer T1/T2 = 1 because the rate of emptying depends on the current

water height. This also implies that all those elementary school questions about filling and emptying

a basin simultaneously are wrong. For example, you might have once been asked, “if a basin can be

filled in 2 minutes and drains in 3 minutes, how long does it take to fill if the drain is open?” The

naive answer is 6 minutes, but the real-life answer is that it never fills up all the way.

[4] Problem 19. This problem is about the subtle phenomenon of vena contracta. An incompressible

fluid of density ρ is flowing through a tube of area A1, which suddenly contracts to area A2 � A1.

Naively, the flow looks as shown below.

(a) Argue by energy conservation that

v22 ≈ 2
P1 − P2

ρ
.

(b) Argue that the net force on the fluid shown in the picture is approximately (P1−P2)A2. Then

argue by momentum conservation that

v22 ≈
P1 − P2

ρ
.

17

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

(c) The resolution of the paradox is that the “v22” in the first equation is the speed, while the

“v22” in the second is really (v2)
2
x. That is, the naive picture above is wrong: the fluid does

not exit through the orifice horizontally, but rather contracts as it leaves. Show that if the

fluid contracts to a minimum area A3 with P3 � P1, then A3 = A2/2, so that momentum

conservation is satisfied.

(d) Even assuming ideal fluid flow satisfying Bernoulli’s principle, the result above for A3 is not

exact, but is instead off by about 20%. Is the true value of A3 higher or lower than A2/2?

(e) How could the shape of the orifice be modified so that A3 is exactly A2/2? How could the

orifice be modified to remove the vena contracta effect entirely?

Solution. (a) Applying Bernoulli’s equation,

1

2
ρ(v22 − v21) = P1 − P2.

Since A1v1 = A2v2 and A2 � A1, we have v22 − v21 ≈ v22, so the desired equation follows.

(b) Taking a tube bounded by A1 and A2 and apply F = dp/dt to the fluid within it. The pressure

at the walls is approximately P1 everywhere, so the force cancels out except at the area A2.

The net force is

F ≈ (P1 − P2)A2.

On the other hand, the rate of change of momentum is (dm/dt)v2 = ρA2v
2
2, where we again

use v1 � v2, giving the result.

(c) Neglecting P3, Bernoulli’s principle gives

1

2
ρv23 ≈ P1.

To use momentum conservation, apply F = dp/dt to a tube bounded by A1 and A3, giving

F ≈ P1A2,
dp

dt
= ρA3v

2
3

which gives us
A3

A2
ρv23 ≈ P1.

Combining these equations gives A3/A2 ≈ 1/2 as desired.

(d) In reality, the pressure on the right wall is not precisely P1, but instead slightly lower near the

hole because the fluid has velocity there. Hence the net force is actually larger than expected,

so A3 > A2/2.

(e) We can force the net force to be almost exactly P1A2 using the “Borda mouthpiece” below.
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On the other hand, the vena contracta effect can be removed by just making a curved opening

that follows the path the water would have taken without it, ending at the area A3. The

water comes out of such a hole exactly straight.

Remark

Vena contracta is too subtle for introductory textbooks, but it makes a big difference in the

results. For example, if you estimate how long it takes water in a bucket to empty through

a hole using Torricelli’s law, then you’ll be off by about a factor of 2 if you don’t include

vena contracta! And Halliday, Resnick, and Krane don’t consider the vena contracta in their

example titled “thrust on a rocket”, getting a thrust which is also off by a factor of 2.

Of course, real rocket scientists are well-aware of these effects. They actually follow the fluid

flow in detail, improving on the rough estimates made here, and you can read whole books

about rocket nozzle design. We’ll revisit this subject in T3.

4 Fluid Systems

Now we put it all together and consider complex mechanical systems with moving fluids.

Idea 7

If a fluid is moving in a complex way, it’s usually difficult to say anything by directly

considering the flow. Instead, it’s easier to apply conservation laws.

Example 10

A fluid of density ρ flowing with a fast velocity v1 and height h1 can undergo a “hydraulic

jump”, where the height of the fluid increases to h2. At the same time, the fluid flow slows

down and becomes turbulent.

This phenomenon is very common in everyday life. For example, it happens whenever you

turn on the water faucet in a sink; the hydraulic jump occurs on a circle centered on the

faucet. Find the final height h2.

Solution

During this process, the bulk kinetic energy of the water is not conserved, because it is

converted to turbulent motion. However, the horizontal momentum of the water is approxi-

mately conserved. Consider a stream of water of width w flowing in the x direction, where
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the hydraulic jump occurs at x = 0. By mass conservation,

v1h1 = v2h2

where v2 is the final speed. Now we consider a fixed subset of the water encompassing the

hydraulic jump. The atmospheric pressure does not yield a net horizontal force on the water,

so we focus on the pressure in excess of atmospheric pressure. The total excess pressure force

on the left end is

F` =

∫ h1

0
ρghw dh =

1

2
ρgwh21.

Therefore, we have total force

F =
1

2
ρgw(h21 − h22).

On the other hand, the mass of water that flows through the hydraulic jump per unit time

is ρh1wv1, and its velocity decreases by v1 − v2, so

dp

dt
= ρh1wv1(v1 − v2) = ρwv1v2(h2 − h1)

where we used mass conservation. Equating F = dp/dt and simplifying gives

g(h1 + h2) = 2v1v2.

Applying mass conservation again leads to a quadratic in h2,

h22 + h1h2 −
2v21h1
g

= 0

and the physically relevant positive solution is the answer,

h2 = −h1
2

+

√
h21
4

+
2h1v21
g

.

For v21 > gh1, we have h2 > h1 and an ordinary hydraulic jump. For v21 < gh1, you might

expect a “reverse” hydraulic jump to occur, but this is impossible by the second law of

thermodynamics. In a hydraulic jump, some of the kinetic energy of laminar flow energy

is converted to turbulent flow, which is essentially heat; thus the reverse can’t happen.

So in addition to deriving h2, we’ve found the minimum v1 for a hydraulic jump to be possible!

Note that this conservation law approach doesn’t tell us about how far a fluid will flow before

it undergoes a hydraulic jump. That would require understanding the fluid flow in detail,

accounting for turbulence and viscosity, which is generally analytically intractable. For more

on this subject, see sections 26.1 and 26.2 of Lautrup.

[3] Problem 20 (PPP 70). A tanker full of liquid is at rest on a horizontal road, and can move without

friction.
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A vertical outlet pipe at the rear of the tanker is opened. Describe qualitatively how the tanker

will move immediately afterward, and after a long time. Assume that the water always falls out of

the cart with zero horizontal velocity (in the cart’s frame) and that the water surface is always flat.

Solution. Since there’s no net horizontal force on the tanker and liquid system, the center of mass

must stay stationary and in the same position. When a bit of water flows out through the bottom

at the beginning, the water is transferred to the left. In order to keep the center of mass stationary,

then the tanker must move to the right.

When the water exits the tanker, it moves with the same horizontal velocity as the tanker.

During steady state, as the tanker continues moving towards the right, the exiting water will also

move to the right, with the velocity of the center of mass being kept at zero with the water moving

to the left inside the tanker. When all the water leaves the tanker, there must be a final impulse

that makes the tanker start moving to the left, since all the water that flowed out is moving to the

right. (If you want to know what happens in more detail, the most complete analysis is here.)

[3] Problem 21 (PPP 74). A jet of water strikes a horizontal gutter of semicircular cross-section

obliquely, as shown.

The jet lies in the vertical plane that contains the center-line of the gutter. Assume the angle is

relatively shallow, so that the water hits the gutter smoothly, and doesn’t splatter. Find the ratio

of the quantities of water flowing out at the two ends of the gutter as a function of the angle of

incidence α of the jet.

Solution. Let the original water jet have area A0 and speed v. Let v1 be the speed of the stream

to the right, and let A1 be its area. Similarly define v2 and A2. First, we claim that

v = v1 = v2.

This follows directly from Bernoulli’s principle. The incoming jet has atmospheric pressure, because

it’s exposed to the air, and so do the two streams. Since they have the same pressures, the have

the same speeds. (Of course, this wouldn’t be true if energy was dissipated. For instance, if the

water jet were fast and directed straight down, water would splatter everywhere.)

Next, conservation of mass gives

A0 = A1 +A2.

Conservation of horizontal momentum gives

ρAv2 sinα = ρA1v
2 − ρA2v

2
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which implies

A sinα = A1 −A2.

Combining this with mass conservation gives

A1 =
1 + sinα

2
A, A2 =

1− sinα

2
A.

Since the speeds are the same, the ratio of flow rates is just the ratio of areas,

A1

A2
=

1 + sinα

1− sinα
.

[3] Problem 22 (EFPhO 2005). A water pump consists of a vertical tube of cross-sectional area S1
topped with a cylindrical rotating tank of radius r. All the vessels are filled with water; there are

holes of total cross-sectional area S2 � S1 along the perimeter of the tank, which are open for the

operating regime of the pump. The height of the tank from the water surface of the reservoir is h.

An electric engine keeps the vessel rotation at angular velocity ω. The water density is ρ, the air

pressure p0, and the saturated vapor pressure pk. Inside the tank, there are metal blades, which

make the water rotate with the tank.

(a) Find the pressure p2 at the perimeter of the tank when all the holes are closed.

(b) Now suppose the holes are opened. Find the velocity v2 of the water jets with respect to the

ground.

(c) If the tank rotates too fast, the pump efficiency drops due to cavitation; the water starts

“boiling” in some parts of the pump. Find the highest cavitation-free angular speed ωmax.

(d) If the power of the electric engine is P , what is the theoretical upper limit of the volume

pumped per unit time, assuming S2 can be freely adjusted?

Solution. See the solution to problem 4 here.

[3] Problem 23. A helicopter with length scale ` and density ρh can hover using power P , in air of

density ρa. Find a rough estimate for P in terms of the given parameters. (For a nice followup

discussion of lift, see section 3.6 of The Art of Insight.)

Solution. Helicopters push themselves upward by pushing air downward. We need

dp

dt
∼ ρh`3g
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to support the aircraft, while considering the rate of air pushed downward gives

dp

dt
∼ dm

dt
v ∼ ρa`2v2

where v is the velocity of the air. By comparing both sides,

v ∼

√
ρh`g

ρa
.

The power needed goes into putting kinetic energy into the air,

P ∼ dm

dt
v2 ∼ ρa`2v3 ∼

√
`7g3ρ3h
ρa

.

The only thing that might be surprising is the dependence on ρa, where more energy is required

if the air is thinner. (This is why helicopters can’t rescue people from the top of Mount Everest.)

The reason is that thinner air needs to be pushed down faster to get the same lift, but this requires

more power because energy is quadratic in speed. Also, note that this problem couldn’t have been

solved by dimensional analysis alone, since two densities were present.

Example 11: Kalda 82

A water turbine consists of a large number of paddles that could be considered as light flat

boards with length `, that are at one end attached to a rotating axis. The paddles’ free ends

are positions on the surface of an imaginary cylinder that is coaxial with the turbine’s axis.

A stream of water with velocity v and flow rate µ (kg/s) is directed on the turbine such that

it only hits the edges of the paddles.

Find the maximum possible power that can be extracted.

Solution

Let vt be the speed of the edge of the turbine. In time dt, the amount of mass of water that

collides with the turbine is

dm =
µ

v
(v − vt) dt.

The horizontal force on the paddle is

F =
dp

dt
=
dm

dt
∆v =

µ

v
(v − vt)2
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so the power delivered to the turbine is

P = Fvt =
µvt
v

(v − vt)2.

Maximizing this by setting dP/dvt = 0 gives vt = v/3, so the maximum power is 4µv2/27.

This is a fraction 8/27 of the total power in the incoming water.

[3] Problem 24. Air of constant density ρ and wind speed vi is heading directly towards a windmill

of area A. When the wind gets to the windmill blades, it is traveling forward with speed vf . Well

after it leaves the vicinity of the blades, it has speed vo. The design of the windmill, such as the

shape and speed at which its blades turn, can be adjusted to set the value of vf .

(a) Find the power going from the wind to the turbine by using energy conservation, assuming

that there are no extraneous energy losses, e.g. to turbulence.

(b) Find the power going from the wind to the turbine by considering the force of the windmill

on the air and using momentum conservation, again assuming no extraneous energy losses.

(c) Find an upper bound on the ratio of the wind power that can be harvested by the windmill,

to the amount of wind power that would pass through it if it weren’t running.

This result is called the Betz limit.

Solution. (a) Since there’s nowhere else for the energy to go, the power must be the rate of

change of the wind’s energy. The mass flow rate is µ = ρAvf , so

P =
1

2
µ(v2i − v2o) =

1

2
ρAvf (vi − vo)(vi + vo).

(b) The (negative) power on the wind is Fvf where F is the rate of change of momentum of the

wind. Ideally, all of this power goes to the windmill, so

P = Fvf = µ(vi − vo)vf = ρAv2f (vi − vo).

(c) By comparing these equations, we find vf = (vi + vo)/2, which allows us to eliminate vf .

Plugging this back in gives

P =
1

4
ρA(vi + vo)

2(vi − vo)

which can then be maximized with respect to vo. Setting the derivative to zero gives vo = vi/3

and thus P = (8/27)ρAv3i . If the windmill were not running, the rate at which wind energy

flows through it is (ρAvi)v
2
i /2, which means the maximum fraction harvested is 16/27.

[5] Problem 25. �T10 GPhO 2017, problem 2. A very tricky composite fluids/mechanics problem.

Solution. See the official solutions here.

5 Wet Water

So far we’ve mostly ignored viscosity and turbulence, an unrealistic limit that some refer to as “dry

water”. Now we’ll consider some problems involving real, wet water.
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Idea 8

A velocity gradient is associated with a drag force

F = ηA
dv

dy

where η is the (dynamic) viscosity. In addition, for fluid flowing next to a wall, the layer of

fluid right next to the wall is approximately at rest.

Example 12: HRK

Prairie dogs live in large colonies in complex interconnected burrow systems. They face the

problem of maintaining a sufficient air supply to their burrows to avoid suffocation. They

avoid this by building conical earth mounds about some of their many burrow openings. How

does this air conditioning scheme work?

Solution

Because of viscous effects, the wind speed is small near the ground, and hence grows with

height. By Bernoulli’s principle, this means the pressure at the top of a mound is slightly

lower than the pressure at an opening without a mound. This difference in pressure drives

air flow through the burrows.

Example 13

If you’ve used a standard garden hose, you might have noticed that the water shoots higher

if you partially block the outlet with your finger. Why does this happen?

Solution

The water company provides water to your house at a fixed pressure Patm + ∆P . Thus,

naively the water should always shoot equally far, because Bernoulli’s principle says the exit

speed is v =
√

2∆P/ρ, corresponding to a peak height ∆P/ρg, independent of the area of

the hole. (There is a vena contracta effect, as mentioned in problem 19, but this also doesn’t

depend on the area.)

The resolution is that for a typical long, thin garden hose, viscous losses dominate. As you

saw in problem 26, a higher mass flow rate leads to a higher drop in pressure. When you

partially block the outlet, you’re simply decreasing the flow rate, so that viscosity has a

smaller effect, allowing the water to get closer to the maximum possible height ∆P/ρg.

In plumbing, the quantity ∆P/ρg is called the “pressure head”, and effects like viscosity

give rise to “head loss”. Unfortunately, for most realistic pipes it is intractable to calculate

the head loss, because the water flow is turbulent. Instead, the amount of head loss is

parametrized by the so-called Darcy friction factor, whose values are tabulated in references.
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Example 14

If you stir a cup of coffee, around how long does it take the rotational motion to settle down?

Solution

The rotational motion stops because of viscous drag against the walls. For concreteness, let’s

suppose the coffee has density ρ, viscosity η, and is in a mug of radius R and height H � R

(so most of the drag comes from the vertical wall of the mug). The angular momentum is

L ∼ Iω ∼ ρR4Hω.

The damping torque due to viscous forces is

τ ∼ RF ∼ ηA dv

dr
R

and since the drag is from the vertical wall, A ∼ HR. Estimating the velocity gradient dv/dr

is a little trickier. As mentioned above, the coffee right next to the wall has zero velocity,

while the coffee slightly inward from the wall has speed v ∼ Rω. The velocity transitions

between these two values in a thin “boundary layer”.

Finding the exact thickness of this boundary layer would require solving complicated

differential equations, but it suffices to use dimensional analysis. Note that R and H can’t

possibly play a role, since the layer is so thin it doesn’t “see” the shape of the mug. The

fluid properties η and ρ surely matter. Perhaps more subtly, ω matters. If the fluid weren’t

spinning, but rather were uniformly translating in a plane, then the boundary layer would

just grow over time until it was the size of the whole fluid. That’s what we saw in problem 26,

where the velocity changes gradually along the whole pipe radius R. The boundary layer

doesn’t grow to the whole mug’s size here, because the velocity it’s trying to match is

constantly changing over the timescale 1/ω.

Using dimensional analysis, we thus conclude the boundary layer has thickness

∆r ∼
√

η

ρω
.

The damping torque is

τ ∼ η (HR)
Rω

∆r
R ∼

√
ρηω3HR3

so the timescale for damping is

T ∼ L

τ
∼
√

ρ

ηω
R.

Numerically, if we use the rough estimates

ρ ∼ 103 kg/m3, ω ∼ 10 s−1, R ∼ 0.1 m, η ∼ 10−3 Pa s

where η is the value for room temperature water, then we get the reasonable results

∆r ∼ 0.3 mm, T ∼ 30 s.
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[3] Problem 26. Water flows through a cylindrical pipe of radius R and length L� R, across which

a pressure difference ∆p is applied.

(a) If the flow is slow, viscous effects dominate. By balancing forces on a cylinder of fluid, show

that

v(r) =
∆p

4ηL
(R2 − r2).

Then show that the total mass flux is

dm

dt
=
ρπR4∆p

8ηL
.

This is called Poiseuille’s law.

(b) If the flow is very fast, the flow is turbulent. Viscous effects are negligible, and the work

done by the pressure difference is dissipated by turbulence into internal energy. Find a rough

estimate of the mass flow rate.

Solution. (a) We see −η(2πrL)dv/dr = πr2∆p, so

dv/dr = − ∆p

2ηL
r.

Integrating and using the fact that v(R) = 0 yields the desired result. Now, the mass flux is

dm/dt =

∫ R

0
(2πrdr)ρv(r)

= 2πρ
∆p

4ηL

∫ R

0
(R2 − r2)r dr

=
ρπR4∆p

8ηL

as desired.

(b) We perform dimensional analysis, leaving µ out because viscosity is negligible. The parameters

of the problem are ∆p, L, R, and ρ, which is one more than the number of independent

dimensions. However, we can note that the flow rate ought to stay the same if we connect

two identical pipes in series, with the same pressure drop ∆p across each one. This implies

that the mass flow rate only depends on the ratio ∆p/L, i.e. the pressure gradient. Carrying

out dimensional analysis as usual gives

dm

dt
∝
√
ρR5∆p

L
.

[4] Problem 27. When a spherical object of radius R moves with velocity v through a fluid of viscosity

η and density ρ, it experiences a drag force.

(a) Apply dimensional analysis to constrain the possible forms of the drag force F . You should

find there is one dimensionless quantity inversely proportional to η, in accordance with the

Buckingham Pi theorem of P1. This dimensionless quantity is called the Reynolds number,

and it determines what kind of drag dominates.
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(b) It turns out that F ∝ v at low velocities and F ∝ v2 at high velocities. Using this information,

find the form of the drag force in both cases. (For reference below: the answers are

F = 6πηRv, F =
1

2
CdρAv

2

where Cd is a dimensionless drag coefficient, which is about 1/2 for a sphere. The drag

coefficient depends strongly on the shape of the object, being much smaller for streamlined

shapes, and weakly on the velocity.)

(c) Hot water has density ρ = 103 kg/m3 and viscosity η = 0.3× 10−3 Pa s. (Room temperature

water has about 3 times the viscosity.) For an object of radius 1 cm, find the characteristic

velocity that divides the two types of drag.

(d) The two cases correspond to flow patterns as shown below.

In the latter case, a region of turbulent flow is created. Using this picture, explain why the

drag force is proportional to v2.

(e) The results above apply to both liquids and gases. In a gas, the relevant quantities are the

mass m of the gas molecules, their typical speed u, their number density n, and radius r (which

determines how often their collide with each other). Use dimensional analysis to constrain

the possible forms of the viscosity η. How do you think η scales with n?

Drag is nicely discussed throughout The Art of Insight; see sections 3.5, 5.3.2, and 8.3.1.2.

Solution. (a) By running a standard dimensional analysis, we find the most general expression

with the right dimensions of force is

F = ηRvf

(
ρRv

η

)
.

In accordance with the Buckingham Pi theorem of P1, we can’t pin down the answer exactly;

we can only determine it up to an unknown function of Re = ρRv/η, the unique dimensionless

quantity in the problem. This quantity is called the Reynolds number; when it is low, viscosity

dominates.

(b) At low velocities, viscosity dominates, so we are in the low Reynolds number regime. The

fact that F ∝ v in this regime means that the function f must approach a constant,

lim
x→0

f(x) = c1.
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This means we now know how the force depends on all variables,

F ∝ ηRv.

At high velocities, we have a high Reynolds number. To get a force proportional F ∝ v2, we

must have

lim
x→∞

f(x) = c2x.

Therefore we have

F ∝ ρR2v2.

This is an illustration of how dimensional analysis plus a few limiting cases lets us solve a

tricky problem. For intermediate velocities, of course, we would need to know the form of

f(x), which is quite complicated and in practice is found from simulations or experiments.

(c) One way of doing this is by noting that the characteristic velocity is when the forces are of

the same order,

6πηRv =
1

2
CdρAv

2 ≈ 1

4
πρR2v2

which gives

v =
24η

ρR
= 7.2× 10−4 m/s

for hot water.

Since the Reynolds number Re is the only dimensionless quantity in the problem, the crossover

must correspond to some value for Re. Our rough estimate above corresponds to taking

Re = 24. (In reality, the crossover happens at Re ∼ 103, but unfortunately there’s no easy

way to deduce this from first principles; it was measured, not calculated.)

(d) In the ball’s frame, the average vertical velocity of the water decreases significantly behind

the ball (let’s say to 0) due to the turbulent flow. Thus, by momentum conservation, the drag

force on the ball is F = dp/dt ∼ v(dm/dt) ∼ v(ρAv) ∝ v2.

(e) A dimensionless quantity that we can find is nr3. Since [η] = kg/m s, with m and u being

the only variables with mass and time respectively, we have η ∝ mu. To make the length

dimensions work, we can divide by r2, and hence

η ∼ mu

r2
g(nr3)

where g is another general function.

We can’t say too much about g in general, but we can understand the limit of a very sparse

gas. At a molecular level, viscosity in such a gas is due to individual gas molecules colliding

with the object and carrying away some of the momentum. Doubling n doubles the rate of

collisions, and hence doubles the viscosity. So for a very sparse gas, we should have η ∝ n,

which means g is linear, so η ∝ munr. You’ll derive this properly in T1, along with the result

for a non-sparse gas.
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Remark

Without knowing the answer to part (b) above, one might expect that the drag force can

depend on η, ρ, v, and the shape of the object. In the linear case, the drag force does not

depend on ρ. In the quadratic case, the drag force does not depend on η.

These differences can be understood by thinking of where the energy dissipated is going. In

the quadratic case, the fluid picks up macroscopic kinetic energy, in the form of a turbulent

flow pattern, which is why the drag force does not depend on η. In the linear case, the fluid

slows smoothly and hence does not pick up any macroscopic energy; instead the energy is

dissipated as heat. Since the macroscopic kinetic energy is not involved, the drag force does

not depend on ρ. (Of course, in the quadratic case the turbulent motion eventually stops; at

this point it has been converted to heat. The time it takes this to happen is set by η, but it

occurs well after the object has passed by and hence does not affect the drag force.)

Example 15

If raindrops fall, why don’t clouds fall?

Solution

This isn’t a stupid question! It’s actually a tough one, which stumped the ancient Greeks

and Romans. To give context, we’ll cover a bit of atmospheric physics, a topic we will

continue in T1 and T3. This is all a bit of a simplification of an interesting story, told in

more detail in chapter II-9 of the Feynman lectures.

First, it’s useful to review the water cycle. Sunlight directly warms up the ground, and the

ground thereby warms the air near the ground. Since warmer air at the same pressure is less

dense, it begins to rise by convection. This air also expands roughly adiabatically as it rises,

lowering its temperature. Warmer air can also hold more water, so if the original air was

moist, water vapor will condense into droplets as the air rises. (This last point is important,

because the condensation releases energy, partially counteracting the cooling of the rising air.

This keeps it warmer and hence lighter than its surroundings, allowing it to continue to rise.)

Humid air is nearly transparent. However, when water molecules join into small droplets (of

order n . 100 molecules), then the amount of electromagnetic radiation scattered by the

droplets grows as n2, as long as the droplet is roughly smaller than the wavelength of the

light. (We will justify this in more detail in E7.) Therefore, there is an overall enhance-

ment of scattering per water molecule by a factor of n, which is why clouds aren’t transparent.

Now consider a droplet of radius r. Depending on the droplet size and velocity, the drag

force scales as r or r2, while the gravitational force scales as r3. Hence the tiny water

droplets in clouds are hence carried upward with the ascending moist air, since the drag

force dominates. They fall down once they accrete into sufficiently large raindrops, where

gravity dominates.
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Incidentally, raindrops do not have the teardrop shape shown in typical illustrations. Small

raindrops are nearly spherical, because of surface tension. Large raindrops are squashed by

air resistance into a “hamburger” shape.

We now return to surface tension, which we’ll see yet again in T3.

Example 16

A very thin, hollow glass tube of radius r is dipped vertically inside a container of water.

Find the height to which water can climb in the tube.

Solution

Let θ be the contact angle, i.e. the acute angle between the glass and water at the top of the

meniscus. This quantity can be computed in terms of the surface tension between water and

glass, glass and air, and water and air (see section 5.5 of Lautrup for details), but we’ll take

it as a given quantity.

Since the glass tube is very thin, surface tension determines the shape of the water-air

surface, so it is spherical since spheres minimize area. By some elementary geometry, one

can show that the radius of curvature of this sphere is R = r/ cos θ.

We showed using force balance arguments in M2 that the pressure inside the curved water

surface is lower than atmospheric pressure by ∆P = 2γ/R. On the other hand, we also know

from Pascal’s principle that ∆P = ρgh. Equating the two gives

h =
2γ cos θ

ρgr
.

This is Jurin’s law. Ideally, water and glass have zero contact angle. This implies that water

perfectly wets glass, i.e. that a droplet of water placed on a horizontal glass surface will

spread to cover it completely (though this doesn’t happen in reality because glass tends to

quickly get coated in a layer of impurities). Making this assumption, which we will use for

problems below, the answer reduces to h = 2γ/ρgr.

31

https://knzhou.github.io/
https://physics.stackexchange.com/questions/450006/why-doesnt-water-actually-perfectly-wet-glass


Kevin Zhou Physics Olympiad Handouts

Example 17: PPP 130

Water in a glass beaker forms a meniscus, as shown below.

Find the height h to which the meniscus rises above the flat water surface.

Solution

We consider all of the external horizontal forces acting on the water. The surface tension

force acting at the top of the meniscus is purely vertical, because water and glass have zero

contact angle. The other surface tension force acting on the flat part of the water is γ per

length. This balances the excess hydrostatic pressure (i.e. the pressure above atmospheric

pressure) at the wall, which is ρgh2/2 per unit length. Thus,

h =

√
2γ

ρg
.

We could have also gotten this with dimensional analysis, up to the prefactor.

If you’re curious about how to compute the exact shape of the meniscus, the main idea is

the following. At the surface of the water, the excess pressure can be computed from the

radius of curvature (as described in the previous example), or from the height (using Pascal’s

principle). Combining the two yields a differential equation for the shape with a rather

complicated solution; see sections 5.6 and 5.7 of Lautrup for the details.

Example 18: PPP 29

Water can rise to a height H in a certain capillary tube. Three “gallows” are made from this

tubing by bending it, and placed into a tank of water.

Note that H ′ > H. For which tubes, if any, does water flow out of the other end?
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Solution

Clearly no water can fall out of (a), because this would produce a perpetual motion machine.

The gallows (b) and (c) are a bit more subtle. Water will not fall out of a capillary tube

if its end is less than a height H below the free water surface; this follows from the same

derivation as Jurin’s law, with the surface tension acting to hold the water in the tube. So

water only falls out of (c).

[2] Problem 28 (Russia 2006). A soap bubble of radius R and surface tension γ has a small tube of

radius r � R passing through its surface. If the air has density ρ, find the rate of decrease of R.

Solution. By Bernoulli’s principle, the flow rate is

v =

√
2∆p

ρ
=

√
8σ

ρR

where we used a result from M2. By mass conservation,∣∣∣∣dRdt
∣∣∣∣(4πR2) = (πr2)v

from which we conclude
dR

dt
= − r

2

R2

√
γ

2ρR
.

Technically, the true answer is a bit different because the air inside the bubble is under a higher

pressure, and so slightly denser. But ∆p� patm for any bubble you can reasonably make, so this

isn’t a significant source of error.

[2] Problem 29 (PPP 63). Water is stuck between two parallel glass plates. The distance between

the plates is d, and the diameter of the trapped water disc is D � d.

In terms of the surface tension γ of water, what is the force acting between the two plates? This

effect can cause wet glass plates to stick together.

Solution. If you imagine slicing the puddle of water along a diameter, then its boundaries with

the air are arcs of circles, since this minimizes the surface area. Since water perfectly wets glass,

these circles are tangent to the two glass plates, which mean they have radius of curvature d/2. In

addition, the surface of the water has radius of curvature D/2 in the orthogonal direction. Thus,

by the Young–Laplace equation,

∆P = γ

(
2

D
− 2

d

)
≈ −2γ

d
.
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This lowered pressure inside the water puddle causes a “suction” force between the two plates, of

magnitude

F = |∆P |A = π(D/2)2
2γ

d
=
γπD2

2d
.

[3] Problem 30 (EFPhO 2009). A soap film of thickness h = 1µm is formed inside a ring of diameter

D = 10 cm, and the surface tension of the film is γ = 0.025 N/m. If the film is broken at the center,

it will begin to fall apart; estimate the time needed for this to happen.

Solution. Like the helicopter question, this can’t be solved with pure dimensional analysis, because

there are four quantities (h, D, γ, and the density ρ). Instead, we need to think about the dynamics.

The edge of the break will expand outward, pulled by surface tension. This competes with the

inertia of the film itself, and the inertia per area only depends on the combination ρh. Thus, we

can perform dimensional analysis on the combinations ρh, D, and γ, giving

t ∼

√
ρh

γ
D ∼ 0.02 s.

This is good enough for an estimate, but for completeness, we present a more precise solution below.

Assume the film is broken at the center, so the edge of the break will be an expanding circle

of radius r. The surface tension will provide a force of 4πrγ outwards, pulling on the mass that

was originally inside the circle of m = ρπr2h. Thus, by considering forces along the radial direction

(i.e. treating r as a generalized coordinate in the spirit of M4), we have Fr = dpr/dt, or

4πrγ =
dm

dt
v +m

dv

dt
= 2πrv2ρh+ πr2ρh

dv

dt
.

Cleaning this up a bit, we have

v20 = v2 +
r

2

dv

dt
, v0 =

√
2γ

ρh
.

This equation tells us that the speed of the break quickly approaches v0 when r is small. Our result

for v0 is called the Taylor–Culick formula; you can see the constant speed in action in slow-motion

videos. Thus, the total time taken is

t ≈ D/2

v0
=

√
ρh

8γ
D ∼ 0.01 s

where we used ρ ≈ 103 kg/m3, since soap films are mostly water.

If you want to be even more precise, we can also solve the differential equation exactly. We can

get rid of the t-dependence entirely by writing dv/dt = (dv/dr)(dr/dt) = v dv/dr, giving

v20 = v2 +
rv

2

dv

dr
.

This is now a separable, first-order differential equation which can be integrated to find v(r),∫
dr

r
=

∫
dv

2

v

v20 − v2
.
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The broken part starts with v = 0 and small radius r0. Then, integrating and simplifying gives

v(r) = v0
√

1− (r0/r)4

which indicates that once r becomes larger than the tiny value r0, the velocity rapidly approaches v0,

as stated above. You can go a step further, integrating to find r(t), but the result is a hypergeometric

function, which isn’t very enlightening.

[3] Problem 31. �̂10 USAPhO 2020, problem B1. A nice, slightly mathematically involved surface

tension problem with a real-world impact. This setup is discussed in detail in section 5.4 of Lautrup.

Example 19: IPhO 2022 3B

Slightly wet sand is much stronger than either dry sand or very wet sand, which allows the

construction of large structures like sand castles. Why is this, and how does the strength

depend on the typical size r of the sand grains?

Solution

When a pile of sand is dry, the only force keeping it in place is friction, which is weak. When

it’s very wet, it’s essentially just water, which will simply collapse. But when it’s slightly

wet, adjacent sand grains have a small layer of water connecting them. Since sand grains are

small, this implies a huge total surface area, and thus large surface tension effects.

There are actually two conceptually distinct components to the effect. First, the bit of water

connecting two sand grains will provide a surface tension force F ∼ γr. Second, as you

saw in problem 29, the water has a pressure lower by ∆P ∼ γ/r, leading to an attractive

pressure force (∆P )A ∼ γr. In either case, that means the force needed to displace a single

grain of sand scales with r. The number of sand grains in a fixed cross-sectional area scales

as 1/r2, so the weight a sand castle can bear scales as 1/r. Thus, fine-grained sand is stronger.

This is another example of the subtleties of granular media, first mentioned in M2. Neither

sand nor water are strong on their own, but they’re strong together. Water provides the

forces, while the sand provide the structure which lets those forces be effective.
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