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Mechanics III: Dynamics
Chapters 3 and 5 of Morin cover dynamics, energy, and momentum. Alternatively, see chapters 2

and 3 of Kleppner and Kolenkow, or chapters 4 and 6 of Wang and Ricardo, volume 1. For fun, see

chapters I-9 through I-14 of the Feynman lectures. There is a total of 82 points.

1 Blocks, Pulleys, and Ramps

Idea 1

To solve dynamics problems with constraints, it’s easiest to first write the constraint in

terms of coordinates (e.g. “conservation of string” for pulleys, or stationarity of the CM for

an isolated system), then differentiate to get constraints on the velocity and acceleration.

Questions of this type are generally straightforward, as long as you write down the correct

equations. The trickiest part is often solving the equations, which can get messy.

Example 1: Morin 3.30

Find the acceleration of the masses in the Atwood’s machine shown below.

Neglect friction, and treat all pulleys are massless.

Solution

Let x and x′ be the amounts by which the left and right mass have moved down, and number

the pulleys 1 through 4 from left to right, and the strings 1 through 3 from left to right.

Pulley 4 is stationary, so conservation of string 3 means that pulley 3 moves up by x′/2. Next,

conservation of string 2 means that pulley 2 moves up by x′/4. Finally, conservation of string

1 implies that pulley 1 moves up by x′/8, so our final conservation of string constraint is

x = −x
′

8

which upon applying the derivative twice gives

a = −a
′

8
.
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Now consider the tensions Ti in the strings. We know that

a = g − 2T1

m
, a′ = g − 2T3

m
.

Since pulley 3 is massless, the forces on it must balance, so T2 = 2T3. Similarly T1 = 2T2,

so T1 = 4T3. We hence have a system of three equations in three unknowns (T1, a, and a′),

which can be solved straightforwardly to give

a′ =
56

65
g, a = − 7

65
g.

[2] Problem 1 (Morin 3.2). Consider the double Atwood’s machine shown below.

Assuming all pulleys are massless, and neglecting friction, find the acceleration of the mass m1.

Solution. Let the downward accelerations be a1, a2, and a3. By conservation of string,

2a1 + a2 + a3 = 0.

Let T be the tension in the lower pulley. Then we have

m1g − 2T = m1a1, m2g − T = m2a2, m3g − T = m3a3.

Therefore,

0 = 2a1 + a2 + a3 = 2(g − 2T/m1) + g − T/m2 + g − T/m3 = 4g − T (4/m1 + 1/m2 + 1/m3),

so that

T =
g

1/m1 + 1/4m2 + 1/4m3
.

Thus, we conclude

a1 = g − 2T/m1 = g − 2g

1 +m1/4m2 +m1/4m3
= g

m1(m2 +m3)− 4m2m3

4m2m3 +m1(m2 +m3)
.

[2] Problem 2 (KK 2.15). Consider the system of massless pulleys shown below.
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The coefficient of friction between the masses and the horizontal surfaces is µ. Show that the tension

in the rope is

T =
(µ+ 1)g

2/M3 + 1/2M1 + 1/2M2
.

Solution. Let the acceleration of block 1 be a1 to the right, and the acceleration of block 2 be a2

to the left, and the acceleration of block 3 be a3 down. We see that 2a3 = a1 + a2 by conservation

of string. We also see that M3g − 2T = M3a3, T −M1gµ = M1a1, and T −M2gµ = M2a2, or

2a3 = 2
M3g − 2T

M3
, a1 =

T −M1gµ

M1
, a2 =

T −M2gµ

M2
.

Thus, we have

2(g − 2T/M3) = (T/M1 − gµ) + (T/M2 − gµ) =⇒ 2g(1 + µ) = T (1/M1 + 1/M2 + 4/M3).

Solving for T gives the result.

[2] Problem 3 (KK 2.20). Consider the machine shown below, which we encountered in M2.

Show that the acceleration of M1 when the external force F is zero is

a = − M2M3g

M1M2 +M1M3 + 2M2M3 +M2
3

.

Solution. Let the acceleration of M2 with respect to M1 be w. Then, we see that T = M2(w + a),

and M3g − T = M3w, so adding gives us M3g = M2(w + a) +M3w. Since the acceleration of the

center of mass is zero,

M1a+M2(w + a) +M3a = 0 =⇒ w = −M1 +M3

M2
a− a = −aM1 +M2 +M3

M2
.

Thus,

M3g = M2(−a)
M1 +M3

M2
− aM3

M1 +M2 +M3

M2
,
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or

a = − M2M3g

M2(M1 +M3) +M3(M1 +M2 +M3)
,

as desired.

By the way, if you tried to solve the problem by considering just forces, there’s a subtlety; it’s

easy to forget that there must be a force on M1 due to the normal force of the rope on the pulley.

(This force has to be there, or else the forces on the massless rope wouldn’t balance.) Indeed, you

learned about these forces in the preliminary problem set. The solution above implicitly took this

into account, by using the fact that the center of mass doesn’t move.

[3] Problem 4. A block of mass m is held motionless on a frictionless plane of mass M and angle of

inclination θ. The plane rests on a frictionless horizontal table.

(a) When the block is released, what is the horizontal acceleration of the plane?

(b) Assume the block starts a distance d above the table. Using results from part (a), what is the

horizontal velocity of the block just before it reaches the floor?

(c) Find the speed of the block after it reaches the floor by applying energy and momentum

conservation to the entire process.

(d) Your results for parts (b) and (c) should not match. What’s going on?

Solution. (a) Applying Newton’s second law to the plane gives

Ma = N sin θ.

Next, work in the noninertial frame of the plane, where the block only moves parallel to the

plane. Balancing the forces perpendicular to the plane gives

N = mg cos θ −ma sin θ.

It’s now straightforward to eliminate N and thereby solve for a, which gives

a =
mg sin θ cos θ

M +m sin2 θ
.

By the way, it’s easy to get confused on this problem if you focus too much on the block, because

its motion is somewhat confusing; you have to decompose it into motion parallel to the plane,

and motion of the plane itself. Once you do that, the problem can be solved straightforwardly.

The solution above is especially short because it never considers the acceleration of the block

parallel to the plane, which isn’t required to get the answer.

(b) Since the only horizontal forces in the problem are between the block and plane, the horizontal

acceleration of the block is

ab =
M

m
a.

Thus, the relative acceleration of the two is

arel = a+ ab =
M +m

m
a.

The block goes off the plane once the two have moved a relative horizontal distance of d/ tan θ,

which takes a time t =
√

2d/arel tan θ. At this point the block has a horizontal velocity

vb = abt =
√

2gd
M cos θ√

(M +m sin2 θ)(M +m)
.
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(c) By momentum conservation, the final horizontal speeds obey

Mvp = mvb

while by energy conservation,
1

2
Mv2

p +
1

2
mv2

b = mgd.

Combining the two and solving gives

vb =
√

2gd

√
M

M +m
.

(d) It turns out that both results are correct, but they’re the answers to different questions. Note

that at the instant the block gets to the bottom of the plane, its velocity isn’t horizontal, but

right after it’s off the plane, its velocity must be exactly horizontal. This requires a rather

large vertical impulse. (For an illustration of this, see F = ma 2021, problems 1 and 2.)

Depending on how the plane and block are constructed, there are several possibilities. If the

plane abruptly ends, and the block immediately begins moving horizontally, then we have

an inherently inelastic process. The vertical kinetic energy mv2
y/2 of the block is lost, so the

answer to part (c) doesn’t apply, and the answer to part (b) is correct. (Another possibility,

if the ball is very bouncy, is that the sign of its vy will flip, and it’ll bounce off the floor. In

this case, the answer to part (b) is still correct. Energy is conserved now, but the answer to

part (c) is still wrong because it assumes the final velocity of the block is horizontal.)

On the other hand, if the plane ends in a transition region, where θ smoothly goes to zero,

then ideally energy remains conserved, and the answer of part (c) applies. In this region, a

strong normal force reorients the velocity to be horizontal, supplying both a large horizontal

and vertical impulse. As a result, the answer to part (b) doesn’t apply.

This subtlety about how inclined planes end applies to lots of Olympiad problems. The usual

assumption seems to be that option (c) holds, but in reality it depends sensitively on how the

plane and block are made. In fact, in practice you can lose a lot of energy even if there’s a

smooth curve at the end, if that curve is not gradual enough.

2 Momentum

Idea 2

The momentum of a system is

P =
∑
i

mivi = MvCM.

In particular, the total external force on the system is MaCM, and if there are no external

forces, the center of mass moves at constant velocity.
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Example 2

A massless rope passes over a frictionless pulley. A monkey hangs on one side, while a bunch

of bananas with exactly the same weight hangs from the other side. When the monkey tries

to climb up the rope, what happens?

Solution

Remarkably, the answer doesn’t depend on how the monkey climbs, whether slowly or

quickly, or symmetrically or not! The total vertical force on the monkey is T −mg, so the

acceleration of the center of mass of the monkey is T/m− g. But since the tension is uniform

through a massless rope, the acceleration of the bananas is also T/m − g. Therefore, the

monkey and bananas rise at the same rate, and meet each other at the pulley.

Now here’s a question for you: compared to climbing up a rope fixed to the ceiling, climbing

up to the pulley takes twice as much work, because the bananas are raised too. But in both

cases, isn’t the monkey applying the same force through the same distance? Where does the

extra work come from? (The answer involves the ideas at the end of this problem set.)

Example 3: KK 3.14 / INPhO 2014.5

Two men, each with mass m, stand on a railway flatcar of mass M initially at rest. They

jump off one end of the flatcar with velocity u relative to the car. The car rolls in the opposite

direction without friction. Find the final velocities of the flatcar if they jump off at the same

time, and if they jump off one at a time. Generalize to the case of N � 1 men, with a total

mass of mtot.

Solution

In the first case, by conservation of momentum, we have

Mv + 2m(v − u) = 0

where v is the final velocity of the flatcar, so

v =
2mu

M + 2m
.

In the second case, by a similar argument, we find that after the first man jumps,

v1 =
mu

M + 2m
.

Now transform to the frame moving with the flatcar. When the second man jumps, he

imparts a further velocity v2 = mu/(M +m) to the flatcar by another similar argument. The

final velocity of the flatcar relative to the ground is then

v = v1 + v2 = mu

(
1

M + 2m
+

1

M +m

)
.
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It might be a bit disturbing that the final speeds and hence energies of the flatcar are

different, even though the men are doing the same thing (i.e. expending the same amount of

energy in their legs to jump) in both cases.

The reason for the difference is that in the second case, the second man to jump ends up

with less energy, since the velocity he gets from jumping is partially cancelled by the existing

velocity v1. So the extra energy that goes into the flatcar corresponds to less kinetic energy

in the men after jumping, which would ultimately have ended up as heat after they slid to a

stop. Accounting properly for the kinetic energy of everything in the system solves a lot of

paradoxes involving energy, as we’ll see below.

In the case of many men, by similar reasoning we have

v =
mtot

M +mtot
u

in the first case, while in the second case the answer is the sum

v =
N∑
i=1

mtotu

N

1

M + (i/N)mtot
.

This can be converted into an integral, by letting x = i/N , in which case ∆x = 1/N and

v =
∑
i

∆x
mtotu

M + xmtot
≈
∫ 1

0
dx

mtotu

M + xmtot
= log

(
M +mtot

M

)
u.

Note that this is essentially the rocket equation, which we’ll derive in a different way in M6.

[2] Problem 5 (KK 4.11). A flexible chain of mass M and length ` is suspended vertically with its

lowest end touching a scale. The chain is released and falls onto the scale. Find the reading on the

scale when a length of chain x has fallen.

Solution. Because the chain is flexible, each link just crumples when it hits the ground, without

pulling the rest of the chain downward. In other words, the assumption of ideal flexibility implies

the tension in the chain vanishes, so that the vertical part of the chain is always in free fall.

Now, the lowest end of the chain is moving with velocity
√

2gx, so in time dt, a mass M
√

2gxdt/`

falls on to the scale, so the change in momentum of that piece is (2Mgx/`)dt. Thus, we need a force

2Mgx/` to stop the links that are falling on the scale. In addition, there must be a force Mgx/` to

balance the weight of the chain that’s already lying on the scale, for a total of 3Mgx/` .

This is nice and elegant, but is it true? The result is actually pretty accurate, as you can see

from experimental data here. The deviation from the expected result is because no chain is perfectly

flexible. Since the chain has to bend at the spot it hits the scale, some tension is produced, which

pulls down the rest of the chain slightly faster than free fall.

This has a connection to the “inherently inelastic” processes mentioned later in the problem set.

The fastest possible fall corresponds to the case where energy is conserved, i.e. when all the kinetic

energy of each link hitting the ground is nearly transferred through tension to the still falling part
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of the chain. The answer we gave above corresponds to the slowest possible fall, where each link

collides perfectly inelastically with the ground. For a flexible chain, the latter is closer to reality.

[3] Problem 6. Some qualitative questions about momentum.

(a) A box containing a vacuum is placed on a frictionless surface. The box is punctured on its

right side. How does it move immediately afterward?

(b) You are riding forward on a sled across frictionless ice. Snow falls vertically (in the frame of

the ice) on the sled. Which of the following makes the sled go the fastest or the slowest?

1. You sweep the snow off the sled, directly to the left and right in your frame.

2. You sweep the snow off the sled, directly to the left and right in the ice frame.

3. You do nothing.

Solution. (a) Consider the system of the air plus the box. The air flows to the left, so to keep

momentum conserved, the box moves to the right.

(b) Case (1) is clearly the fastest, as the ice ends up with none of the sled’s horizontal momentum;

in the sled’s frame this looks like propelling the ice backwards.

Then we just have to decide between (2) and (3). In both cases, sweeping the snow off (or

doing nothing) doesn’t change the sled’s horizontal momentum. However, in case (3), as the

sled gets heavier, each bit of new snow landing on it has less effect. So (2) is the slowest, and

(3) is in the middle.

[3] Problem 7. �̂10 USAPhO 2018, problem A1.

[3] Problem 8 (Kalda). A block is on a ramp with angle α and coefficient of friction µ > tanα. The

ramp is rapidly driven back and forth so that its velocity vector u is parallel to both the slope and

the horizontal and has constant modulus v.

The direction of u reverses abruptly after each time interval τ , where gτ � v. Find the average

velocity w of the block. (Hint: as mentioned in M1, it’s best to work in the frame of the ramp,

because it causes the friction, even though this introduces fictitious forces.)

Solution. Work in the frame of the ramp and orient the x axis along u and the y axis along the

ramp. At all times, the acceleration due to friction is µg cosα and the acceleration due to gravity

is g sinα. Every time period τ , an impulsive fictitious force changes wx by ±2v. Since gτ � v, the

total acceleration during the time period τ due to the friction and gravitational forces is negligible

compared to this change. Assuming for now that wx is symmetric so that wx = 0, this means

|wx| ≈ u at all times.

Now consider wy. In the steady state, the acceleration due to friction must be balanced by the

acceleration due to gravity, so
wy√

wy2 + u2
µg cosα = g sinα
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which yields the answer,

w = wy ŷ, wy =
u√

µ2 cot2 α− 1
.

Note that this diverges when µ = tanα, because at that point the friction is not strong enough to

prevent the block from accelerating down the ramp indefinitely. For µ > tanα, we reach a steady

state where only a portion of the friction is directed vertically, due to the horizontal speed, and

that portion balances gravity.

This also allows us to argue that wx = 0. If wx is not zero, |wx| will be higher during one of the

two halves of the cycle. But during that half, a greater share of the frictional acceleration will be

directed against the wx motion, tending to move wx to zero.

This seemingly weird problem actually has real-world applications! The point here is that you

can make a block slide down a ramp even if friction would prevent it from doing so, and moreover

make it slide at a controlled speed. This technique is used in factories, in the form of vibratory

conveyors. In fact, a more complex vibration pattern can even make something slide up a ramp!

[4] Problem 9 (Morin 5.21). A sheet of mass M moves with speed V through a region of space that

contains particles of mass m and speed v. There are n of these particles per unit volume. The

sheet moves in the direction of its normal. Assume m�M , and assume that the particles do not

interact with each other.

(a) If v � V , what is the drag force per unit area on the sheet?

(b) If v � V , what is the drag force per unit area on the sheet? Assume for simplicity that the

component of every particle’s velocity in the direction of the sheet’s motion is exactly ±v/2.

(c) Now suppose a cylinder of mass M , radius R, and length L moves through the same region

of space with speed V , and assume v = 0 and m � M . The cylinder moves in a direction

perpendicular to its axis. What is the drag force on the cylinder?

Parts (a) and (b) are a toy model for the two regimes of drag, mentioned in M1. However, it

shouldn’t be taken too seriously, because as we’ll see in M7, the typical velocity that separates

the two types of behavior doesn’t have to be of order v. Instead, it depends on how strongly the

particles interact with each other.

Solution. (a) We can set v = 0. In time t, an area A hits nAV t particles, and the total change

in momentum of these particles is (nAV t)m(2V ), so the pressure is 2nmV 2.

(b) Let’s say the sheet is moving to the right. In the frame of the sheet, the particles are moving

at velocity V ± v/2. The particles hitting the sheet from the right will have velocity v/2 + V ,

and from the left v/2− V . From the right in time dt, there will be 1
2nA(v/2 + V )dt particles

hitting the sheet (with the 1
2 coming from other particles moving away from the sheet), each

with impulse 2m(v/2 + V ). Thus the pressure will be nm(v/2 + V )2 from the right, and

replacing V with −V gives a pressure of nm(v/2− V )2 from the left. Thus the total pressure

on the sheet is 2nmV v.

(c) Work in cylindrical coordinates, with θ = 0 along the direction of the cylinder’s motion. For

a segment dθ, we have

collisions

time
=

particles

volume

volume swept out

time
= nV LR cos θ dθ
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where L is the length of the cylinder. To calculate the rebound velocity, it’s best to work

in the frame of the cylinder. In this case, the particles come in with vertical velocity −V ,

and then bounce off elastically, ending up with vertical velocity V cos 2θ. So the impulse per

collision is mV (1 + cos 2θ). The drag force is

F =

∫ π/2

−π/2
mV (1 + cos 2θ)nV LR cos θ dθ = nmV 2LR

∫ π/2

−π/2
(1 + cos 2θ) cos θ dθ.

The integral can be done straightforwardly using either the cosine double angle identity, or

decomposing into complex exponentials, yielding 8/3, so

F = (2nmV 2)(LR)

(
4

3

)
.

Compare this to the answer to part (a). The force is quadratic in V for the same reason, but

now the area is replaced by an effective area (4/3)LR. This is slightly less than the actual

area 2LR, since the surface is curved, and hence more aerodynamic.

You can also get a more “realistic” result by averaging over a Maxwell–Boltzmann distribution for

the molecular speeds, as introduced in T1. But this is a lot more work, and the simpler calculation

done in this problem gives all the essential insight.

3 Energy

Idea 3

The work done on a point particle is

W =

∫
F · dx

and is equal to the change in kinetic energy, as you showed in P1.

Remark: Dot Products

The dot product of two vectors is defined in components as

v ·w = vxwx + vywy + vzwz

and is equal to |v| |w| cos θ where θ is the angle between them. For example, if A and B are

the sides of a triangle,

|A + B|2 = (A + B) · (A + B) = A2 +B2 + 2AB cos θ.

Since the left-hand side is the length squared of the third side of the triangle, we’ve proven

the law of cosines. (Or, if you accept the law of cosines, you could regard this as a proof

that the dot product depends on cos θ as claimed.)

Like the ordinary product, the dot product obeys the product rule. For example,

d

dt
(v ·w) = v̇ ·w + v · ẇ.
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Using this, it’s easy to generalize the derivation of the work-kinetic energy theorem in P1 to

three dimensions; we have

1

2
d(v2) =

1

2
d(v · v) = v · dv =

dx

dt
· dv =

dv

dt
· dx = a · dx

and this is equivalent to the desired theorem. As you can see, it’s all basically the same, since

the product and chain rule manipulations work the same way for vectors and scalars.

Example 4: IPhO 1996 1(b)

A skier starts from rest at point A and slowly slides down a hill with coefficient of friction µ,

without turning or braking, and stops at point B. At this point, his horizontal displacement

is s. What is the height difference h between points A and B?

Solution

Since the skier begins and ends at rest, the change in height is the total energy lost to friction,

mgh =

∫
ffric ds

where the integral over ds goes over the skier’s path. Since the skier is always moving

slowly, the normal force is approximately mg cos θ. (More generally, there would be another

contribution to provide the centripetal acceleration.) But then∫
ffric ds =

∫
µmg cos θ ds =

∫
µmg dx = µmgs

which gives an answer of h = µs. (If the skier’s path turned around, then this would still

hold as long as s denotes the total horizontal distance traveled.)

[3] Problem 10 (MPPP 16). On a windless day, a cyclist going “flat out” can ride uphill at a speed

of v1 = 12 km/h and downhill at v2 = 36 km/h on the same inclined road. We wish to find the

cyclist’s top speed on a flat road if their maximal effort is independent of the speed at which the

bike is traveling. Note that in this regime, the air drag force is quadratic in the speed.

(a) Solve the problem assuming that “maximal effort” refers to the force exerted on the pedals

by the rider, and that the rider never changes gears.

(b) Solve the problem assuming that “maximal effort” refers to the rider’s power.

Solution. (a) Let F0 be the force due to gravity along the hill and let kv2 be the drag force. If

the rider exerts force F ′ on the pedals, then the wheels exert a force F on the ground, but

the ratio F/F ′ is constant if there are no gear switches. Then

F − F0 = kv2
1, F + F0 = kv2

2, F = kv2
3

where v3 is the answer. Combining these equations gives

v3 =

√
v2

1 + v2
2

2
= 27 km/h.
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(b) In this case, the equations are a bit nastier,

P/v1 − F0 = kv2
1, P/v2 + F0 = kv2

2, P/v3 = kv2
3.

Some tedious but straightforward algebra gives

v3 =
3

√
v1v2(v2

1 + v2
2)

v1 + v2
= 23.5 km/h.

[3] Problem 11. �m10 USAPhO 2016, problem B1.

[2] Problem 12. Alice steps on the gas pedal on her car. Bob, who is standing on the sidewalk, sees

Alice’s car accelerate from rest to 10 mph. Charlie, who is passing by in another car, sees Alice’s car

accelerate from 10 mph to 20 mph. Hence Charlie sees the kinetic energy of Alice’s car increase by

three times as much. How is this compatible with energy conservation, given that the same amount

of gas was burned in both frames?

Solution. The difference in energy comes from the change in kinetic energy of the Earth. In Bob’s

frame, the final kinetic energy of the Earth is p2/2M where p is the total frictional impulse, and this

is negligible since p is moderately sized, while the Earth’s mass M is huge. Another way of saying

this is that the final kinetic energy of the car is p2/2mcar, which is much larger since mcar �M .

On the other hand, in Charlie’s frame, the Earth has some initial momentum P . The change in

kinetic energy of the Earth is

∆K =
(P + p)2 − P 2

2M
=
Pp

M
+

p2

2M
.

The last term is again negligible, but now we have a term that is linear in p, which isn’t negligible.

Let v0 = 10 mph. We have P/M = v0 and p = mcarv0, so

∆K = mcarv
2
0

which is precisely the extra energy that ends up in the car. The lesson of this problem is that when

you go into a different reference frame, kinetic energies and even changes in kinetic energy can differ

dramatically. While you can get the right answer either way, it’s generally least confusing to work

in the rest frame of the largest object in the problem.

When there are multiple large objects, you can get interesting effects. For example, naively a

gravitational slingshot can’t work, because the gravitational force is conservative. And indeed, a

rocket doing a gravitational slingshot off of Jupiter gets no additional energy, in Jupiter’s frame.

However, for rockets that far out, the most important object is the Sun, since it determines,

e.g. whether the rocket can escape the solar system. To answer that kind of question we should

work in the Sun’s frame, and in this frame the rocket does get more energy, as it harvests it from

Jupiter’s large kinetic energy. You’ll investigate this in more detail in M6.

[3] Problem 13 (KK 4.8). A block of mass M is attached to a spring of spring constant k. It is pulled

a distance L from its equilibrium position and released from rest. The block has a small coefficient

of friction µ with the ground. Find the number of cycles the mass oscillates before coming to rest.

12
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Solution. First let’s present a short solution that only works for small µ. Let A be the amplitude,

so the energy is E = 1
2kA

2. Hence in one cycle, the change in energy is related to the change in

amplitude by

dE = kAdA

where we can use infinitesimals for one cycle since the friction is assumed small. But the energy

loss is also 4µmgA, so plugging this in gives

dA = −4µmg

k
.

The oscillation ends when the amplitude drops to zero, so

N =
kL

4µmg
.

We expect this result to be trustworthy whenever N is large, i.e. when the fractional amplitude

change during a cycle is small.

We will now show that, in fact, this result is correct even when N isn’t large. Notice that

during the left-moving part of a cycle, the friction provides a constant force of µmg to the right.

Therefore, just like how gravity shifts the equilibrium position of a vertical spring, the friction

shifts the equilibrium position to the right by µmg/k. The left-moving motion is a perfect sinusoid

centered at this position. Similarly, the right-moving part of the oscillation is a perfect sinusoid,

but instead centered at −µmg/k. The net effect of one cycle is thus to decrease the amplitude by

exactly 4µmg/k, giving the result.

[3] Problem 14 (Morin 5.4). A massless string of length 2` connects two hockey pucks that lie on

frictionless ice. A constant horizontal force F is applied to the midpoint of the string, perpendicular

to it. The pucks eventually collide and stick together. How much kinetic energy is lost in the

collision?

Solution. Suppose the bend in the rope is θ, where originally θ = 0. We see that the tension T

satisfies 2T sin θ = F , by balancing forces at the midpoint. Thus, the y-component of the force on

the top mass is T cos θ, so the total work done by tension in the y direction is

W = −
∫ π/2

0
2(T cos θ) d(` cos θ) = `F

∫ π/2

0
cos θ dθ = F`.

This determines the vertical kinetic energy, mv2
y/2, of each puck. When the pucks collide, all of

this energy is lost, giving the answer F`.

There’s also a slick alternate solution using a noninertial reference frame. Now, in general work

depends on the reference frame, as we just saw in problem 12, since displacement does, so we always

need to be careful calculating energies in other frames. However, the amount of dissipated energy

determines how much the pucks warm up, which is independent of frame! Therefore, we are free to

use any frame we want.

In particular, consider the frame with acceleration F/2m along the force. In this frame, there

is a fictitious force −F/2 on each puck. The net force on the system is zero, so the pucks move

directly towards each other. When the pucks collide, the point of application of the force F has

traveled a distance `, doing work F`. Since the pucks are stationary after collision, all this energy

is dissipated, giving the answer F` again.

13
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Idea 4

If a problem can be solved using either momentum conservation or energy conservation alone,

it usually means one of the two isn’t actually conserved. In particular, many processes

are inherently inelastic and inevitably dissipate energy. For more about inherently inelastic

processes, see section 5.8 of Morin.

[2] Problem 15 (KK 4.20). Sand falls slowly at a constant rate dm/dt onto a horizontal belt driven

at constant speed v.

(a) Find the power P needed to drive the belt.

(b) Show that the rate of increase of the kinetic energy of the sand is only P/2.

(c) We can explain this discrepancy exactly. Argue that in the reference frame of the belt, the

rate of heat dissipation is P/2. Since temperature is the same in all frames, the rate of heat

dissipation is P/2 in the original frame as well, accounting for the missing energy.

Solution. (a) We have P = Fv = (dp/dt) v = (v (dm/dt))v = v2 dm/dt.

(b) It’s 1
2(dm/dt)v2 = P/2.

(c) In the belt’s frame, the sand comes in with a speed of v, and friction slows it down to zero

speed. Hence the sand loses all its kinetic energy to heat, at a rate 1
2(dm/dt)v2 = P/2.

Example 5: PPP 108

A fire hose of mass M and length L is coiled into a roll of radius R. The hose is sent rolling

along level ground, with its center of mass given initial speed v0 �
√
gR. The free end of

the hose is held fixed.

The hose unrolls and becomes straight. How long does this process take to complete?

Solution

First, we need to find what is conserved. The horizontal momentum is not conserved,

because there is an external horizontal force needed to keep the end of the hose in place.

On the other hand, the energy is conserved, even though this process looks inelastic. The

hose “sticks” to the floor as it unrolls, but this process dissipates no energy because the cir-

cular part of the hose rolls without slipping, so the bottom of this part always has zero velocity.

14
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Once we figure out energy is conserved, the problem is straightforward. The assumption

v0 �
√
gR means we can neglect the change in gravitational potential energy as the hose

unrolls. After the hose travels a distance x,

1

2

(
1 +

1

2

)
Mv2

0 =
1

2

(
1 +

1

2

)
mv2

where the 1/2 terms are from rotational kinetic energy. Since m(x) = M(1− x/L), we have

v(x) =
v0√

1− x/L

which gives a total time

T =

∫ L

0

dx

v(x)
=
L

v0

∫ 1

0

√
1− u du =

2L

3v0
.

Evidently, the hose accelerates as it unrolls.

[4] Problem 16. Consider the following related problems; in all parts, neglect friction.

(a) A uniform rope of length ` lies stretched out flat on a table, with a tiny portion `0 � ` hanging

through a hole. The rope is released from rest, and all points on the rope begin to move with

the same speed. Since this motion is smooth, energy is conserved. Find the speed of the rope

when the end goes through the hole.

(b) ? For practice, repeat part (a) by solving for x(t) explicitly. (Hint: this is best done using the

generalized coordinate techniques of M4.)

(c) Now suppose a flexible uniform chain of length ` is placed loosely coiled close to the hole.

Again, a tiny portion `0 � ` hangs through the hole, and the chain is released from rest. In

this case, the unraveling of the chain is an inherently inelastic process, because each link of

the chain sits still until it is suddenly jerked into motion. Find the speed of the chain when

the last link goes through the hole. (Hint: you should get a nonlinear differential equation,

which can be solved by guessing x(t) = Atn.)

Solution. (a) We use energy conservation. The height of the center of mass falls by `/2, so

`Mg/2 = Mv2/2, which gives the answer of v =
√
`g.

(b) For convenience, we use the idea of “generalized coordinates”, which will be covered in more

detail in M4. The point is that a direct application of Newton’s second law would be very

tough, because we’d have to solve for the tension everywhere in the rope. But we can instead

treat the rope as a single object by parametrizing its motion in terms of “how far it’s gone

through the hole”. The net force “putting the rope into the hole” is just gravity acting on

the hanging part of the rope, xMg. Thus,

xMg = Ma

which implies

ẍ =
g

`
x.
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Now, this is a linear differential equation which can be solved with the techniques of M1.

Guessing exponentials gives growing and decaying solutions e±
√
g/` t. It’s most convenient to

rewrite these in terms of hyperbolic trig functions,

x = A cosh(
√
g/` t) +B sinh(

√
g/` t).

The initial conditions then give us x(t) = `0 cosh(
√
g/`t), so in the limit of small `0, the final

time obeys

` ≈ `0
2
e
√
g/` tf .

The velocity is

v(tf ) = `0

√
g

`
sinh(

√
g/`tf ) ≈ `0

2

√
g

`
e
√
g/`tf ≈

√
g

`
` =

√
`g

as found by energy conservation.

(c) In this case energy conservation doesn’t work, so we need to use momentum/force ideas.

Unlike part (a), it’s best to use Newton’s second law directly, by considering the vertical

momentum of the vertical part of the chain. We didn’t do this in part (a) because we would

have to know the tension at the hole, since this provides an external vertical force, but here

it’s easy because the chain links on the table are slack, so the tension is zero. On the other

hand, the generalized coordinate approach of part (a) wouldn’t work here because the chain is

not moving as one smooth unit; there’s nasty discontinuous stuff going on at the hole, which

we don’t want to think about.

Now, let m be the time-dependent mass of the vertical part. The only external vertical force

is gravity, so applying Fy = dpy/dt gives

mg = mv̇ + ṁv = mv̇ + (m/x)v2

which implies

ẍ = g − ẋ2/x.

This is a nonlinear second-order differential equation. There’s no general way to solve such

equations, so we’ll resort to the hint. If we guess a pure power Atn, then all three terms are

the same power of t as long as n = 2. Plugging in x(t) = At2 gives the solution

x(t) =
1

6
gt2

so there is a uniform acceleration of g/3. (The 1/6 is not an arbitrary constant, if you change

it you don’t get a solution to the differential equation at all! That’s because this equation

is nonlinear, so there’s no reason to expect that multiplying a solution by a constant gives

another solution.)

The amount of time it takes for last link to pass is t =
√

6`/g, so the speed there is

v = (g/3)t =

√
2`g

3
.

This is smaller than the answer to part (a) because energy is not conserved.
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[3] Problem 17 (PPP 95). A long slipway, inclined at an angle α to the horizontal, is fitted with

many identical rollers, consecutive ones being a distance d apart. The rollers have horizontal axles

and consist of rubber-covered solid steel cylinders each of mass m and radius r. A plank of mass

M , and length much greater than d, is released at the top of the slipway.

Find the terminal speed vmax of the plank. Ignore air drag and friction at the pivots of the rollers.

Solution. Let the terminal velocity be v, and consider the forces acting on the plank along the

plane. There is of course a constant gravitational force Mg sinα. In addition, every time the plank

hits a roller, it experiences an impulse as it spin the roller up. The angular impulse on each roller

is equal to its angular momentum, so ∫
f(t)r dt =

1

2
mr2ω.

This implies the linear impulse on the plank has magnitude

J =

∫
f(t) dt =

1

2
mrω =

1

2
mv.

This impulse must be equal to the total gravitational impulse along the plane between rollers,

1

2
mv =

d

v
Mg sinα

which gives the answer,

v =

√
2Mgd sinα

m
.

The subtle thing about this problem is that a similar argument based on energy conservation gives

the wrong answer. Equating the gravitational potential energy lost per roller to the rotational

kinetic energy given to each roller gives

1

2
Iω2 =

1

4
mv2 = Mgd sinα

which gives an answer different by a factor of
√

2. The reason is that energy is also dissipated into

heat, as the plank and roller initially slip with respect to each other. By an argument extremely

similar to that of problem 15, but with angular variables instead of linear ones, you can show that

precisely half the gravitational potential energy goes into heat. Accounting for this gives exactly

the same answer as momentum conservation.

4 Elastic Collisions
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Idea 5

Any temporary interaction between two objects that conserves energy and momentum is a

perfectly elastic collision.

Example 6

Two masses are constrained to a line. The mass m1 moves with velocity v1, and the mass m2

moves with velocity v2. The masses collide perfectly elastically. Find their speeds afterward.

Solution

The usual method is to directly invoke conservation of energy and momentum, which leads

to a quadratic equation. A slicker method is to work in the center of mass frame instead.

(This is useful for collision problems in general, and it’ll become even more useful for the

relativistic collisions covered in R2.)

The center of mass of the system has speed

vCM =
m1v1 +m2v2

m1 +m2
.

Moreover, by momentum conservation, the center of mass never accelerates. Now we boost

into the frame moving with the center of mass. Since the total momentum is by definition

zero in the center of mass frame, the momenta of the particles cancel out. The only way for

this to remain true after the collision is if we multiply their velocities by the same number.

Energy is only conserved if this number is ±1, with the latter representing no collision at all.

Therefore, during an elastic collision, the velocities in the center of mass frame simply reverse.

The initial velocities in that frame are

v1,CM = v1 − vCM, v2,CM = v2 − vCM.

The final velocities in that frame are

v′1,CM = −v1 + vCM, v′2,CM = −v2 + vCM.

Finally, going back to the original frame gives the final velocities

v′1 = −v1 + 2vCM, v′2 = −v2 + 2vCM.

There are many special cases we can check. For example, if m1 = m2, then the two masses

simply swap their velocities, as if they just passed through each other. As another check,

consider the case where the second mass is initially at rest, v2 = 0. Then

v′1 = v1
m1 −m2

m1 +m2
, v′2 = v1

2m1

m1 +m2
.

When m1 = m2, the first mass gives all its velocity to the second. When m2 is large, the first

mass just rebounds off with velocity −v1. When m1 is large, the first mass keeps on going

and the second mass picks up velocity 2v1. Finally, when m1 = m2/3, then the final speeds

are v′1 = −v1/2 and v′2 = v1/2, a nice result which is worth committing to memory.

18

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Idea 6

For problems involving many collisions, a nice way to keep track of everything is to make a

2D plot of x(t) for all the masses.

[2] Problem 18 (Morin 5.23). A tennis ball with mass m2 sits on top of a basketball with a mass

m1 � m2. The bottom of the basketball is a height h above the ground. When the balls are

dropped, how high does the tennis ball bounce?

Solution. Let v =
√

2gh. Once the basketball hits the ground, it has velocity v upwards, whereas

the tennis ball has velocity v downwards. Going into CM frame, which coincides with basketball

frame since m1 � m2, we see that the new velocity of the tennis ball is 2v up, so the velocity in

the ground frame is 3v up, so the tennis ball bounces to 9h since its energy got multiplied by 9.

[3] Problem 19 (PPP 46). A Newton’s cradle consists of three suspended steel balls of masses m1,

m2, and m3 arranged in that order with their centers in a horizontal line. The ball of mass m1 is

drawn aside in their common plane until its center has been raised by h and is then released. If

all collisions are elastic, how much m2 be chosen so that the ball of mass m3 rises to the greatest

possible height, and what is this height? (Neglect all but the first two collisions.)

Solution. The ball of mass m1 has speed v =
√

2gh once it hits the ball of mass m2. By applying

the result of example 6 twice, the speed of mass m3 after the first two collisions is

v′ =
2m1

m1 +m2

2m2

m2 +m3
v

which means the final height is

h′ =

(
4m1m2

(m1 +m2)(m2 +m3)

)2

h.

By some basic calculus, this is maximized when

m2 =
√
m1m3

in which case

h′ =

(
2

1 +
√
m3/m1

)4

h.

For a wide range of m3/m1, this is pretty close to perfect efficiency. (Transferring 100% of the

energy would yield h′ = (m1/m3)h.)

[3] Problem 20. Here’s a variety problem involving some “clean” mathematical results. All three

parts can be solved without lengthy calculation.

(a) Consider n identical balls confined to a line. Assuming all collisions are perfectly elastic, what

is the maximum number of collisions that could happen? Assume no triple collisions happen.

(b) A billiard ball hits an identical billiard ball initially at rest in a perfectly elastic collision.

Show that the balls exit at a right angle to each other.
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(c) A mass M collides elastically with a stationary mass m. If M > m, show that the maximum

possible angle of deflection of M is sin−1(m/M).

Solution. (a) Note when two identical balls collide, they simply swap velocities. Therefore, we

can imagine the balls as passing through one another, and we want the maximum number of

times two balls pass through each other. All n(n− 1)/2 pairs can pass through each other,

as long as the ith ball on the right has the ith smallest rightward velocity.

(b) Let the initial velocity be v, and the final velocities be v1 and v2. By momentum conservation,

v1 +v2 = v. By energy conservation, v2
1 + v2

2 = v2. By the law of cosines, this is only possible

if v1 and v2 are orthogonal.

(c) Let v be the initial speed. Recall that in the center of mass frame, the mass M can only

change the direction, but not the magnitude, of its velocity. In this frame, the speed of the

mass M is v′ = mv/(m+M). Thus, the possible final velocities lie on a circle of radius v′.

Now let’s transform back to the lab frame. In this frame, it’s still true that the possible final

velocities lie on a circle of radius v′, but the center of this circle is now at the center of mass

velocity vc = Mv/(m+M).

From the sketch above, the final velocity that maximizes the angle θ of deflection yields

sin θ =
v′

vc
=
m

M

which is the desired result.

[3] Problem 21 (PPP 72). Beads of equal mass m are strung at equal distances d along a long,

horizontal, infinite wire. The beads are initially at rest but can move without friction. The first

bead is continuously accelerated towards the right by a constant force F . After some time, a “shock

wave” of moving beads will propagate towards the right.

(a) Find the speed of the shock wave, assuming all collisions are completely inelastic.

(b) Do the same, assuming all collisions are completely elastic. What is the average speed of the

accelerated bead in this case?

Solution. (a) In the steady state, a large clump of particles will be moving towards the right. If

the steady state speed is v0, then collisions occur at time intervals d/v0, so the momentum of

the blob must grow at rate (mv0)(v0/d) as new beads join it. This must be equal to F , and

solving gives

v0 =

√
Fd

m
.
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(b) By basic kinematics, the speed of the first, accelerated bead the moment before it hits the

next bead is

v1 =

√
2Fd

m
.

At the moment of collision, the first bead loses all its velocity to the second. The second

bead moves towards the third with velocity v1 and gives its velocity to the third, and so on,

creating a shock front with velocity v1.

In the meantime, the first bead is still accelerating. After another time interval, it hits the

second bead, which is now where the third bead originally was, and the same phenomenon

happens again, creating another bead with velocity v1 just behind the leading one. So after a

long time, we build up a shock front of beads traveling with speed v1.

On the other hand, the first bead keeps uniformly accelerating between zero speed and v1, so

its average speed is just v1/2. Evidently, the shock wave separates from the first bead after

time.

[3] Problem 22. �̂10 USAPhO 2019, problem A1.

[3] Problem 23. �m10 USAPhO 2009, problem B1.

Example 7: MPPP 42

There are N identical tiny discs lying on a table, equally spaced along a semicircle, with total

mass M . Another disc D of mass m is very precisely aimed to bounce off all of the discs in

turn, then exit opposite the direction it came.

In the limit N →∞, what is the minimal value of M/m for this to be possible? Given this

value, what is the ratio of the final and initial speeds of the disc?

Solution

The reason that there is a lower bound on M is that, by the result of part (c) of problem 20,

there is a maximal angle that each tiny disc can deflect the disc D. For large N , the deflection

is π/N for each disc, so
π

N
= sin−1 M/N

m
≈ M

Nm

which implies that M/m ≥ π.
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To see how much energy is lost in each collision, work in the center of mass frame and consider

the first collision. In this frame, the disc D is initially approximately still, and the tiny disc

comes in horizontally with speed v. To maximize the deflection angle in the table’s frame, the

tiny disc should rebound vertically, as this provides the maximal vertical impulse to the discD.

Thus, going back to the table’s frame, where the disc D has speed v, the tiny disc scatters

with speed
√
v2 + v2 =

√
2v. By conservation of energy,

∆

(
1

2
mv2

)
= −1

2

M

N
(
√

2v)2.

This simplifies to
∆v

v
= − π

N

which means that after N collisions, we have

vf
vi

=
(

1− π

N

)N
≈ e−π

where in the last step we used a result from P1.

Example 8: EFPhO 2003.1

In this question, we consider a simplified model of how an elastic collision actually happens.

Consider a spherical volleyball inflated with excess pressure ∆P , radius r, and mass m. If it

hits the ground with a large, but not huge, speed v, estimate how long the subsequent elastic

collision takes.

Solution

When the volleyball hits the ground, it will keep going, deforming the part that touches the

ground into a flat circular face. Specifically, when the ball has moved a distance y into the

ground, the flat face has area

A = π
(√

r2 − (r − y)2
)2

= πy(2r − y) ≈ 2πry

where we assumed that y � r at all times, which is reasonable as long as the initial speed is

not huge. As a result, the pressure of the volleyball exerts a force

F = 2πr∆P y

on the ground. This assumes the pressure inside the volleyball remains uniform, and that

the rest of the volleyball stays approximately spherical, which is again reasonable as long as

the initial speed is not huge.

Assuming the initial velocity is not too small, gravity is negligible during the collision, so

during the collision the force on the volleyball is effectively that of an ideal spring. The
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collision lasts for half a period, giving

τ = π

√
m

keff
=

√
πm

2r∆P
.

If we plug in realistic numbers, the result is of order 10 ms, which is plausible.

5 Continuous Systems

Example 9

As shown in M2, a hanging chain takes the form of a catenary. Suppose you pull the chain

down in the middle. How does the center of mass of the chain move? Does the answer depend

on how hard you pull?

Solution

No matter how hard you pull, or in what direction, the height of the center of mass always

goes up! This is because this quantity measures the total gravitational potential energy of

the chain. If you pull a chain in equilibrium, in any direction whatsoever, you will do work

on it. So this raises its potential energy, and hence the center of mass.

Another way of saying this is that the equilibrium position, without the extra pull you supply,

is already in the lowest energy state, and hence already has the lowest possible center of mass.

Changing this shape in any way raises the center of mass.

[2] Problem 24. A uniform half-disc of radius R is nailed to a wall at the center of its circle and

allowed to come to equilibrium. The half-disc is then rotated by an angle dθ. By calculating the

energy needed to do this in two different ways, find the distance from the pivot point to the center

of mass.

Solution.

Suppose the CM is at radius r. The energy required to turn the disc by dθ is

(1− cos(dθ))mgx =
mgx

2
dθ2.
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However, when rotated, all that has changed is that there is a new sector of angle dθ above (sector

A), and one sector is now missing (sector B). The CM of a thin sector is at radius 2R/3 (it’s just

an isosceles triangle), so the total extra energy of A is (dm)g(2R/3)dθ/2, where dm/m = dθ/π, so

it’s mgR(1/3π) dθ2, and the extra energy due to the absence of B is the same, so we have

2

3π
mgRdθ2 =

mgx

2
dθ2

which implies

x =
4

3π
R.

[4] Problem 25 (Morin 5.31). Assume that a cloud consists of tiny water droplets suspended (uni-

formly distributed, and at rest) in air, and consider a raindrop falling through them. Assume the

raindrop is initially of negligible size, remains spherical at all times, and collides perfectly inelasti-

cally with the droplets. It turns out that the raindrop accelerates uniformly; assuming this, find

the acceleration.

Solution. Suppose the mass density in the cloud is λ and the mass density of the raindrop is ρ

(note ρ > λ), and suppose r is the radius of the drop, M the mass, and v the velocity. We see that

Ṁ = 4πr2ṙρ = 3M
ṙ

r

and

Ṁ = πr2vλ,

which combine to give

v =
4ρ

λ
ṙ.

We see that Mg = Ṁv +Mv̇, so Newton’s second law is

Mg = M

(
3ṙ

r

4ρ

λ
ṙ +

4ρ

λ
r̈

)
and writing everything in terms of r gives

rgλ/ρ = 12ṙ2 + 4rr̈.

This is a nonlinear second-order differential equation; there is no general method to solve these

equations. Certainly an exponential won’t work, because you won’t get the same exponential on

the left and right-hand sides. However, we can use the hint, which indicates that v is linear in time.

This implies that r is a quadratic, so guessing r = At2 gives

At2gλ/ρ = 4A2(12t2 + 2t2).

This implies that we indeed have a solution, as long as

A = (gλ/ρ)/56.

Using our relation between v and ṙ, we finally have

v̇ =
4ρ

λ
r̈ =

g

7
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which is the acceleration.

As you can see from this problem and an earlier one, nonlinear second-order differential equations

are actually quite common in physics. Trying a pure power Atn is a decent first guess, because

monomials remain monomials under both differentiation and multiplication; for the same reason,

an exponential AeBt can also work. However, in practice, the vast majority of such differential

equations don’t have analytic solutions at all, or only have solutions in terms of exotic special

functions. Problems for Olympiads and undergraduate textbooks are generally chosen precisely to

avoid these complications, since they draw attention away from the essential physics.

This raindrop problem is a classic, first invented (though with a slightly different mass accretion

rule) for the infamous Cambridge Smith’s Prize Examination in 1853. Many papers have been

written about it, such as this one by K. S. Krane, who is the K in HRK.

[3] Problem 26 (Kvant). Half of a flexible pearl necklace lies on a horizontal frictionless table, while

the other half hangs down vertically at the edge. If the necklace is released from rest, it will slide off

the table. At some point, the hanging part of the necklace will begin to whip back and forth. What

fraction of the necklace is on the table when this begins? (Hint: we are considering a pearl necklace

with no empty string between adjacent pearls; as a result, all the pearls accelerate smoothly. To

solve the problem, think about the vertical forces. There is an important related problem in M2.)

Solution. Physically, what happens is that a sizable force is needed to turn the pearls around when

they reach the corner, to go from moving horizontally to vertically. At a certain critical velocity,

tension will no longer be enough to do this, and the pearl necklace will jump off the corner. This

will lead to the hanging part whipping back and forth.

To see when this happens, consider the vertical forces on the pearl necklace. Suppose the necklace

has mass M and a fraction x is hanging off the table. As we saw with a similar but static problem

in M2, the normal force on the horizontal part of the table has to cancel the force of gravity acting

on the part of the necklace on the table. This is because otherwise a piece of the horizontal part of

the necklace would have an unbalanced vertical force, and would have to go into the table or jump

off it, neither of which make sense.

Thus, considering the vertical forces just gives

dpy
dt

= xMg −Nc,y

where we take the downward direction as positive for convenience, and Nc,y is the vertical part of

the normal force acting at the corner of the table. (Recall from M2 that this is significant even

when the corner is small.) Since the pearl necklace is flexible, the process is elastic, so energy is

conserved. Our strategy is to use energy conservation to find dpy/dt and use that to find Nc,y. The

necklace jumps off the corner when Nc,y becomes zero.

Taking the necklace to have length L, energy conservation gives

1

2
Mv2 = MxgL

x

2
− MgL

8
=⇒ v2 = gL(x2 − 1/4) =⇒ ẋ =

√
g/L

√
x2 − 1/4.

The acceleration is

ẍ =
√
g/L

1

2
√
x2 − 1/4

· 2xẋ =
√
g/L

x√
x2 − 1/4

√
g/L

√
x2 − 1/4 = (g/L)x

which we also found using the generalized coordinate approach explained in problem 16. Thus,

dpy
dt

= ML
d

dt
(xẋ) = ML(xẍ+ ẋ2) = ML((g/L)x2 + (g/L)(x2 − 1/4)) = Mg(2x2 − 1/4).
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Setting Nc,y to zero gives

2x2 − 1/4 = x

for which the relevant root is x = (1 +
√

3)/4. At this point, the fraction on the table is

1− x =
3−
√

3

4
.

This is barely less than 1/2, so the necklace jumps almost immediately!

In general, ideal ropes like pearl necklaces, which aren’t inherently inelastic at all, do unintuitive

things like this. An even subtler, related phenomenon is the chain fountain, where a chain of beads

can seemingly pull itself out of a jar.

[4] Problem 27 (BAUPC 2002). A small ball is attached to a massless string of length L, the other

end of which is attached to a very thin pole. The ball is thrown so that it initially travels in a

horizontal circle, with the string making an angle θ0 with the vertical. As time goes on, the string

wraps itself around the pole. Assume that (1) the pole is thin enough so that the length of string in

the air decreases very slowly, and (2) the pole has enough friction so that the string does not slide

on the pole, once it touches it. Show that the ratio of the ball’s final speed (right before it hits the

pole) to initial speed is sin θ0.

Solution. The official solution is here, but it’s a lot longer because it also solves for the evolution

of the height of the ball; in this shorter version of the problem, we only want the final speed, which

is a lot easier to find.

In this problem, energy is conserved because the string doesn’t slide, but angular momentum isn’t

conserved. Now note that if θ were constant, the ball would move at a constant height. Changes in θ

as the string winds up change the ball’s height, which then changes its speed by energy conservation.

By doing some geometry, you can show

mv dv = −mg` sin θ dθ.

The radial F = ma equation is

mg tan θ =
mv2

` sin θ
.

Substituting this into the equation above gives

−mg mv2

mg tan θ
dθ = mv dv

which upon separation gives the simple result

−
∫ π/2

θ0

cot θ dθ =

∫ vf

vi

dv

v
.

Therefore, we have

log
sin θ0

sinπ/2
= log

vf
vi

which gives the desired result, vf/vi = sin θ0.

When dealing with an extended system whose parts all move in different ways, conservation of

energy is occasionally useless. However, the somewhat obscure idea of “center of mass energy” may

become useful instead. For more about this concept, see section 13.5 of Halliday and Resnick.
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Idea 7: Center of Mass Energy

The work done on a part of a system is

dW = F dx

where F is the force on that specific part of the system, and dx is its displacement. Then

dW = dE where E is the total energy of the system.

Similarly, the “center of mass work” done on a system is

dWcm = F dxcm

where F is the total force on the system and dxcm is the displacement of the center of mass.

Then dWcm = dEcm where the “center of mass energy” is defined as Ecm = Mv2
cm/2.

It should be noted that, like regular energy and work, center of mass energy and work depend

on the reference frame you’re using.

Example 10

Consider a cyclist who pedals their bike to accelerate. The wheels roll without slipping on

the ground. The cyclist moves a distance d, with the bike experiencing a constant friction

force f from the ground. Analyze the situation using both energy and center of mass energy.

Solution

Since the wheels roll without slipping, their contact point with the ground is always zero,

so the friction force does exactly zero work. Thus the net energy of the cyclist/bike system

is conserved. The additional kinetic energy of the cyclist/bike comes from the chemical

energy of the cyclist, which ultimately came from what they ate. So conservation of energy

is correct, but it doesn’t tell us anything useful at all.

Now consider center of mass energy. Considering the cyclist/bike system, the center of mass

work is fd, which is the change in Mv2
cm/2. This allows us to compute the change in velocity

of the cyclist/bike.

Example 11

Consider the same setup as in the previous example, but now the cyclist brakes hard. The

wheels slip on the ground, and experience a friction force −f while the cyclist moves a

distance d. Analyze the situation using both energy and center of mass energy.
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Solution

The center of mass work equation tells us about the overall deceleration of the cyclist/bike,

just as in the previous example.

On the other hand, the work done by the friction force is indeterminate! It can be any

quantity between zero and −fd. When it is 0, the total energy of the cyclist/bike system

is again conserved, which means all the kinetic energy lost is dissipated as heat inside the

bike itself. When it is −fd, all the kinetic energy lost is dissipated as heat in the ground,

and hence energy is removed from the cyclist/bike system. In general, the work will be

an intermediate value, meaning that both the ground and the bike heat up, but we can’t

calculate what it is without a microscopic model of how the friction works. It depends on,

e.g. how easily the ground and bike tire surface deform.

[1] Problem 28. Alice and Bob stand facing each other with their arms bent and hands touching on

an ice skating rink. Bob has his back against a wall.

(a) Suppose Bob extends his arms, pushing Alice through a distance d with a force F . Analyze

what happens to Alice in terms of both work and center of mass work.

(b) Suppose Alice extends her arms, pushing herself through a distance d with a force F . Repeat

the analysis; what is different and what is the same?

(c) Suppose a spherical balloon is compressed uniformly from all sides. Is there work done on the

balloon? How about center of mass work?

Solution. (a) The center of mass work and work done on Alice are both Fd, so she moves with

speed v =
√

2Fd/m. In this situation Alice effectively behaves like a particle, so the two

notions are the same.

(b) The center of mass work on Alice is again Fd, so her final speed is the same. But the work

done on her is 0 since the contact point did not move. Accordingly, Alice’s total energy did

not change; she merely converted some of her internal energy to kinetic energy.

(c) There is no center of mass work on the balloon, but there is work done, at every point on the

balloon’s surface. This work is just the P dV work in thermodynamics.

[4] Problem 29. �m10 USAPhO 2013, problem B1. This problem is quite tricky! Once you’re done,

carefully read the official solution, which describes how center of mass work is applied.

Solution. As usual, see the official solutions. Recently, this Veritasium video reignited the debate

over the Blackbird, leading to this followup video, which cites the USAPhO solution. If you’re still

confused about how the Blackbird works, I recommend watching the second video, which shows

various arguments and a mechanical model.
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