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Mechanics III: Dynamics
Chapters 3 and 5 of Morin cover dynamics, energy, and momentum. Alternatively, see chapters 2

and 3 of Kleppner and Kolenkow, or chapters 4 and 6 of Wang and Ricardo, volume 1. For fun, see

chapters I-9 through I-14 of the Feynman lectures. There is a total of 82 points.

1 Blocks, Pulleys, and Ramps

Idea 1

To solve dynamics problems with constraints, it’s easiest to first write the constraint in

terms of coordinates (e.g. “conservation of string” for pulleys, or stationarity of the CM for

an isolated system), then differentiate to get constraints on the velocity and acceleration.

Questions of this type are generally straightforward, as long as you write down the correct

equations. The trickiest part is often solving the equations, which can get messy.

Example 1: Morin 3.30

Find the acceleration of the masses in the Atwood’s machine shown below.

Neglect friction, and treat all pulleys are massless.

Solution

Let x and x′ be the amounts by which the left and right mass have moved down, and number

the pulleys 1 through 4 from left to right, and the strings 1 through 3 from left to right.

Pulley 4 is stationary, so conservation of string 3 means that pulley 3 moves up by x′/2. Next,

conservation of string 2 means that pulley 2 moves up by x′/4. Finally, conservation of string

1 implies that pulley 1 moves up by x′/8, so our final conservation of string constraint is

x = −x
′

8

which upon applying the derivative twice gives

a = −a
′

8
.
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Now consider the tensions Ti in the strings. We know that

a = g − 2T1

m
, a′ = g − 2T3

m
.

Since pulley 3 is massless, the forces on it must balance, so T2 = 2T3. Similarly T1 = 2T2,

so T1 = 4T3. We hence have a system of three equations in three unknowns (T1, a, and a′),

which can be solved straightforwardly to give

a′ =
56

65
g, a = − 7

65
g.

2

2 Momentum

Idea 2

The momentum of a system is

P =
∑
i

mivi = MvCM.

In particular, the total external force on the system is MaCM, and if there are no external

forces, the center of mass moves at constant velocity.
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Example 2

A massless rope passes over a frictionless pulley. A monkey hangs on one side, while a bunch

of bananas with exactly the same weight hangs from the other side. When the monkey tries

to climb up the rope, what happens?

Solution

Remarkably, the answer doesn’t depend on how the monkey climbs, whether slowly or

quickly, or symmetrically or not! The total vertical force on the monkey is T −mg, so the

acceleration of the center of mass of the monkey is T/m− g. But since the tension is uniform

through a massless rope, the acceleration of the bananas is also T/m − g. Therefore, the

monkey and bananas rise at the same rate, and meet each other at the pulley.

Now here’s a question for you: compared to climbing up a rope fixed to the ceiling, climbing

up to the pulley takes twice as much work, because the bananas are raised too. But in both

cases, isn’t the monkey applying the same force through the same distance? Where does the

extra work come from? (The answer involves the ideas at the end of this problem set.)

Example 3: KK 3.14 / INPhO 2014.5

Two men, each with mass m, stand on a railway flatcar of mass M initially at rest. They

jump off one end of the flatcar with velocity u relative to the car. The car rolls in the opposite

direction without friction. Find the final velocities of the flatcar if they jump off at the same

time, and if they jump off one at a time. Generalize to the case of N � 1 men, with a total

mass of mtot.

Solution

In the first case, by conservation of momentum, we have

Mv + 2m(v − u) = 0

where v is the final velocity of the flatcar, so

v =
2mu

M + 2m
.

In the second case, by a similar argument, we find that after the first man jumps,

v1 =
mu

M + 2m
.

Now transform to the frame moving with the flatcar. When the second man jumps, he

imparts a further velocity v2 = mu/(M +m) to the flatcar by another similar argument. The

final velocity of the flatcar relative to the ground is then

v = v1 + v2 = mu

(
1

M + 2m
+

1

M +m

)
.
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It might be a bit disturbing that the final speeds and hence energies of the flatcar are

different, even though the men are doing the same thing (i.e. expending the same amount of

energy in their legs to jump) in both cases.

The reason for the difference is that in the second case, the second man to jump ends up

with less energy, since the velocity he gets from jumping is partially cancelled by the existing

velocity v1. So the extra energy that goes into the flatcar corresponds to less kinetic energy

in the men after jumping, which would ultimately have ended up as heat after they slid to a

stop. Accounting properly for the kinetic energy of everything in the system solves a lot of

paradoxes involving energy, as we’ll see below.

In the case of many men, by similar reasoning we have

v =
mtot

M +mtot
u

in the first case, while in the second case the answer is the sum

v =
N∑
i=1

mtotu

N

1

M + (i/N)mtot
.

This can be converted into an integral, by letting x = i/N , in which case ∆x = 1/N and

v =
∑
i

∆x
mtotu

M + xmtot
≈
∫ 1

0
dx

mtotu

M + xmtot
= log

(
M +mtot

M

)
u.

Note that this is essentially the rocket equation, which we’ll derive in a different way in M6.

7

3 Energy

Idea 3

The work done on a point particle is

W =

∫
F · dx

and is equal to the change in kinetic energy, as you showed in P1.
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Remark: Dot Products

The dot product of two vectors is defined in components as

v ·w = vxwx + vywy + vzwz

and is equal to |v| |w| cos θ where θ is the angle between them. For example, if A and B are

the sides of a triangle,

|A + B|2 = (A + B) · (A + B) = A2 +B2 + 2AB cos θ.

Since the left-hand side is the length squared of the third side of the triangle, we’ve proven

the law of cosines. (Or, if you accept the law of cosines, you could regard this as a proof

that the dot product depends on cos θ as claimed.)

Like the ordinary product, the dot product obeys the product rule. For example,

d

dt
(v ·w) = v̇ ·w + v · ẇ.

10

Using this, it’s easy to generalize the derivation of the work-kinetic energy theorem in P1 to

three dimensions; we have

1

2
d(v2) =

1

2
d(v · v) = v · dv =

dx

dt
· dv =

dv

dt
· dx = a · dx

and this is equivalent to the desired theorem. As you can see, it’s all basically the same, since

the product and chain rule manipulations work the same way for vectors and scalars.

Example 4: IPhO 1996 1(b)

A skier starts from rest at point A and slowly slides down a hill with coefficient of friction µ,

without turning or braking, and stops at point B. At this point, his horizontal displacement

is s. What is the height difference h between points A and B?

Solution

mgh =

Since the skier begins and ends at rest, the change in height is the total energy lost to friction,∫
ffric ds

where the integral over ds goes over the skier’s path. Since the skier is always moving

slowly, the normal force is approximately mg cos θ. (More generally, there would be another

contribution to provide the centripetal acceleration.) But then∫
ffric ds =

∫
µmg cos θ ds =

∫
µmg dx = µmgs

which gives an answer of h = µs. (If the skier’s path turned around, then this would still

hold as long as s denotes the total horizontal distance traveled.)

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Idea 4

If a problem can be solved using either momentum conservation or energy conservation alone,

it usually means one of the two isn’t actually conserved. In particular, many processes

are inherently inelastic and inevitably dissipate energy. For more about inherently inelastic

processes, see section 5.8 of Morin.

Example 5: PPP 108

A fire hose of mass M and length L is coiled into a roll of radius R. The hose is sent rolling

along level ground, with its center of mass given initial speed v0 �
√
gR. The free end of

the hose is held fixed.

The hose unrolls and becomes straight. How long does this process take to complete?

Solution

First, we need to find what is conserved. The horizontal momentum is not conserved,

because there is an external horizontal force needed to keep the end of the hose in place.

On the other hand, the energy is conserved, even though this process looks inelastic. The

hose “sticks” to the floor as it unrolls, but this process dissipates no energy because the cir-

cular part of the hose rolls without slipping, so the bottom of this part always has zero velocity.

14

Once we figure out energy is conserved, the problem is straightforward. The assumption

v0 �
√
gR means we can neglect the change in gravitational potential energy as the hose

unrolls. After the hose travels a distance x,

1

2

(
1 +

1

2

)
Mv0

2 =
1

2

(
1 +

1

2

)
mv2

where the 1/2 terms are from rotational kinetic energy. Since m(x) = M(1− x/L), we have

v(x) = √ v0

1− x/L

which gives a total time

T =

∫ L

0

dx

v(x)
=
L

v0

∫ 1

0

√
1− u du =

2L

3v0
.

Evidently, the hose accelerates as it unrolls.
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Idea 5

Any temporary interaction between two objects that conserves energy and momentum is a

perfectly elastic collision.

Example 6

Two masses are constrained to a line. The mass m1 moves with velocity v1, and the mass m2

moves with velocity v2. The masses collide perfectly elastically. Find their speeds afterward.

Solution

The usual method is to directly invoke conservation of energy and momentum, which leads

to a quadratic equation. A slicker method is to work in the center of mass frame instead.

(This is useful for collision problems in general, and it’ll become even more useful for the

relativistic collisions covered in R2.)

The center of mass of the system has speed

vCM =
m1v1 +m2v2

m1 +m2
.

Moreover, by momentum conservation, the center of mass never accelerates. Now we boost

into the frame moving with the center of mass. Since the total momentum is by definition

zero in the center of mass frame, the momenta of the particles cancel out. The only way for

this to remain true after the collision is if we multiply their velocities by the same number.

Energy is only conserved if this number is ±1, with the latter representing no collision at all.

Therefore, during an elastic collision, the velocities in the center of mass frame simply reverse.

The initial velocities in that frame are

v1,CM = v1 − vCM, v2,CM = v2 − vCM.

The final velocities in that frame are

v′1,CM = −v1 + vCM, v′2,CM = −v2 + vCM.

Finally, going back to the original frame gives the final velocities

v′1 = −v1 + 2vCM, v′2 = −v2 + 2vCM.

There are many special cases we can check. For example, if m1 = m2, then the two masses

simply swap their velocities, as if they just passed through each other. As another check,

consider the case where the second mass is initially at rest, v2 = 0. Then

v′1 = v1
m1 −m2

m1 +m2
, v′2 = v1

2m1

m1 +m2
.

When m1 = m2, the first mass gives all its velocity to the second. When m2 is large, the first

mass just rebounds off with velocity −v1. When m1 is large, the first mass keeps on going

and the second mass picks up velocity 2v1. Finally, when m1 = m2/3, then the final speeds

are v′1 = −v1/2 and v′2 = v1/2, a nice result which is worth committing to memory.

18
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Idea 6

For problems involving many collisions, a nice way to keep track of everything is to make a

2D plot of x(t) for all the masses.

19

Example 7: MPPP 42

There are N identical tiny discs lying on a table, equally spaced along a semicircle, with total

mass M . Another disc D of mass m is very precisely aimed to bounce off all of the discs in

turn, then exit opposite the direction it came.

In the limit N →∞, what is the minimal value of M/m for this to be possible? Given this

value, what is the ratio of the final and initial speeds of the disc?

Solution

The reason that there is a lower bound on M is that, by the result of part (c) of problem 20,

there is a maximal angle that each tiny disc can deflect the disc D. For large N , the deflection

is π/N for each disc, so
π

N
= sin−1 M/N

m
≈ M

Nm

which implies that M/m ≥ π.

To see how much energy is lost in each collision, work in the center of mass frame and consider

the first collision. In this frame, the disc D is initially approximately still, and the tiny disc

comes in horizontally with speed v. To maximize the deflection angle in the table’s frame, the

tiny disc should rebound vertically, as this provides the maximal vertical impulse to the discD.

Thus, going√back to the√table’s frame, where the disc D has speed v, the tiny disc scatters

with speed v2 + v2 = 2v. By conservation of energy,

∆

(
1

2
mv2

)
= −1

2

M

N
(
√

2v)2.

This simplifies to
∆v

= − π
Nv

which means that after N collisions, we have

vf
vi

=
(

1− π

N

)N
≈ e−π

where in the last step we used a result from P1.
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Example 8: EFPhO 2003.1

In this question, we consider a simplified model of how an elastic collision actually happens.

Consider a spherical volleyball inflated with excess pressure ∆P , radius r, and mass m. If it

hits the ground with a large, but not huge, speed v, estimate how long the subsequent elastic

collision takes.

Solution

When the volleyball hits the ground, it will keep going, deforming the part that touches the

ground into a flat circular face. Specifically, when the ball has moved a distance y into the

ground, the flat face has area

A = π
(√

r2 − (r − y)2
)2

= πy(2r − y) ≈ 2πry

where we assumed that y � r at all times, which is reasonable as long as the initial speed is

not huge. As a result, the pressure of the volleyball exerts a force

F = 2πr∆P y

on the ground. This assumes the pressure inside the volleyball remains uniform, and that

the rest of the volleyball stays approximately spherical, which is again reasonable as long as

the initial speed is not huge.

Assuming the initial velocity is not too small, gravity is negligible during the collision, so

during the collision the force on the volleyball is effectively that of an ideal spring. The

22

collision lasts for half a period, giving

τ = π

√
m

=

√
πm

.
keff 2r∆P

If we plug in realistic numbers, the result is of order 10 ms, which is plausible.
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5 Continuous Systems

Example 9

As shown in M2, a hanging chain takes the form of a catenary. Suppose you pull the chain

down in the middle. How does the center of mass of the chain move? Does the answer depend

on how hard you pull?

Solution

No matter how hard you pull, or in what direction, the height of the center of mass always

goes up! This is because this quantity measures the total gravitational potential energy of

the chain. If you pull a chain in equilibrium, in any direction whatsoever, you will do work

on it. So this raises its potential energy, and hence the center of mass.

Another way of saying this is that the equilibrium position, without the extra pull you supply,

is already in the lowest energy state, and hence already has the lowest possible center of mass.

Changing this shape in any way raises the center of mass.

23

Idea 7: Center of Mass Energy

The work done on a part of a system is

dW = F dx

where F is the force on that specific part of the system, and dx is its displacement. Then 
dW = dE where E is the total energy of the system.

Similarly, the “center of mass work” done on a system is

dWcm = F dxcm

where F is the total force on the system and dxcm is the displacement of the center of mass.

Then dWcm = dEcm where the “center of mass energy” is defined as Ecm = Mv2
cm/2.

It should be noted that, like regular energy and work, center of mass energy and work depend 
on the reference frame you’re using.
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Consider a cyclist who pedals their bike to accelerate. The wheels roll without slipping on

the ground. The cyclist moves a distance d, with the bike experiencing a constant friction

force f from the ground. Analyze the situation using both energy and center of mass energy.

Solution

Since the wheels roll without slipping, their contact point with the ground is always zero,

so the friction force does exactly zero work. Thus the net energy of the cyclist/bike system

is conserved. The additional kinetic energy of the cyclist/bike comes from the chemical

energy of the cyclist, which ultimately came from what they ate. So conservation of energy

is correct, but it doesn’t tell us anything useful at all.

Now consider center of mass energy. Considering the cyclist/bike system, the center of mass

work is fd, which is the change in Mv2
cm/2. This allows us to compute the change in velocity

of the cyclist/bike.

Example 11

Consider the same setup as in the previous example, but now the cyclist brakes hard. The

wheels slip on the ground, and experience a friction force −f while the cyclist moves a

distance d. Analyze the situation using both energy and center of mass energy.

27

Example 10

Solution

The center of mass work equation tells us about the overall deceleration of the cyclist/bike,

just as in the previous example.

On the other hand, the work done by the friction force is indeterminate! It can be any

quantity between zero and −fd. When it is 0, the total energy of the cyclist/bike system

is again conserved, which means all the kinetic energy lost is dissipated as heat inside the

bike itself. When it is −fd, all the kinetic energy lost is dissipated as heat in the ground,

and hence energy is removed from the cyclist/bike system. In general, the work will be

an intermediate value, meaning that both the ground and the bike heat up, but we can’t

calculate what it is without a microscopic model of how the friction works. It depends on,

e.g. how easily the ground and bike tire surface deform.
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