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Mechanics III: Dynamics
Chapters 3 and 5 of Morin cover dynamics, energy, and momentum. Alternatively, see chapters 2

and 3 of Kleppner and Kolenkow, or chapters 4 and 6 of Wang and Ricardo, volume 1. For fun, see

chapters I-9 through I-14 of the Feynman lectures. There is a total of 82 points.

1 Blocks, Pulleys, and Ramps

Idea 1

To solve dynamics problems with constraints, it’s easiest to first write the constraint in

terms of coordinates (e.g. “conservation of string” for pulleys, or stationarity of the CM for

an isolated system), then differentiate to get constraints on the velocity and acceleration.

Questions of this type are generally straightforward, as long as you write down the correct

equations. The trickiest part is often solving the equations, which can get messy.

Example 1: Morin 3.30

Find the acceleration of the masses in the Atwood’s machine shown below.

Neglect friction, and treat all pulleys are massless.

Solution

Let x and x′ be the amounts by which the left and right mass have moved down, and number

the pulleys 1 through 4 from left to right, and the strings 1 through 3 from left to right.

Pulley 4 is stationary, so conservation of string 3 means that pulley 3 moves up by x′/2. Next,

conservation of string 2 means that pulley 2 moves up by x′/4. Finally, conservation of string

1 implies that pulley 1 moves up by x′/8, so our final conservation of string constraint is

x = −x
′

8

which upon applying the derivative twice gives

a = −a
′

8
.
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Now consider the tensions Ti in the strings. We know that

a = g − 2T1

m
, a′ = g − 2T3

m
.

Since pulley 3 is massless, the forces on it must balance, so T2 = 2T3. Similarly T1 = 2T2,

so T1 = 4T3. We hence have a system of three equations in three unknowns (T1, a, and a′),

which can be solved straightforwardly to give

a′ =
56

65
g, a = − 7

65
g.

[2] Problem 1 (Morin 3.2). Consider the double Atwood’s machine shown below.

Assuming all pulleys are massless, and neglecting friction, find the acceleration of the mass m1.

[2] Problem 2 (KK 2.15). Consider the system of massless pulleys shown below.

The coefficient of friction between the masses and the horizontal surfaces is µ. Show that the tension

in the rope is

T =
(µ+ 1)g

2/M3 + 1/2M1 + 1/2M2
.

[2] Problem 3 (KK 2.20). Consider the machine shown below, which we encountered in M2.
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Show that the acceleration of M1 when the external force F is zero is

a = − M2M3g

M1M2 +M1M3 + 2M2M3 +M2
3

.

[3] Problem 4. A block of mass m is held motionless on a frictionless plane of mass M and angle of

inclination θ. The plane rests on a frictionless horizontal table.

(a) When the block is released, what is the horizontal acceleration of the plane?

(b) Assume the block starts a distance d above the table. Using results from part (a), what is the

horizontal velocity of the block just before it reaches the floor?

(c) Find the speed of the block after it reaches the floor by applying energy and momentum

conservation to the entire process.

(d) Your results for parts (b) and (c) should not match. What’s going on?

2 Momentum

Idea 2

The momentum of a system is

P =
∑
i

mivi = MvCM.

In particular, the total external force on the system is MaCM, and if there are no external

forces, the center of mass moves at constant velocity.

Example 2

A massless rope passes over a frictionless pulley. A monkey hangs on one side, while a bunch

of bananas with exactly the same weight hangs from the other side. When the monkey tries

to climb up the rope, what happens?

Solution

Remarkably, the answer doesn’t depend on how the monkey climbs, whether slowly or

quickly, or symmetrically or not! The total vertical force on the monkey is T −mg, so the

acceleration of the center of mass of the monkey is T/m− g. But since the tension is uniform

through a massless rope, the acceleration of the bananas is also T/m − g. Therefore, the

monkey and bananas rise at the same rate, and meet each other at the pulley.

Now here’s a question for you: compared to climbing up a rope fixed to the ceiling, climbing

up to the pulley takes twice as much work, because the bananas are raised too. But in both

cases, isn’t the monkey applying the same force through the same distance? Where does the

extra work come from? (The answer involves the ideas at the end of this problem set.)
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Example 3: KK 3.14 / INPhO 2014.5

Two men, each with mass m, stand on a railway flatcar of mass M initially at rest. They

jump off one end of the flatcar with velocity u relative to the car. The car rolls in the opposite

direction without friction. Find the final velocities of the flatcar if they jump off at the same

time, and if they jump off one at a time. Generalize to the case of N � 1 men, with a total

mass of mtot.

Solution

In the first case, by conservation of momentum, we have

Mv + 2m(v − u) = 0

where v is the final velocity of the flatcar, so

v =
2mu

M + 2m
.

In the second case, by a similar argument, we find that after the first man jumps,

v1 =
mu

M + 2m
.

Now transform to the frame moving with the flatcar. When the second man jumps, he

imparts a further velocity v2 = mu/(M +m) to the flatcar by another similar argument. The

final velocity of the flatcar relative to the ground is then

v = v1 + v2 = mu

(
1

M + 2m
+

1

M +m

)
.

It might be a bit disturbing that the final speeds and hence energies of the flatcar are

different, even though the men are doing the same thing (i.e. expending the same amount of

energy in their legs to jump) in both cases.

The reason for the difference is that in the second case, the second man to jump ends up

with less energy, since the velocity he gets from jumping is partially cancelled by the existing

velocity v1. So the extra energy that goes into the flatcar corresponds to less kinetic energy

in the men after jumping, which would ultimately have ended up as heat after they slid to a

stop. Accounting properly for the kinetic energy of everything in the system solves a lot of

paradoxes involving energy, as we’ll see below.

In the case of many men, by similar reasoning we have

v =
mtot

M +mtot
u

in the first case, while in the second case the answer is the sum

v =
N∑
i=1

mtotu

N

1

M + (i/N)mtot
.
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This can be converted into an integral, by letting x = i/N , in which case ∆x = 1/N and

v =
∑
i

∆x
mtotu

M + xmtot
≈
∫ 1

0
dx

mtotu

M + xmtot
= log

(
M +mtot

M

)
u.

Note that this is essentially the rocket equation, which we’ll derive in a different way in M6.

[2] Problem 5 (KK 4.11). A flexible chain of mass M and length ` is suspended vertically with its

lowest end touching a scale. The chain is released and falls onto the scale. Find the reading on the

scale when a length of chain x has fallen.

[3] Problem 6. Some qualitative questions about momentum.

(a) A box containing a vacuum is placed on a frictionless surface. The box is punctured on its

right side. How does it move immediately afterward?

(b) You are riding forward on a sled across frictionless ice. Snow falls vertically (in the frame of

the ice) on the sled. Which of the following makes the sled go the fastest or the slowest?

1. You sweep the snow off the sled, directly to the left and right in your frame.

2. You sweep the snow off the sled, directly to the left and right in the ice frame.

3. You do nothing.

[3] Problem 7. �̂10 USAPhO 2018, problem A1.

[3] Problem 8 (Kalda). A block is on a ramp with angle α and coefficient of friction µ > tanα. The

ramp is rapidly driven back and forth so that its velocity vector u is parallel to both the slope and

the horizontal and has constant modulus v.

The direction of u reverses abruptly after each time interval τ , where gτ � v. Find the average

velocity w of the block. (Hint: as mentioned in M1, it’s best to work in the frame of the ramp,

because it causes the friction, even though this introduces fictitious forces.)

[4] Problem 9 (Morin 5.21). A sheet of mass M moves with speed V through a region of space that

contains particles of mass m and speed v. There are n of these particles per unit volume. The

sheet moves in the direction of its normal. Assume m�M , and assume that the particles do not

interact with each other.

(a) If v � V , what is the drag force per unit area on the sheet?

(b) If v � V , what is the drag force per unit area on the sheet? Assume for simplicity that the

component of every particle’s velocity in the direction of the sheet’s motion is exactly ±v/2.
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(c) Now suppose a cylinder of mass M , radius R, and length L moves through the same region

of space with speed V , and assume v = 0 and m � M . The cylinder moves in a direction

perpendicular to its axis. What is the drag force on the cylinder?

Parts (a) and (b) are a toy model for the two regimes of drag, mentioned in M1. However, it

shouldn’t be taken too seriously, because as we’ll see in M7, the typical velocity that separates

the two types of behavior doesn’t have to be of order v. Instead, it depends on how strongly the

particles interact with each other.

3 Energy

Idea 3

The work done on a point particle is

W =

∫
F · dx

and is equal to the change in kinetic energy, as you showed in P1.

Remark: Dot Products

The dot product of two vectors is defined in components as

v ·w = vxwx + vywy + vzwz

and is equal to |v| |w| cos θ where θ is the angle between them. For example, if A and B are

the sides of a triangle,

|A + B|2 = (A + B) · (A + B) = A2 +B2 + 2AB cos θ.

Since the left-hand side is the length squared of the third side of the triangle, we’ve proven

the law of cosines. (Or, if you accept the law of cosines, you could regard this as a proof

that the dot product depends on cos θ as claimed.)

Like the ordinary product, the dot product obeys the product rule. For example,

d

dt
(v ·w) = v̇ ·w + v · ẇ.

Using this, it’s easy to generalize the derivation of the work-kinetic energy theorem in P1 to

three dimensions; we have

1

2
d(v2) =

1

2
d(v · v) = v · dv =

dx

dt
· dv =

dv

dt
· dx = a · dx

and this is equivalent to the desired theorem. As you can see, it’s all basically the same, since

the product and chain rule manipulations work the same way for vectors and scalars.
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Example 4: IPhO 1996 1(b)

A skier starts from rest at point A and slowly slides down a hill with coefficient of friction µ,

without turning or braking, and stops at point B. At this point, his horizontal displacement

is s. What is the height difference h between points A and B?

Solution

Since the skier begins and ends at rest, the change in height is the total energy lost to friction,

mgh =

∫
ffric ds

where the integral over ds goes over the skier’s path. Since the skier is always moving

slowly, the normal force is approximately mg cos θ. (More generally, there would be another

contribution to provide the centripetal acceleration.) But then∫
ffric ds =

∫
µmg cos θ ds =

∫
µmg dx = µmgs

which gives an answer of h = µs. (If the skier’s path turned around, then this would still

hold as long as s denotes the total horizontal distance traveled.)

[3] Problem 10 (MPPP 16). On a windless day, a cyclist going “flat out” can ride uphill at a speed

of v1 = 12 km/h and downhill at v2 = 36 km/h on the same inclined road. We wish to find the

cyclist’s top speed on a flat road if their maximal effort is independent of the speed at which the

bike is traveling. Note that in this regime, the air drag force is quadratic in the speed.

(a) Solve the problem assuming that “maximal effort” refers to the force exerted on the pedals

by the rider, and that the rider never changes gears.

(b) Solve the problem assuming that “maximal effort” refers to the rider’s power.

[3] Problem 11. �m10 USAPhO 2016, problem B1.

[2] Problem 12. Alice steps on the gas pedal on her car. Bob, who is standing on the sidewalk, sees

Alice’s car accelerate from rest to 10 mph. Charlie, who is passing by in another car, sees Alice’s car

accelerate from 10 mph to 20 mph. Hence Charlie sees the kinetic energy of Alice’s car increase by

three times as much. How is this compatible with energy conservation, given that the same amount

of gas was burned in both frames?

[3] Problem 13 (KK 4.8). A block of mass M is attached to a spring of spring constant k. It is pulled

a distance L from its equilibrium position and released from rest. The block has a small coefficient

of friction µ with the ground. Find the number of cycles the mass oscillates before coming to rest.

[3] Problem 14 (Morin 5.4). A massless string of length 2` connects two hockey pucks that lie on

frictionless ice. A constant horizontal force F is applied to the midpoint of the string, perpendicular

to it. The pucks eventually collide and stick together. How much kinetic energy is lost in the

collision?
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Idea 4

If a problem can be solved using either momentum conservation or energy conservation alone,

it usually means one of the two isn’t actually conserved. In particular, many processes

are inherently inelastic and inevitably dissipate energy. For more about inherently inelastic

processes, see section 5.8 of Morin.

[2] Problem 15 (KK 4.20). Sand falls slowly at a constant rate dm/dt onto a horizontal belt driven

at constant speed v.

(a) Find the power P needed to drive the belt.

(b) Show that the rate of increase of the kinetic energy of the sand is only P/2.

(c) We can explain this discrepancy exactly. Argue that in the reference frame of the belt, the

rate of heat dissipation is P/2. Since temperature is the same in all frames, the rate of heat

dissipation is P/2 in the original frame as well, accounting for the missing energy.

Example 5: PPP 108

A fire hose of mass M and length L is coiled into a roll of radius R. The hose is sent rolling

along level ground, with its center of mass given initial speed v0 �
√
gR. The free end of

the hose is held fixed.

The hose unrolls and becomes straight. How long does this process take to complete?

Solution

First, we need to find what is conserved. The horizontal momentum is not conserved,

because there is an external horizontal force needed to keep the end of the hose in place.

On the other hand, the energy is conserved, even though this process looks inelastic. The

hose “sticks” to the floor as it unrolls, but this process dissipates no energy because the cir-

cular part of the hose rolls without slipping, so the bottom of this part always has zero velocity.

Once we figure out energy is conserved, the problem is straightforward. The assumption

v0 �
√
gR means we can neglect the change in gravitational potential energy as the hose

unrolls. After the hose travels a distance x,

1

2

(
1 +

1

2

)
Mv2

0 =
1

2

(
1 +

1

2

)
mv2
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where the 1/2 terms are from rotational kinetic energy. Since m(x) = M(1− x/L), we have

v(x) =
v0√

1− x/L

which gives a total time

T =

∫ L

0

dx

v(x)
=
L

v0

∫ 1

0

√
1− u du =

2L

3v0
.

Evidently, the hose accelerates as it unrolls.

[4] Problem 16. Consider the following related problems; in all parts, neglect friction.

(a) A uniform rope of length ` lies stretched out flat on a table, with a tiny portion `0 � ` hanging

through a hole. The rope is released from rest, and all points on the rope begin to move with

the same speed. Since this motion is smooth, energy is conserved. Find the speed of the rope

when the end goes through the hole.

(b) ? For practice, repeat part (a) by solving for x(t) explicitly. (Hint: this is best done using the

generalized coordinate techniques of M4.)

(c) Now suppose a flexible uniform chain of length ` is placed loosely coiled close to the hole.

Again, a tiny portion `0 � ` hangs through the hole, and the chain is released from rest. In

this case, the unraveling of the chain is an inherently inelastic process, because each link of

the chain sits still until it is suddenly jerked into motion. Find the speed of the chain when

the last link goes through the hole. (Hint: you should get a nonlinear differential equation,

which can be solved by guessing x(t) = Atn.)

[3] Problem 17 (PPP 95). A long slipway, inclined at an angle α to the horizontal, is fitted with

many identical rollers, consecutive ones being a distance d apart. The rollers have horizontal axles

and consist of rubber-covered solid steel cylinders each of mass m and radius r. A plank of mass

M , and length much greater than d, is released at the top of the slipway.

Find the terminal speed vmax of the plank. Ignore air drag and friction at the pivots of the rollers.
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4 Elastic Collisions

Idea 5

Any temporary interaction between two objects that conserves energy and momentum is a

perfectly elastic collision.

Example 6

Two masses are constrained to a line. The mass m1 moves with velocity v1, and the mass m2

moves with velocity v2. The masses collide perfectly elastically. Find their speeds afterward.

Solution

The usual method is to directly invoke conservation of energy and momentum, which leads

to a quadratic equation. A slicker method is to work in the center of mass frame instead.

(This is useful for collision problems in general, and it’ll become even more useful for the

relativistic collisions covered in R2.)

The center of mass of the system has speed

vCM =
m1v1 +m2v2

m1 +m2
.

Moreover, by momentum conservation, the center of mass never accelerates. Now we boost

into the frame moving with the center of mass. Since the total momentum is by definition

zero in the center of mass frame, the momenta of the particles cancel out. The only way for

this to remain true after the collision is if we multiply their velocities by the same number.

Energy is only conserved if this number is ±1, with the latter representing no collision at all.

Therefore, during an elastic collision, the velocities in the center of mass frame simply reverse.

The initial velocities in that frame are

v1,CM = v1 − vCM, v2,CM = v2 − vCM.

The final velocities in that frame are

v′1,CM = −v1 + vCM, v′2,CM = −v2 + vCM.

Finally, going back to the original frame gives the final velocities

v′1 = −v1 + 2vCM, v′2 = −v2 + 2vCM.

There are many special cases we can check. For example, if m1 = m2, then the two masses

simply swap their velocities, as if they just passed through each other. As another check,

consider the case where the second mass is initially at rest, v2 = 0. Then

v′1 = v1
m1 −m2

m1 +m2
, v′2 = v1

2m1

m1 +m2
.

When m1 = m2, the first mass gives all its velocity to the second. When m2 is large, the first

mass just rebounds off with velocity −v1. When m1 is large, the first mass keeps on going

and the second mass picks up velocity 2v1. Finally, when m1 = m2/3, then the final speeds

are v′1 = −v1/2 and v′2 = v1/2, a nice result which is worth committing to memory.
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Idea 6

For problems involving many collisions, a nice way to keep track of everything is to make a

2D plot of x(t) for all the masses.

[2] Problem 18 (Morin 5.23). A tennis ball with mass m2 sits on top of a basketball with a mass

m1 � m2. The bottom of the basketball is a height h above the ground. When the balls are

dropped, how high does the tennis ball bounce?

[3] Problem 19 (PPP 46). A Newton’s cradle consists of three suspended steel balls of masses m1,

m2, and m3 arranged in that order with their centers in a horizontal line. The ball of mass m1 is

drawn aside in their common plane until its center has been raised by h and is then released. If

all collisions are elastic, how much m2 be chosen so that the ball of mass m3 rises to the greatest

possible height, and what is this height? (Neglect all but the first two collisions.)

[3] Problem 20. Here’s a variety problem involving some “clean” mathematical results. All three

parts can be solved without lengthy calculation.

(a) Consider n identical balls confined to a line. Assuming all collisions are perfectly elastic, what

is the maximum number of collisions that could happen? Assume no triple collisions happen.

(b) A billiard ball hits an identical billiard ball initially at rest in a perfectly elastic collision.

Show that the balls exit at a right angle to each other.

(c) A mass M collides elastically with a stationary mass m. If M > m, show that the maximum

possible angle of deflection of M is sin−1(m/M).

[3] Problem 21 (PPP 72). Beads of equal mass m are strung at equal distances d along a long,

horizontal, infinite wire. The beads are initially at rest but can move without friction. The first

bead is continuously accelerated towards the right by a constant force F . After some time, a “shock

wave” of moving beads will propagate towards the right.

(a) Find the speed of the shock wave, assuming all collisions are completely inelastic.

(b) Do the same, assuming all collisions are completely elastic. What is the average speed of the

accelerated bead in this case?

[3] Problem 22. �̂10 USAPhO 2019, problem A1.

[3] Problem 23. �m10 USAPhO 2009, problem B1.

Example 7: MPPP 42

There are N identical tiny discs lying on a table, equally spaced along a semicircle, with total

mass M . Another disc D of mass m is very precisely aimed to bounce off all of the discs in

turn, then exit opposite the direction it came.

11

https://knzhou.github.io/
https://en.wikipedia.org/wiki/Newton%27s_cradle


Kevin Zhou Physics Olympiad Handouts

In the limit N →∞, what is the minimal value of M/m for this to be possible? Given this

value, what is the ratio of the final and initial speeds of the disc?

Solution

The reason that there is a lower bound on M is that, by the result of part (c) of problem 20,

there is a maximal angle that each tiny disc can deflect the disc D. For large N , the deflection

is π/N for each disc, so
π

N
= sin−1 M/N

m
≈ M

Nm

which implies that M/m ≥ π.

To see how much energy is lost in each collision, work in the center of mass frame and consider

the first collision. In this frame, the disc D is initially approximately still, and the tiny disc

comes in horizontally with speed v. To maximize the deflection angle in the table’s frame, the

tiny disc should rebound vertically, as this provides the maximal vertical impulse to the discD.

Thus, going back to the table’s frame, where the disc D has speed v, the tiny disc scatters

with speed
√
v2 + v2 =

√
2v. By conservation of energy,

∆

(
1

2
mv2

)
= −1

2

M

N
(
√

2v)2.

This simplifies to
∆v

v
= − π

N

which means that after N collisions, we have

vf
vi

=
(

1− π

N

)N
≈ e−π

where in the last step we used a result from P1.
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Example 8: EFPhO 2003.1

In this question, we consider a simplified model of how an elastic collision actually happens.

Consider a spherical volleyball inflated with excess pressure ∆P , radius r, and mass m. If it

hits the ground with a large, but not huge, speed v, estimate how long the subsequent elastic

collision takes.

Solution

When the volleyball hits the ground, it will keep going, deforming the part that touches the

ground into a flat circular face. Specifically, when the ball has moved a distance y into the

ground, the flat face has area

A = π
(√

r2 − (r − y)2
)2

= πy(2r − y) ≈ 2πry

where we assumed that y � r at all times, which is reasonable as long as the initial speed is

not huge. As a result, the pressure of the volleyball exerts a force

F = 2πr∆P y

on the ground. This assumes the pressure inside the volleyball remains uniform, and that

the rest of the volleyball stays approximately spherical, which is again reasonable as long as

the initial speed is not huge.

Assuming the initial velocity is not too small, gravity is negligible during the collision, so

during the collision the force on the volleyball is effectively that of an ideal spring. The

collision lasts for half a period, giving

τ = π

√
m

keff
=

√
πm

2r∆P
.

If we plug in realistic numbers, the result is of order 10 ms, which is plausible.

5 Continuous Systems

Example 9

As shown in M2, a hanging chain takes the form of a catenary. Suppose you pull the chain

down in the middle. How does the center of mass of the chain move? Does the answer depend

on how hard you pull?

Solution

No matter how hard you pull, or in what direction, the height of the center of mass always

goes up! This is because this quantity measures the total gravitational potential energy of

the chain. If you pull a chain in equilibrium, in any direction whatsoever, you will do work
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on it. So this raises its potential energy, and hence the center of mass.

Another way of saying this is that the equilibrium position, without the extra pull you supply,

is already in the lowest energy state, and hence already has the lowest possible center of mass.

Changing this shape in any way raises the center of mass.

[2] Problem 24. A uniform half-disc of radius R is nailed to a wall at the center of its circle and

allowed to come to equilibrium. The half-disc is then rotated by an angle dθ. By calculating the

energy needed to do this in two different ways, find the distance from the pivot point to the center

of mass.

[4] Problem 25 (Morin 5.31). Assume that a cloud consists of tiny water droplets suspended (uni-

formly distributed, and at rest) in air, and consider a raindrop falling through them. Assume the

raindrop is initially of negligible size, remains spherical at all times, and collides perfectly inelasti-

cally with the droplets. It turns out that the raindrop accelerates uniformly; assuming this, find

the acceleration.

[3] Problem 26 (Kvant). Half of a flexible pearl necklace lies on a horizontal frictionless table, while

the other half hangs down vertically at the edge. If the necklace is released from rest, it will slide off

the table. At some point, the hanging part of the necklace will begin to whip back and forth. What

fraction of the necklace is on the table when this begins? (Hint: we are considering a pearl necklace

with no empty string between adjacent pearls; as a result, all the pearls accelerate smoothly. To

solve the problem, think about the vertical forces. There is an important related problem in M2.)

[4] Problem 27 (BAUPC 2002). A small ball is attached to a massless string of length L, the other

end of which is attached to a very thin pole. The ball is thrown so that it initially travels in a

horizontal circle, with the string making an angle θ0 with the vertical. As time goes on, the string

wraps itself around the pole. Assume that (1) the pole is thin enough so that the length of string in

the air decreases very slowly, and (2) the pole has enough friction so that the string does not slide

on the pole, once it touches it. Show that the ratio of the ball’s final speed (right before it hits the

pole) to initial speed is sin θ0.

When dealing with an extended system whose parts all move in different ways, conservation of

energy is occasionally useless. However, the somewhat obscure idea of “center of mass energy” may

become useful instead. For more about this concept, see section 13.5 of Halliday and Resnick.

Idea 7: Center of Mass Energy

The work done on a part of a system is

dW = F dx

where F is the force on that specific part of the system, and dx is its displacement. Then

dW = dE where E is the total energy of the system.

Similarly, the “center of mass work” done on a system is

dWcm = F dxcm
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where F is the total force on the system and dxcm is the displacement of the center of mass.

Then dWcm = dEcm where the “center of mass energy” is defined as Ecm = Mv2
cm/2.

It should be noted that, like regular energy and work, center of mass energy and work depend

on the reference frame you’re using.

Example 10

Consider a cyclist who pedals their bike to accelerate. The wheels roll without slipping on

the ground. The cyclist moves a distance d, with the bike experiencing a constant friction

force f from the ground. Analyze the situation using both energy and center of mass energy.

Solution

Since the wheels roll without slipping, their contact point with the ground is always zero,

so the friction force does exactly zero work. Thus the net energy of the cyclist/bike system

is conserved. The additional kinetic energy of the cyclist/bike comes from the chemical

energy of the cyclist, which ultimately came from what they ate. So conservation of energy

is correct, but it doesn’t tell us anything useful at all.

Now consider center of mass energy. Considering the cyclist/bike system, the center of mass

work is fd, which is the change in Mv2
cm/2. This allows us to compute the change in velocity

of the cyclist/bike.

Example 11

Consider the same setup as in the previous example, but now the cyclist brakes hard. The

wheels slip on the ground, and experience a friction force −f while the cyclist moves a

distance d. Analyze the situation using both energy and center of mass energy.

Solution

The center of mass work equation tells us about the overall deceleration of the cyclist/bike,

just as in the previous example.

On the other hand, the work done by the friction force is indeterminate! It can be any

quantity between zero and −fd. When it is 0, the total energy of the cyclist/bike system

is again conserved, which means all the kinetic energy lost is dissipated as heat inside the

bike itself. When it is −fd, all the kinetic energy lost is dissipated as heat in the ground,

and hence energy is removed from the cyclist/bike system. In general, the work will be

an intermediate value, meaning that both the ground and the bike heat up, but we can’t

calculate what it is without a microscopic model of how the friction works. It depends on,

e.g. how easily the ground and bike tire surface deform.
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[1] Problem 28. Alice and Bob stand facing each other with their arms bent and hands touching on

an ice skating rink. Bob has his back against a wall.

(a) Suppose Bob extends his arms, pushing Alice through a distance d with a force F . Analyze

what happens to Alice in terms of both work and center of mass work.

(b) Suppose Alice extends her arms, pushing herself through a distance d with a force F . Repeat

the analysis; what is different and what is the same?

(c) Suppose a spherical balloon is compressed uniformly from all sides. Is there work done on the

balloon? How about center of mass work?

[4] Problem 29. �m10 USAPhO 2013, problem B1. This problem is quite tricky! Once you’re done,

carefully read the official solution, which describes how center of mass work is applied.
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