
Kevin Zhou Physics Olympiad Handouts

Mechanics I: Kinematics

See chapters 3 and 4 of Morin for material on solving differential equations. For general review on

kinematics, see chapter 1 of Kleppner and Kolenkow. For fun, see chapters I-1 through I-8 of the

Feynman lectures. There is a total of 87 points.

1 Motion in One Dimension

Example 1

When a projectile moves slowly through air, the drag is linear in the velocity, F = −αmv.

Find the velocity v(t) of a projectile thrown upward at time t = 0 with speed v0.

Solution

We write Newton’s second law as
dv

dt
= −g − αv

and multiply through by dt. Integrating both sides from the initial condition to time tf gives∫ v(tf )

v0

dv

g + αv
= −

∫ tf

0
dt.

Performing the integrals gives

1

α
log(g + αv)

∣∣∣∣v(tf )

v0

= −tf .

Renaming tf to t and solving for v yields

v(t) = e−αtv0 +
g

α
(e−αt − 1).

This renaming is necessary because we don’t want to confuse t, the dummy variable that we

integrating over, with tf , the time at which we want to evaluate the velocity; t ranges from

zero to tf . Unfortunately, often people just call both of these t, so you need to watch out.

[2] Problem 1. Investigating some features of this solution.

(a) By using results from P1, verify that v(t) makes sense for both small times and large times.

(b) If the projectile is then caught at the launch point, did it spend more time going up or down?

(c) Do you think the total time is longer or shorter than for a projectile without drag?

Solution. (a) For small times (αt� 1), we have

v(t) ≈ (1− αt)v0 +
g

α
(−αt) = v0 − (g + αv0)t
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which makes sense, since it’s just the result of uniform acceleration g + αv0, under the initial

net force. For large times (αt � 1), the exponentials decay away and we get v(t) ≈ −g/α,

which is the terminal velocity.

(b) Let Pu be the path going up, and Pd be the path going down. Additionally, imagine the

video of Pu playing in reverse. By conservation of energy, the magnitude of the velocity of

the projectile in Pu will be greater than that of Pd at a given height y. Since dt = dy/v, and

at every value of y, |vu| ≥ |vd| by conservation of energy (and the bounds of integration are

the same), then the ball will spend less time going up.

(c) I’m just asking this so you can use your intuition. Intuitively, it feels like it should take longer

with drag, and for the linear drag this is indeed the case. More generally, if the drag force

is proportional to vn, then it turns out that the trajectory with drag always takes longer

for n ≥ 1, but for n < 1 it depends on the initial speed. You can find a proof of all these

statements here.

[3] Problem 2. Now assume quadratic drag, F = −αmv2, which applies for fast-moving projectiles.

(a) Integrate Newton’s second law to get an implicit equation for v(t) with the same initial

conditions as above. That is, you don’t need to solve for v(t), as it’ll just make things messy.

(b) Your equation will only be valid when the projectile is going up; explain why.

(c) Find v(t) for an object released from rest at time t = 0. (Hint: if needed, look up some standard

integrals involving hyperbolic trigonometric functions. But don’t worry about memorizing

the results, since in competitions, any nontrivial integral needed will usually be given to you.)

Some people only call this quadratic case drag; they call the linear case viscous resistance. This is

because they behave fundamentally differently at the microscopic level, as we will explore in M7.

Solution. (a) Newton’s second law is

dv

dt
= −g − αv2.

By the same reasoning as before, we find∫ v(t)

v0

dv′

g + αv′2
= −

∫ t

0
dt′ = −t.

By nondimensionalizing the integral as described in P1, the left-hand side is

−t =
1
√
αg

∫ v(t)
√
α/g

v0
√
α/g

dx

1 + x2
=

1
√
αg

(
tan−1

(
v(t)

√
α

g

)
− tan−1

(
v0

√
α

g

))
where I pulled out a factor of 1/

√
αg to get the right overall dimensions, then used dimensional

analysis again to convert the integration bounds to dimensionless numbers. (You can also do

this by ordinary u-substitution if you prefer.) This is essentially the final result. It can be

solved for v(t), but that just makes it look worse.

(b) The reason the equation only makes sense when the projectile is going up is that the force

should always opposite the direction of motion, so we really wanted to solve F = −mα|v|v.

Equivalently, the sign of α changes when the direction of the velocity changes. This means

our solution really should have two separate cases.

2

https://knzhou.github.io/
https://aapt.scitation.org/doi/10.1119/10.0001893


Kevin Zhou Physics Olympiad Handouts

(c) By the same reasoning, we have ∫ v(t)

0

dv′

g − αv′2
= −t

where the changes are the initial condition and the sign of α. The left-hand side is

1
√
αg

∫ v(t)
√
α/g

0

dx

1− x2
=

1
√
αg

(
tanh−1

(
v(t)

√
α

g

))
.

If you don’t know this hyperbolic trig integral, you could also derive it by expanding 1/(1−x2)

in partial fractions and integrating each term. You will get a bunch of logarithms, which is

equivalent to the hyperbolic tangent. However, if you don’t know what the hyperbolic tangent

is, you should look it up now, because such functions will be useful later!

Because of the simpler initial condition, we can get an explicit solution,

v(t) = −
√
g

α
tanh(

√
αg t).

The speed approaches
√
g/α with a timescale 1/

√
αg, a fact we could also have deduced by

physical intuition and dimensional analysis. Actually, another way to arrive at this result is

by just substituting α→ −α in the answer for part (a)! This will produce the tangent of an

imaginary number, which is in fact how the hyperbolic tangent is defined.

[3] Problem 3. A projectile of mass m is dropped from a height h above the ground. It falls and

bounces elastically, experiencing the same quadratic drag as in problem 2. Find the maximum

height to which it subsequently rises. (Hint: don’t try to use your results from problem 2.)

Solution. The reason you shouldn’t try to use the results from problem 2 is that they are in terms

of time. Given how complicated the implicit expressions for v(t) are, the expressions for x(t) would

be extremely clunky. And they’re not necessary, because in this problem we don’t care about the

time-dependence at all; we just want to know the final height.

Another way to say this is that we aren’t interested in v(t), we’re interested in v(x). While

the projectile is moving downward, we can integrate dv/dx to find the speed v0 at the moment it

hits the ground. Then, when it’s moving upward, we integrate dv/dx until it has zero speed again,

which is its final height. This will be a lot simpler than integrating dv/dt.

For the upward and downward trajectories, Newton’s second law says

dv

dt
= −g ± αv2

and multiplying both sides by dt/dx gives

dv

dx
= −g

v
± αv.

Separating and integrating, on the way down we have∫ 0

h
dx =

∫ −v0
0

dv

αv − g/v
=

1

α

∫ −v0
0

v dv

v2 − g/α
.

3

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

Carrying out the integral and simplifying,

h = − 1

2α
log(1− αv2

0/g).

Now, on the way up, we have∫ h′

0
dx =

∫ 0

v0

dv

−g/v − αv
=

1

α

∫ v0

0

v dv

v2 + g/α

and carrying out the integral gives

h′ =
1

2α
log(1 + αv2

0/g).

Combining the two equations gives

h′ =
1

2α
log(2− e−2αh)

which you can check has the right limits. Also note that g drops out, as required by dimensional

analysis.

Example 2

Find how the speed of a rowing boat depends on the number of rowers N .

Solution

A fast-moving boat experiences quadratic friction, so a drag force

F ∝ v2A

where A is the submerged cross-sectional area of the boat. Since the submerged volume

scales as V ∝ N in hydrostatic equilibrium, we have A ∝ N2/3. (This is the sketchy step

of the analysis, since the scaling of A depends on how we adjust the shape of the boat as

N increases.) Thus, the power the rowers need to provide scales as P = Fv ∝ v3N2/3, but

we also have P ∝ N . Combining gives the exceptionally weak dependence v ∝ N1/9, which

agrees decently with Olympic rowing times.

Idea 1

An ordinary differential equation is any equation involving a quantity x(t) and its derivatives.

In introductory physics, we are usually concerned with a few very simple differential equations,

with the following nice properties.

• The differential equation is at most second order, meaning that it can contain x, ẋ = v,

and ẍ = a, but no higher derivatives. This implies that the solution can be determined by

an initial position and initial velocity. (We’ll focus on second order differential equations

for the rest of this section; most first order differential equations can simply be solved

by separation and integration, as we’ve already seen above.)
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• The differential equation is linear, meaning that terms don’t contain products of x, ẋ,

and ẍ. For example, a damped driven harmonic oscillator with time-dependent drag,

mẍ = −b(t)ẋ− kx+ f(t)

is a second order linear differential equation. Solutions to such differential equations obey

the superposition principle: if x1(t) and x2(t) are both solutions, so is c1x1(t) + c2x2(t).

• The differential equation is homogeneous, meaning that each term is proportional to ex-

actly one power of x or its derivatives. The above differential equation is not homogeneous,

but it would be if we removed the driving f(t).

• The differential equation is time-translation invariant, meaning that no functions of time

appear except for x and its derivatives. The above equation isn’t, but it would be if we

set f(t) and b(t) to constants.

Idea 2

Linear, homogeneous, time-translation invariant differential equations are very special, and

they can all be solved by the exact same method. First, note that we can promote x(t) to

a complex variable x̃(t) and solve the differential equation over the complex numbers. As

long as we have a complex solution, we can recover a real solution by taking the real part.

Now, the method of solution, which works for almost all equations of this form, is to guess a

complex exponential solution

x̃(t) = eiωt.

Plugging this into the differential equation will yield the allowed values of ω, and the general

solution can be found by superposing the complex exponentials.

Example 3

Solve the simple harmonic oscillator, mẍ+ kx = 0, using the above principles.

Solution

First, we pass to a complex differential equation,

m¨̃x+ kx̃ = 0.

We guess x̃(t) = eiωt. Plugging this in and using the chain rule gives

m(iω)2eiωt + keiωt = 0

and canceling eiωt and solving gives two solutions,

ω = ±ω0, ω0 =
√
k/m.

Since this a second-order linear differential equation, the general solution is given by the

superposition of these two complex exponentials,

x̃(t) = Aeiω0t +Be−iω0t
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where A and B are general complex numbers. The real part of x̃(t) satisfies the original real

differential equation ma+ kx = 0, and is

Rex(t) = C cos(ω0t) +D sin(ω0t)

where C and D are real numbers.

[1] Problem 4. To make sure you know how to go from the complex solution to the real one, write

C and D in terms of A and B.

Solution. Let A = aA + bAi and B = aB + bBi where ai, bi are real. Applying Euler’s formula,

Rex(t) = (aA + aB) cos(ω0t) + (−bA + bB) sin(ω0t)

from which we read off

C = Re(A+B), D = Im(B −A).

[2] Problem 5. Now introduce a damping force and solve the differential equation for the damped

harmonic oscillator, mẍ+ bẋ+ kx = 0, using the same procedure, assuming b is small. (See section

4.3 of Morin if you have trouble with this. We’ll consider this system in more detail in M4.)

Solution. Guessing an exponential, every time derivative yields a factor of iω, so

m(iω)2 + b(iω) + k = 0.

Using the quadratic formula,

ω =
−ib±

√
4km− b2
−2m

.

In other words, we have

ω = ±
√
k/m− b2/4m2 +

ib

2m
.

The oscillation is slightly slowed down, as you might expect, and the frequency has an imaginary

part. This corresponds to exponential decay of the solution, by ei(ib)t/2m = e−bt/2m.

[3] Problem 6. �m10 USAPhO 2012, problem B1.

[3] Problem 7. Above, we mentioned that guessing an exponential works almost all the time. The

reason is because at the end of the day, the exponential cancels out and we’re left with a polynomial

in ω, which has just the right number of roots. But if there are repeated roots, there are fewer

distinct solutions for ω, and hence not enough solutions.

(a) Consider a second order differential equation with a double root ω. What is the other solution,

besides eiωt? (Hint: to help find a good guess, consider the simple case ma = 0, where ω = 0

is the double root. Then generalize your guess to nonzero ω and check that it works.)

(b) This should be setting off alarm bells: the form of the solutions to the equation changes when

the two roots are exactly equal, while it’s just exponentials/sinusoids if the roots are different,

no matter how small the difference is. Since no two roots are ever exactly equal in practice, it

seems the behavior of part (a) can never actually happen in the real world. But it gets taught

in applied differential equations courses. Why?
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(c) [A] Consider the most general nth order, linear homogeneous time-translation invariant differ-

ential equation (
an

dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

)
x = 0.

What does the general solution look like?

Solution. (a) In the case of a double root ω = 0, the differential equation is ẍ = 0. The solution

we get by guessing an exponential is x(t) = ei(0)t = 1, which is a constant. The other solution

is linear, x(t) = tei(0)t = t. This leads us to guess that for a double root ω, the two independent

solutions are eiωt and teiωt.

(b) As two roots get closer and closer together, we can get solutions that look more and more like

(A+Bt)eiωt, which is what we would get if they were exactly the same. Of course, it’s intuitive

that we can get eiωt. To get a solution that looks like teiωt, note that for roots ω ±∆ω,

ei(ω+∆ω)t − ei(ω−∆ω)t = eiωt(2i sin(∆ω t)) ∝ sin(∆ω t)eiωt.

This is an eiωt oscillation with a slowly varying envelope sin(∆ω t). For small times, t� 1/∆ω,

the envelope is just proportional to t. As the roots get closer and closer together, this linear

behavior persists for longer and longer time, but nothing is ever discontinuous. One can see

this kind of envelope behavior in two weakly coupled pendulums, a system which has two

nearby oscillation frequencies. You’ll investigate this kind of thing in more detail in M4.

So the point is that when the roots are to each other, the solutions look like (A+Bt)eiωt for

times shorter than 1/∆ω. This is more direct and intuitive than superposing two sinusoids

with almost equal frequencies, so we use it in practice.

(c) Guessing eiωt gives

an(iω)n + an−1(iω)n−1 + . . .+ a0 = 0.

In the case where the roots are distinct, there are n possible values for ω, and hence n

parameters in our trial solution,

x(t) =
n∑
i=1

Aie
iωit.

Since the differential equation has order n, there are n parameters needed to specify the

solution, so this is the general solution. If ωi is a double root, then both eiωit and teiωit are

solutions. For a triple root, t2eiωit is also a solution, and so on.

Remark

You might be wondering how to solve more general differential equations. In M4, we will

consider three extensions of the above techniques. We’ll use the idea of normal modes

to solve systems of such differential equations, add driving forces to make the equations

inhomogeneous, and use the adiabatic theorem to approximately solve non time-translation

invariant equations where the coefficients change slowly in time.

Of course, this just scratches the surface of the subject, and solving more general differential

equations can be orders of magnitude harder. We won’t try to solve nonlinear differential
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equations, as there is no general technique for doing so, and the answer is often an obscure

special function. (However, such equations will occasionally appear in later problems.) On the

other hand, linear differential equations with general time-dependence are more approachable,

and the following problem illustrates the most basic method for solving them.

[3] Problem 8. [A] Some linear, homogeneous, non time-translation invariant differential equations

can be solved by simply guessing a power series. For this problem, don’t worry about dimensional

analysis; assume all variables have already been redefined to be dimensionless.

(a) As a warmup, consider the differential equation ẋ = kx for constant k, which we already know

how to solve. By plugging in the ansatz

x(t) =

∞∑
n=0

ant
n

find the solution with x(0) = 1.

(b) Now consider the non time-translation invariant differential equation

t2ẍ+ tẋ+ t2x = 0

which is called Bessel’s differential equation of order zero. By using the same ansatz, find the

unique solution with x(0) = 1 and ẋ(0) = 0.

Solution. (a) Plugging the ansatz in gives

∞∑
n=0

nant
n−1 = k

∞∑
n=0

ant
n.

Shifting the sum on the left-hand side, we have

∞∑
n=0

(kan − (n+ 1)an+1)tn = 0.

For this quantity to be zero for all t, each term in the sum must individually be zero, so

an+1 =
k

n+ 1
an.

The initial condition x(0) = 1 tells us that a0 = 1, from which we conclude

a1 = k, a2 =
k2

2
, a3 =

k3

6
, . . .

or more generally,

x(t) =

∞∑
n=0

kn

n!
tn = ekt

which is just as expected.
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(b) Plugging the ansatz in gives

∞∑
n=0

n(n− 1)ant
n + nant

n + ant
n+2 = 0.

Simplifying and shifting the sum as in part (a) gives

∞∑
n=0

(n2an + an−2)tn = 0.

We therefore have the recursion relation an = −an−2/n
2. The initial conditions give a0 = 1

and a1 = 0, from which we conclude the a2n+1 are all zero. We then have

a2 = − 1

22
, a4 =

1

2242
, a6 = − 1

224262
, . . .

from which we conclude

x(t) =
∞∑
m=0

(−1)m

(m!)2

(
t

2

)2m

.

This function is known as the Bessel function of the first kind, of zeroth order, J0(t).

2 Tricks

In this section we’ll consider some kinematics problems that require cleverness, not computation.

Idea 3

Many problems can be solved by a clever choice of reference frame. It is often useful to go to

the frame moving with one of the objects in the problem, or to go into a frame that makes

the motion in the problem more symmetric. For the purposes of kinematics it can even be

useful to use noninertial reference frames, such as a falling frame where projectiles don’t

accelerate, or a rotating frame, though this will introduce fictitious forces into the dynamics.

It is also useful to tilt the coordinate axes to be parallel to various objects.

Example 4: F = ma 2022 B4

A firework explodes, sending shells in all directions. Suppose the shells are all launched with

the same speed, and ignore air resistance, but not gravity. What shape do the shells make?

Solution

In the absence of gravity, the shells would always form a sphere. Adding gravity simply shifts

all of their locations downward by gt2/2, so the shape is still always a sphere.

[1] Problem 9 (KoMaL 2019). A cannon A is at the edge of a cliff with a 800 m drop. Cannon B is

on the ground below the cliff and 600 m horizontally away from it. Cannon A shoots a cannonball

directly towards cannon B at 60 m/s. Cannon B shoots a cannonball directly towards cannon A at

40 m/s. Will the two cannonballs hit each other in midair?
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Solution. Work in the frame freely falling with the cannonballs. In this case, the balls have a

relative velocity of 100 m/s and initial separation of 1000 m, so it takes 10 s to collide. If there were

no gravity, this collision would occur at a point (2/5)(800 m) = 320 m above the ground. However,

because of gravity both balls have fallen by an extra gt2/2 = 500 m by this time. Hence the balls

hit the ground before they can hit each other in midair.

[2] Problem 10 (Wang). Two particles are released in gravitational acceleration g with leftward and

rightward speeds v1 and v2. Find the distance between them when their velocities are perpendicular.

Solution. After time t, the velocity vectors are (−v1,−gt) and (v2,−gt). These are perpendicular

when the dot product is zero, so v1v2 = (gt)2, which you can also show with basic geometry. Thus,

t =

√
v1v2

g
.

To compute the distance, we can just work in the frame falling with the masses. Then it’s clear

that the acceleration g doesn’t matter, and the distance is just

d = (v1 + v2)t =
(v1 + v2)

√
v1v2

g
.

[3] Problem 11 (Kalda). Two intersecting circles of radius r have centers a distance a apart. If one

circle moves towards the other with speed v, what is the speed of one of the points of intersection?

Solution. Work in the frame where the circles are moving towards each other with speed v/2.

Then by the Pythagorean theorem, the speed of the point of intersection is

d

dt

√
r2 − (a/2)2 =

av

4
√
r2 − a2/4

where we used da/dt = v. However, we’re not done yet, because the speed of the point of intersection

depends on the frame; we need to go back to the original frame. Using the Pythagorean theorem

again, the answer is √√√√( av

4
√
r2 − a2/4

)2

+
(v

2

)2
=
v

2

1√
1− (a/2r)2

.

[2] Problem 12 (Kalda). A mirror rotates about its center with angular speed ω. A stationary point

source of light sits at a distance a from the rotation axis. What is the speed of its mirror image?

Solution. Work in the frame rotating with the mirror. Because the image is always flipped across

the mirror with respect to the source, since the source rotates with angular velocity −ω, the image

rotates with angular velocity ω. Then the relative angular velocity of the source and image is 2ω,

which holds in all frames. Thus, in the original frame the image has angular velocity 2ω and speed

2ωa.

[2] Problem 13 (Kalda). Two circles of radius r intersect at the point O. One of the circles rotates

about the point O with constant angular speed ω. The other point of intersection O′ is originally a

distance d from O. Find the speed of O′ as a function of time.
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Solution. Remarkably, the answer does not depend on the time! Let d be the distance between

the points of intersection, and work in the rotating frame where the circles rotate with angular

velocities ω/2 and −ω/2 about O.

Since θ̇ = ω/2 and cos θ = d/2r, we have

−ω
2

sin θ =
ḋ

2r
, ḋ = −rω sin θ.

This is the vertical velocity of O′. Now we need to go back to the original frame, which involves

rotating with angular velocity ω/2 about O. Then O′ picks up a horizontal velocity of (2r cos θ)(ω/2)

for a total speed of

v =
√
r2ω2 sin2 θ + r2ω2 cos2 θ = rω

which is constant. The geometrical reason is that the second intersection point rotates around the

nonrotating circle with uniform angular velocity ω, as you can show by some angle chasing.

Idea 4

To find the minimum value of some quantity, it’s often useful to think about all possible

values of that quantity. This can reveal a solution using geometry or symmetry.

[2] Problem 14 (PPP 3). A boat can travel a speed of 3 m/s on still water. A boatman wants to

cross a river while covering the shortest possible distance.

(a) In what direction should he row if the speed of the water is 2 m/s?

(b) How about if it is 4 m/s?

Solution. (a) The boatman can completely cancel out the horizontal velocity of the water. He

should row an angle cos−1(2/3) from the upstream direction, so that the boat moves directly

across the river.

(b) The boatman cannot cancel out the horizontal velocity. Instead, the set of possible velocities

forms a circle in velocity space, as shown.
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By taking the velocity with the angle closest to directly across the river, we see the boatman

should row an angle cos−1(3/4) from the upstream direction.

Idea 5

In problems with friction, the best reference frame to use is almost always the frame of

whatever is causing the friction.

[2] Problem 15 (Kalda). A block is pushed onto a conveyor belt. The belt is moving with speed

1 m/s, and the block’s initial speed is 2 m/s, with initial velocity perpendicular to that of the belt.

During the subsequent motion, what is the minimum speed of the block with respect to the ground?

Solution. If the belt were not moving, the block would just decelerate in the direction of its speed,

so that’s what happens in the reference frame of the belt. The possible block velocities are shown

in this frame.

The minimum relative speed with the ground is shown by the altitude, which has length 2/
√

5 m/s

by similar triangles.

Idea 6

For a variety of kinematics problems, it can be useful to think about the motion from a

different perspective. For example, if your problem involves complicated accelerations, it

can be useful to think in “velocity space”, i.e. directly think about how the velocity vector

evolves over time, and deal with the position later. Or, if your problem involves complicated

processes occurring in time, it can be useful to think in “spacetime”, meaning to visualize

the process on a space where time is one of the axes. It can also be useful to parametrize

motion in terms of quantities other than the usual Cartesian coordinates.

[2] Problem 16 (Kalda). A boy enters a patch of ice with a coefficient of friction µ with speed v.

By running on the ice, the boy turns his velocity vector by 90◦ in the minimum possible time, so

that his final speed is also v. What is the minimum possible time, and what kind of curve is the

trajectory? Assume the normal force with the ice is constant.

Solution. The acceleration always has magnitude µg. The velocity needs to change by v(x̂− ŷ) if

it starts at vŷ, so v
√

2 = µgt. Thus, t = v
µg

√
2. The acceleration is constant, so the trajectory is a

parabola.

[2] Problem 17 (PPP 5). Four snails travel in uniform, rectilinear motion on a plane. The velocities

are chosen so that three snails never meet at once, and no two of the velocities are equal. Since

time t = −∞, five of the
(

4
2

)
possible encounters have already occurred. Must the sixth also occur?
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Solution. It’s hard to visualize what’s going on in the plane; instead think about what’s going

on in spacetime. The spacetime here is three-dimensional, and the paths of the worms are lines

through it, called worldlines; two worms will encounter each other if their worldlines intersect. For

some set of three of the snails, all possible encounters occur, so their worldlines lie in a plane in

spacetime. (This means that in space, these three snails move on the same line.)

If the fourth snail’s worldline lies in this plane, then it must intersect all three others. If it

doesn’t, it can intersect at most one. Hence if five encounters have already occurred, the sixth must

also occur.

[2] Problem 18. Six bugs are placed at the vertices of a regular hexagon with side length s. At time

t = 0 each bug starts moving directly towards the next with speed v. At what time do they collide?

Solution. By symmetry, the bugs always remain in a hexagon shape, but this hexagon rotates and

shrinks. We want to know the time when it collapses completely.

We can first do this by considering how the distance between adjacent bugs changes in an

infinitesimal time dt. The first bug moves a distance v dt towards the second. The second moves a

distance (
√

3/2)v dt to the side, and a distance (v/2) dt directly away from the first. The side-to-side

motion doesn’t contribute to the change in distance (one can use the Pythagorean theorem and

binomial theorem to show it is second order, and hence negligible for infinitesimals), so we ignore

it. Then the rate of change of distance between the bugs is just v − v/2 = v/2, so the bugs meet at

t = 2s/v.

Another method is to note that all the bugs meet in the center of the original hexagon, so we

can consider the component of velocity for each bug directed towards the center. This is always

v/2 by the hexagonal symmetry, and the original distance from the center is s, so the bugs again

meet in time t = 2s/v.

[3] Problem 19. A rabbit begins at the origin, and the fox begins at the point (0,−a). The rabbit

begins running with a constant speed vx̂. At the same time, the fox begins chasing the rabbit,

always moving towards it with speed v.

(a) Sketch the subsequent trajectory of the rabbit and fox.

(b) Let the displacement between the rabbit and fox be

r(t) = (x(t), y(t)).

Show that r + x is conserved.

(c) Find the distance between the rabbit and fox after a long time.

(d) Now suppose the fox has speed u > v. How long does it take to catch the rabbit?

Solution. (a) Initially the fox moves up while the rabbit moves to the right. After a while, the

two simply follow each other, with a constant distance between them, along the x axis.

(b) Let θ be the angle between the velocity vectors. Then

dr

dt
= −v + v cos θ

because of the fox and rabbit, and

dx

dt
= v − v cos θ

because of the rabbit and fox. Then r + x is constant, as desired.
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(c) Initially, r + x = a+ 0 = a. After a long time, r = x, so r = x = a/2.

(d) Solving for the trajectory of the fox is extremely difficult, but we can use an extension of the

idea of part (b). Now the equations of motion are

dr

dt
= −u+ v cos θ,

dx

dt
= v − u cos θ.

Combining these equations, we can cancel out θ to get

u
dr

dt
+ v

dx

dt
= v2 − u2.

This can now easily be integrated from between the initial and final time. During this time,

the change in r is −a, while the change in x is zero, so

−au = (v2 − u2)t, t =
ua

u2 − v2
.

If you’re curious what the full trajectory looks like, you can find it in this paper, which was

written by a past coach of the U.S. Physics Team.

[2] Problem 20 (PPP 85). A child is standing on an icy hill, which may be modeled as an inclined

plane.

The coefficient of friction µk = µs is small enough so that, if the child gets the tiniest push, she will

begin sliding down the plane. Now suppose the child gets a horizontal push, with initial speed v0.

What is the child’s final speed?

Solution. This is easy because you’ve already solved the problem; it’s just the same thing as

problem 19. Specifically, the displacement between the rabbit and fox there corresponds to the

velocity of the child here. At every increment of time, the velocity changes in two ways: it shrinks

along its direction by friction (corresponding to the fox) and it has a constant added by gravity

(corresponding to the rabbit). Hence the answer is v0/2.

You should definitely not try to solve for the trajectory exactly, since it’s very messy, but you

can find the gory result in this paper.

3 Motion in Two Dimensions
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Idea 7

Often, motion in two dimensions can be treated as two independent one-dimensional problems.

A change of reference frame may be necessary first.

Idea 8

In problems involving an inclined plane, always set the angle θ to be much closer to either

0◦ or 90◦ than to 45◦. This reduces mistakes, because almost every angle will be either θ or

90◦ − θ, and you can identify which by sight.

Example 5

Consider projectile motion where wind provides a constant horizontal force F . At what angle

should a projectile of mass m be launched in order to return to the thrower?

Solution

The key idea is to use tilted coordinate systems. Clearly, when the only force is downward,

the projectile must be launched straight upward. Now, the horizontal force acts like an

effective horizontal gravitational acceleration of F/m, so that gravity is effectively tilted an

angle tan−1(F/mg) away from the vertical. One must launch the projectile directly “upward”

with respect to this effective gravitational field, so the launch angle is an angle tan−1(F/mg)

from the vertical. (For a related problem, see the infamous F = ma 2014 problem 19.)

Example 6: F = ma 2022 A23

For projectiles, the force of air resistance can be modeled as proportional to the speed

(“linear drag”) or proportional to the square of the speed (“quadratic drag”), depending on

the circumstances. Two identical objects, A and B, are dropped from the same height h

simultaneously, but object A is given an initial horizontal velocity v. The objects hit the

ground at times tA and tB. How do these times compare, assuming linear or quadratic drag?

Solution

For linear drag, the horizontal and vertical components of the motion are independent,

ax = −bvx, ay = −g − bvy
for some coefficient b. That means the time to hit the ground, which depends on the vertical

motion, is independent of the initial horizontal velocity, so tA = tB. But for quadratic drag,

ay = −g − bvy|v|

which means the upward drag force is larger when the horizontal velocity is larger, so tA > tB.

Since the components are independent for linear drag, it’s not too hard to write down an

expression for the trajectory, by recycling the results of example 1. But for quadratic drag,

the results of problem 2 won’t help much; the two-dimensional problem is much harder.
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[1] Problem 21 (Quarterfinal 2002). A cart is rigged with a vertical cannon so that, when the cart is

stationary on a horizontal track, the cannonball is fired straight up and lands back in the cannon.

In each of the following situations, does the cannonball land back in the cannon, in front of it, or

behind it?

(a) The cart is moving on a frictionless horizontal track with speed v.

(b) The cart is accelerating down a frictionless inclined track with angle θ.

(c) The cart is accelerating down an inclined track with angle θ, and friction slows it down.

Solution. (a) The motion in the x and y directions is independent. In the x direction, both the

cannonball and cart just continue moving with speed v, so the cannonball lands right back

into the cannon.

(b) Work in the tilted frame where the x axis is parallel to the track. In the x direction, both the

cannonball and cart start with the same speed v and accelerate with the same acceleration

g sin θ, so the cannonball lands right back into the cannon, again.

(c) In this case the cart accelerates less, so the cannonball lands in front.

[2] Problem 22 (Kalda). Two balls at points A and B are released from rest at the same moment,

from the locations shown below. All surfaces are frictionless.

If it takes time tA and tB for the balls to hit the ground, at what time was the distance between

the balls the smallest?

Solution. Both balls have a downward acceleration of g sinα, and they have leftward and rightward

accelerations of g′ = g cosα. Since the balls always have the same vertical speed, we can ignore

the vertical motion entirely. The distance between the balls is thus smallest when their horizontal

separation is zero.

Let the total horizontal distances the balls travel be dA and dB. Then

dA =
1

2
g′t2A, dB =

1

2
g′t2B

and we are looking for the time t where

dA − dB
2

=
1

2
g′t2.

Solving these equations for t gives

t =

√
t2A − t2B

2
.

16

https://knzhou.github.io/


Kevin Zhou Physics Olympiad Handouts

[2] Problem 23 (Kalda). Two planar frictionless walls are placed at right angles, where wall A makes

an angle α to the horizontal. A perfectly elastic ball is released from rest at a point a distance a

from wall A and b from wall B.

After a long time, what is the ratio of the number of times the ball has bounced against wall B to

the number of times it has bounced against wall A?

Solution. In the coordinate system tilted by angle α, the motions in the x and y directions are

independent, because collisions with wall A leave vx unchanged and vice versa. In the y direction,

the ball simply bounces up and down with uniform acceleration g cosα and bounce height a, so

∆tA = 2

√
2a

g cosα
.

By similar reasoning, in the x direction

∆tB = 2

√
2b

g sinα
.

Thus the answer is
∆tA
∆tB

=

√
a sinα

b cosα
.

When this ratio is a rational number, the ball eventually returns to its starting point. If it isn’t, it

never does; instead it eventually explores all of the space permitted by energy conservation, i.e. it

eventually passes arbitrarily close to any point whose height is at most the height of the starting

point.

[3] Problem 24. �W10 USAPhO 2004, problem A4.

[3] Problem 25 (EFPhO 2010). A sprinkler can be modeled as a small hemisphere on the ground.

Water shoots out from the hemisphere in all directions, with speed v perpendicular to the hemisphere.

(a) Find the total surface area of ground watered by the sprinkler.

(b) At what distance from the sprinkler does the ground get the wettest?

Solution. (a) The range of the sprinkler is maximized at 45◦ and is equal to v2/g. Then the

area is π(v2/g)2 = πv4/g2.

(b) The outermost circle, at radius v2/g, gets by far the wettest. This is because a maximum

of radius is achieved here, so a large range of launch angles gets to near this radius. (It’s

the same reason that balls thrown upward spend the most time near the very top of their

trajectories.)
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This idea is a little tricky, but very general; for instance, it’s the principle behind the formation

of caustics such as rainbows, as we’ll see in W3. It is also the way in which classical mechanics

emerges from quantum mechanics: classically things follow the trajectory of least action

because it’s a caustic of the quantum sum over all trajectories. So if you continue in physics,

you’ll see this beautiful little idea over and over again, in richer and richer settings! For an

Olympiad problem that gives a bit more detail about caustics in optics, see here.

Example 7

A bug flies towards a light with constant speed v, always making an angle α with the radial

direction. If the initial distance to the lamp is L and the radius of the lamp is R, through

what total angle does it turn before hitting the lamp?

Solution

In this case we can’t avoid solving differential equations, but they’re not too hard. It’s easiest

to work in polar coordinates, with the center of the lamp at the origin. By decomposing the

velocity into radial and tangential components, we have

dr

dt
= −v cosα, r

dθ

dt
= v sinα.

We only care about the path, not the time-dependence, so we divide these equations to get

dr

dθ
= − r

tanα

where we manipulated differentials as in P1. Separating and integrating,

−
∫ R

L

dr

r
=

∆θ

tanα

which tells us that

∆θ = (tanα) log
L

R
.

The shape traced out is a logarithmic spiral.

[2] Problem 26. The pilot of a supersonic jet airplane wishes to make a big noise at the origin by

flying around it in a path such that all of the noise he makes is heard simultaneously at the origin.

The jet travels with Mach number M , meaning that its speed is M times the speed of sound. If the

pilot starts at (r, θ) = (a, 0), find the pilot’s path r(θ).

Solution. In order for the sound to reach the origin simultaneously, we must have r(t) = a − ct,
so that the sound all reaches the origin at time a/c. On the other hand, we have

(Mc)2 = ṙ2 + r2θ̇2 = c2 + r2θ̇2.

This is a bit messy because we have two functions of time, but we can eliminate time by using

θ̇ =
dθ

dr

dr

dt
= c

dθ

dr
.
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Plugging this in above, we have

M2 − 1 = r2

(
dθ

dr

)2

and separating and integrating gives∫
dr

r
=

∫
dθ√

M2 − 1
, r(θ) = ae−θ/

√
M2−1.

[4] Problem 27. Consider a mass m on a table attached to a spring at the origin with zero relaxed

length, which exerts the force

F = −kr

on the mass. We will find the general solution for r(t) = (x(t), y(t)) in two different ways.

(a) Directly write down the answer, using the fact that the x and y coordinates are independent.

(b) Sketch a representative sample of solutions. What kind of curve does the trajectory follow?

(c) ? Here’s a more unusual way to arrive at the same answer. Go to a noninertial reference frame

rotating with angular velocity ω0 about the origin, so that the centrifugal force cancels out

the spring force. In this frame, the only relevant force is the Coriolis force −2mω0 × v. Find

the general solution in this frame, then transform back to the original frame and show that

you get the same answer as in part (a). (This can get a bit messy; the easiest way is to treat

the plane as the complex plane, i.e. work in terms of the variable r = x+ iy.)

Solution. (a) We just have two separate equations for each component,

d2x

dt2
= − k

m
x,

d2y

dt2
= − k

m
y.

Both describe a harmonic oscillator with frequency ω0 =
√
k/m. Then the general solution

can be written as

x(t) = A cos(ω0t+ φ1), y(t) = B sin(ω0t+ φ2).

In general, it is very rare for the x and y coordinates to be independent. Another example of

this type is projectile motion in linear drag, F = −kv. In these cases the 2D or 3D problem

is no harder than the 1D version, but we’re rarely so lucky.

(b) In the case where φ1 = φ2 = 0 and A = B, the mass moves in a circle centered at the origin.

More generally, when the angles φi are unequal, the mass can move in an ellipse with center

at the origin.

(c) The centrifugal force is mω2
0r, so to cancel the spring force we need to choose ω0 =

√
k/m.

Now, in the rotating frame, the Coriolis force acts just like a magnetic field: it’s always

perpendicular to the motion, so the solution is circular motion. The angular frequency ωc of

that circular motion satisfies

2mω0v =
mv2

r
= mωcv

from which we conclude ωc = 2ω0. So in complex notation,

r(t) = r0 + r1e
2iω0t
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in the rotating frame. We can return to the original frame by simply multiplying by e−iω0t

(the sign is important, i.e. you have to keep track of the direction of ω0), to give

r(t) = r0e
−iω0t + r1e

iω0t.

Taking real and imaginary parts and letting ri = ai + ibi,

x(t) = (a0 + a1) cos(ω0t) + (b0 − b1) sin(ω0t), y(t) = (b0 + b1) cos(ω0t) + (a1 − a0) sin(ω0t).

This is the same as our result for part (a), after you use the sine and cosine addition formulas

and appropriately redefine the parameters. Evidently, elliptical motion is just the superposition

of two opposite circular motions! (In general, complex numbers are a useful way to deal with

magnetic or Coriolis forces for motion in a plane, where B or ω points perpendicular to the

plane. In these cases the force lies in the plane perpendicular to the velocity, so it’s just

proportional to iṙ, which is nice and simple; we’ll see this idea again later.)

4 Optimal Launching

Finally, we’ll consider projectile motion questions that involve optimization. These are rare on the

USAPhO, but they are quite fun problems, with occasionally very slick solutions.

Example 8

A bug wishes to jump over a cylindrical log of radius R lying on the ground, so that it just

grazes the top of the log horizontally as it passes by. What is the minimum launch speed v

required to do this?

Solution

Let P be the point at the top of the log. For the bug to be moving horizontally at P , energy

conservation applied to the vertical motion gives an initial vy obeying

1

2
mv2

y = 2mgR, vy = 2
√
gR.

Thus, we need to find the minimum vx for the motion to be possible. If vx is too low, the

hypothetical trajectory of the bug will instead pass through the log. At the lowest possible

vx, the bug’s trajectory is not just tangent to the log at point P , but also has the same radius

of curvature (i.e. the trajectory and the log’s shape have the same first and second derivatives).

For uniform motion in a circle of radius r, the acceleration is a = v2/r. Conversely, when an

object follows a trajectory of instantaneous radius of curvature r, its acceleration component

normal to the path must be a = v2/r. So applying this to the bug at P gives

g =
v2
x

R
, vx =

√
gR.

Thus, the minimum initial speed is

v =
√
v2
x + v2

y =
√

5 gR.

This radius of curvature trick doesn’t come up often, but it’s cool when it does.
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[2] Problem 28. NBPhO 2020, problem 3. A nice warmup for the problems below.

Solution. See the official solutions here.

[3] Problem 29. An object is launched from the top of a hill, where the ground lies an angle φ below

the horizontal. Show that the range of a projectile is maximized if it is launched along the angle

bisector of the vertical and the ground.

Solution. This is a straightforward if messy problem; we’ll show one of many ways to set it up.

Setting the origin at the launch point and using ordinary horizontal/vertical coordinates, the object

hits the hill when tanφ = −y/x. Using results for projectile trajectories from the preliminary

problem set, we have
y

x
= − tanφ = tan θ − gx

2v2 cos2 θ

where θ is the launch angle from the horizontal. Solving for x,

x =
2v2 cos2 θ

g
(tan θ + tanφ) ∝ sin θ cos θ + cos2 θ tanφ.

To maximize the range, we want to maximize x, so setting the derivative to zero gives

0 = cos2 θ − sin2 θ − 2 sin θ cos θ tanφ

which simplifies to

tan(2θ) =
1

tanφ
= tan(φ+ π/2), θ =

φ+ π/2

2

as desired. This famous problem was first posed by Torricelli in the 1640s, and solved by Halley in

the 1690s.

[3] Problem 30 (PPP 35). A point P is located above an inclined plane with angle α. It is possible

to reach the plane by sliding under gravity down a straight frictionless wire, joining P to some point

P ′ on the plane. Geometrically, how should P ′ be chosen so as to minimize the time taken? (Hint:

think about the set of points that can be reached for all possible angles of the wire, after time t.)

Solution. Suppose the wire is at angle θ with respect to the vertical. Then, the distance traveled

in time t is 1
2(g cos θ)t2. Keeping t fixed, we then see that the locus of all reached points is a circle

whose topmost point is P , and whose radius is 1
2gt

2. Therefore, P ′ is the point where one of these

circles is tangent to the incline, so an α/2 angle to the vertical.
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Idea 9

Since mechanics is time-reversible, and the speed of a projectile only depends on its height

and not the path taken, finding the way to reach point B from point A with the lowest

possible initial speed is the same as finding the way to reach point A from point B with the

lowest possible initial speed.

[4] Problem 31. Two fences of heights h1 and h2 are erected on a horizontal plain, so that the tops

of the fences are separated by a distance d. Show that the minimum speed needed to throw a

projectile over both fences is
√
g(h1 + h2 + d).

Solution. It’s very confusing to think about how to throw the projectile starting from the ground,

because you need to figure out where to launch and at what angle, under the condition that the

trajectory just touches the tops of both fences. A much better way is to imagine the projectile

starts at the top of the higher fence; the goal is then to throw it with minimal energy so that it

just touches the top of the lower fence. At some point, this projectile will then reach the ground,

though we don’t have to worry about where. Since mechanics is time-reversible, its speed at this

point (which is found easily by energy conservation) will be the minimal possible speed.

Now there are many ways to do this problem. A very slick solution, which requires no computation

at all, is presented in problem 32. However, we’ll present a more direct attack for completeness.

Note that if you want to hit the top of the lower fence with the minimum velocity, it’s equivalent

to maximizing your throwing range down an inclined plane, namely the plane that connects the

tops of the two fences. Then the optimal launch angle is along the angle bisector, as we found in

problem 29. Using the same starting point as the solution to that problem, we have

− h√
d2 − h2

= tan θ − g
√
d2 − h2

2v2 cos2 θ

where we let h = h2 − h1 > 0. That solution gives a simple expression for tan 2θ, so we massage

this equation to
g

v2
=

sin 2θ√
d2 − h2

+
h

d2 − h2
(1 + cos 2θ).

We then plug in our previous results, which are

sin 2θ =

√
d2 − h2

d
, cos 2θ =

h

d

to get the result

v2 = (d− h)g = (d+ h1 − h2)g.

By energy conservation, the speed at the ground is

v2
0 = v2 + 2h2g = (d+ h1 + h2)g

as desired.

[4] Problem 32. It’s possible to solve problems 29 and 31 using pure geometry, with no computation.

One can show that the set of points a projectile can reach with a fixed initial speed v is a parabola

with a focus at the launching point. A parabola is defined as the set of points whose distance to

the focus equals the distance to a line, called the directrix.
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(a) Show that trajectories that touch the parabola must be tangent to it.

(b) Show that if a point is hit with the smallest possible initial speed, then the initial velocity

must be perpendicular to the final velocity.

(c) Using the geometric definition of a parabola, recover the answers to problems 29 and 31.

Solution. (a) This is just because the parabola is defined to be the set of points you can hit. If

the trajectory weren’t tangent to the parabola, you would be able to hit a point outside the

parabola by continuing it.

(b) Let vi be the initial velocity and v̂⊥ be a unit vector in the perpendicular direction. If we

replace the initial velocity by vi + εv̂⊥, where ε is infinitesimal, then the speed isn’t changed,

which implies that the new trajectory should remain inside the parabola. Now suppose the

original projectile’s velocity is vf when it is tangent to the parabola, at position rf . Then

at the same time, the new projectile’s position is rf + tεv̂⊥. In order to keep this inside

the parabola for all infinitesimal ε, both positive and negative, tεv̂⊥ must be tangent to the

parabola at this point. Hence v̂⊥ is parallel to vf , so vi is perpendicular to vf , as desired.

(c) A parabola is the set of points equidistant from a focus and a line, called the directrix. Refer

to the diagram below.

The final velocity vf is tangent to the parabola. Therefore, it points along the angle bisector

between the vertical and the direction along the plane since the distance from the focus and

the directrix will remain equal to each other. Now, vi is perpendicular to this, which means it

is along the angle bisector between the vertical and the downward direction along the plane,

which is precisely the result we found in problem 29.

Assume h2 > h1. Draw the parabola of the projectile range with its focus on h2. At the

minimum launching velocity, the parabola should just touch the top of the h1 fence. The

(horizontal) directrix will be a distance 2x above h2, where x = v2
2/2g and v2 is the launching

velocity from h2. Then use the fact that the distances from a point on a parabola to the focus

and directrix are the same.
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From the picture, we see that d+ h1 = 2x+ h2. Thus the launching velocity at h2 satisfies

v2
2/g = d+ h1 − h2, and it has a total energy upon launching of

E/m =
1

2
v2

2 + gh2 = g
d+ h1 − h2

2
+ gh2 =

1

2
mv2

0.

This gives the answer with almost no computation,

v0 =
√
g(d+ h1 + h2).

[3] Problem 33. �m10 IPhO 2012, problem 1A.

5 Reading Graphs

In some kinematics problems, you’ll have to infer what’s going on from a diagram. To make progress,

you’ll have to print out the diagram to make measurements directly on it.

[3] Problem 34. EFPhO 2015, problem 6.

Solution. See the official solutions here.

[3] Problem 35. EFPhO 2008, problem 3.

Solution. See the official solutions here.

Remark

For a ridiculously hard problem from the same genre, see EuPhO 2019, problem 3. Almost

all competitors received zero points on it; you can try it for entertainment if you’ve finished

everything else and really like kinematics. The official solutions are here.
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https://www.ioc.ee/~kalda/ipho/es/e-s-2015-eng.pdf
https://www.ioc.ee/~kalda/ipho/es/e-s-2015-sol.pdf
https://www.ioc.ee/~kalda/ipho/es/e-s-08-eng.pdf
https://www.ioc.ee/~kalda/ipho/es/e-s-08-sol.pdf
https://www.ioc.ee/~kalda/ipho/3EuPhO/EuPhO_2019_theory_problems.pdf
https://www.ioc.ee/~kalda/ipho/3EuPhO/EuPhO_2019_theory_solutions.pdf
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