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Mechanics I: Kinematics

See chapters 3 and 4 of Morin for material on solving differential equations. For general review on

kinematics, see chapter 1 of Kleppner and Kolenkow. For fun, see chapters I-1 through I-8 of the

Feynman lectures. There is a total of 87 points.

1 Motion in One Dimension

Example 1

When a projectile moves slowly through air, the drag is linear in the velocity, F = −αmv.

Find the velocity v(t) of a projectile thrown upward at time t = 0 with speed v0.

Solution

We write Newton’s second law as
dv

dt
= −g − αv

and multiply through by dt. Integrating both sides from the initial condition to time tf gives∫ v(tf )

v0

dv

g + αv
= −

∫ tf

0
dt.

Performing the integrals gives

1

α
log(g + αv)

∣∣∣∣v(tf )

v0

= −tf .

Renaming tf to t and solving for v yields

v(t) = e−αtv0 +
g

α
(e−αt − 1).

This renaming is necessary because we don’t want to confuse t, the dummy variable that we

integrating over, with tf , the time at which we want to evaluate the velocity; t ranges from

zero to tf . Unfortunately, often people just call both of these t, so you need to watch out.
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Example 2

Find how the speed of a rowing boat depends on the number of rowers N .

Solution

A fast-moving boat experiences quadratic friction, so a drag force

F ∝ v2A

where A is the submerged cross-sectional area of the boat. Since the submerged volume

scales as V ∝ N in hydrostatic equilibrium, we have A ∝ N2/3. (This is the sketchy step

of the analysis, since the scaling of A depends on how we adjust the shape of the boat as

N increases.) Thus, the power the rowers need to provide scales as P = Fv ∝ v3N2/3, but

we also have P ∝ N . Combining gives the exceptionally weak dependence v ∝ N1/9, which

agrees decently with Olympic rowing times.

Idea 1

An ordinary differential equation is any equation involving a quantity x(t) and its derivatives.

In introductory physics, we are usually concerned with a few very simple differential equations,

with the following nice properties.

• The differential equation is at most second order, meaning that it can contain x, ẋ = v,

and ẍ = a, but no higher derivatives. This implies that the solution can be determined by

an initial position and initial velocity. (We’ll focus on second order differential equations

for the rest of this section; most first order differential equations can simply be solved

by separation and integration, as we’ve already seen above.)

4

• The differential equation is linear, meaning that terms don’t contain products of x, ẋ,

and ẍ. For example, a damped driven harmonic oscillator with time-dependent drag,

mẍ = −b(t)ẋ− kx+ f(t)

is a second order linear differential equation. Solutions to such differential equations obey

the superposition principle: if x1(t) and x2(t) are both solutions, so is c1x1(t) + c2x2(t).

• The differential equation is homogeneous, meaning that each term is proportional to ex-

actly one power of x or its derivatives. The above differential equation is not homogeneous,

but it would be if we removed the driving f(t).

• The differential equation is time-translation invariant, meaning that no functions of time

appear except for x and its derivatives. The above equation isn’t, but it would be if we

set f(t) and b(t) to constants.
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Idea 2

Linear, homogeneous, time-translation invariant differential equations are very special, and

they can all be solved by the exact same method. First, note that we can promote x(t) to

a complex variable x̃(t) and solve the differential equation over the complex numbers. As

long as we have a complex solution, we can recover a real solution by taking the real part.

Now, the method of solution, which works for almost all equations of this form, is to guess a

complex exponential solution

x̃(t) = eiωt.

Plugging this into the differential equation will yield the allowed values of ω, and the general

solution can be found by superposing the complex exponentials.

Example 3

Solve the simple harmonic oscillator, mẍ+ kx = 0, using the above principles.

Solution

First, we pass to a complex differential equation,

mx̃̈+ kx̃ = 0.

We guess x̃(t) = eiωt. Plugging this in and using the chain rule gives

m(iω)2eiωt + keiωt = 0

and canceling eiωt and solving gives two solutions,

ω = ±ω0, ω0 =
√
k/m.

Since this a second-order linear differential equation, the general solution is given by the

superposition of these two complex exponentials,

x̃(t) = Aeiω0t +Be−iω0t

where A and B are general complex numbers. The real part of x̃(t) satisfies the original real

differential equation ma+ kx = 0, and is

Rex(t) = C cos(ω0t) +D sin(ω0t)

where C and D are real numbers.
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2 Tricks

In this section we’ll consider some kinematics problems that require cleverness, not computation.

Idea 3

Many problems can be solved by a clever choice of reference frame. It is often useful to go to

the frame moving with one of the objects in the problem, or to go into a frame that makes

the motion in the problem more symmetric. For the purposes of kinematics it can even be

useful to use noninertial reference frames, such as a falling frame where projectiles don’t

accelerate, or a rotating frame, though this will introduce fictitious forces into the dynamics.

It is also useful to tilt the coordinate axes to be parallel to various objects.

Example 4: F = ma 2022 B4

A firework explodes, sending shells in all directions. Suppose the shells are all launched with

the same speed, and ignore air resistance, but not gravity. What shape do the shells make?

Solution

In the absence of gravity, the shells would always form a sphere. Adding gravity simply shifts

all of their locations downward by gt2/2, so the shape is still always a sphere.

Idea 4

To find the minimum value of some quantity, it’s often useful to think about all possible

values of that quantity. This can reveal a solution using geometry or symmetry.

Idea 5

In problems with friction, the best reference frame to use is almost always the frame of

whatever is causing the friction.

Idea 6

For a variety of kinematics problems, it can be useful to think about the motion from a

different perspective. For example, if your problem involves complicated accelerations, it

can be useful to think in “velocity space”, i.e. directly think about how the velocity vector

evolves over time, and deal with the position later. Or, if your problem involves complicated

processes occurring in time, it can be useful to think in “spacetime”, meaning to visualize

the process on a space where time is one of the axes. It can also be useful to parametrize

motion in terms of quantities other than the usual Cartesian coordinates.
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Idea 7

Often, motion in two dimensions can be treated as two independent one-dimensional problems.

A change of reference frame may be necessary first.

Idea 8

In problems involving an inclined plane, always set the angle θ to be much closer to either

0◦ or 90◦ than to 45◦. This reduces mistakes, because almost every angle will be either θ or

90◦ − θ, and you can identify which by sight.

Example 5

Consider projectile motion where wind provides a constant horizontal force F . At what angle

should a projectile of mass m be launched in order to return to the thrower?

Solution

The key idea is to use tilted coordinate systems. Clearly, when the only force is downward,

the projectile must be launched straight upward. Now, the horizontal force acts like an

effective horizontal gravitational acceleration of F/m, so that gravity is effectively tilted an

angle tan−1(F/mg) away from the vertical. One must launch the projectile directly “upward”

with respect to this effective gravitational field, so the launch angle is an angle tan−1(F/mg)

from the vertical. (For a related problem, see the infamous F = ma 2014 problem 19.)

Example 6: F = ma 2022 A23

For projectiles, the force of air resistance can be modeled as proportional to the speed

(“linear drag”) or proportional to the square of the speed (“quadratic drag”), depending on

the circumstances. Two identical objects, A and B, are dropped from the same height h

simultaneously, but object A is given an initial horizontal velocity v. The objects hit the

ground at times tA and tB. How do these times compare, assuming linear or quadratic drag?

Solution

For linear drag, the horizontal and vertical components of the motion are independent,

ax = −bvx, ay = −g − bvy
for some coefficient b. That means the time to hit the ground, which depends on the vertical

motion, is independent of the initial horizontal velocity, so tA = tB. But for quadratic drag,

ay = −g − bvy|v|

which means the upward drag force is larger when the horizontal velocity is larger, so tA > tB.

Since the components are independent for linear drag, it’s not too hard to write down an

expression for the trajectory, by recycling the results of example 1. But for quadratic drag,

the results of problem 2 won’t help much; the two-dimensional problem is much harder.
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Example 7

A bug flies towards a light with constant speed v, always making an angle α with the radial

direction. If the initial distance to the lamp is L and the radius of the lamp is R, through

what total angle does it turn before hitting the lamp?

Solution

In this case we can’t avoid solving differential equations, but they’re not too hard. It’s easiest

to work in polar coordinates, with the center of the lamp at the origin. By decomposing the

velocity into radial and tangential components, we have

dr

dt
= −v cosα, r

dθ

dt
= v sinα.

We only care about the path, not the time-dependence, so we divide these equations to get

dr

dθ
= − r

tanα

where we manipulated differentials as in P1. Separating and integrating,

−
∫ R

L

dr

r
=

∆θ

tanα

which tells us that

∆θ = (tanα) log
L

R
.

The shape traced out is a logarithmic spiral.
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4 Optimal Launching

Finally, we’ll consider projectile motion questions that involve optimization. These are rare on the

USAPhO, but they are quite fun problems, with occasionally very slick solutions.

Example 8

A bug wishes to jump over a cylindrical log of radius R lying on the ground, so that it just

grazes the top of the log horizontally as it passes by. What is the minimum launch speed v

required to do this?

Solution

Let P be the point at the top of the log. For the bug to be moving horizontally at P , energy

conservation applied to the vertical motion gives an initial vy obeying

1

2
mv2

y = 2mgR, vy = 2
√
gR.

Thus, we need to find the minimum vx for the motion to be possible. If vx is too low, the

hypothetical trajectory of the bug will instead pass through the log. At the lowest possible

vx, the bug’s trajectory is not just tangent to the log at point P , but also has the same radius

of curvature (i.e. the trajectory and the log’s shape have the same first and second derivatives).

For uniform motion in a circle of radius r, the acceleration is a = v2/r. Conversely, when an

object follows a trajectory of instantaneous radius of curvature r, its acceleration component

normal to the path must be a = v2/r. So applying this to the bug at P gives

g =
v2
x

R
, vx =

√
gR.

Thus, the minimum initial speed is

v =
√
v2
x + v2

y =
√

5 gR.

This radius of curvature trick doesn’t come up often, but it’s cool when it does.
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Idea 9

Since mechanics is time-reversible, and the speed of a projectile only depends on its height

and not the path taken, finding the way to reach point B from point A with the lowest

possible initial speed is the same as finding the way to reach point A from point B with the

lowest possible initial speed.
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