
Kevin Zhou Physics Olympiad Handouts

Mechanics I: Kinematics

See chapters 3 and 4 of Morin for material on solving differential equations. For general review on

kinematics, see chapter 1 of Kleppner and Kolenkow. For fun, see chapters I-1 through I-8 of the

Feynman lectures. There is a total of 87 points.

1 Motion in One Dimension

Example 1

When a projectile moves slowly through air, the drag is linear in the velocity, F = −αmv.

Find the velocity v(t) of a projectile thrown upward at time t = 0 with speed v0.

Solution

We write Newton’s second law as
dv

dt
= −g − αv

and multiply through by dt. Integrating both sides from the initial condition to time tf gives∫ v(tf )

v0

dv

g + αv
= −

∫ tf

0
dt.

Performing the integrals gives

1

α
log(g + αv)

∣∣∣∣v(tf )
v0

= −tf .

Renaming tf to t and solving for v yields

v(t) = e−αtv0 +
g

α
(e−αt − 1).

This renaming is necessary because we don’t want to confuse t, the dummy variable that we

integrating over, with tf , the time at which we want to evaluate the velocity; t ranges from

zero to tf . Unfortunately, often people just call both of these t, so you need to watch out.

[2] Problem 1. Investigating some features of this solution.

(a) By using results from P1, verify that v(t) makes sense for both small times and large times.

(b) If the projectile is then caught at the launch point, did it spend more time going up or down?

(c) Do you think the total time is longer or shorter than for a projectile without drag?

[3] Problem 2. Now assume quadratic drag, F = −αmv2, which applies for fast-moving projectiles.

(a) Integrate Newton’s second law to get an implicit equation for v(t) with the same initial

conditions as above. That is, you don’t need to solve for v(t), as it’ll just make things messy.
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(b) Your equation will only be valid when the projectile is going up; explain why.

(c) Find v(t) for an object released from rest at time t = 0. (Hint: if needed, look up some standard

integrals involving hyperbolic trigonometric functions. But don’t worry about memorizing

the results, since in competitions, any nontrivial integral needed will usually be given to you.)

Some people only call this quadratic case drag; they call the linear case viscous resistance. This is

because they behave fundamentally differently at the microscopic level, as we will explore in M7.

[3] Problem 3. A projectile of mass m is dropped from a height h above the ground. It falls and

bounces elastically, experiencing the same quadratic drag as in problem 2. Find the maximum

height to which it subsequently rises. (Hint: don’t try to use your results from problem 2.)

Example 2

Find how the speed of a rowing boat depends on the number of rowers N .

Solution

A fast-moving boat experiences quadratic friction, so a drag force

F ∝ v2A

where A is the submerged cross-sectional area of the boat. Since the submerged volume

scales as V ∝ N in hydrostatic equilibrium, we have A ∝ N2/3. (This is the sketchy step

of the analysis, since the scaling of A depends on how we adjust the shape of the boat as

N increases.) Thus, the power the rowers need to provide scales as P = Fv ∝ v3N2/3, but

we also have P ∝ N . Combining gives the exceptionally weak dependence v ∝ N1/9, which

agrees decently with Olympic rowing times.

Idea 1

An ordinary differential equation is any equation involving a quantity x(t) and its derivatives.

In introductory physics, we are usually concerned with a few very simple differential equations,

with the following nice properties.

• The differential equation is at most second order, meaning that it can contain x, ẋ = v,

and ẍ = a, but no higher derivatives. This implies that the solution can be determined by

an initial position and initial velocity. (We’ll focus on second order differential equations

for the rest of this section; most first order differential equations can simply be solved

by separation and integration, as we’ve already seen above.)

• The differential equation is linear, meaning that terms don’t contain products of x, ẋ,

and ẍ. For example, a damped driven harmonic oscillator with time-dependent drag,

mẍ = −b(t)ẋ− kx+ f(t)

is a second order linear differential equation. Solutions to such differential equations obey

the superposition principle: if x1(t) and x2(t) are both solutions, so is c1x1(t) + c2x2(t).
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• The differential equation is homogeneous, meaning that each term is proportional to ex-

actly one power of x or its derivatives. The above differential equation is not homogeneous,

but it would be if we removed the driving f(t).

• The differential equation is time-translation invariant, meaning that no functions of time

appear except for x and its derivatives. The above equation isn’t, but it would be if we

set f(t) and b(t) to constants.

Idea 2

Linear, homogeneous, time-translation invariant differential equations are very special, and

they can all be solved by the exact same method. First, note that we can promote x(t) to

a complex variable x̃(t) and solve the differential equation over the complex numbers. As

long as we have a complex solution, we can recover a real solution by taking the real part.

Now, the method of solution, which works for almost all equations of this form, is to guess a

complex exponential solution

x̃(t) = eiωt.

Plugging this into the differential equation will yield the allowed values of ω, and the general

solution can be found by superposing the complex exponentials.

Example 3

Solve the simple harmonic oscillator, mẍ+ kx = 0, using the above principles.

Solution

First, we pass to a complex differential equation,

m¨̃x+ kx̃ = 0.

We guess x̃(t) = eiωt. Plugging this in and using the chain rule gives

m(iω)2eiωt + keiωt = 0

and canceling eiωt and solving gives two solutions,

ω = ±ω0, ω0 =
√
k/m.

Since this a second-order linear differential equation, the general solution is given by the

superposition of these two complex exponentials,

x̃(t) = Aeiω0t +Be−iω0t

where A and B are general complex numbers. The real part of x̃(t) satisfies the original real

differential equation ma+ kx = 0, and is

Rex(t) = C cos(ω0t) +D sin(ω0t)

where C and D are real numbers.
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[1] Problem 4. To make sure you know how to go from the complex solution to the real one, write

C and D in terms of A and B.

[2] Problem 5. Now introduce a damping force and solve the differential equation for the damped

harmonic oscillator, mẍ+ bẋ+ kx = 0, using the same procedure, assuming b is small. (See section

4.3 of Morin if you have trouble with this. We’ll consider this system in more detail in M4.)

[3] Problem 6. �m10 USAPhO 2012, problem B1.

[3] Problem 7. Above, we mentioned that guessing an exponential works almost all the time. The

reason is because at the end of the day, the exponential cancels out and we’re left with a polynomial

in ω, which has just the right number of roots. But if there are repeated roots, there are fewer

distinct solutions for ω, and hence not enough solutions.

(a) Consider a second order differential equation with a double root ω. What is the other solution,

besides eiωt? (Hint: to help find a good guess, consider the simple case ma = 0, where ω = 0

is the double root. Then generalize your guess to nonzero ω and check that it works.)

(b) This should be setting off alarm bells: the form of the solutions to the equation changes when

the two roots are exactly equal, while it’s just exponentials/sinusoids if the roots are different,

no matter how small the difference is. Since no two roots are ever exactly equal in practice, it

seems the behavior of part (a) can never actually happen in the real world. But it gets taught

in applied differential equations courses. Why?

(c) [A] Consider the most general nth order, linear homogeneous time-translation invariant differ-

ential equation (
an

dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

)
x = 0.

What does the general solution look like?

Remark

You might be wondering how to solve more general differential equations. In M4, we will

consider three extensions of the above techniques. We’ll use the idea of normal modes

to solve systems of such differential equations, add driving forces to make the equations

inhomogeneous, and use the adiabatic theorem to approximately solve non time-translation

invariant equations where the coefficients change slowly in time.

Of course, this just scratches the surface of the subject, and solving more general differential

equations can be orders of magnitude harder. We won’t try to solve nonlinear differential

equations, as there is no general technique for doing so, and the answer is often an obscure

special function. (However, such equations will occasionally appear in later problems.) On the

other hand, linear differential equations with general time-dependence are more approachable,

and the following problem illustrates the most basic method for solving them.

[3] Problem 8. [A] Some linear, homogeneous, non time-translation invariant differential equations

can be solved by simply guessing a power series. For this problem, don’t worry about dimensional

analysis; assume all variables have already been redefined to be dimensionless.
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(a) As a warmup, consider the differential equation ẋ = kx for constant k, which we already know

how to solve. By plugging in the ansatz

x(t) =
∞∑
n=0

ant
n

find the solution with x(0) = 1.

(b) Now consider the non time-translation invariant differential equation

t2ẍ+ tẋ+ t2x = 0

which is called Bessel’s differential equation of order zero. By using the same ansatz, find the

unique solution with x(0) = 1 and ẋ(0) = 0.

2 Tricks

In this section we’ll consider some kinematics problems that require cleverness, not computation.

Idea 3

Many problems can be solved by a clever choice of reference frame. It is often useful to go to

the frame moving with one of the objects in the problem, or to go into a frame that makes

the motion in the problem more symmetric. For the purposes of kinematics it can even be

useful to use noninertial reference frames, such as a falling frame where projectiles don’t

accelerate, or a rotating frame, though this will introduce fictitious forces into the dynamics.

It is also useful to tilt the coordinate axes to be parallel to various objects.

Example 4: F = ma 2022 B4

A firework explodes, sending shells in all directions. Suppose the shells are all launched with

the same speed, and ignore air resistance, but not gravity. What shape do the shells make?

Solution

In the absence of gravity, the shells would always form a sphere. Adding gravity simply shifts

all of their locations downward by gt2/2, so the shape is still always a sphere.

[1] Problem 9 (KoMaL 2019). A cannon A is at the edge of a cliff with a 800 m drop. Cannon B is

on the ground below the cliff and 600 m horizontally away from it. Cannon A shoots a cannonball

directly towards cannon B at 60 m/s. Cannon B shoots a cannonball directly towards cannon A at

40 m/s. Will the two cannonballs hit each other in midair?

[2] Problem 10 (Wang). Two particles are released in gravitational acceleration g with leftward and

rightward speeds v1 and v2. Find the distance between them when their velocities are perpendicular.

[3] Problem 11 (Kalda). Two intersecting circles of radius r have centers a distance a apart. If one

circle moves towards the other with speed v, what is the speed of one of the points of intersection?
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[2] Problem 12 (Kalda). A mirror rotates about its center with angular speed ω. A stationary point

source of light sits at a distance a from the rotation axis. What is the speed of its mirror image?

[2] Problem 13 (Kalda). Two circles of radius r intersect at the point O. One of the circles rotates

about the point O with constant angular speed ω. The other point of intersection O′ is originally a

distance d from O. Find the speed of O′ as a function of time.

Idea 4

To find the minimum value of some quantity, it’s often useful to think about all possible

values of that quantity. This can reveal a solution using geometry or symmetry.

[2] Problem 14 (PPP 3). A boat can travel a speed of 3 m/s on still water. A boatman wants to

cross a river while covering the shortest possible distance.

(a) In what direction should he row if the speed of the water is 2 m/s?

(b) How about if it is 4 m/s?

Idea 5

In problems with friction, the best reference frame to use is almost always the frame of

whatever is causing the friction.

[2] Problem 15 (Kalda). A block is pushed onto a conveyor belt. The belt is moving with speed

1 m/s, and the block’s initial speed is 2 m/s, with initial velocity perpendicular to that of the belt.

During the subsequent motion, what is the minimum speed of the block with respect to the ground?

Idea 6

For a variety of kinematics problems, it can be useful to think about the motion from a

different perspective. For example, if your problem involves complicated accelerations, it

can be useful to think in “velocity space”, i.e. directly think about how the velocity vector

evolves over time, and deal with the position later. Or, if your problem involves complicated

processes occurring in time, it can be useful to think in “spacetime”, meaning to visualize

the process on a space where time is one of the axes. It can also be useful to parametrize

motion in terms of quantities other than the usual Cartesian coordinates.

[2] Problem 16 (Kalda). A boy enters a patch of ice with a coefficient of friction µ with speed v.

By running on the ice, the boy turns his velocity vector by 90◦ in the minimum possible time, so

that his final speed is also v. What is the minimum possible time, and what kind of curve is the

trajectory? Assume the normal force with the ice is constant.

[2] Problem 17 (PPP 5). Four snails travel in uniform, rectilinear motion on a plane. The velocities

are chosen so that three snails never meet at once, and no two of the velocities are equal. Since

time t = −∞, five of the
(
4
2

)
possible encounters have already occurred. Must the sixth also occur?
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[2] Problem 18. Six bugs are placed at the vertices of a regular hexagon with side length s. At time

t = 0 each bug starts moving directly towards the next with speed v. At what time do they collide?

[3] Problem 19. A rabbit begins at the origin, and the fox begins at the point (0,−a). The rabbit

begins running with a constant speed vx̂. At the same time, the fox begins chasing the rabbit,

always moving towards it with speed v.

(a) Sketch the subsequent trajectory of the rabbit and fox.

(b) Let the displacement between the rabbit and fox be

r(t) = (x(t), y(t)).

Show that r + x is conserved.

(c) Find the distance between the rabbit and fox after a long time.

(d) Now suppose the fox has speed u > v. How long does it take to catch the rabbit?

[2] Problem 20 (PPP 85). A child is standing on an icy hill, which may be modeled as an inclined

plane.

The coefficient of friction µk = µs is small enough so that, if the child gets the tiniest push, she will

begin sliding down the plane. Now suppose the child gets a horizontal push, with initial speed v0.

What is the child’s final speed?

3 Motion in Two Dimensions

Idea 7

Often, motion in two dimensions can be treated as two independent one-dimensional problems.

A change of reference frame may be necessary first.

Idea 8

In problems involving an inclined plane, always set the angle θ to be much closer to either

0◦ or 90◦ than to 45◦. This reduces mistakes, because almost every angle will be either θ or

90◦ − θ, and you can identify which by sight.
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Example 5

Consider projectile motion where wind provides a constant horizontal force F . At what angle

should a projectile of mass m be launched in order to return to the thrower?

Solution

The key idea is to use tilted coordinate systems. Clearly, when the only force is downward,

the projectile must be launched straight upward. Now, the horizontal force acts like an

effective horizontal gravitational acceleration of F/m, so that gravity is effectively tilted an

angle tan−1(F/mg) away from the vertical. One must launch the projectile directly “upward”

with respect to this effective gravitational field, so the launch angle is an angle tan−1(F/mg)

from the vertical. (For a related problem, see the infamous F = ma 2014 problem 19.)

Example 6: F = ma 2022 A23

For projectiles, the force of air resistance can be modeled as proportional to the speed

(“linear drag”) or proportional to the square of the speed (“quadratic drag”), depending on

the circumstances. Two identical objects, A and B, are dropped from the same height h

simultaneously, but object A is given an initial horizontal velocity v. The objects hit the

ground at times tA and tB. How do these times compare, assuming linear or quadratic drag?

Solution

For linear drag, the horizontal and vertical components of the motion are independent,

ax = −bvx, ay = −g − bvy

for some coefficient b. That means the time to hit the ground, which depends on the vertical

motion, is independent of the initial horizontal velocity, so tA = tB. But for quadratic drag,

ay = −g − bvy|v|

which means the upward drag force is larger when the horizontal velocity is larger, so tA > tB.

Since the components are independent for linear drag, it’s not too hard to write down an

expression for the trajectory, by recycling the results of example 1. But for quadratic drag,

the results of problem 2 won’t help much; the two-dimensional problem is much harder.

[1] Problem 21 (Quarterfinal 2002). A cart is rigged with a vertical cannon so that, when the cart is

stationary on a horizontal track, the cannonball is fired straight up and lands back in the cannon.

In each of the following situations, does the cannonball land back in the cannon, in front of it, or

behind it?

(a) The cart is moving on a frictionless horizontal track with speed v.

(b) The cart is accelerating down a frictionless inclined track with angle θ.
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(c) The cart is accelerating down an inclined track with angle θ, and friction slows it down.

[2] Problem 22 (Kalda). Two balls at points A and B are released from rest at the same moment,

from the locations shown below. All surfaces are frictionless.

If it takes time tA and tB for the balls to hit the ground, at what time was the distance between

the balls the smallest?

[2] Problem 23 (Kalda). Two planar frictionless walls are placed at right angles, where wall A makes

an angle α to the horizontal. A perfectly elastic ball is released from rest at a point a distance a

from wall A and b from wall B.

After a long time, what is the ratio of the number of times the ball has bounced against wall B to

the number of times it has bounced against wall A?

[3] Problem 24. �W10 USAPhO 2004, problem A4.

[3] Problem 25 (EFPhO 2010). A sprinkler can be modeled as a small hemisphere on the ground.

Water shoots out from the hemisphere in all directions, with speed v perpendicular to the hemisphere.

(a) Find the total surface area of ground watered by the sprinkler.

(b) At what distance from the sprinkler does the ground get the wettest?

Example 7

A bug flies towards a light with constant speed v, always making an angle α with the radial

direction. If the initial distance to the lamp is L and the radius of the lamp is R, through

what total angle does it turn before hitting the lamp?

Solution

In this case we can’t avoid solving differential equations, but they’re not too hard. It’s easiest

to work in polar coordinates, with the center of the lamp at the origin. By decomposing the

velocity into radial and tangential components, we have

dr

dt
= −v cosα, r

dθ

dt
= v sinα.
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We only care about the path, not the time-dependence, so we divide these equations to get

dr

dθ
= − r

tanα

where we manipulated differentials as in P1. Separating and integrating,

−
∫ R

L

dr

r
=

∆θ

tanα

which tells us that

∆θ = (tanα) log
L

R
.

The shape traced out is a logarithmic spiral.

[2] Problem 26. The pilot of a supersonic jet airplane wishes to make a big noise at the origin by

flying around it in a path such that all of the noise he makes is heard simultaneously at the origin.

The jet travels with Mach number M , meaning that its speed is M times the speed of sound. If the

pilot starts at (r, θ) = (a, 0), find the pilot’s path r(θ).

[4] Problem 27. Consider a mass m on a table attached to a spring at the origin with zero relaxed

length, which exerts the force

F = −kr

on the mass. We will find the general solution for r(t) = (x(t), y(t)) in two different ways.

(a) Directly write down the answer, using the fact that the x and y coordinates are independent.

(b) Sketch a representative sample of solutions. What kind of curve does the trajectory follow?

(c) ? Here’s a more unusual way to arrive at the same answer. Go to a noninertial reference frame

rotating with angular velocity ω0 about the origin, so that the centrifugal force cancels out

the spring force. In this frame, the only relevant force is the Coriolis force −2mω0 × v. Find

the general solution in this frame, then transform back to the original frame and show that

you get the same answer as in part (a). (This can get a bit messy; the easiest way is to treat

the plane as the complex plane, i.e. work in terms of the variable r = x+ iy.)

4 Optimal Launching

Finally, we’ll consider projectile motion questions that involve optimization. These are rare on the

USAPhO, but they are quite fun problems, with occasionally very slick solutions.

Example 8

A bug wishes to jump over a cylindrical log of radius R lying on the ground, so that it just

grazes the top of the log horizontally as it passes by. What is the minimum launch speed v

required to do this?
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Solution

Let P be the point at the top of the log. For the bug to be moving horizontally at P , energy

conservation applied to the vertical motion gives an initial vy obeying

1

2
mv2y = 2mgR, vy = 2

√
gR.

Thus, we need to find the minimum vx for the motion to be possible. If vx is too low, the

hypothetical trajectory of the bug will instead pass through the log. At the lowest possible

vx, the bug’s trajectory is not just tangent to the log at point P , but also has the same radius

of curvature (i.e. the trajectory and the log’s shape have the same first and second derivatives).

For uniform motion in a circle of radius r, the acceleration is a = v2/r. Conversely, when an

object follows a trajectory of instantaneous radius of curvature r, its acceleration component

normal to the path must be a = v2/r. So applying this to the bug at P gives

g =
v2x
R
, vx =

√
gR.

Thus, the minimum initial speed is

v =
√
v2x + v2y =

√
5 gR.

This radius of curvature trick doesn’t come up often, but it’s cool when it does.

[2] Problem 28. NBPhO 2020, problem 3. A nice warmup for the problems below.

[3] Problem 29. An object is launched from the top of a hill, where the ground lies an angle φ below

the horizontal. Show that the range of a projectile is maximized if it is launched along the angle

bisector of the vertical and the ground.

[3] Problem 30 (PPP 35). A point P is located above an inclined plane with angle α. It is possible

to reach the plane by sliding under gravity down a straight frictionless wire, joining P to some point

P ′ on the plane. Geometrically, how should P ′ be chosen so as to minimize the time taken? (Hint:

think about the set of points that can be reached for all possible angles of the wire, after time t.)

Idea 9

Since mechanics is time-reversible, and the speed of a projectile only depends on its height

and not the path taken, finding the way to reach point B from point A with the lowest

possible initial speed is the same as finding the way to reach point A from point B with the

lowest possible initial speed.

[4] Problem 31. Two fences of heights h1 and h2 are erected on a horizontal plain, so that the tops

of the fences are separated by a distance d. Show that the minimum speed needed to throw a

projectile over both fences is
√
g(h1 + h2 + d).
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[4] Problem 32. It’s possible to solve problems 29 and 31 using pure geometry, with no computation.

One can show that the set of points a projectile can reach with a fixed initial speed v is a parabola

with a focus at the launching point. A parabola is defined as the set of points whose distance to

the focus equals the distance to a line, called the directrix.

(a) Show that trajectories that touch the parabola must be tangent to it.

(b) Show that if a point is hit with the smallest possible initial speed, then the initial velocity

must be perpendicular to the final velocity.

(c) Using the geometric definition of a parabola, recover the answers to problems 29 and 31.

[3] Problem 33. �m10 IPhO 2012, problem 1A.

5 Reading Graphs

In some kinematics problems, you’ll have to infer what’s going on from a diagram. To make progress,

you’ll have to print out the diagram to make measurements directly on it.

[3] Problem 34. EFPhO 2015, problem 6.

[3] Problem 35. EFPhO 2008, problem 3.

Remark

For a ridiculously hard problem from the same genre, see EuPhO 2019, problem 3. Almost

all competitors received zero points on it; you can try it for entertainment if you’ve finished

everything else and really like kinematics. The official solutions are here.
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