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Preface

This textbook has grown out of the first-semester honors freshman physics course
that has been taught at Harvard University during recent years. The book is essen-
tially two books in one. Roughly half of it follows the form of a normal textbook,
consisting of text, along with exercises suitable for homework assignments. The
other half takes the form of a problem book, with all sorts of problems (with so-
lutions) of varying degrees of difficulty. If you’'ve been searching for a supply of
practice problems to work on, this should keep you busy for a while.

A brief outline of the book is as follows. Chapter 1 covers statics. Most of this
will probably look familiar, but you’ll find some fun problems. In Chapter 2, we
learn about forces and how to apply F' = ma. There’s a bit of math here needed
for solving some simple differential equations. Chapter 3 deals with oscillations
and coupled oscillators. Again, there’s a fair amount of math needed for solving
linear differential equations, but there’s no way to avoid it. Chapter 4 deals with
conservation of energy and momentum. You’ve probably seen much of this before,
but again, it has lots of neat problems.

In Chapter 5, we introduce the Lagrangian method, which will undoubtedly be
new to you. It looks rather formidable at first, but it’s really not all that rough.
There are difficult concepts at the heart of the subject, but the nice thing is that
the technique is easy to apply. The situation here analogous to taking a derivative
in calculus; there are substantive concepts on which the theory rests, but the act of
taking a derivative is fairly straightforward.

Chapter 6 deals with central forces, Kepler’s Laws, and such things. Chapter 7
covers the easier type of angular momentum situations, ones where the direction of
the angular momentum is fixed. Chapter 8 covers the more difficult type, ones where
the direction changes. Gyroscopes, spinning tops, and other fun and perplexing
objects fall into this category. Chapter 9 deals with accelerated frames of reference
and fictitious forces.

Chapters 10 through 13 cover relativity. Chapter 10 deals with relativistic kine-
matics — abstract particles flying through space and time. Chapter 11 covers rel-
ativistic dynamics — energy, momentum, force, etc. Chapter 12 introduces the im-
portant concept of “4-vectors.” The material in this chapter could alternatively
be put in the previous two, but for various reasons I thought it best to create a
separate chapter for it. Chapter 13 covers a few topics from general relativity. It’s
not possible for one chapter to do this subject justice, of course, so we’ll just look
at some basic (but still very interesting) examples.

1



2 CONTENTS

The appendices contain various useful things. Indeed, Appendices B and C,
which cover dimensional analysis and limiting cases, are the first parts of this book
you should read.

Throughout the book, I have included many “remarks.” These are written in
a slightly smaller font than the surrounding text. They begin with a small-capital
“REMARK” and end with a shamrock (). The purpose of these remarks is to say
something that needs to be said, without disrupting the overall flow of the argument.
In some sense these are “extra” thoughts, although they are invariably useful in
understanding what is going on. They are usually more informal than the rest of
the text, and I reserve the right to occasionally use them to babble about things
I find interesting, but which you may find a bit tangential. For the most part,
however, the remarks address issues and questions that arise naturally in the course
of the discussion.

At the end of the solutions to many problems, the obvious thing to do is to
check limiting cases.! I have written these in a smaller font, but I have not always
bothered to start them with a “REMARK” and end them with a “&”, because they
are not “extra” thoughts. Checking limiting cases of your answer is something you
should always do.

For your reading pleasure (I hope), I have included many limericks scattered
throughout the text. I suppose that they might be viewed as educational, but they
certainly don’t represent any deep insight I have on the teaching of physics. I have
written them solely for the purpose of lightening things up. Some are funny. Some
are stupid. But at least they’re all physically accurate (give or take).

A word on the problems. Some are easy, but many are very difficult. I think
you’ll find them quite interesting, but don’t get discouraged if you have trouble
solving them. Some are designed to be brooded over for hours. Or days, or weeks,
or months (as I can attest to). I have chosen to write them up for two reasons: (1)
Students invariably want extra practice problems, with solutions, to work on, and
(2) I find them rather fun.

The problems are marked with a number of asterisks. Harder problems earn
more asterisks, on a scale from zero to four. You may, of course, disagree with
my judgment of difficulty, but I think that an arbitrary weighting scheme is better
than none at all. As a rough idea of what I mean by the number of stars: one-star
problems are solid problems that require some thought, and four-star problems are
really really really difficult. Try a few and you’ll see what I mean.

Just to warn you, even if you understand the material in the text backwards and
forwards, the four-star (and many of the three-star) problems will still be extremely
challenging. But that’s how it should be. My goal was to create an unreachable
upper bound on the number (and difficulty) of problems, because it would be an
unfortunate circumstance, indeed, if you were left twiddling your thumbs, having
run out of problems to solve. I hope I have succeeded.

For the problems you choose to work on, be careful not to look at the solution
too soon. There is nothing wrong with putting a problem aside for a while and

!This topic is discussed in Appendix C.
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coming back to it later. Indeed, this is probably the best way to approach things. If
you head to the solution at the first sign of not being able to solve a problem, then
you have wasted the problem.

REMARK: This gives me an opportunity for my first remark (and first limerick, too).
One thing many people don’t realize is that you need to know more than the correct way(s) to
do a problem; you also need to be familiar with many incorrect ways of doing it. Otherwise,
when you come upon a new problem, there may be a number of decent-looking approaches
to take, and you won’t be able to immediately weed out the poor ones. Struggling a bit
with a problem invariably leads you down some wrong paths, and this is an essential part
of learning. To understand something, you not only have to know what’s right about the
right things; you also have to know what’s wrong about the wrong things. Learning takes a
serious amount of effort, many wrong turns, and a lot of sweat. Alas, there are no short-cuts
to understanding physics.

The ad said, For one little fee,

You can skip all that course-work ennui.
So send your tuition,

For boundless fruition!

Get your mail-order physics degree! &

One last note: the problems with included solutions are called “Problems.” The
problems without included solutions are called “Exercises.” There is no fundamental
difference between the two, except for the existence of written-up solutions.

I hope you enjoy the book!

— David Morin
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Chapter 1

Statics

Copyright 2004 by David Morin, morin@physics.harvard.edu

Before reading any of the text in this book, you should read Appendices B and C.
The material discussed there (dimensional analysis, checking limiting cases, etc.) is
extremely important. It’s fairly safe to say that an understanding of these topics is
absolutely necessary for an understanding of physics. And they make the subject a
lot more fun, too!

For many of you, the material in this first chapter will be mainly review. As such,
the text here will be relatively short. This is an “extra” chapter. Its main purpose
is that it provides me with an excuse to give you some nice statics problems. Try
as many as you like, but don’t go overboard; more important and relevant material
will soon be at hand.

1.1 Balancing forces

A “static” situation is one where all the objects are motionless. If an object remains
motionless, then F© = ma tells us that the total force acting on it must be zero.
(The converse is not true, of course. The total force on an object is also zero if
it moves with constant nonzero velocity. But we’ll deal only with statics problems
here). The whole goal in a statics problem is to find out what the various forces have
to be so that there is zero net force acting on each object (and zero net torque, too,
but that’s the topic of the next section). Since a force is a vector, this goal involves
breaking the force up into its components. You can pick cartesian coordinates, polar
coordinates, or another set. It is usually clear from the problem which system will
make your calculations easiest. Once you pick a system, you simply have to demand
that the total force in each direction is zero.

There are many different types of forces in the world, most of which are large-
scale effects of complicated things going on at smaller scales. For example, the
tension in a rope comes from the chemical bonds that hold the molecules in the rope
together (and these chemical forces are just electrical forces). In doing a mechanics
problem involving a rope, there is certainly no need to analyze all the details of the
forces taking place at the molecular scale. You simply call the force in the rope a

I-1



1-2 CHAPTER 1. STATICS
“tension” and get on with the problem. Four types of forces come up repeatedly:

Tension

Tension is the general name for a force that a rope, stick, etc., exerts when it is
pulled on. Every piece of the rope feels a tension force in both directions, except
the end point, which feels a tension on one side and a force on the other side from
whatever object is attached to the end.

In some cases, the tension may vary along the rope. The “Rope wrapped around
a pole” example at the end of this section is a good illustration of this. In other
cases, the tension must be the same everywhere. For example, in a hanging massless
rope, or in a massless rope hanging over a frictionless pulley, the tension must be
the same at all points, because otherwise there would be a net force on at least one
tiny piece, and then F' = ma would yield an infinite acceleration for this tiny piece.

Normal force

This is the force perpendicular to a surface that the surface applies to an object.
The total force applied by a surface is usually a combination of the normal force and
the friction force (see below). But for frictionless surfaces such as greasy ones or
ice, only the normal force exists. The normal force comes about because the surface
actually compresses a tiny bit and acts like a very rigid spring. The surface gets
squashed until the restoring force equals the force the object applies.

REMARK: For the most part, the only difference between a “tension” and a “normal
force” is the direction of the force. Both situations can be modeled by a spring. In the
case of a tension, the spring (a rope, a stick, or whatever) is stretched, and the force on
the given object is directed toward the spring. In the case of a normal force, the spring is
compressed, and the force on the given object is directed away from the spring. Things like
sticks can provide both normal forces and tensions. But a rope, for example, has a hard
time providing a normal force.

In practice, in the case of elongated objects such as sticks, a compressive force is usually

“negative tension,” instead of a normal force. So by

called a “compressive tension,” or a
these definitions, a tension can point either way. At any rate, it’s just semantics. If you use

any of these descriptions for a compressed stick, people will know what you mean. ¢

Friction

Friction is the force parallel to a surface that a surface applies to an object. Some
surfaces, such as sandpaper, have a great deal of friction. Some, such as greasy ones,
have essentially no friction. There are two types of friction, called “kinetic” friction
and “static” friction.

Kinetic friction (which we won’t cover in this chapter) deals with two objects
moving relative to each other. It is usually a good approximation to say that the
kinetic friction between two objects is proportional to the normal force between
them. The constant of proportionality is called ux (the “coefficient of kinetic fric-
tion”), where py depends on the two surfaces involved. Thus, F' = pu;N, where N
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is the normal force. The direction of the force is opposite to the motion.

Static friction deals with two objects at rest relative to each other. In the static
case, we have F' < usN (where g is the “coefficient of static friction”). Note the
inequality sign. All we can say prior to solving a problem is that the static friction
force has a mazimum value equal to Finax = psN. In a given problem, it is most
likely less than this. For example, if a block of large mass M sits on a surface
with coefficient of friction ug, and you give the block a tiny push to the right (tiny
enough so that it doesn’t move), then the friction force is of course not equal to
usN = pusMg to the left. Such a force would send the block sailing off to the left.
The true friction force is simply equal and opposite to the tiny force you apply.
What the coefficient pg tells us is that if you apply a force larger than usMg (the
maximum friction force on a horizontal table), then the block will end up moving
to the right.

Gravity

Consider two point objects, with masses M and m, separated by a distance R. New-
ton’s gravitational force law says that the force between these objects is attractive
and has magnitude F' = GMm/R?, where G = 6.67 - 107! m?/(kg - s?). As we
will show in Chapter 4, the same law applies to spheres. That is, a sphere may be
treated like a point mass located at its center. Therefore, an object on the surface
of the earth feels a gravitational force equal to

Fzm(i?j) = mg, (1.1)

where M is the mass of the earth, and R is its radius. This equation defines g.
Plugging in the numerical values, we obtain (as you can check) g ~ 9.8 m/s?. Every
object on the surface of the earth feels a force of mg downward. If the object is not
accelerating, then there must also be other forces present (normal forces, etc.) to
make the total force equal to zero.

Example (Block on a plane): A block of mass M rests on a fixed plane inclined
at angle 6. You apply a horizontal force of Mg on the block, as shown in Fig. 1.1.

(a) Assume that the friction force between the block and the plane is large enough
to keep the block at rest. What are the normal and friction forces (call them N
and Fy) that the plane exerts on the block?

(b) Let the coefficient of static friction be pu. For what range of angles 6 will the
block remain still?

Solution:

(a) We will break the forces up into components parallel and perpendicular to the
plane. (The horizontal and vertical components would also work, but the calcu-
lation would be a little longer.) The forces are N, Fy, the applied Mg, and the
weight Mg, as shown in Fig. 1.2. Balancing the forces parallel and perpendic-

Mg

R ——

0

Figure 1.1

Figure 1.2
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ular to the plane gives, respectively (with upward along the plane taken to be
positive),

Fy = Mgsinf — Mgcos9, and
N = Mgcosf+ Mgsin6. (1.2)

REMARKS: Note that if tan 6 > 1, then F is positive (that is, it points up the plane).
And if tan@ < 1, then Fy is negative (that is, it points down the plane). There is
no need to worry about which way it points when drawing the diagram. Just pick a
direction to be positive, and if Fy comes out to be negative (as it does in the above
figure because 6 < 45°), so be it.

Fy ranges from —Mg to Mg, as 6 ranges from 0 to /2 (convince yourself that these
limiting values make sense). As an exercise, you can show that N is maximum when
tan@ = 1, in which case N = v/2Mg and F; = 0. &

(b) The coefficient p tells us that |[Fy| < uN. Using egs. (1.2), this inequality
becomes
Mg|sin® — cos 0| < uMg(cosf + sin6). (1.3)

The absolute value here signifies that we must consider two cases:
e If tanf > 1, then eq. (1.3) becomes

1+ p

sinf — cos 0 < p(cos @ + sin 9) = tand < et (1.4)
e If tanf < 1, then eq. (1.3) becomes
—siné + cosf < p(cosf + sin b)) = tan > % (1.5)
Putting these two ranges for 6 together, we have
% < tanf < % (1.6)

REMARKS: For very small u, these bounds both approach 1, which means that 6
must be very close to 45°. This makes sense. If there is very little friction, then
the components along the plane of the horizontal and vertical Mg forces must nearly
cancel; hence, 0 ~ 45°. A special value for p is 1, because from eq. (1.6), we see that
u = 1 is the cutoff value that allows 6 to reach 0 and 7/2. If & > 1, then any tilt of
the plane is allowed. &

Let’s now do an example involving a rope in which the tension varies with posi-
tion. We’ll need to consider differential pieces of the rope to solve this problem.

Example (Rope wrapped around a pole): A rope wraps an angle § around a
pole. You grab one end and pull with a tension Ty. The other end is attached to a
large object, say, a boat. If the coefficient of static friction between the rope and the
pole is u, what is the largest force the rope can exert on the boat, if the rope is not
to slip around the pole?
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Solution: Consider a small piece of the rope that subtends an angle df. Let the
tension in this piece be T' (which will vary slightly over the small length). As shown in
Fig. 1.3, the pole exerts a small outward normal force, Ngg, on the piece. This normal
force exists to balance the inward components of the tensions at the ends. These
inward components have magnitude T sin(df/2). Therefore, Ngg = 2T sin(df/2).
The small-angle approximation, sinx = x, then allows us to write this as Ngg = T d#f.

The friction force on the little piece of rope satisfies Fgg < uNgg = pT'df. This
friction force is what gives rise to the difference in tension between the two ends of
the piece. In other words, the tension, as a function of @, satisfies

TO+do) < T(0)+ uTdo
== dr < uTdf
dr
— <
T = /ud@
o InT < pb+C
= T < Teet, (1.7)

where we have used the fact that T'= T when 8 = 0.

The exponential behavior here is quite strong (as exponential behaviors tend to be).
If we let = 1, then just a quarter turn around the pole produces a factor of e™/2 ~ 5.
One full revolution yields a factor of €2™ ~ 530, and two full revolutions yield a factor
of e*™ ~ 300,000. Needless to say, the limiting factor in such a case is not your
strength, but rather the structural integrity of the pole around which the rope winds.

1.2 Balancing torques

In addition to balancing forces in a statics problem, we must also balance torques.
We’ll have much more to say about torque in Chapters 7 and 8, but we’ll need one
important fact here.

Consider the situation in Fig. 1.4, where three forces are applied perpendicularly
to a stick, which is assumed to remain motionless. F} and Fy are the forces at the
ends, and Fj is the force in the interior. We have, of course, F3 = F; + F5, because
the stick is at rest.

Claim 1.1 If the system is motionless, then Fza = Fy(a + b). In other words, the
torques (force times distance) around the left end cancel. And you can show that
they cancel around any other point, too.

We’ll prove this claim in Chapter 7 by using angular momentum, but let’s give a
short proof here.

Proof: We’ll make one reasonable assumption, namely, that the correct relationship
between the forces and distances is of the form,

Fsf(a) = Faf(a+b), (1.8)

\]‘Vde

/f;sin do/2

Figure 1.3

Figure 1.4
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where f(z) is a function to be determined.! Applying this assumption with the roles
of “left” and “right” reversed in Fig. 1.4, we have

F3f(b) = Fif(a+b) (1.9)
Adding the two preceding equations, and using F3 = F] + F5, gives

fla)+ f(b) = f(a+0). (1.10)

This equation implies that f(nz) = nf(x) for any = and for any rational number
n, as you can show. Therefore, assuming f(z) is continuous, it must be the linear
function, f(z) = Ax, as we wanted to show. The constant A is irrelevant, because
it cancels in eq. (1.8).? m

Note that dividing eq. (1.8) by eq. (1.9) gives Fif(a) = F>f(b), and hence
Fia = Fyb, which says that the torques cancel around the point where Fj is applied.
You can show that the torques cancel around any arbitrary pivot point.

When adding up all the torques in a given physical setup, it is of course required
that you use the same pivot point when calculating each torque.

In the case where the forces aren’t perpendicular to the stick, the claim applies to
the components of the forces perpendicular to the stick. This makes sense, because
the components parallel to the stick have no effect on the rotation of the stick around
the pivot point. Therefore, referring to the figures shown below, the equality of the
torques can be written as

F,asinf, = Fybsin 6. (1.11)

This equation can be viewed in two ways:

o (Fysinf,)a = (Fpsinfy)b. In other words, we effectively have smaller forces
acting on the given “lever-arms” (see Fig. 1.5).

o Fy(asinf,) = Fyp(bsinby). In other words, we effectively have the given forces
acting on smaller “lever-arms” (see Fig. 1.6).

Claim 1.1 shows that even if you apply just a tiny force, you can balance the
torque due to a very large force, provided that you make your lever-arm sufficiently
long. This fact led a well-known mathematician of long ago to claim that he could
move the earth if given a long enough lever-arm.

One morning while eating my Wheaties,
I felt the earth move ‘neath my feeties.
The cause for alarm

Was a long lever-arm,

At the end of which grinned Archimedes!

"What we’re doing here is simply assuming linearity in F. That is, two forces of F' applied at a
point should be the same as a force of 2F applied at that point. You can’t really argue with that.
2 Another proof of this claim is given in Problem 12.
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One handy fact that comes up often is that the gravitational torque on a stick
of mass M is the same as the gravitational torque due to a point-mass M located at
the center of the stick. The truth of this statement relies on the fact that torque is
a linear function of the distance to the pivot point (see Exercise 7). More generally,
the gravitational torque on an object of mass M may be treated simply as the
gravitational torque due to a force Mg located at the center of mass.

We’ll have much more to say about torque in Chapters 7 and 8, but for now
we’ll simply use the fact that in a statics problem, the torques around any given
point must balance.

Example (Leaning ladder): A ladder leans against a frictionless wall. If the
coefficient of friction with the ground is p, what is the smallest angle the ladder can
make with the ground and not slip?

Solution: Let the ladder have mass m and length ¢. As shown in Fig. 1.7, we have
three unknown forces: the friction force, F', and the normal forces, N; and N»>. And
we fortunately have three equations that will allow us to solve for these three forces:
YFvert =0, XFhoriz = 0, and X7 = 0.

Looking at the vertical forces, we see that Ny = mg. And then looking at the
horizontal forces, we see that Ny = F. So we have quickly reduced the unknowns
from three to one.

We will now use 37 = 0 to find Ny (or F). But first we must pick the “pivot” point
around which we will calculate the torques. Any stationary point will work fine,
but certain choices make the calculations easier than others. The best choice for the
pivot is generally the point at which the most forces act, because then the X7 = 0
equation will have the smallest number of terms in it (because a force provides no
torque around the point where it acts, since the lever-arm is zero).

In this problem, there are two forces acting at the bottom end of the ladder, so this is
the best choice for the pivot.> Balancing the torques due to gravity and Ny, we have
__mg

© 2tanf’

Nylsin® = mg(¢/2) cos b = Ny (1.12)

This is also the value of the friction force F'. The condition F' < uN; = pumyg therefore
becomes

mg 1
< tanf > — . 1.13
2tanf — Hmg — anv = 20 ( )

REMARKS: The factor of 1/2 in this answer comes from the fact that the ladder behaves
like a point mass located halfway up. As an exercise, you can show that the answer for the
analogous problem, but now with a massless ladder and a person standing a fraction f of
the way up, is tan @ > f/u.

Note that the total force exerted on the ladder by the floor points up at an angle given by
tan 3 = N1 /F = (mg)/(mg/2tanf) = 2tanf. We see that this force does not point along
the ladder. There is simply no reason why it should. But there is a nice reason why it
should point upward with twice the slope of the ladder. This is the direction that causes the
lines of the three forces on the ladder to be concurrent, as shown in Fig. 1.8.

3But you should verify that other choices for the pivot, for example, the middle or top of the
ladder, give the same result.

Figure 1.7

Figure 1.8
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This concurrency is a neat little theorem for statics problems involving three forces. The
proof is simple. If the three lines weren’t concurrent, then one force would produce a nonzero
torque around the intersection point of the other two lines of force.* &

Statics problems often involve a number of decisions. If there are various parts
to the system, then you must decide which subsystems you want to balance the
forces and torques on. And furthermore, you must decide which point to use as the
origin for calculating the torques. There are invariably many choices that will give
you the information you need, but some will make your calculations much cleaner
than others (Exercise 11 is a good example of this). The only way to know how to
choose wisely is to start solving problems, so you may as well tackle some. ..

4The one exception to this reasoning is where no two of the lines intersect; that is, where all
three lines are parallel. Equilibrium is certainly possible in such a scenario, as we saw in Claim 1.1.
Of course, you can hang onto the concurrency theorem in this case if you consider the parallel lines
to meet at infinity.
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1.3 Exercises

Section 1.1 Balancing forces

1.

Pulling a block =*

A person pulls on a block with a force F', at an angle 6 with respect to the
horizontal. The coefficient of friction between the block and the ground is pu.
For what 0 is the F required to make the block slip a minimum?

. Bridges *x

(a) Consider the first bridge in Fig. 1.9, made of three equilateral triangles
of beams. Assume that the seven beams are massless and that the con-
nection between any two of them is a hinge. If a car of mass m is located
at the middle of the bridge, find the forces (and specify tension or com-
pression) in the beams. Assume that the supports provide no horizontal
forces on the bridge.

(b) Same question, but now with the second bridge in Fig. 1.9, made of seven
equilateral triangles.

(c) Same question, but now with the general case of 4n — 1 equilateral trian-
gles.

. Keeping the book up *

The task of Problem 4 is to find the minimum force required to keep a book
up. What is the maximum allowable force? Is there a special angle that arises?
Given 1, make a rough plot of the allowed values of F for —7/2 < 6 < /2.

. Rope between inclines *x

A rope rests on two platforms that are both inclined at an angle 6 (which you
are free to pick), as shown in Fig. 1.10. The rope has uniform mass density,
and its coefficient of friction with the platforms is 1. The system has left-right
symmetry. What is the largest possible fraction of the rope that does not
touch the platforms? What angle 6 allows this maximum value?

. Hanging chain *x

A chain of mass M hangs between two walls, with its ends at the same height.
The chain makes an angle of # with each wall, as shown in Fig. 1.11. Find
the tension in the chain at the lowest point. Solve this by:

(a) Considering the forces on half of the chain. (This is the quick way.)

(b) Using the fact that the height of a hanging chain is given by y(z) =
(1/a) cosh(ax), and considering the vertical forces on an infinitesimal
piece at the bottom. (This is the long way.)

Py
oreN

Figure 1.9

Figure 1.10
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Figure 1.11
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Section 1.2: Balancing torques
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Figure 1.15

Direction of the force x*

A stick is connected to other parts of a system by hinges at its ends. Show
that if the stick is massless, then the forces it feels at the hinges are directed
along the stick; but if the stick has mass, then the forces need not point along
the stick.

Gravitational torque

A horizontal stick of mass M and length L is pivoted at one end. Integrate
the gravitational torque along the stick (relative to the pivot), and show that
the result is the same as the torque due to a mass M located at the center of
the stick.

. Tetherball x*

A ball is held up by a string, as shown in Fig. 1.12, with the string tangent
to the ball. If the angle between the string and the wall is 8, what is the
minimum coefficient of static friction between the ball and the wall, if the ball
is not to fall?

. Ladder on a corner x

A ladder of mass M and length L leans against a frictionless wall, with a
quarter of its length hanging over a corner, as shown in Fig. 1.13. Assuming
that there is sufficient friction at the corner to keep the ladder at rest, what
is the total force that the corner exerts on the ladder?

Stick on a corner x

You hold one end of a stick of mass M and length L. A quarter of the way
up the stick, it rests on a frictionless corner of a table, as shown in Fig. 1.14.
The stick makes an angle § with the horizontal. What is the magnitude of the
force your hand must apply, to keep the stick in this position? For what angle
is the vertical component of your force equal to zero?

Two sticks

Two sticks, each of mass m and length ¢, are connected by a hinge at their
top ends. They each make an angle  with the vertical. A massless string
connects the bottom of the left stick to the right stick, perpendicularly, as
shown in Fig. 1.15. The whole setup stands on a frictionless table.

(a) What is the tension in the string?

(b) What force does the left stick exert on the right stick at the hinge? Hint:
No messy calculations required!
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12. Two sticks and a wall *x

Two sticks are connected, with hinges, to each other and to a wall. The bottom
stick is horizontal and has length L, and the sticks make an angle of 8 with
each other, as shown in Fig. 1.16. If both sticks have the same mass per unit
length, p, find the horizontal and vertical components of the force that the

wall exerts on the top hinge, and show that the magnitude goes to infinity for 0
both § — 0 and 6 — /2.5 L
13. Stick on a circle #x Figure 1.16

Using the result from Problem 16 for the setup shown in Fig. 1.17, show that
if the system is to remain at rest, then the coefficient of friction:

(a) between the stick and the circle must satisfy

sin 6
> 1.14
o= (1+ cos®) (1.14)
etween the stick and the ground must satisty Figure 1.17
b) b h ick and th d isfy® g
sin 6 cos 0
> . 1.15
f= (1 4+ cosf)(2 — cos@) (1.15)

5The force must therefore achieve a minimum at some intermediate angle. If you want to go
through the algebra, you can show that this minimum occurs when cos® = v/3 — 1, which gives
0 ~ 43°.

5Tf you want to go through the algebra, you can show that the maximum of the right-hand side
occurs when cos® = /3 — 1, which gives 6 ~ 43°. (Yes, I did just cut and paste this from the
previous footnote. But it’s still correct!) This is the angle for which the stick is most likely to slip
on the ground.
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1.4 Problems

Section 1.1: Balancing forces

1.

Hanging mass

A mass m, held up by two strings, hangs from a ceiling, as shown in Fig. 1.18.
The strings form a right angle. In terms of the angle # shown, what is the
tension in each string?

. Block on a plane

A Dblock sits on a plane that is inclined at an angle . Assume that the friction
force is large enough to keep the block at rest. What are the horizontal
components of the friction and normal forces acting on the block? For what
are these horizontal components maximum?

. Motionless chain *

A frictionless planar curve is in the shape of a function which has its endpoints
at the same height but is otherwise arbitrary. A chain of uniform mass per
unit length rests on the curve from end to end, as shown in Fig. 1.19. Show,
by considering the net force of gravity along the curve, that the chain will not
move.

. Keeping the book up *

A book of mass M is positioned against a vertical wall. The coefficient of
friction between the book and the wall is y. You wish to keep the book from
falling by pushing on it with a force F' applied at an angle 6 with respect to
the horizontal (—7/2 < 6 < 7/2), as shown in Fig. 1.20. For a given 6, what
is the minimum F' required? What is the limiting value of 8, below which
there does not exist an F' that will keep the book up?

. Objects between circles x*x

Each of the following planar objects is placed, as shown in Fig. 1.21, between
two frictionless circles of radius R. The mass density of each object is o, and
the radii to the points of contact make an angle # with the horizontal. For
each case, find the horizontal force that must be applied to the circles to keep
them together. For what 0 is this force maximum or minimum?

(a) An isosceles triangle with common side length L.
(b) A rectangle with height L.
(c¢) A circle.
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9.

10.

11.

. Hanging rope

A rope with length L and mass density p per unit length is suspended vertically
from one end. Find the tension as a function of height along the rope.

Rope on a plane

A rope with length L and mass density p per unit length lies on a plane
inclined at angle 6 (see Fig. 1.22). The top end is nailed to the plane, and the
coefficient of friction between the rope and plane is u. What are the possible
values for the tension at the top of the rope?

. Supporting a disk *x

(a) A disk of mass M and radius R is held up by a massless string, as shown
in Fig. 1.23. The surface of the disk is frictionless. What is the tension
in the string? What is the normal force per unit length the string applies
to the disk?

(b) Let there now be friction between the disk and the string, with coefficient
1. What is the smallest possible tension in the string at its lowest point?

Hanging chain #xxx

(a) A chain with uniform mass density per unit length hangs between two
given points on two walls. Find the shape of the chain. Aside from
an arbitrary additive constant, the function describing the shape should
contain one unknown constant.

(b) The unknown constant in your answer depends on the horizontal distance
d between the walls, the vertical distance A\ between the support points,
and the length ¢ of the chain (see Fig. 1.24). Find an equation involving
these given quantities that determines the unknown constant.

Hanging gently *x

A chain with uniform mass density per unit length hangs between two supports
located at the same height, a distance 2d apart (see Fig. 1.25). What should
the length of the chain be so that the magnitude of the force at the supports is
minimized? You may use the fact that a hanging chain takes the form, y(x) =
(1/a) cosh(ax). You will eventually need to solve an equation numerically.

Mountain Climber sxxx

A mountain climber wishes to climb up a frictionless conical mountain. He
wants to do this by throwing a lasso (a rope with a loop) over the top and
climbing up along the rope. Assume that the climber is of negligible height,
so that the rope lies along the mountain, as shown in Fig. 1.26.

At the bottom of the mountain are two stores. One sells “cheap” lassos (made
of a segment of rope tied to a loop of fized length). The other sells “deluxe”
lassos (made of one piece of rope with a loop of variable length; the loop’s
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length may change without any friction of the rope with itself). See Fig. 1.27.

When viewed from the side, the conical mountain has an angle « at its peak.

For what angles « can the climber climb up along the mountain if he uses:
(a) a “cheap” lasso?

(b) a “deluxe” lasso?

Section 1.2: Balancing torques

12.

13.

Equality of torques x

This problem gives another way of demonstrating Claim 1.1, using an inductive
argument. We’ll get you started, and then you can do the general case.

Consider the situation where forces F' are applied upward at the ends of a
stick of length ¢, and a force 2F is applied downward at the midpoint (see
Fig. 1.28). The stick will not rotate (by symmetry), and it will not translate
(because the net force is zero). If we wish, we may consider the stick to have
a pivot at the left end. If we then erase the force F' on the right end and
replace it with a force 2F at the middle, then the two 2F forces in the middle
will cancel, so the stick will remain at rest.” Therefore, we see that a force F
applied at a distance ¢ from a pivot is equivalent to a force 2F applied at a
distance £/2 from the pivot, in the sense that they both have the same effect
in cancelling out the rotational effect of the downwards 2F force.

Now consider the situation where forces F' are applied upward at the ends,
and forces F' are applied downward at the ¢/3 and 2¢/3 marks (see Fig. 1.29).
The stick will not rotate (by symmetry), and it will not translate (because the
net force is zero). Consider the stick to have a pivot at the left end. From
the above paragraph, the force F' at 2¢/3 is equivalent to a force 2F at ¢/3.
Making this replacement, we now have a total force of 3F at the ¢/3 mark.
Therefore, we see that a force F' applied at a distance / is equivalent to a force
3F applied at a distance £/3.

Your task is to now use induction to show that a force F' applied at a distance
¢ is equivalent to a force nF' applied at a distance £/n, and to then argue why
this demonstrates Claim 1.1.

Find the force =

A stick of mass M is held up by supports at each end, with each support
providing a force of M g/2. Now put another support somewhere in the middle,
say, at a distance a from one support and b from the other; see Fig. 1.30.
What forces do the three supports now provide? Can you solve this?

"There will now be a different force applied at the pivot, namely zero, but the purpose of the
pivot is to simply apply whatever force is necessary to keep the left end motionless.
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14.

15.

16.

17.

18.

19.

Leaning sticks

One stick leans on another as shown in Fig. 1.31. A right angle is formed
where they meet, and the right stick makes an angle 6 with the horizontal.
The left stick extends infinitesimally beyond the end of the right stick. The
coefficient of friction between the two sticks is . The sticks have the same
mass density per unit length and are both hinged at the ground. What is the
minimum angle 6 for which the sticks do not fall?

Supporting a ladder

A ladder of length L and mass M has its bottom end attached to the ground
by a pivot. It makes an angle # with the horizontal, and is held up by a
massless stick of length ¢ which is also attached to the ground by a pivot (see
Fig. 1.32). The ladder and the stick are perpendicular to each other. Find the
force that the stick exerts on the ladder.

Stick on a circle xx

A stick of mass density p per unit length rests on a circle of radius R (see
Fig. 1.33). The stick makes an angle § with the horizontal and is tangent
to the circle at its upper end. Friction exists at all points of contact, and
assume that it is large enough to keep the system at rest. Find the friction
force between the ground and the circle.

Leaning sticks and circles sxx

A large number of sticks (with mass density p per unit length) and circles
(with radius R) lean on each other, as shown in Fig. 1.34. Each stick makes
an angle 6 with the horizontal and is tangent to a circle at its upper end. The
sticks are hinged to the ground, and every other surface is frictionless (unlike
in the previous problem). In the limit of a very large number of sticks and
circles, what is the normal force between a stick and the circle it rests on, very
far to the right? (Assume that the last circle leans against a wall, to keep it
from moving.)

Balancing the stick *x

Given a semi-infinite stick (that is, one that goes off to infinity in one direc-
tion), determine how its density should depend on position so that it has the
following property: If the stick is cut at an arbitrary location, the remaining
semi-infinite piece will balance on a support that is located a distance ¢ from
the end (see Fig. 1.35).

The spool xx

A spool consists of an axle of radius r» and an outside circle of radius R which
rolls on the ground. A thread is wrapped around the axle and is pulled with
tension T, at an angle 6 with the horizontal (see Fig. 1.36).
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Given R and r, what should 6 be so that the spool does not move?
Assume that the friction between the spool and the ground is large enough
so that the spool doesn’t slip.

Given R, r, and the coefficient of friction p between the spool and the
ground, what is the largest value of T for which the spool remains at
rest?

Given R and p, what should r be so that you can make the spool slip
with as small a T as possible? That is, what should r be so that the
upper bound on T' from part (b) is as small as possible? What is the
resulting value of 17
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1.5 Solutions

1. Hanging mass

Balancing the horizontal and vertical force components on the mass gives, respectively
(see Fig. 1.37),

Tyisinf = Tycosb, Figure 1.37

Tycosf +Tysinf = mg. (1.16)
Solving for T3 in the first equation, and substituting into the second equation, gives
Ty = mgcos@, and T5 = mgsin 6. (1.17)

As a double-check, these have the correct limits when § — 0 or 6 — 7/2.

2. Block on a plane

Balancing the forces shown in Fig. 1.38, wee see that F' = mgsinf and N = mgcos#.
The horizontal components of these are F'cosf = mgsinfcosf (to the right), and
Nsinf = mgcosfsin@ (to the left). These are equal, as they must be, because the
net horizontal force on the block is zero. To maximize the value of mgsin 8 cos 6, we Figure 1.38
can either take the derivative, or we can write it as (mg/2)sin 26, from which it is

clear that the maximum occurs at § = /4. The maximum value is mg/2.

3. Motionless chain
Let the curve be described by the function f(x), and let it run from x = a to = b.
Consider a little piece of the chain between = and = + dx (see Fig. 1.39). The length

of this piece is mdm, and so its mass is p\/1 + f2dx, where p is the mass
per unit length. The component of the gravitational acceleration along the curve is

—gsinf = —gf'/+/1+ f'2, with positive corresponding to moving along the curve

from a to b. The total force along the curve is therefore ! 1
X x+dx

b
/ (—gsin@) dm Figure 1.39

_ /ab <_gfl> (pv/1+ 2 a2)

F

Vit e

b
—pg/ fdx

—gp(f(a) — (b))
0. (1.18)

4. Keeping the book up

The normal force from the wall is F cos@, so the friction force holding the book up
is at most pF cos@. The other vertical forces on the book are the gravitational force,
which is —Mg, and the vertical component of F', which is F'sinf. If the book is to
stay up, we must have

puF cosf + Fsing — Mg > 0. (1.19)

Therefore, F must satisfy
Mg

Fr>——. 1.20
~ pcosf +sinf ( )
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There is no possible F' that satisfies this condition if the right-hand side is infinite.
This occurs when

tanf = —p. (1.21)

If 6 is more negative than this, then it is impossible to keep the book up, no matter
how hard you push.

(a)

. Objects between circles

Let N be the normal force between the circles and the triangle. The goal in this
problem is to find the horizontal component of N, that is, N cos 6.

From Fig. 1.40, we see that the upward force on the triangle from the normal
forces is 2N sin . This must equal the weight of the triangle, which is go times
the area. Since the bottom angle of the isosceles triangle is 26, the top side has
length 2L sin 6, and the altitude to this side is L cos . So the area of the triangle
is L2 sinf cosf. The mass is therefore o L2 sin § cos §. Equating the weight with
the upward component of the normal forces gives N = (goL?/2)cosf. The
horizontal component of N is therefore

goL? cos? 6
—

N cosf = (1.22)
This equals zero when 6 = 7/2, and it increases as 6 decreases, even though the
triangle is getting smaller. It has the interesting property of approaching the
finite number goL?/2, as 6 — 0.

In Fig. 1.41, the base of the rectangle has length 2R(1 — cos ). Its mass is
therefore 02RL(1 — cos#). Equating the weight with the upward component of
the normal forces, 2N sinf, gives N = goRL(1 — cosf)/sinf. The horizontal
component of N is therefore

goRL(1 — cosf) cosf

N 0=
o8 sin 6

(1.23)

This equals zero for both § = 7/2 and § = 0 (because 1 — cos @ ~ 62/2 goes to
zero faster than sinf =~ 6, for small 9). Taking the derivative to find where it
reaches a maximum, we obtain (using sin®# = 1 — cos? ),

cos®f —2cosf +1=0. (1.24)

Fortunately, there is an easy root of this cubic equation, namely cos 6 = 1, which
we know is not the maximum. Dividing through by the factor (cosf — 1) gives

cos?0 +cosf — 1 = 0. (1.25)

The roots of this quadratic equation are

(1.26)

We must choose the plus sign, because we need |cosf| < 1. So our answer is
cos @ = 0.618, which interestingly is the golden ratio. The angle 6 is ~ 51.8°.

In Fig. 1.42, the length of the hypotenuse shown is Rsecf, so the radius of
the top circle is R(secf — 1). Its mass is therefore omR%(sec — 1)2. Equating
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the weight with the upward component of the normal forces, 2N sinf, gives
N = gonR%(sec — 1)?/(2sinf). The horizontal component of N is therefore

gomR2 cos ( 1 1) 2

Ncost = 2sinf cosf

(1.27)

This equals zero when § = 0 (using cosf ~ 1 — 62/2 and sinf ~ 6, for small
#). For § — /2, it behaves like 1/ cosf, which goes to infinity. In this limit,
N points almost vertically, but its magnitude is so large that the horizontal
component still approaches infinity.

6. Hanging rope

Let T'(y) be the tension as a function of height. Consider a small piece of the rope
between y and y + dy (0 < y < L). The forces on this piece are T(y + dy) upward,
T(y) downward, and the weight pgdy downward. Since the rope is at rest, we have
T(y+dy) = T(y) + pg dy. Expanding this to first order in dy gives T"(y) = pg. The
tension in the bottom of the rope is zero, so integrating from y = 0 up to a position
Yy gives

T(y) = pgy. (1.28)

As a double-check, at the top end we have T'(L) = pgL, which is the weight of the
entire rope, as it should be.

Alternatively, you can simply write down the answer, T'(y) = pgy, by noting that the
tension at a given point in the rope is what supports the weight of all the rope below
it.

7. Rope on a plane

The component of the gravitational force along the plane is (pL)gsin 6, and the max-
imum value of the friction force is uN = p(pL)gcosf. Therefore, you might think
that the tension at the top of the rope is pLgsinf — upLg cos 6. However, this is not
necessarily the value. The tension at the top depends on how the rope is placed on
the plane.

If, for example, the rope is placed on the plane without being stretched, the friction
force will point upwards, and the tension at the top will indeed equal pLgsinf —
upLgcos@. Or it will equal zero if ppLgcosf > pLgsinf, in which case the friction
force need not achieve its maximum value.

If, on the other hand, the rope is placed on the plane after being stretched (or equiva-
lently, it is dragged up along the plane and then nailed down), then the friction force
will point downwards, and the tension at the top will equal pLgsin 6 + pupLg cos .

Another special case occurs when the rope is placed on a frictionless plane, and then
the coefficient of friction is “turned on” to p. The friction force will still be zero.
Changing the plane from ice to sandpaper (somehow without moving the rope) won’t
suddenly cause there to be a friction force. Therefore, the tension at the top will
equal pLgsin6.

In general, depending on how the rope is placed on the plane, the tension at the top
can take any value from a maximum of pLgsinf 4 pupLgcosf, down to a minimum
of pLgsin® — upLgcos (or zero, whichever is larger). If the rope were replaced by
a stick (which could support a compressive force), then the tension could achieve
negative values down to pLgsin @ — upLgcos 6, if this happens to be negative.
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8. Supporting a disk

(a)

The gravitational force downward on the disk is Mg, and the force upward is
2T. These forces must balance, so
Mg

T=. (1.29)

We can find the normal force per unit length that the string applies to the disk
in two ways.

First method: Let N df be the normal force on an arc of the disk that subtends
an angle df. Such an arc has length Rdf, so N/R is the desired normal force
per unit arclength. The tension in the string is constant because the string
is massless, so N is constant, independent of . The upward component of
the normal force is N df cosf, where 0 is measured from the vertical (that is,
—m/2 < 6 < 7/2 here). Since the total upward force is Mg, we must have

w/2
Ncosfdf = Mg. (1.30)
—m/2

The integral equals 2N, so we find N = Mg/2. The normal force per unit
length, N/R, is then Mg/2R.

Second method: Consider the normal force, N df, on a small arc of the disk
that subtends and angle df. The tension forces on each end of the corresponding
small piece of string almost cancel, but they don’t exactly, because they point
in slightly different directions. Their non-zero sum is what produces the normal
force on the disk. From Fig. 1.43, we see that the two forces have a sum
of 2T sin(df/2), directed inward. Since df is small, we can use sinxz =~ x to
approximate this as T'df. Therefore, N df = T df, and so N = T. The normal
force per unit arclength, N/R, then equals T/R. Using T = Mg/2 from eq.
(1.29), we arrive at N/R = Mg/2R.

Let T'(6) be the tension, as a function of 4, for —7/2 < 6 < x/2. T will depend
on # now, because there is a tangential friction force. Most of the work for this
problem was already done in the example at the end of Section 1.1. We will
simply invoke the second line of eq. (1.7), which says that®

dT < uT db. (1.31)

Separating variables and integrating from the bottom of the rope up to an angle
9 gives In ((T'(9)/T(0)) < pf. Exponentiating this gives

T(0) < T(0)eH?. (1.32)

Letting § = 7/2, and using T(7/2) = Mg/2, we have Mg/2 < T(0)e"™/2. We
therefore see that the tension at the bottom point must satisfy

7(0) > @eﬂ”/? (1.33)

8This holds for # > 0. There would be a minus sign on the right-hand side if # < 0. But since
the tension is symmetric around 6§ = 0 in the case we’re concerned with, we’ll just deal with 8 > 0.
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This minimum value of T(0) goes to Mg/2 as p — 0, as it should. And it goes
to zero as p — 00, as it should (imagine a very sticky surface, so that the friction
force from the rope near § = 7/2 accounts for essentially all the weight). But
interestingly, it doesn’t exactly equal zero, no matter now large y is.

T(x+dx)
9. Hanging chain A
(a) Let the chain be described by the function y(x), and let the tension be described
by the function T'(x). Consider a small piece of the chain, with endpoints at 0,
x and x + dx, as shown in Fig. 1.44. Let the tension at x pull downward at I
an angle #; with respect to the horizontal, and let the tension at z + dz pull P .
upward at an angle 65 with respect to the horizontal. Balancing the horizontal T(x) X X+dx

and vertical forces on the small piece of chain gives
Figure 1.44

T(z+dx)cosly = T(x)cosb,

gpdx
cosfy’

T(x+dx)sinfy = T(x)sinb + (1.34)

where p is the mass per unit length. The second term on the right-hand side is
the weight of the small piece, because dx/ cosf; (or dx/ cos by, which is essen-
tially the same) is its length. We must now somehow solve these two differential
equations for the two unknown functions, y(z) and T'(x). There are various
ways to do this. Here is one method, broken down into three steps.

FIRST STEP: Squaring and adding eqs. (1.34) gives
(T(z+ da:))2 = (T(x))2 + 2T (z)gptan 0 dz + O(dz?). (1.35)

Writing T'(z + dx) = T'(z) + T'(z) dz, and using tan6; = dy/dx = y', we can
simplify eq. (1.35) to (neglecting second-order terms in dx)

T = gpy'. (1.36)

Therefore,
T = gpy + c1, (1.37)

where c; is a constant of integration.

SECOND STEP: Let’s see what we can extract from the first equation in egs.
(1.34). Using

1 1
cost) = ——, and cosfy = ,  (1.38)

1+ (v (z))? V14 (Y (@ + de))?

and expanding things to first order in dx, the first of eqs. (1.34) becomes

T+Tde T
\/1+(y’+y”dx)2 \/1+y/2'

All of the functions here are evaluated at x, which we won’t bother writing.
Expanding the first square root gives (to first order in dx)

(1.39)

T+ T'dx < y’y”dx) B T (1.40)
V1+y? T+y? ) J1+y? '



1
-Xg

x=0 d-x,
Figure 1.45

| > —]|

1-22

CHAPTER 1. STATICS

To first order in dx this yields

T/ /01

=YY (1.41)

T 14972
Integrating both sides gives

1
InT 4 ¢y = 51n(1+y’2), (1.42)

where ¢s is a constant of integration. Exponentiating then gives

AT? =1+y2, (1.43)

where c3 = e“2.

THIRD STEP: We will now combine eq. (1.43) with eq. (1.37) to solve for y(x).
Eliminating T' gives c¢Z(gpy+c1)? = 1442, We can rewrite this is the somewhat
nicer form,

L+y? =a*(y + h)?, (1.44)

where a = ¢3gp, and h = ¢1/gp. At this point we can cleverly guess (motivated
by the fact that 1 + sinh? z = cosh? z) that the solution for y is given by

1
y(x) + h = — cosha(z + a). (1.45)
@
Or, we can separate variables to obtain
d
do = Y : (1.46)
a?(y+h)2-1

and then use the fact that the integral of 1/v/2%2 — 1 is cosh™ z, to obtain the
same result.

The shape of the chain is therefore a hyperbolic cosine function. The constant
h isn’t too important, because it simply depends on where we pick the y = 0
height. Furthermore, we can eliminate the need for the constant a if we pick
x = 0 to be where the lowest point of the chain is (or where it would be, in the
case where the slope is always nonzero). In this case, using eq. (1.45), we see
that ¢'(0) = 0 implies a = 0, as desired. We then have (ignoring the constant
h) the nice simple result,

y(x) = écosh(ax). (1.47)

The constant o can be determined from the locations of the endpoints and the
length of the chain. As stated in the problem, the position of the chain may be
described by giving (1) the horizontal distance d between the two endpoints, (2)
the vertical distance A between the two endpoints, and (3) the length ¢ of the
chain, as shown in Fig. 1.45. Note that it is not obvious what the horizontal
distances between the ends and the minimum point (which we have chosen as the
x = 0 point) are. If A = 0, then these distances are simply d/2. But otherwise,
they are not so clear.

If we let the left endpoint be located at x = —xg, then the right endpoint is
located at x = d—xg. We now have two unknowns, zg and . Our two conditions
are?

y(d —xo) — y(—z0) = A, (1.48)

9We will take the right end to be higher than the left end, without loss of generality.
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along with the condition that the length equals ¢, which takes the form (using
eq. (1.47))

d*ZL’()
{ = Wdz
—z0
d*CEo

1
o sinh(am)‘ , (1.49)

—x0

where we have used (d/dz)cosh z = sinh z, and 1 + sinh? z = cosh? z. Writing
out eqgs. (1.48) and (1.49) explicitly, we have

cosh (a(d — xg)) — cosh(—azg) = a),
sinh (a(d — x9)) — sinh(—azg) = ol (1.50)

If we take the difference of the squares of these two equations, and use the
hyperbolic identities cosh? z — sinh?2 = 1 and coshz coshy — sinhzsinhy =
cosh(z — ), we obtain

2 — 2cosh(ad) = a?(\? — £?). (1.51)

This is the desired equation that determines a. Given d, A, and ¢, we can
numerically solve for a. Using a “half-angle” formula, you can show that eq.
(1.51) may also be written as

2sinh(ad/2) = ay/ €2 — A2 (1.52)

REMARK: Let’s check a couple limits. If A = 0 and ¢ = d (that is, the chain forms
a horizontal straight line), then eq. (1.52) becomes 2sinh(ad/2) = ad. The solution
to this is a = 0, which does indeed correspond to a horizontal straight line, because
for small o, eq. (1.47) behaves like az®/2 (up to an additive constant), which varies
slowly with z for small a. Another limit is where £ is much larger than both d and A.
In this case, eq. (1.52) becomes 2 sinh(ad/2) =~ af. The solution to this is a very large
a, which corresponds to a “droopy” chain, because eq. (1.47) varies rapidly with z for
large a. o

10. Hanging gently
We must first find the mass of the chain by calculating its length. Then we must
determine the slope of the chain at the supports, so we can find the components of
the force there.

Using the given information, y(z) = (1/a)cosh(ax), the slope of the chain as a
function of z is 41
y = o <a cosh(aa:)) = sinh(ax). (1.53)

The total length is therefore (using 1 + sinh? z = cosh? 2)

d

{ = / V14 y?2dx
—d
d

= [d cosh(ax)

= % sinh(ad). (1.54)
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The weight of the rope is W = plg, where p is the mass per unit length. Each
support applies a vertical force of W/2. This must equal F'sin6, where F is the
total force at each support, and 6 is the angle it makes with the horizontal. Since
tan @ = ¢/ (d) = sinh(ad), we see from Fig. 1.46 that sin § = tanh(ad). Therefore,

1 (W
Fo= sin9<2>

iy ()

S cosh(ad).
o

(1.55)

Taking the derivative of this (as a function of ), and setting the result equal to zero
to find the minimum, gives

1
tanh(ad) = —. 1.56
anhad) = — (1.56)
This must be solved numerically. The result is
ad &~ 1.1997 = 1. (1.57)

We therefore have o = 1/d, and so the shape of the chain that requires the minimum
Fis

d nx
y(z) =~ ;cosh (7) . (1.58)
From eqgs. (1.54) and (1.57), the length of the chain is
2d
(1.59)

¢ = —sinh(n) ~ (2.52)d.
n

To get an idea of what the chain looks like, we can calculate the ratio of the height,
h, to the width, 2d.

b y(d) —y(0)
2d 2d
~ cosh(n) —1
=
~ 0.338. (1.60)

We can also calculate the angle of the rope at the supports, using tan 6 = sinh(ad).
This gives tan # = sinh 7, and so 6 ~ 56.5°.

REMARK: We can also ask what shape the chain should take in order to minimize the
horizontal or vertical component of F.

The vertical component, Fy, is simply half the weight, so we want the shortest possible chain,
namely a horizontal one (which requires an infinite F'.) This corresponds to o = 0.

The horizontal component, Fy, equals F cos §. From Fig. 1.46, we see that cos @ = 1/ cosh(ad).
Therefore, eq. (1.55) gives F, = pg/a. This goes to zero as o — 0o, which corresponds to a
chain of infinite length, that is, a very “droopy” chain. &
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11. Mountain Climber

(a)

We will take advantage of the fact that a cone is “flat”, in the sense that we can
make one out of a piece of paper, without crumpling the paper.
Cut the cone along a straight line emanating from the peak and passing through
the knot of the lasso, and roll the cone flat onto a plane. Call the resulting figure,
which is a sector of a circle, S (see Fig. 1.47). If the cone is very sharp, then S
will look like a thin “pie piece”. If the cone is very wide, with a shallow slope,
then S will look like a pie with a piece taken out of it.
Points on the straight-line boundaries of the sector S are identified with each
other. Let P be the location of the lasso’s knot. Then P appears on each
straight-line boundary, at equal distances from the tip of S. Let 8 be the angle
of the sector S.
The key to this problem is to realize that the path of the lasso’s loop must be
a straight line on S, as shown by the dotted line in Fig. 1.47. (The rope will
take the shortest distance between two points because there is no friction. And
rolling the cone onto a plane does not change distances.) A straight line between
the two identified points P is possible if and only if the sector S is smaller than
a semicircle. The condition for a climbable mountain is therefore 5 < 180°.
What is this condition, in terms of the angle of the peak, a? Let C' denote a
cross-sectional circle of the mountain, a distance d (measured along the cone)
from the top.'® A semicircular S implies that the circumference of C equals 7d.
This then implies that the radius of C equals d/2. Therefore,

sin(a/2) < %2 = % = a < 60°. (1.61)
This is the condition under which the mountain is climbable. In short, having
a < 60° guarantees that there is a loop around the cone with shorter length
than the distance straight to the peak and back.

REMARK: When viewed from the side, the rope will appear perpendicular to the side
of the mountain at the point opposite the lasso’s knot. A common mistake is to assume
that this implies that the climbable condition is o < 90°. This is not the case, because
the loop does not lie in a plane. Lying in a plane, after all, would imply an elliptical
loop. But the loop must certainly have a kink in it where the knot is, because there
must exist a vertical component to the tension there, to hold the climber up. If we
had posed the problem with a planar, triangular mountain, then the condition would
have been a < 90°.

Use the same strategy as in part (a). Roll the cone onto a plane. If the mountain
is very steep, then the climber’s position can fall by means of the loop growing
larger. If the mountain has a shallow slope, the climber’s position can fall by
means of the loop growing smaller. The only situation in which the climber will
not fall is the one where the change in position of the knot along the mountain
is exactly compensated by the change in length of the loop.

In terms of the sector S in a plane, this condition requires that if we move P a
distance £ up (or down) along the mountain, the distance between the identified
points P must decrease (or increase) by £. In Fig. 1.47, we must therefore have
an equilateral triangle, so § = 60°.

10WWe are considering such a circle for geometrical convenience. It is not the path of the lasso; see
the remark below.

~

Figure 1.47
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What peak-angle « does this correspond to? As in part (a), let C' be a cross-
sectional circle of the mountain, a distance d (measured along the cone) from
the top. Then 8 = 60° implies that the circumference of C' equals (7/3)d. This
then implies that the radius of C equals d/6. Therefore,

sin(a/2) = dT/ZG = é = a = 19°. (1.62)
This is the condition under which the mountain is climbable. We see that there
is exactly one angle for which the climber can climb up along the mountain. The
cheap lasso is therefore much more useful than the fancy deluxe lasso (assuming,
of course, that you want to use it for climbing mountains, and not, say, for
rounding up cattle).

REMARK: Another way to see the 8 = 60° result is to note that the three directions
of rope emanating from the knot must all have the same tension, because the deluxe
lasso is one continuous piece of rope. They must therefore have 120° angles between
themselves (to provide zero net force on the massless knot). This implies that 8 = 60°
in Fig. 1.47.

FURTHER REMARKS: For each type of lasso, we can also ask the question: For what
angles can the mountain be climbed if the lasso is looped N times around the top of
the mountain? The solution here is similar to that above.

For the “cheap” lasso of part (a), roll the cone N times onto a plane, as shown in
Fig. 1.48 for N = 4. The resulting figure, Sn, is a sector of a circle divided into N
equal sectors, each representing a copy of the cone. As above, Sy must be smaller
than a semicircle. The circumference of the circle C' (defined above) must therefore be
less than wd/N. Hence, the radius of C must be less than d/2N. Thus,

d/2N 1

SIH(OC/Q) < d = ﬁ

1
— 2"%—&. 1.63
a<2sin” (5o (1.63)
For the “deluxe” lasso of part (b), again roll the cone N times onto a plane. From the
reasoning in part (b), we must have N3 = 60°. The circumference of C' must therefore
be 7wd/3N, and so its radius must be d/6N. Therefore,
d/6N 1

sin(a/2) = 7 N = a=2sin"" (6%7\7) (1.64)

12. Equality of torques

The proof by induction is as follows. Assume that we have shown that a force F
applied at a distance d is equivalent to a force kF applied at a distance d/k, for all
integers k£ up to n — 1. We now want to show that the statement holds for k = n.

Consider the situation in Fig. 1.49. Forces F' are applied at the ends of a stick, and
forces 2F/(n — 1) are applied at the j¢/n marks (for 1 < j < n —1). The stick will
not rotate (by symmetry), and it will not translate (because the net force is zero).
Consider the stick to have a pivot at the left end. Replacing the interior forces by
their equivalent ones at the £/n mark (see Fig. 1.49) gives a total force there equal to

iﬁ;0+2+3+”4%n_n>:;”;(Mi;U>:nF (1.65)

We therefore see that a force F' applied at a distance £ is equivalent to a force nF
applied at a distance ¢/n, as was to be shown.

We can now show that Claim 1.1 holds, for arbitrary distances a and b (see Fig. 1.50).
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Consider the stick to be pivoted at its left end, and let € be a tiny distance (small
compared to a). Then a force F3 at a distance a is equivalent to a force F3(a/e) at a
distance e.!! But a force F(a/e) at a distance € is equivalent to a force F3(a/¢)(e/(a+
b)) = Fsa/(a + b) at a distance (a + b). This equivalent force at the distance (a + b)

K F F
must cancel the force F5 there, because the stick is motionless. Therefore, we have T 1a T b 2T
Fsa/(a+b) = Fo, which proves the claim. )

13. Find the force lMg
In Fig. 1.51, let the supports at the ends exert forces Fy and Fb, and let the support Figure 1.51

in the interior exert a force F. Then

Balancing torques around the left and right ends gives, respectively,

b
Fa+ F(a+b) = Mga; ;

b
Fo+ Fi(a+b) = Mga; : (1.67)

where we have used the fact that the stick can be treated as a point mass at its
center. Note that the equation for balancing the torques around the center of mass is
redundant; it is obtained by taking the difference of the two previous equations and
then dividing by 2. And balancing torques around the middle pivot also takes the
form of a linear combination of these equations, as you can show.

It appears as though we have three equations and three unknowns, but we really have
only two equations, because the sum of egs. (1.67) gives eq. (1.66). Therefore, since
we have two equations and three unknowns, the system is underdetermined. Solving
egs. (1.67) for Fy and Fy in terms of F, we see that any forces of the form

(1.68)

M Fb M Fa
(FlaFaFZ)(g 9 >

2 a4+b’ " 2  a+b

are possible. In retrospect, it makes sense that the forces are not determined. By
changing the height of the new support an infinitesimal distance, we can make F' be
anything from 0 up to Mg(a+0b)/2b, which is when the stick comes off the left support N A4FE
(assuming b > a). A /

14. Leaning sticks /O\
Let M; be the mass of the left stick, and let M, be the mass of the right stick. Then 0

M;/M, = tan@ (see Fig. 1.52). Let N and F; be the normal and friction forces
between the sticks. Fy has a maximum value of ;/N. Balancing the torques on the Figure 1.52
left stick (around the contact point with the ground) gives

Mg

N = 5 sin 6. (1.69)
Balancing the torques on the right stick (around the contact point with the ground)
gives
M,
Fr = 290089. (1.70)

" Technically, we can use the reasoning in the previous paragraph to say this only if a/e is an
integer, but since a/e is very large, we can simply pick the closest integer to it, and there will be
negligible error.
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The condition Fy < uN becomes
M, cos < puM;sin 6. (1.71)
Using M; /M, = tan 6, this becomes

1
tan?0 > — . (1.72)
7

This is the condition for the sticks not to fall. This answer checks in the two extremes:
In the limit g — 0, we see that § must be very close to 7/2, which makes sense. And
in the limit g — oo (that is, very sticky sticks), we see that 6 can be very small, which
also makes sense.

Supporting a ladder

Let F be the desired force. Note that F' must be directed along the stick, because
otherwise there would be a net torque on the (massless) stick relative to the pivot at
its right end. This would contradict the fact that it is at rest.

Look at torques on the ladder around the pivot at its bottom. The gravitational force
provides a torque of Mg(L/2)cosf, tending to turn it clockwise; and the force F
from the stick provides a torque of F'(¢/tan#), tending to turn it counterclockwise.
Equating these two torques gives

_ MgL

57 sin 6. (1.73)

REMARKS: F goes to zero as  — 0, as it should.'?> And F increases to MgL/2¢, as 6 — 7/2,
which isn’t so obvious (the required torque from the stick is very small, but its lever arm is
also very small). However, in the special case where the ladder is exactly vertical, no force
is required. You can see that our calculations above are not valid in this case, because we
divided by cos 6, which is zero when § = 7/2.

The normal force at the pivot of the stick (which equals the vertical component of F', because
the stick is massless) is equal to M gL sin 6 cos@/2¢. This has a maximum value of MgL/4¢
at@=m/4. &

Stick on a circle

Let N be the normal force between the stick and the circle, and let Fy be the friction
force between the ground and the circle (see Fig. 1.53). Then we immediately see
that the friction force between the stick and the circle is also F', because the torques
from the two friction forces on the circle must cancel.

Looking at torques on the stick around the point of contact with the ground, we
have Mgcos6(L/2) = NL, where M is the mass of the stick and L is its length.
Therefore, N = (Mg/2) cos§. Balancing the horizontal forces on the circle then gives
Nsinf = Fy + Fycosf. So we have

Nsing  Mgsin6 cos 6

F = =
T~ 1% cost 2(1 4 cosf)

(1.74)

But M = pL, and from Fig. 1.53 we have L = R/tan(6/2). Using the identity
tan(6/2) = sinf/(1 + cos 8), we finally obtain

1
Fr = §pgRCOSQ. (1.75)

12For  — 0, we would need to lengthen the ladder with a massless extension, because the stick
would have to be very far to the right to remain perpendicular to the ladder.
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17.

18.

In the limit § — 7/2, Fy approaches zero, which makes sense. In the limit § — 0
(which corresponds to a very long stick), the friction force approaches pgR/2, which
isn’t so obvious.

Leaning sticks and circles

Let S; be the ith stick, and let C; be the ith circle. The normal forces C; feels from S;
and S; 11 are equal in magnitude, because these two forces provide the only horizontal
forces on the frictionless circle, so they must cancel. Let IV; be this normal force.
Look at the torques on S;;1, relative to the hinge on the ground. The torques come
from N;, N;;11, and the weight of S;1;. From Fig. 1.54, we see that N; acts at
a point which is a distance Rtan(f/2) away from the hinge. Since the stick has a
length R/tan(6/2), this point is a fraction tan?(6/2) up along the stick. Therefore,
balancing the torques on S;41 gives

1 0
§Mgcost9+Ni tan? 5 = Nit1. (1.76)

Ny is by definition 0, so we have Ny = (Mg/2)cosf (as in the previous problem). If
we successively use eq. (1.76), we see that Ny equals (Mg/2)cosf(1 + tan?(6/2)),
and N3 equals (Mg/2) cos6(1 + tan?(6/2) + tan*(6/2)), and so on. In general,

M 0 0 0 0
N, = ZICBT (1 4 tan® = +tant 2 + -+ tan2(D 2 ) | (1.77)
2 2 2 2
In the limit ¢ — oo, we may write this infinite geometric sum in closed form as
Mgcost 1
lim N; = Ny, = . 1.78
oo 2 (1 - tan2(0/2)> (1.78)

Note that this is the solution to eq. (1.76), with N; = N;4;. So if a limit exists, it
must equal this. Using M = pL = pR/tan(0/2), we can rewrite Ny, as

_ pRgcost 1
= S tan(0/2) (1 tan2(9/2)> ‘ (1.79)

The identity cos @ = cos?(8/2) — sin?(/2) may then be used to write this as

_ pRgcos®(60/2)
N = W (1.80)

REMARKS: N goes to infinity for § — 0, which makes sense, because the sticks are very
long. All of the N; are essentially equal to half the weight of a stick (in order to cancel the
torque from the weight relative to the pivot). For 8 — 7/2, we see from eq. (1.80) that N
approaches pRg/4, which is not at all obvious; the N; start off at Ny = (Mg/2)cos@ =~ 0,
but gradually increase to pRg/4, which is a quarter of the weight of a stick.

Note that the horizontal force that must be applied to the last circle far to the right is
Noosin@ = pRgcos®(0/2). This ranges from pRg for § — 0, to pRg/4 for 6 — 7/2. &

Balancing the stick

Let the stick go off to infinity in the positive = direction, and let it be cut at x = xg.
Then the pivot point is located at x = x¢+ ¢ (see Fig. 1.55). Let the density be p(z).
The condition that the total gravitational torque relative to xo + ¢ equal zero is

T = /OO p(x) (:E — (zo + E))g dx = 0. (1.81)

0

R

—

1
X0

\
Rtan6/2
Figure 1.54

A

1
X0+1

Figure 1.55
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We want this to equal zero for all xg, so the derivative of 7 with respect to xy must
be zero. 7 depends on zy through both the limits of integration and the integrand.
In taking the derivative, the former dependence requires finding the value of the
integrand at the limits, while the latter dependence requires taking the derivative of
the integrand with respect to =, and then integrating. We obtain, using the fact that
p(o0) =0,

0= j—;—o = lp(xo) — /I:C p(x) d. (1.82)

Taking the derivative of this equation with respect to x( gives
tp' (o) = —p(o). (1.83)
The solution to this is (rewriting the arbitrary zg as x)
p(x) = Ae™/t, (1.84)

We therefore see that the density decreases exponentially with . The smaller ¢ is,
the quicker it falls off. Note that the density at the pivot is 1/e times the density at
the left end. And you can show that 1 —1/e ~ 63 % of the mass is contained between
the left end and the pivot.

19. The spool

(a) Let Fy be the friction force the ground provides. Balancing the horizontal forces
on the spool gives (see Fig. 1.56)

T cosf = Fy. (1.85)

Balancing torques around the center of the spool gives

Tr=F¢R. (1.86)
These two equations imply
r
0=—. 1.87
cos 7 (1.87)

The niceness of this result suggests that there is a quicker way to obtain it. And
indeed, we see from Fig. 1.57 that cosf = r/R is the angle that causes the line
of the tension to pass through the contact point on the ground. Since gravity
and friction provide no torque around this point, the total torque around it is
therefore zero, and the spool remains at rest.

(b) The normal force from the ground is
N = Mg—Tsin8. (1.88)

Using eq. (1.85), the statement Fy < uN becomes T'cosf < pu(Mg — T'sinf).

Hence,
M
< L , (1.89)
cos + psin @
where 6 is given in eq. (1.87).

(¢) The maximum value of T is given in (1.89). This depends on 6, which in turn
depends on r. We want to find the r which minimizes this maximum 7.
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Taking the derivative with respect to 6, we find that the 8 that maximizes the
denominator in eq. (1.89) is given by tanfy = u. You can then show that the
value of T for this 6 is

pMg

V14 p?

To find the corresponding r, we can use eq. (1.87) to write tan = v/ R2 — 2 /r.
The relation tan 6y = p then yields

Ty = = Mgsin 6. (1.90)

R
V1tu?

This is the r that yields the smallest upper bound on 7. In the limit p = 0, we
have 6y = 0, Ty = 0, and 7o = R. And in the limit u = oo, we have 0y = 7/2,
To = Mg, and r9 = 0.

ro = (1.91)
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Chapter 2

Using F' = ma

Copyright 2004 by David Morin, morin@physics.harvard.edu

The general goal of classical mechanics is to determine what happens to a given set
of objects in a given physical situation. In order to figure this out, we need to know
what makes the objects move the way they do. There are two main ways of going
about this task. The first way, which you are undoubtedly familiar with, involves
Newton’s laws. This will be the subject of the present chapter. The second way,
which is the more advanced one, is the Lagrangian method. This will be the subject
of Chapter 5.

It should be noted that each of these methods is perfectly sufficient for solving
any problem. They both produce the same information in the end, but they are
based on vastly different principles. We’ll talk more about this is Chapter 5.

2.1 Newton’s Laws

Newton published his three laws in 1687 in his Principia Mathematica. The laws are
fairly intuitive, although it seems a bit strange to attach the adjective “intuitive”
to a set of statements that took millennia for humans to write down. The laws may
be stated as follows.

e First Law: A body moves with constant velocity (which may be zero) unless
acted on by a force.

e Second Law: The time rate of change of the momentum of a body equals
the force acting on the body.

e Third Law: The forces two bodies apply to each other are equal in magnitude
and opposite in direction.

We could discuss for days on end the degree to which these statements are
physical laws, and the degree to which they are definitions. Sir Arthur Eddington
once made the unflattering comment that the first law essentially says that “every
particle continues in its state of rest or uniform motion in a straight line except
insofar that it doesn’t.” Although Newton’s laws might seem somewhat vacuous at
first glance, there is actually a bit more content to them than Eddington’s comment

II-1
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implies. Let’s look at each in turn. The discussion will be brief, because we have to
save time for other things in this book that we really do want to discuss for days on
end.

First Law

One thing this law does is give a definition of zero force.

Another thing it does is give a definition of an inertial frame, which is defined
simply as a reference frame in which the first law holds. Since the term “velocity”
is used, we have to state what frame of reference we are measuring the velocity with
respect to. The first law does not hold in an arbitrary frame. For example, it fails in
the frame of a spinning turntable.! Intuitively, an inertial frame is one that moves
at constant speed. But this is ambiguous, because we have to say what the frame is
moving at constant speed with respect to. At any rate, an inertial frame is simply
defined as the special type of frame where the first law holds.

So, what we now have are two intertwined definitions of “force” and “inertial
frame.” Not much physical content here. But, however sparse in content the law is,
it still holds for all particles. So if we have a frame in which one free particle moves
with constant velocity, than all free particles move with constant velocity. This is a
statement with content.

Second Law

One thing this law does is give a definition of nonzero force. Momentum is defined?
to be mv. If m is constant,? then the second law says that

F = ma, (2.1)

where a = dv/dt. This law holds only in an inertial frame, which was defined by
the first law.

For things moving free or at rest,
Observe what the first law does best.

It defines a key frame,

“Inertial” by name,

Where the second law then is expressed.

So far, the second law merely gives a definition of F. But the meaningful state-
ment arises when we invoke the fact that the law holds for all particles. If the same
force (for example, the same spring stretched by the same amount) acts on two

Tt is, however, possible to modify things so that Newton’s laws hold in such a frame, but we’ll
save this discussion for Chapter 9.

2We're doing everything nonrelativistically here, of course. Chapter 11 gives the relativistic
modification of the mv expression.

3We'll assume in this chapter that m is constant. But don’t worry, we’ll get plenty of practice
with changing mass (in rockets and such) in Chapter 4.
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particles, with masses mj and mg, then eq. (2.1) says that their accelerations must
be related by
o_m2 (2.2)
az My
This relation holds regardless of what the common force is. Therefore, once you’ve
used one force to find the relative masses of two objects, then you know what the
ratio of their a’s will be when they are subjected to any other force.

Of course, we haven’t really defined mass yet. But eq. (2.2) gives an experimen-
tal method for determining an object’s mass in terms of a standard (say, 1kg) mass.
All you have to do is compare its acceleration with that of the standard mass, when
acted on by the same force.

There is also another piece of substance in this law, in that it says F = ma,
instead of, say, F = mv, or F = md>x/dt3. This issue is related to the first law.
F = myv is not viable, because the first law says that it is possible to have a velocity
without a force. And F = md®x/dt> would make the first law incorrect, because
it would then be true that a particle moves with constant acceleration (instead of
constant velocity) unless acted on by a force.

Note that F = ma is a vector equation, so it is really three equations in one. In
Cartesian coordinates, it says that I, = ma,, I, = ma,, and F, = ma..

Third Law

This law essentially postulates that momentum is conserved (that is, not dependent
on time). To see this, note that

d7p B d(m1V1 + mQVQ)
dt dt
= mia; + moay
= Fi+ Fy, (23)

where F1 and F» are the forces acting on m; and mo, respectively. This demonstrates
that momentum conservation (that is, dp/dt = 0) is equivalent to Newton’s third
law (that iS, F1 = —Fg.)

There isn’t much left to be defined via this law, so the third law is one of pure
content. It says that if you have two isolated particles interacting through some
force, then their accelerations are opposite in direction and inversely proportional
to their masses.

This third law cannot be a definition, because it’s actually not always valid. It
only holds for forces of the “pushing” and “pulling” type. It fails for the magnetic
force, for example. In that case, momentum is carried off in the electromagnetic
field (so the total momentum of the particles and the field is conserved). But we
won’t deal with fields here. Just particles. So the third law will always hold in any
situation we’re concerned with.
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2.2 Free-body diagrams

The law that allows us to be quantitative is the second law. Given a force, we
can apply F = ma to find the acceleration. And knowing the acceleration, we can
determine the behavior of a given object (that is, where it is and what its velocity is),
provided that we are given the initial position and velocity. This process sometimes
takes a bit of work, but there are two basic types of situations that commonly arise.

e In many problems, all you are given is a physical situation (for example, a
block resting on a plane, strings connecting masses, etc.), and it is up to you
to find all the forces acting on all the objects. These forces generally point in
various directions, so it is easy to lose track of them. It therefore proves useful
to isolate the objects and draw all the forces acting on each of them. This is
the subject of the present section.

e In other problems, you are given the force explicitly as a function of time,
position, or velocity, and the task immediately becomes the mathematical one
of solving the F' = ma = mi equation (we’ll just deal with one dimension
here). These differential equations can be difficult (or impossible) to solve
exactly. They are the subject of Section 2.3.

Let’s now consider the first of these two types of scenarios, where we are pre-
sented with a physical situation, and where we must determine all the forces in-
volved. The term free-body diagram is used to denote a diagram with all the forces
drawn on a given object. After drawing such a diagram for each object in the setup,
we simply write down all the F' = ma equations they imply. The result will be a
system of linear equations in various unknown forces and accelerations, for which
we must then solve. This procedure is best understood through an example.

Example (A plane and masses): Mass M; is held on a plane with inclination
angle #, and mass M> hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 2.1). The coefficient of
kinetic friction between M; and the plane is pu. M; is released. Assuming that Ms is
sufficiently large so that M; gets pulled up the plane, what is the acceleration of the
masses? What is the tension in the string?

Solution: The first thing to do is draw all the forces on the two masses. These are
shown in Fig. 2.2. The forces on M, are gravity and the tension. The forces on M,
are gravity, friction, the tension, and the normal force. Note that the friction force
points down the plane, because we are assuming that M; moves up the plane.

Having drawn all the forces, we now simply have to write down all the F' = ma equa-
tions. When dealing with M;, we could break things up into horizontal and vertical
components, but it is much cleaner to use the components along and perpendicular
to the plane.* These two components of F = ma, along with the vertical F = ma

“When dealing with inclined planes, one of these two coordinate systems will generally work
much better than the other. Sometimes it’s not clear which one, but if things get messy with one
system, you can always try the other one.
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equation for Mo, give

T—f—Mygsinf = Ma,
N — Mjgcosf = 0,
Mgg -T = Mga, (24)

where we have used the fact that the two masses accelerate at the same rate (and
we have defined the positive direction for My to be downward). We have also used
the fact that tension is the same at both ends of the string, because otherwise there
would be a net force on some part of the string which would then have to undergo
infinite acceleration, because it is massless.

There are four unknowns in eqs. (2.4) (namely T, a, N, and f), but only three
equations. Fortunately, we have a fourth equation: f = puN. Using this in the
second equation above gives f = uMigcosf. The first equation then becomes T —
uMigcos@ — Mygsin® = Mya. Adding this to the third equation leave us with only
a, so we find

0 g(My — uMy cos @ — M sin ) . T— My Msg(1 4+ pcos + sin 0)
- My + My ’ B My + M, '

(2.5)
Note that in order for M; to move upward (that is, @ > 0), we must have My >
M (pcos@ +sin6) . This is clear from looking at the forces along the plane.

REMARK: If we had instead assumed that M; was sufficiently large so that it slides down
the plane, then the friction force would point up the plane, and we would have found, as you
can check,
o g(Mz + pM;i cos @ — My sin@)’ and T— My Msg
My + Mo M + Mo

In order for M; to move downward (that is, a < 0), we must have My < M;(siné — p1cos ).

(1 —pcosf +sinf). (2.6)

Therefore, the range of M for which the system doesn’t move is M1 (sin @ — pcos ) < Mz <
M;i(sin@ + pcosf). &

In problems like the one above, it is clear what things you should pick as the
objects on which you’re going to draw forces. But in other problems, where there are
various different subsystems you can choose, you must be careful to include all the
relevant forces on a given subsystem. Which subsystems you want to pick depends
on what quantities you're trying to find. Consider the following example.

Example (Platform and pulley): A person stands on a platform-and-pulley
system, as shown in Fig. 2.3. The masses of the platform, person, and pulley® are
M, m, and p, respectively.® The rope is massless. Let the person pull up on the rope
so that she has acceleration ¢ upwards.”

5 Assume that the pulley’s mass is concentrated at its center, so that we don’t have to worry
about any rotational dynamics (the subject of Chapter 7).

5My apologies for using i as a mass here, since it usually denotes a coefficient of friction. Alas,
there are only so many symbols for “m”.

" Assume that the platform is somehow constrained to stay level, perhaps by having it run along
some rails.

Figure 2.3
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(a) What is the tension in the rope?

(b) What is the normal force between the person and the platform? What is the
tension in the rod connecting the pulley to the platform?

Solution:

(a) To find the tension in the rope, we simply want to let our subsystem be the
whole system (except the ceiling). If we imagine putting the system in a black
box (to emphasize the fact that we don’t care about any internal forces within
the system), then the forces we see “protruding” from the box are the three
weights (Mg, mg, and ug) downward, and the tension T upward. Applying
F = ma to the whole system gives

T—(M+m+p)g=(M+m+p)a = T=M+m+p)(g+a). (2.7)

(b) To find the normal force, N, between the person and the platform, and also the
tension, f, in the rod connecting the pulley to the platform, it is not sufficient
to consider the system as a whole. We must consider subsystems.

e Let’s apply F = ma to the person. The forces acting on the person are
gravity, the normal force from the platform, and the tension from the rope
(pulling downward on her hand). Therefore, we have

N —T — mg = ma. (2.8)

e Now apply F' = ma to the platform. The forces acting on the platform are
gravity, the normal force from the person, and the force upward from the
rod. Therefore, we have

f—N—-Mg= Ma. (2.9)

e Now apply FF = ma to the pulley. The forces acting on the pulley are
gravity, the force downward from the rod, and twice the tension in the rope
(because it pulls up on both sides). Therefore, we have

2T — f — ug = pa. (2.10)

Note that if we add up the three previous equations, we obtain the F' = ma
equation in eq. (2.7), as should be the case, because the whole system is the
sum of the three above subsystems. Egs. (2.8) — (2.10) are three equations in
the three unknowns (7', N, and f). Their sum yields the T in (2.7), and then
egs. (2.8) and (2.10) give, respectively (as you can show),

N =(M+2m+ p)(g+a), and  f=02M+2m+u)(g+a). (2.11)

REMARK: You can also obtain these results by considering subsystems different from
the ones we chose above. For example, you can choose the pulley-plus-platform sub-
system, etc. But no matter how you choose to break up the system, you will need
to produce three independent F' = ma statements in order to solve for the three
unknowns, 7', N, and f.

In problems like this one, it is easy to forget to include one of the forces, such as the
second T in eq. (2.10). The safest thing to do is to isolate each subsystem, draw a box
around it, and then draw all the forces that “protrude” from the box. Fig. 2.4 shows
the free-body diagram for the subsystem of the pulley. &

Figure 2.4
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Another class of problems, similar to the previous example, goes by the name of
Atwood’s machines. An Atwood’s machine is simply the name for any system that
consists of a combination of masses, strings, and pulleys. In general, the pulleys and
strings can have mass, but we’ll just deal with massless ones in this chapter.

We'll do one example here, but additional (and stranger) setups are given in the
exercises and problems for this chapter. As we’ll see below, there are two basic steps
in solving an Atwood’s problem: (1) Write down all the F' = ma equations, and
(2) Relate the accelerations of the various masses by noting that the length of the
string doesn’t change (a fact that we’ll call “conservation of string”).

Example (An Atwood’s machine): Consider the pulley system in Fig. 2.5, with
masses mp and mso. The strings and pulleys are massless. What are the accelerations
of the masses? What is the tension in the string?

Solution: The first thing to note is that the tension, T', is the same everywhere
throughout the massless string, because otherwise there would be infinite acceleration.
It then follows that the tension in the short string connected to ms is 27". This is true
because there must be zero net force on the massless right pulley, because otherwise
it would have infinite acceleration. The F' = ma equations on the two masses are
therefore

T —mig =may,
2T — mog = Mmaas. (2.12)

We now have two equations in the three unknowns, a1, as, and T. So we need one
more equation. This is the “conservation of string” fact, which relates a; and ao. If
we imagine moving mso and the right pulley up a distance d, then a length 2d of string
has disappeared from the two parts of the string touching the right pulley. This string
has to go somewhere, so it ends up in the part of the string touching m;. Therefore,
my goes down by a distance 2d. In other words, y; = —2y» (where y; and ys are
measured relative to the initial locations of the masses). Taking two time derivatives
of this statement gives our desired relation between a; and as,

a1 = —2as. (2.13)
Combining this with egs. (2.12), we can now solve for aj, as, and T. The result is

2mo — 4ma 2mq1 — moy 3mimeog
— —g— < T=——"". 2.14
=9 dmy +ms a2 g4m1 +my’ 4my 4+ mo ( )

REMARK: There are all sorts of limits and special cases that we can check here. A few
are: (1) If ma = 2my, then eq. (2.14) gives a1 = a2 = 0, and T" = m1g. Everything is
at rest. (2) If mo > ma, then eq. (2.14) gives a1 = 2g, a2 = —g, and T = 3mig. In
this case, ma is essentially in free fall, while m: gets yanked up with acceleration 2¢g. The
value of T is exactly what is needed to make the net force on m equal to m1(2g), because
T —mig = 3mig — mi1g = mi1(2g). We'll let you check the case where mi > ma. &

my
my

Figure 2.5
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In the problems for this chapter, you’ll encounter some strange Atwood’s setups.
But no matter how complicated they get, there are only two things you need to
do to solve them, as mentioned above: (1) Write down the F' = ma equations for
all the masses (which may involve relating the tensions in various strings), and (2)
relate the accelerations of the masses, using “conservation of string”.

It may seem, with the angst it can bring,
That an Atwood’s machine’s a harsh thing.
But you just need to say

That F' is ma,

And use conservation of string!

2.3 Solving differential equations

Let’s now consider the type of problem where we are given the force as a function
of time, position, or velocity, and where our task is to solve the F' = ma = mi
differential equation to find the position, x(t), as a function of time. In what follows,
we will develop a few techniques for solving differential equations. The ability to
apply these techniques dramatically increases the number of problems we can solve.

In general, the force F' can also be a function of higher derivatives of z, in
addition to the quantities ¢, x, and v = #. But these cases don’t arise much, so
we won’t worry about them. The F' = ma differential equation we want to solve is
therefore (we’ll just work in one dimension here)

mi = F(x,v,t). (2.15)

In general, this equation cannot be solved exactly for x(¢).8 But for most of the
problems we will deal with, it can be solved. The problems we will encounter will
often fall into one of three special cases, namely, where F' is a function of ¢ only, or
x only, or v only. In all of these cases, we must invoke the given initial conditions,
xo = x(to) and vg = v(tp), to obtain our final solutions. These initial conditions will
appear in the limits of the integrals in the following discussion.”

Note: You may want to just skim the following page and a half, and then refer
back to it as needed. Don’t try to memorize all the different steps. We present
them only for completeness. The whole point here can basically be summarized by
saying that sometimes you want to write & as dv/dt, and sometimes you want to
write it as vdv/dx (see eq. (2.19)). Then you “simply” have to separate variables
and integrate. We’ll go through the three special cases, and then we’ll do some
examples.

8Tt can always be solved for x(t) numerically, to any desired accuracy. This is discussed in
Appendix D.

9Tt is no coincidence that we need two initial conditions to completely specify the solution to
our second-order F' = m& differential equation. It is a general result (which we’ll just accept here)
that the solution to an nth-order differential equation has n free parameters, which must then be
determined from the initial conditions.
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e F is a function of t only: F = F(t).

Since a = d%z/dt?, we just need to integrate F' = ma twice to obtain z(t).
Let’s do this in a very systematic way, to get used to the general procedure.
First, write F' = ma as

m— = F(t). (2.16)

Then separate variables and integrate both sides to obtain!?
v(t) t
m/ dv'= [ F(")dt. (2.17)
V0 to

We have put primes on the integration variables so that we don’t confuse them
with the limits of integration. Eq. (2.17) yields v as a function of ¢, v(t). We
then separate variables in dx/dt = v(t) and integrate to obtain

z(t) t
/ dz’ = / v(t') dt'. (2.18)
x0 to

This yields z as a function of ¢, x(¢). This procedure might seem like a
cumbersome way to simply integrate something twice. That’s because it is.
But the technique proves more useful in the following case.

e F is a function of x only: F = F(x).

We will use
B dv  dz dv dv

e ctodhuhd N h o 2.19
“Tat T dtde Vda (2:19)
to write F' = ma as p
v
— = F(x). 2.2
mo - (z) (2.20)
Now separate variables and integrate both sides to obtain
v(x) z
m/ v dv’ :/ F(x')dx'. (2.21)
() Zo

The left side will contain the square of v(z). Taking a square root, this gives
v as a function of x, v(z). Separate variables in dz/dt = v(z) to obtain

z(t) / t
/ R (2.22)

0 U(:C’) to

This gives t as a function of x, and hence (in principle) x as a function of ¢,
x(t). The unfortunate thing about this case is that the integral in eq. (2.22)
might not be doable. And even if it is, it might not be possible to invert ¢(x)
to produce z(t).

107f you haven’t seen such a thing before, the act of multiplying both sides by the infinitesimal
quantity dt’ might make you feel a bit uneasy. But it is in fact quite legal. If you wish, you
can imagine working with the small (but not infinitesimal) quantities Av and At, for which it is
certainly legal to multiply both sides by At. Then you can take a discrete sum over many At
intervals, and then finally take the limit At — 0, which results in eq. (2.17)
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e F is a function of v only: F = F(v).

Write F' = ma as
dv

mo = F(v). (2.23)
Separate variables and integrate both sides to obtain
v(t) / t
m [ (2.24)

0 F(U/) to

This yields ¢ as a function of v, and hence (in principle) v as a function of ¢,
v(t). Integrate dz/dt = v(t) to obtain z(t) from

x(t) t
/ da' = / (') dt'. (2.25)

0 to

Note: In this F = F(v) case, if you want to find v as a function of z, v(x),
then you should write a as v(dv/dx) and integrate

v(@) o do’ z
m = dz’. 2.26
L 7w, (2.26)

You can then obtain z(t) from eq. (2.22), if desired.

When dealing with the initial conditions, we have chosen to put them in the
limits of integration above. If you wish, you can perform the integrals without any
limits, and just tack on a constant of integration to your result. The constant is
then determined from the initial conditions.

Again, as mentioned above, you do not have to memorize the above three proce-
dures, because there are variations, depending on what you're given and what you
want to solve for. All you have to remember is that & can be written as either dv/dt
or vdv/dz. One of these will get the job done (namely, the one that makes only two
out of the three variables, ¢, z, and v, appear in your differential equation). And
then be prepared to separate variables and integrate as many times as needed.

a is dv by dt.

Is this useful? There’s no guarantee.

If it leads to “Oh, heck!”’s,

Take dv by dz,

And then write down its product with v.

Example 1 (Gravitational force): A particle of mass m is subject to a constant

force F = —mg. The particle starts at rest at height . Because this constant force
falls into all of the above three categories, we should be able to solve for y(t) in two
ways:

(a) Find y(¢) by writing a as dv/dt.
(b) Find y(¢t) by writing a as v dv/dy.
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Solution:

(a) F = ma gives dv/dt = —g. Integrating this yields v = —gt + C, where C is a
constant of integration.!! The initial condition v(0) = 0 gives C = 0. Therefore,
dy/dt = —gt. Integrating this and using y(0) = h gives

1
y=nh-— 5gﬁ. (2.27)
(b) F = ma gives vdv/dy = —g. Separating variables and integrating yields v?/2 =
—gy + C. The initial condition v(0) = 0 gives v?/2 = —gy + gh. Therefore,
v =dy/dt = —y/2g(h —y). We have chosen the negative square root, because
the particle is falling. Separating variables gives

\/hf = /29 / dt. (2.28)

This yields 2y/h —y = v/2¢ t, where we have used the initial condition y(0) = h.
Hence, y = h — gt?/2, in agreement with part (a). The solution in part (a) was
clearly the simpler one.

Example 2 (Dropped ball): A beach-ball is dropped from rest at height h.
Assume'? that the drag force from the air takes the form, F; = —fBv. Find the
velocity and height as a function of time.

Solution: For simplicity in future formulas, let’s write the drag force as Fy = —fv =
—mav (so we won’t have a bunch of 1/m’s floating around). Taking upward to be
the positive y direction, the force on the ball is

F = —mg — maw. (2.29)

Note that v is negative here, because the ball is falling, so the drag force points
upward, as it should. Writing F' = m dv/dt, and separating variables, gives

v(t) dv' t
/ v ,:—/ dt'. (2.30)
o gtav 0

Integration yields In(1 + av/g) = —at. Exponentiation then gives

o(t) = =2 (1-e). (2.31)

Writing dy/dt = v(t), and then separating variables and integrating to obtain y(t),

yields
y(t) ¢
/ dy = —%/ (1 — ot ) dt'. (2.32)
h 0

1yWe'll do this example by adding on constants of integration which are then determined from
the initial conditions. We’ll do the following example by putting the initial conditions in the limits
of integration.

12The drag force is roughly proportional to v as long as the speed is fairly slow. For large speeds,
the drag force is roughly proportional to v?.
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Therefore

3

y(t) = h — g (t - i(l - e_at)> . (2.33)

REMARKS:

(a) Let’s look at some limiting cases. If ¢ is very small (more precisely, if at < 1), then
we can use e =~ 1 — 1+ I2/2 to make approximations to leading order in t. You
can show that eq. (2.31) gives v(t) & —gt. This makes sense, because the drag force
is negligible at the start, so the ball is essentially in free fall. And eq. (2.33) gives
y(t) = h — gt?/2, as expected.

We can also look at large . In this case, e ' is essentially equal to zero, so eq. (2.31)
gives v(t) & —g/a. (This is the “terminal velocity.” Its value makes sense, because it
is the velocity for which the total force, —mg — maw, vanishes.) And eq. (2.33) gives
y(t) = h — (g/a)t + g/a’. Interestingly, we see that for large t, g/a? is the distance
our ball lags behind another ball which started out already at the terminal velocity,

%

g/a.
(b) The velocity of the ball obtained in eq. (2.31) depends on «, which was defined via
Fy = —mav. We explicitly wrote the m here just to make all of our formulas look a

little nicer, but it should not be inferred that the velocity of the ball is independent of
m. The coefficient 3 = ma depends (in some complicated way) on the cross-sectional
area, A, of the ball. Therefore, & o< A/m. Two balls of the same size, one made of
lead and one made of styrofoam, will have the same A but different m’s. Hence, their
a’s will be different, and they will fall at different rates.

For heavy objects in a thin medium such as air, « is small, so the drag effects are not
very noticeable over short distances. Heavy objects fall at roughly the same rate. If
the air were a bit thicker, different objects would fall at noticeably different rates, and
maybe it would have taken Galileo a bit longer to come to his conclusions.

What would you have thought, Galileo,

If instead you dropped cows and did say, “Oh!

To lessen the sound

Of the moos from the ground,

They should fall not through air, but through mayo!” &

2.4 Projectile motion

Consider a ball thrown through the air, not necessarily vertically. We will neglect
air resistance in the following discussion.

Let x and y be the horizontal and vertical positions, respectively. The force in
the z-direction is F,, = 0, and the force in the y-direction is F,, = —mg. So F = ma
gives

=0, and ij=—g. (2.34)

Note that these two equations are “decoupled.” That is, there is no mention of y
in the equation for #, and vice-versa. The motions in the z- and y-directions are
therefore completely independent.

REMARK: The classic demonstration of the independence of the z- and y-motions is the
following. Fire a bullet horizontally (or, preferably, just imagine firing a bullet horizontally),
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and at the same time drop a bullet from the height of the gun. Which bullet will hit the
ground first? (Neglect air resistance, the curvature of the earth, etc.) The answer is that
they will hit the ground at the same time, because the effect of gravity on the two y-motions
is exactly the same, independent of what is going on in the z-direction. &

If the initial position and velocity are (X,Y’) and (V,,V}), then we can easily
integrate egs. (2.34) to obtain

z(t) = Vi,
y(t) = V,—gt. (2.35)
Integrating again gives
z(t) = X+ Vyt,

1
y(t) = Y +V,t— igtz. (2.36)

These equations for the speeds and positions are all you need to solve a projectile
problem.

Example (Throwing a ball):

(a) For a given initial speed, at what inclination angle should a ball be thrown so
that it travels the maximum horizontal distance by the time it returns to the
ground? Assume that the ground is horizontal, and that the ball is released
from ground level.

(b) What is the optimal angle if the ground is sloped upward at an angle 5 (or
downward, if § is negative)?

Solution:

(a) Let the inclination angle be 6, and let the initial speed be V. Then the horizontal
speed is always V, = V cosf, and the initial vertical speed is V,, = V sin6.
The first thing we need to do is find the time ¢ in the air. We know that the
vertical speed is zero at time t/2, because the ball is moving horizontally at
its highest point. So the second of egs. (2.35) gives V,, = g(¢/2). Therefore,
t=2V,/g. "
The first of eqs. (2.36) tells us that the horizontal distance traveled is d = V,t.
Using t = 2V},/g in this gives

de 2VaVy _ V?2(2sinf cos 6) _ V2 sin 20 . (2.37)
g g g
The sin 260 factor has a maximum at
T
0=—. 2.38
d (239)

13 Alternatively, the time of flight can be found from the second of egs. (2.36), which says that
the ball returns to the ground when V,t = gt2/2. We will have to use this type of strategy in part
(b), where the trajectory is not symmetric around the maximum.
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The maximum horizontal distance traveled is then dpax = V2 /g.

REMARKS: For § = 7/4, you can show that the maximum height achieved is V?/4g.
This may be compared to the maximum height of V?/2g (as you can show) if the ball
is thrown straight up. Note that any possible distance you might want to find in this
problem must be proportional to V2 /g, by dimensional analysis. The only question is
what the numerical factor is. &

As in part (a), the first thing we need to do is find the time ¢ in the air. If the
ground is sloped at an angle 3, then the equation for the line of the ground is

y = (tan f)z. (2.39)

The path of the ball is given in terms of ¢ by
1
x = (Vcosf)t, and y::a/gnaﬁ-ggﬁ. (2.40)

We must solve for the ¢ that makes y = (tan 3)xz, because this gives the place
where the path of the ball intersects the line of the ground. Using egs. (2.40),
we find that y = (tan 8)a when

t= g(sin¢9 — tan B cos 9). (2.41)
g

(There is, of course, also the solution ¢ = 0.) Plugging this into the expression
for x in eq. (2.40) gives

2v2 9
x = ——(sinf cos — tan Fcos” ). (2.42)
g

We must now maximize this value for x, which is equivalent to maximizing
the distance along the slope. Setting the derivative with respect to 6 equal to
zero, and using the double-angle formulas, sin26 = 2sinfcosf and cos20 =
cos? @ — sin? 0, we find tan 8 = —cot20. This can be rewritten as tan3 =
—tan(m/2 — 260). Therefore, § = —(7/2 — 26), so we have

9:%(ﬁ+g). (2.43)

In other words, the throwing angle should bisect the angle between the ground
and the vertical.

REMARKS: For 8 = /2, we have 6 = /2, as should be the case. For 8 = 0, we have
0 = w/4, as we found in part (a). And for 8 = —7/2, we have 6 = 0, which makes
sense.
Substituting the value of 6 from eq. (2.43) into eq. (2.42), you can show (after a bit
of algebra) that the maximum distance traveled along the tilted ground is

@ V?/g

d= =—r7 2.44
cos@ 1+sing ( )

This checks in the various limits for 3. &
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Along with the bullet example mentioned above, another classic example of the
independence of the x- and y-motions is the “hunter and monkey” problem. In it,
a hunter aims an arrow (made of styrofoam, of course) at a monkey hanging from
a branch in a tree. The monkey, thinking he’s being clever, tries to avoid the arrow
by letting go of the branch right when he sees the arrow released. The unfortunate
consequence of this action is that he will get hit, because gravity acts on both him
and the arrow in the same way; they both fall the same distance relative to where
they would have been if there were no gravity. And the monkey would get hit in
such a case, because the arrow is initially aimed at him. You can work this out in
Exercise 16, in a more peaceful setting involving fruit.

If a monkey lets go of a tree,

The arrow will hit him, you see,
Because both heights are pared

By a half gt?

From what they would be with no g.

2.5 Motion in a plane, polar coordinates

When dealing with problems where the motion lies in a plane, it is often conve-
nient to work with polar coordinates, » and #. These are related to the Cartesian
coordinates by (see Fig. 2.6)

x =rcosb, and y = rsinb. (2.45)

Depending on the problem, either Cartesian or polar coordinates will be easier to
use. It is usually clear from the setup which is better. For example, if the problem
involves circular motion, then polar coordinates are a good bet. But to use polar
coordinates, we need to know what form Newton’s second law takes in terms of
them. Therefore, the goal of the present section is to determine what F = ma = my
looks like when written in terms of polar coordinates.

At a given position r in the plane, the basis vectors in polar coordinates are t,
which is a unit vector pointing in the radial direction; and 9, which is a unit vector
pointing in the counterclockwise tangential direction. In polar coords, a general
vector may therefore be written as

r=rt. (2.46)

Note that the directions of the & and @ basis vectors depend, of course, on r.

Since the goal of this section is to find ¥, we must, in view of eq. (2.46), get a
handle on the time derivative of . And we’ll eventually need the derivative of 0,
too. In contrast with the fixed Cartesian basis vectors (x and y), the polar basis
vectors (& and é) change as a point moves around in the plane.

We can find t and 6 in the following way. In terms of the Cartesian basis,
Fig. 2.7 shows that

r I
'y
0 :
X
Figure 2.6
Y é SAl'rl 9)
1 r
"\ cos6
0 X

Figure 2.7
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cosfx +sinfy,
—sinfx +cosfy. (2.47)

>
|

[}
Il

Taking the time derivative of these equations gives

= —sinf0x + cos6 0y,
0 = —cosffx—sinfdy. (2.48)

>

Using eqs. (2.47), we arrive at the nice clean expressions,
r=00, and 6= —0r. (2.49)

These relations are fairly evident if we look at what happens to the basis vectors as
r moves a tiny distance in the tangential direction. Note that the basis vectors do
not change as r moves in the radial direction.

We can now start differentiating eq. (2.46). One derivative gives (yes, the
product rule works fine here)

r = 7r47rr

= 7+ 700, (2.50)

This makes sense, because r is the speed in the radial direction, and 76 is the speed

in the tangential direction, which is often written as wr (where w = 0 is the angular

speed, or “angular frequency” ).

Differentiating eq. (2.50) then gives
Po= i+ i+ 700 + 160 + 08
= 7+ 7(00) + 700 + 100 + ro(—0F)
= (7 =6t + (10 + 270)6. (2.51)
Finally, equating m¥ with F = F,.r + Fy0 gives the radial and tangential forces as

E. = m(i—r6?),
Fy = m(rf + 2i0). (2.52)

(See Exercise 32 for a slightly different derivation of these equations.) Let’s look at
each of the four terms on the right-hand sides of egs. (2.52).

e The m# term is quite intuitive. For radial motion, it simply states that F' = ma
along the radial direction.

e The mrf term is also quite intuitive. For circular motion, it states that F' =
ma along the tangential direction, because r0 is the second derivative of the
distance rf along the circumference.

“For rf to be the tangential speed, we must measure ¢ in radians and not degrees. Then 70 is
by definition the distance along the circumference, so 76 is the speed along the circumference.
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e The —mr6? term is also fairly clear. For circular motion, it says that the radial
force is —m(rf)?/r = —mwv?/r, which is the familiar force that causes the
centripetal acceleration, v?/r. See Problem 19 for an alternate (and quicker)
derivation of this v?/r result.

e The 2mif term isn’t so obvious. It is called the Coriolis force. There are
various ways to look at this term. One is that it exists in order to keep angular
momentum conserved. We’ll have a great deal to say about the Coriolis force
in Chapter 9.

Example (Circular pendulum): A mass hangs from a massless string of length
£. Conditions have been set up so that the mass swings around in a horizontal circle,
with the string making an angle 8 with the vertical (see Fig. 2.8). What is the
angular frequency, w, of this motion?

Solution: The mass travels in a circle, so the horizontal radial force must be
F. = mr6? = mrw? (with 7 = €sin ), directed radially inward. The forces on
the mass are the tension in the string, 7', and gravity, mg (see Fig. 2.9). There is no
acceleration in the vertical direction, so F' = ma in the vertical and radial directions
gives, respectively,

TcosB = mg,
Tsinf = m({sinf)w? (2.53)
Solving for w gives
g .
= . 2.54 .
w Tcos (2.54) Figure 2.9

Note that if 8 ~ 0, then w = /g/¢, which equals the frequency of a plane pendulum
of length ¢. And if 3 ~ 90°, then w — oo, which makes sense.
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Exercises

Section 2.2: Free-body diagrams

1.

A peculiar Atwood’s machine

The Atwood’s machine in Fig. 2.10 consists of N masses, m, m/2, m/4, ...,
m/2V =1 All the pulleys and strings are massless, as usual.

(a) Put a mass m/2V "1 at the free end of the bottom string. What are the
accelerations of all the masses?

(b) Remove the mass m/2¥~! (which was arbitrarily small, for very large
N) that was attached in part (a). What are the accelerations of all the
masses, now that you’ve removed this infinitesimal piece?

. Double-loop Atwood’s *

Consider the Atwood’s machine shown in Fig. 2.11. It consists of three
pulleys, a short piece of string connecting one mass to the bottom pulley, and
a continuous long piece of string that wraps twice around the bottom side of
the bottom pulley, and once around the top side of the top two pulleys. The
two masses are m and 2m. Assume that the parts of the string connecting the
pulleys are essentially vertical. Find the accelerations of the masses.

. Atwood’s and a plane =

Consider the Atwoods machine shown in Fig. 2.12, with two masses m. The
plane is frictionless, and it is inclined at a 30° angle. Find the accelerations
of the masses.

. Atwood’s on a table x

Consider the Atwood’s machine shown in Fig. 2.13, Masses of 1kg and 2 kg lie
on a frictionless table, connected by a string which passes around a pulley. The
pulley is connected to another mass of 2kg, which hangs down over another
pulley, as shown. Find the accelerations of all three masses.

. Keeping the mass still *

In the Atwood’s machine in Fig. 2.14, what should M be (in terms of m; and
mz) so that it doesn’t move?
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. Three-mass Atwood’s *x

Consider the Atwood’s machine in Fig. 2.15, with masses m, 2m, and 3m.
Find the accelerations of all three masses.

. Accelerating plane *x

A block of mass m rests on a plane inclined at angle 6. The coefficient of static
friction between the block and the plane is p. The plane is accelerated to the
right with acceleration a (which may be negative); see Fig. 2.16. For what
range of a does the block remain at rest with respect to the plane?

. Accelerating cylinders *x

Three identical cylinders are arranged in a triangle as shown in Fig. 2.17,
with the bottom two lying on the ground. The ground and the cylinders are
frictionless. You apply a constant horizontal force (directed to the right) on
the left cylinder. Let a be the acceleration you give to the system. For what
range of a will all three cylinders remain in contact with each other?

Section 2.3: Solving differential equations

9.

10.

11.

12.

—bv? force *

A particle of mass m is subject to a force F(v) = —bv?. The initial position
is zero, and the initial speed is vg. Find z(t).

—kx force *x*

A particle of mass m is subject to a force F(x) = —kz. The initial position is
zero, and the initial speed is vy. Find x(t).

kx force *x

A particle of mass m is subject to a force F'(x) = kxz. The initial position is
zero, and the initial speed is vg. Find x(¢).

Motorcycle circle xxx

A motorcyclist wishes to travel in a circle of radius R on level ground. The
coefficient of friction between the tires and the ground is p. The motorcycle
starts at rest. What is the minimum distance the motorcycle must travel in
order to achieve its maximum allowable speed (that is, the speed above which
it will skid out of the circular path)?

Section 2.4: Projectile motion

13.

Dropped balls

A ball is dropped from height 4h. After it has fallen a distance d, a second
ball is dropped from height h. What should d be (in terms of h) so that the
balls hit the ground at the same time?

m 3m

2m

Figure 2.15

Figure 2.16

Figure 2.17
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Equal distances

At what angle should a ball be thrown so that its maximum height equals the
horizontal distance traveled?

Redirected horizontal motion x*

A ball is dropped from rest at height A, and it bounces off a surface at height y,
with no loss in speed. The surface is inclined at 45°, so that the ball bounces
off horizontally. What should y be so that the ball travels the maximum
horizontal distance?

Newton’s apple *

Newton is tired of apples falling on his head, so he decides to throw a rock
at one of the larger and more formidable looking apples positioned directly
above his favorite sitting spot. Forgetting all about his work on gravitation,
he aims the rock directly at the apple (see Fig. 2.18). To his surprise, the
apple falls from the tree just as he releases the rock. Show, by calculating
the rock’s height when it reaches the horizontal position of the apple, that the
rock will hit the apple.'®

Throwing at a wall *

You throw a ball with speed Vg at a vertical wall, a distance £ away. At what
angle should you throw the ball, so that it hits the wall at a maximum height?
Assume ¢ < V¢ /g (why?).

Firing a cannon *x

A cannon, when aimed vertically, is observed to fire a ball to a maximum
height of L. Another ball is then fired with this same speed, but with the
cannon now aimed up along a plane of length L, inclined at an angle 0, as
shown in Fig. 2.19. What should 6 be, so that the ball travels the largest
horizontal distance, d, by the time it returns to the height of the top of the
plane?

Colliding projectiles *

Two balls are fired from ground level, a distance d apart. The right one is
fired vertically with speed V; see Fig. 2.20. You wish to simultaneously fire
the left one at the appropriate velocity « so that it collides with the right ball
when they reach their highest point. What should @ be (give the horizontal
and vertical components)? Given d, what should V' be so that the speed w is
minimum?

'5This problem suggests a way in which William Tell and his son might survive their ordeal if
they were plopped down on a planet with an unknown gravitational constant (provided that the
son weren't too short or g weren’t too big).
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Throwing in the wind

A ball is thrown horizontally to the right, from the top of a vertical cliff of
height h. A wind blows horizontally to the left, and assume (simplistically)
that the effect of the wind is to provide a constant force to the left, equal in
magnitude to the weight of the ball. How fast should the ball be thrown, so
that it lands at the foot of the cliff?

Throwing in the wind again *

A ball is thrown eastward across level ground. A wind blows horizontally to
the east, and assume (simplistically) that the effect of the wind is to provide
a constant force to the east, equal in magnitude to the weight of the ball.
At what angle 6 should the ball be thrown, so that it travels the maximum
horizontal distance?

Increasing gravity

At t = 0 on the planet Gravitus Increasicus, a projectile is fired with speed Vj
at an angle 6 above the horizontal. This planet is a strange one, in that the
acceleration due to gravity increases linearly with time, starting with a value
of zero when the projectile is fired. In other words, g(t) = ft, where (3 is a
given constant. What horizontal distance does the projectile travel? What
should 6 be so that this horizonal distance is maximum?

Cart, ball, and plane x*x

A cart rolls down an inclined plane. A ball is fired from the cart, perpendic-
ularly to the plane. Will the ball eventually land in the cart? Hint: Choose
your coordinate system wisely.

Section 2.5: Motion in a plane, polar coordinates

24.

25.

26.

27.

Low-orbit satellite

What is the speed of a satellite whose orbit is just above the earth’s surface?
Give the numerical value.

Weight at the equator =*

A person stands on a scale at the equator. If the earth somehow stopped
spinning but kept its same shape, would the reading on the scale increase or
decrease? By what fraction?

Banking an airplane x*

An airplane flies at speed v in a horizontal circle of radius R. At what angle
should the plane be banked so that you don’t feel like you are getting flung to
the side in your seat?

Car on a banked track

A car travels around a circular banked track with radius R. The coefficient of
friction between the tires and the track is g. What is the maximum allowable
speed, above which the car slips?
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Driving on tilted ground xx

A driver encounters a large tilted parking lot, where the angle of the ground
with respect to the horizontal is #. The driver wishes to drive in a circle of
radius R, at constant speed. The coefficient of friction between the tires and
the ground is pu.

(a) What is the largest speed the driver can have if he wants to avoid slipping?

(b) What is the largest speed the driver can have, assuming he is concerned
only with whether or not he slips at one of the “side” points on the circle
(that is, halfway between the top and bottom points; see Fig. 2.21)7

Rolling wheel *

If you paint a dot on the rim of a rolling wheel, the coordinates of the dot may

be written as'®

(z,y) = (RO + Rsinf, R+ Rcos®). (2.55)

The path of the dot is called a cycloid. Assume that the wheel is rolling at
constant speed, which implies 6 = wt.

(a) Find #(¢) and d(t) of the dot.
(b) At the instant the dot is at the top of the wheel, it may be considered to

be moving along the arc of a circle. What is the radius of this circle in
terms of R? Hint: You know v and a.

Bead on a hoop *x

A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around the
hoop. At what points on the hoop (specify them by giving the angular position
relative to the top) is the bead’s acceleration vertical?!” What is this vertical
acceleration? Note: We haven’t studied conservation of energy yet, but use the
fact that the bead’s speed after it has fallen a height h is given by v = 1/2gh.

Another bead on a hoop *x

A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around
the hoop. At what points on the hoop (specify them by giving the angular
position relative to the horizontal) is the bead’s acceleration horizontal? As
in the previous exercise, use v = 1/2gh.

5This can be shown by writing (2,y) as (R6, R) + (Rsinf, Rcos#). The first term here is the
position of the center of the wheel, and the second term is the position of the dot relative to the
center, where 6 is measured clockwise from the top.

170One such point is the bottom of the hoop. Another point is technically the top, where a = 0.
Find the other two more interesting points (one on each side).
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32.

33.

34.

Derivation of F,. and Fjp *x

In Cartesian coordinates, a general vector takes the form,

r = aX+yy
= rcosfx+rsinfy. (2.56)

Derive egs. (2.52) by taking two derivatives of this expression for r, and then
using egs. (2.47) to show that the result can be written in the form of eq.
(2.51). Note that unlike r and 6, the vectors x and y do not change with
time.

A force Fy = 270 *x

Consider a particle that feels an angular force only, of the form Fy = 2mi6.
(As in Problem 21, there’s nothing all that physical about this force; it simply
makes the F' = ma equations solvable.) Show that the trajectory takes the
form of an exponential spiral, that is, r = Ae’.

A force Fy = 370 ok

Consider a particle that feels an angular force only, of the form Fy = 3mr.
(As in the previous exercise, we’re solving this problem simply because we
can.) Show that 7 = VAr* 4+ B. Also, show that the particle reaches r = co

in a finite time.
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2.7 Problems

Section 2.2: Free-body diagrams

1. Sliding down a plane *x

(a) A block starts at rest and slides down a frictionless plane inclined at angle
0. What should 6 be so that the block travels a given horizontal distance
in the minimum amount of time?

(b) Same question, but now let there be a coefficient of kinetic friction, u,
between the block and the plane.

2. Moving plane sxxx

A block of mass m is held motionless on a frictionless plane of mass M and

angle of inclination 6 (see Fig. 2.22). The plane rests on a frictionless hori-
Figure 2.22 zontal surface. The block is released. What is the horizontal acceleration of
the plane?

3. Sliding sideways on plane xx*x

A block is placed on a plane inclined at angle 6. The coefficient of friction
between the block and the plane is © = tanf. The block is given a kick so
that it initially moves with speed V horizontally along the plane (that is, in
the direction perpendicular to the direction pointing straight down the plane).
What is the speed of the block after a very long time?

4. Atwood’s machine

A massless pulley hangs from a fixed support. A massless string connecting
two masses, my and mg, hangs over the pulley (see Fig. 2.23). Find the
acceleration of the masses and the tension in the string.

my ny

Figure 2.23
5. Double Atwood’s machine xx

A double Atwood’s machine is shown in Fig. 2.24, with masses m1, mso, and
ms. What are the accelerations of the masses?

6. Infinite Atwood’s machine *xx

Consider the infinite Atwood’s machine shown in Fig. 2.25. A string passes

over each pulley, with one end attached to a mass and the other end attached to

another pulley. All the masses are equal to m, and all the pulleys and strings

Figure 2.24 are massless. The masses are held fixed and then simultaneously released.
What is the acceleration of the top mass?'®

my my

18You may define this infinite system as follows. Consider it to be made of N pulleys, with a
non-zero mass replacing what would have been the (N +1)st pulley. Then take the limit as N — oo.

Figure 2.25
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7.

Line of pulleys x*

N + 2 equal masses hang from a system of pulleys, as shown in Fig. 2.26.
What are the accelerations of all the masses?

. Ring of pulleys xx

Consider the system of pulleys shown in Fig. 2.27. The string (which is a
loop with no ends) hangs over N fixed pulleys. N masses, mi, ma, ..., my,
are attached to N pulleys that hang on the string. What are the accelerations
of all the masses?

Section 2.3: Solving differential equations

9.

10.

11.

12.

13.

Exponential force

A particle of mass m is subject to a force F(t) = me". The initial position
and speed are zero. Find z(t).

Falling chain x*x

A chain of length ¢ is held stretched out on a frictionless horizontal table, with
a length yo hanging down through a hole in the table. The chain is released.
As a function of time, find the length that hangs down through the hole (don’t
bother with ¢ after the chain loses contact with the table). Also, find the speed
of the chain right when it loses contact with the table.

Circling around a pole *x

A mass, which is free to move on a horizontal frictionless plane, is attached to
one end of a massless string which wraps partially around a frictionless vertical
pole of radius r (see the top view in Fig. 2.28). You hold onto the other end
of the string. At ¢t = 0, the mass has speed vg in the tangential direction along
the dotted circle of radius R shown.

Your task is to pull on the string so that the mass keeps moving along the
dotted circle. You are required to do this in such a way that the string remains
in contact with the pole at all times. (You will have to move your hand around
the pole, of course.) What is the the speed of the mass as a function of time?

Throwing a beach ball xx*x

A beach ball is thrown upward with initial speed vg. Assume that the drag
force from the air is F' = —mawv. What is the speed of the ball, vy, when
it hits the ground? (An implicit equation is sufficient.) Does the ball spend
more time or less time in the air than it would if it were thrown in vacuum?

Balancing a pencil *xx

Consider a pencil that stands upright on its tip and then falls over. Let’s
idealize the pencil as a mass m sitting at the end of a massless rod of length
[19

191t actually involves only a trivial modification to do the problem correctly using the moment of
inertia and the torque. But the point-mass version will be quite sufficient for the present purposes.

N=3
Figure 2.26

my mp My

Figure 2.27

*/hand

Figure 2.28
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(a) Assume that the pencil makes an initial (small) angle 6y with the vertical,
and that its initial angular speed is wy. The angle will eventually become
large, but while it is small (so that siné & 6), what is 6 as a function of
time?

(b) You might think that it would be possible (theoretically, at least) to make

the pencil balance for an arbitrarily long time, by making the initial 6
and wyp sufficiently small.
However, it turns out that due to Heisenberg’s uncertainty principle
(which puts a constraint on how well we can know the position and mo-
mentum of a particle), it is impossible to balance the pencil for more than
a certain amount of time. The point is that you can’t be sure that the
pencil is initially both at the top and at rest. The goal of this problem
is to be quantitative about this. The time limit is sure to surprise you.

Without getting into quantum mechanics, let’s just say that the uncer-
tainty principle says (up to factors of order 1) that AxzAp > h (where
h = 1.06 - 10734 Js is Planck’s constant). The implications of this are
somewhat vague, but we’ll just take it to mean that the initial conditions
satisfy (£0p)(mlwy) > h.

With this condition, find the maximum time it can take your solution
in part (a) to become of order 1. In other words, determine (roughly)
the maximum time the pencil can balance. Assume m = 0.01kg, and
{=0.1m.

Section 2.4: Projectile motion

14.

15.

16.

Throwing a ball from a cliff *x

A ball is thrown with speed v from the edge of a cliff of height h. At what
inclination angle should it be thrown so that it travels the maximum horizontal
distance? What is this maximum distance? Assume that the ground below
the cliff is horizontal.

Redirected motion *x

A ball is dropped from rest at height h, and it bounces off a surface at height
y (with no loss in speed). The surface is inclined so that the ball bounces off
at an angle of 6 with respect to the horizontal. What should y and 8 be so
that the ball travels the maximum horizontal distance?

Maximum trajectory length xxx

A ball is thrown at speed v from zero height on level ground. Let 6y be the
angle at which the ball should be thrown so that the distance traveled through
the air is maximum. Show that 6y satisfies

1+sin90> _1

2.
cos (2.57)

sin fg In (

You can show numerically that 6y ~ 56.5°.
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