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PREFACE
tan a debi

to his profession,

from the which as men ofcourse

so ought they ofduty to endeavour

themselves by way ofamends,

to be a help and

ornament thereunto.

FRANCIS BACON



PREFACE TO THE FIRST EDITION

Every aspect of this book was influenced by the desire to present calculus not

merely as a prelude to but as the first real encounter with mathematics. Since

the foundations of analysis provided the arena in which modern modes of math-

ematical thinking developed, calculus ought to be the place in which to expect,

rather than avoid, the strengthening of insight with logic. In addition to devel-

oping the students' intuition about the beautiful concepts of analysis, it is surely

equally important to persuade them that precision and rigor are neither deterrents

to intuition, nor ends in themselves, but the natural medium in which to formulate

and think about mathematical questions.

This goal implies a view of mathematics which, in a sense, the entire book

attempts to defend. No matter how well particular topics may be developed, the

goals of this book will be realized only if it succeeds as a whole. For this reason, it

would be of little value merely to list the topics covered, or to mention pedagogical

practices and other innovations. Even the cursory glance customarily bestowed on

new calculus texts will probably tell more than any such extended advertisement,

and teachers with strong feelings about particular aspects of calculus will know just

where to look to see if this book fulfills their requirements.

A few features do require explicit comment, however. Of the twenty-nine chap-

ters in the book, two (starred) chapters are optional, and the three chapters com-

prising Part V have been included only for the benefit of those students who might

want to examine on their own a construction of the real numbers. Moreover, the

appendices to Chapters 3 and 1 1 also contain optional material.

The order of the remaining chapters is intentionally quite inflexible, since the

purpose of the book is to present calculus as the evolution of one idea, not as a

collection of "topics. " Since the most exciting concepts of calculus do not appear

until Part III, it should be pointed out that Parts I and II will probably require

less time than their length suggests—although the entire book covers a one-year

course, the chapters are not meant to be covered at any uniform rate. A rather

natural dividing point does occur between Parts II and III, so it is possible to

reach differentiation and integration even more quickly by treating Part II very

briefly, perhaps returning later for a more detailed treatment. This arrangement

corresponds to the traditional organization of most calculus courses, but I feel

that it will only diminish the value of the book for students who have seen a

small amount of calculus previously, and for bright students with a reasonable

background.

The problems have been designed with this particular audience in mind. They

range from straightforward, but not overly simple, exercises which develop basic

techniques and test understanding of concepts, to problems of considerable diffi-

culty and, I hope, of comparable interest. There are about 625 problems in all.

Those which emphasize manipulations usually contain many examples, numbered
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with small Roman numerals, while small letters are used to label interrelated parts

in other problems. Some indication of relative difficulty is provided by a system of

starring and double starring, but there are so many criteria for judging difficulty,

and so many hints have been provided, especially for harder problems, that this

guide is not completely reliable. Many problems are so difficult, especially if the

hints are not consulted, that the best of students will probably have to attempt only

those which especially interest them; from the less difficult problems it should be

easy to select a portion which will keep a good class busy, but not frustrated. The
answer section contains solutions to about half the examples from an assortment

of problems that should provided a good test of technical competence. A separate

answer book contains the solutions of the other parts of these problems, and of all

the other problems as well. Finally, there is a Suggested Reading list, to which the

problems often refer, and a glossary of symbols.

I am grateful for the opportunity to mention the many people to whom I owe my
thanks. Jane Bjorkgren performed prodigious feats of typing that compensated for

my fitful production of the manuscript. Richard Serkey helped collect the material

which provides historical sidelights in the problems, and Richard Weiss supplied

the answers appearing in the back of the book. I am especially grateful to my
friends Michael Freeman, Jay Goldman, Anthony Phillips, and Robert Wells for

the care with which they read, and the relentlessness with which they criticized, a

preliminary version of the book. Needles to say, they are not responsible for the

deficiencies which remain, especially since I sometimes rejected suggestions which

would have made the book appear suitable for a larger group of students. I must

express my admiration for the editors and staff ofW A. Benjamin, Inc., who were

always eager to increase the appeal of the book, while recognizing the audience

for which it was intended.

The inadequacies which preliminary editions always involve were gallantly en-

dured by a rugged group of freshmen in the honors mathematics course at Brandeis

University during the academic year 1965-1966. About half of this course was

devoted to algebra and topology, while the other half covered calculus, with the

preliminary edition as the text. It is almost obligatory in such circumstances to

report that the preliminary version was a gratifying success. This is always safe-

after all, the class is unlikely to rise up in a body and protest publicly—but the

students themselves, it seems to me, deserve the right to assign credit for the thor-

oughness with which they absorbed an impressive amount of mathematics. I am
content to hope that some other students will be able to use the book to such good

purpose, and with such enthusiasm.

Waltham, Massachusetts michael spivak

February 1967



PREFACE TO THE SECOND EDITION

I have often been told that the title of this book should really be something like "An

Introduction to Analysis," because the book is usually used in courses where the

students have already learned the mechanical aspects of calculus—such courses are

standard in Europe, and they are becoming more common in the United States.

After thirteen years it seems too late to change the title, but other changes, in

addition to the correction of numerous misprints and mistakes, seemed called for.

There are now separate Appendices for many topics that were previously slighted:

polar coordinates, uniform continuity, parameterized curves, Riemann sums, and

the use of integrals for evaluating lengths, volumes and surface areas. A few topics,

like manipulations with power series, have been discussed more thoroughly in the

text, and there are also more problems on these topics, while other topics, like

Newton's method and the trapezoid rule and Simpson's rule, have been developed

in the problems. There are in all about 1 60 new problems, many of which are

intermediate in difficulty between the few routine problems at the beginning of

each chapter and the more difficult ones that occur later.

Most of the new problems are the work of Ted Shifrin. Frederick Gordon

pointed out several serious mistakes in the original problems, and supplied some

non-trivial corrections, as well as the neat proof of Theorem 12-2, which took

two Lemmas and two pages in the first edition. Joseph Lipman also told me
of this proof, together with the similar trick for the proof of the last theorem in

the Appendix to Chapter 1 1 , which went unproved in the first edition. Roy O.

Davies told me the trick for Problem 1 1-66, which previously was proved only in

Problem 20-8 [21-8 in the third edition], and Marina Ratner suggested several

interesting problems, especially ones on uniform continuity and infinite series. To

all these people go my thanks, and the hope that in the process of fashioning the

new edition their contributions weren't too badly botched.

MICHAEL SPIVAK



PREFACE TO THE THIRD EDITION

The most significant change in this third edition is the inclusion of a new (starred)

Chapter 17 on planetary motion, in which calculus is employed for a substantial

physics problem.

In preparation for this, the old Appendix to Chapter 4 has been replaced by

three Appendices: the first two cover vectors and conic sections, while polar coor-

dinates are now deferred until the third Appendix, which also discusses the polar

coordinate equations of the conic sections. Moreover, the Appendix to Chapter 12

has been extended to treat vector operations on vector-valued curves.

Another large change is merely a rearrangement of old material: "The Cos-

mopolitan Integral," previously a second Appendix to Chapter 13, is now an

Appendix to the chapter on "Integration in Elementary Terms" (previously Chap-

ter 18, now Chapter 19); moreover, those problems from that chapter which used

the material from that Appendix now appear as problems in the newly placed

Appendix.

A few other changes and renumbering of Problems result from corrections, and

elimination of incorrect problems.

I was both startled and somewhat dismayed when I realized that after allow-

ing 1 3 years to elapse between the first and second editions of the book, I have

allowed another 14 years to elapse before this third edition. During this time I

seem to have accumulated a not-so-short list of corrections, but no longer have

the original communications, and therefore cannot properly thank the various in-

dividuals involved (who by now have probably lost interest anyway). I have had

time to make only a few changes to the Suggested Reading, which after all these

years probably requires a complete revision; this will have to wait until the next

edition, which I hope to make in a more timely fashion.

MICHAEL SPIVAK



PREFACE TO THE FOURTH EDITION

Promises, promises! In the preface to the third edition I noted that it was 13 years

between the first and second editions, and then another 14 years before the third,

expressing the hope that the next edition would appear sooner. Well, here it is

another 14 years later before the fourth, and presumably final, edition.

Although small changes have been made to some material, especially in Chap-

ters 5 and 20, this edition differs mainly in the introduction of additional problems,

a complete update of the Suggested Reading, and the correction of numerous er-

rors. These have been brought to my attention over the years by, among others,

Nils von Barth; Philip Loewen; Fernando Mejias; Lance Miller, who provided a

long list, particularly for the answer book; and Michael Maltenfort, who provided

an amazingly extensive list of misprints, errors, and criticisms.

Most of all, however, I am indebted to my friend Ted Shifrin, who has been

using the book for the text in his renowned course at the University of Georgia

for all these years, and who prodded and helped me to finally make this needed

revision. I must also thank the students in his course this last academic year, who
served as guinea pigs for the new edition, resulting, in particular, in the current

proof in Problem 8-20 for the Rising Sun Lemma, far simpler than Reisz's original

proof, or even the proof in [38] of the Suggested Reading, which itself has now
been updated considerably, again with great help from Ted.

MICHAEL SPIVAK
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PROLOGUE



To be conscious that

you are ignorant is a great step

to knowledge.

BENJAMIN DISRAELI



CHAPTER I BASIC PROPERTIES OF NUMBERS

The title of this chapter expresses in a few words the mathematical knowledge

required to read this book. In fact, this short chapter is simply an explanation of

what is meant by the "basic properties of numbers," all of which—addition and

multiplication, subtraction and division, solutions of equations and inequalities,

factoring and other algebraic manipulations—are already familiar to us. Never-

theless, this chapter is not a review. Despite the familiarity of the subject, the

survey we are about to undertake will probably seem quite novel; it does not aim

to present an extended review of old material, but to condense this knowledge

into a few simple and obvious properties of numbers. Some may even seem too

obvious to mention, but a surprising number of diverse and important facts turn

out to be consequences of the ones we shall emphasize.

Of the twelve properties which we shall study in this chapter, the first nine are

concerned with the fundamental operations of addition and multiplication. For

the moment we consider only addition: this operation is performed on a pair

of numbers—the sum a + b exists for any two given numbers a and b (which

may possibly be the same number, of course). It might seem reasonable to regard

addition as an operation which can be performed on several numbers at once, and

consider the sum a\ + • • • + a„ of n numbers a\, . .

.

, a„ as a basic concept. It is

more convenient, however, to consider addition of pairs of numbers only, and to

define other sums in terms of sums of this type. For the sum of three numbers

a, b, and c, this may be done in two different ways. One can first add b and c,

obtaining b + c, and then add a to this number, obtaining a + (b + c); or one can

first add a and b, and then add the sum a + b to c, obtaining (a + b) + c. Of
course, the two compound sums obtained are equal, and this fact is the very first

property we shall list:

(PI) If a, b, and c are any numbers, then

a + (b + c) = (a + b) + c.

The statement of this property clearly renders a separate concept of the sum of

three numbers superfluous; we simply agree that a + b + c denotes the number

a + (b + c) = (a + b) + c. Addition of four numbers requires similar, though slightly

more involved, considerations. The symbol a + b + c + d is defined to mean

(1) ((a+b) + c) + d,

or (2) (a + (b + c)) + d,

or (3) a + «b + c) + d),

or (4) a + (b + (c + d)),

or (5) (a+b) + (c + d).
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This definition is unambiguous since these numbers are all equal. Fortunately, this

fact need not be listed separately, since it follows from the property PI already

listed. For example, we know from PI that

(a+b) + c = a + (b + c),

and it follows immediately that (1) and (2) are equal. The equality of (2) and (3)

is a direct consequence of P
1

, although this may not be apparent at first sight

(one must let b + c play the role of b in PI, and d the role of c). The equalities

(3) = (4) = (5) are also simple to prove.

It is probably obvious that an appeal to PI will also suffice to prove the equality

of the 14 possible ways ofsumming five numbers, but it may not be so clear how we
can reasonably arrange a proof that this is so without actually listing these 14 sums.

Such a procedure is feasible, but would soon cease to be ifwe considered collections

of six, seven, or more numbers; it would be totally inadequate to prove the equality

of all possible sums of an arbitrary finite collection of numbers a\, . . . , an . This

fact may be taken for granted, but for those who would like to worry about the

proof (and it is worth worrying about once) a reasonable approach is outlined in

Problem 24. Henceforth, we shall usually make a tacit appeal to the results of this

problem and write sums a\ + \- an with a blithe disregard for the arrangement

of parentheses.

The number has one property so important that we list it next:

(P2) If a is any number, then

a +0 = + a — a.

An important role is also played by in the third property of our list:

(P3) For every number a, there is a number —a such that

a + (—a) = (—a) + a = 0.

Property P2 ought to represent a distinguishing characteristic of the number 0,

and it is comforting to note that we are already in a position to prove this. Indeed,

if a number x satisfies

a + x = a

for any one number a, then x — (and consequently this equation also holds for all

numbers a). The proof of this assertion involves nothing more than subtracting a

from both sides of the equation, in other words, adding —a to both sides; as the

following detailed proof shows, all three properties P1-P3 must be used to justify

this operation.

If a + x = a,

then (-a) + (a + x) = (-a) + a = 0;

hence ((—a) + a) + x = 0;

hence + x = 0;

hence x — 0.
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As we have just hinted, it is convenient to regard subtraction as an operation

derived from addition: we consider a — b to be an abbreviation for a + (—b). It

is then possible to find the solution of certain simple equations by a series of steps

(each justified by PI, P2, or P3) similar to the ones just presented for the equation

a + x = a. For example:

If jc + 3 = 5,

then (jc+3) + (-3) = 5 + (-3);

hence x + (3 + (-3)) = 5 - 3 = 2;

hence x + = 2;

hence x = 2.

Naturally, such elaborate solutions are of interest only until you become convinced

that they can always be supplied. In practice, it is usually just a waste of time to

solve an equation by indicating so explicitly the reliance on properties PI, P2, and

P3 (or any of the further properties we shall list).

Only one other property of addition remains to be listed. When considering the

sums of three numbers a, b, and c, only two sums were mentioned: {a + b) + c

and a + (b + c). Actually, several other arrangements are obtained if the order of

a, b, and c is changed. That these sums are all equal depends on

(P4) If a and b are any numbers, then

a + b — b + a.

The statement of P4 is meant to emphasize that although the operation of ad-

dition of pairs of numbers might conceivably depend on the order of the two

numbers, in fact it does not. It is helpful to remember that not all operations are

so well behaved. For example, subtraction does not have this property: usually

a — b 7^ b — a. In passing we might ask just when a — b does equal b — a, and it

is amusing to discover how powerless we are if we rely only on properties P1-P4

to justify our manipulations. Algebra of the most elementary variety shows that

a — b = b — a only when a — b. Nevertheless, it is impossible to derive this fact

from properties P1-P4; it is instructive to examine the elementary algebra care-

fully and determine which step(s) cannot be justified by P1-P4. We will indeed

be able to justify all steps in detail when a few more properties are listed. Oddly

enough, however, the crucial property involves multiplication.

The basic properties of multiplication are fortunately so similar to those for ad-

dition that little comment will be needed; both the meaning and the consequences

should be clear. (As in elementary algebra, the product of a and b will be denoted

by a b, or simply ab.)

(P5) If a, b, and c are any numbers, then

a (b c) = (a b) c.

(P6) If a is any number, then

a 1 = 1 • a = a.
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Moreover, 1^0.

(The assertion that 1 ^ may seem a strange fact to list, but we have to

list it, because there is no way it could possibly be proved on the basis of the

other properties listed—these properties would all hold if there were only one

number, namely, 0.)

(P7) For every number a / 0, there is a number a
-1

such that

a a~ = a~ • a = 1.

(P8) If a and b are any numbers, then

a b = b a.

One detail which deserves emphasis is the appearance of the condition a^O
in P7. This condition is quite necessary; since Ob — for all numbers b, there is no

number _1
satisfying •

-1 = 1. This restriction has an important consequence

for division. Just as subtraction was defined in terms of addition, so division is

defined in terms of multiplication: The symbol o/b means a b . Since is

meaningless, a/0 is also meaningless—division by is always undefined.

Property P7 has two important consequences. If a • b = a • c, it does not

necessarily follow that b = c; for if a = 0, then both a b and a c are 0, no matter

what b and c are. However, if a ^ 0, then b — c\ this can be deduced from P7 as

follows:

If a b — a c and a ^ 0,

then a' (a b) — a" • (a c);

hence (a~ a) b = (a~ a) c\

hence 1 • b = 1 c;

hence b = c.

It is also a consequence of P7 that if a • b = 0, then either a = or b = 0. In fact,

if a b = and a^0,
then a" 1

• (a b) = 0;

hence (a~ • a) • b — 0;

hence 1 • b — 0;

hence b = 0.

(It may happen that a = and b = are both true; this possibility is not excluded

when we say "either a — or b = 0"; in mathematics "or" is always used in the

sense of "one or the other, or both.")

This latter consequence of P7 is constantly used in the solution of equations.

Suppose, for example, that a number x is known to satisfy

(x - 1)(jc -2) = 0.

Then it follows thai either x — 1 = or x — 2 — 0; hence v = 1 or x = 2.
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On the basis of the eight properties listed so far it is still possible to prove very

little. Listing the next property, which combines the operations of addition and

multiplication, will alter this situation drastically.

(P9) If a, b, and c are any numbers, then

a • (b + c) = a • b + a • c.

(Notice that the equation (b + c) a = b a + c a is also true, by P8.)

As an example of the usefulness of P9 we will now determine just when a — b —
b — a:

If a — b = b — a,

then (a - b) + b = {b - a) + b = b + (b - a);

hence a = b + b — a:

hence a + a = (b + b — a) + a — b + b.

Consequently a • (1 + 1) = b • (1 + 1),

and therefore a — b.

A second use of P9 is the justification of the assertion a = which we have

already made, and even used in a proof on page 6 (can you find where?). This

fact was not listed as one of the basic properties, even though no proofwas offered

when it was first mentioned. With P1-P8 alone a proofwas not possible, since the

number appears only in P2 and P3, which concern addition, while the assertion

in question involves multiplication. With P9 the proof is simple, though perhaps

not obvious: We have

= a-0;

as we have already noted, this immediately implies (by adding —(a -0) to both

sides) that a = 0.

A series of further consequences of P9 may help explain the somewhat myste-

rious rule that the product of two negative numbers is positive. To begin with,

we will establish the more easily acceptable assertion that (—a) b = —(a b). To
prove this, note that

(-a) b + a • b = [(-a) + a] • b

= 0b
= 0.

It follows immediately (by adding —(a b) to both sides) that (—a) • b = — (a • b).

Now note that

(-a) (-b) + [-{a b)\ = (-a) (-b) + (-a) b

= (-a)-[(-b) + b]

= (-a)-0

= 0.
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Consequently, adding (a b) to both sides, we obtain

(-a)- (-b) =a b.

The fact that the product oftwo negative numbers is positive is thus a consequence

of P1-P9. In other words, ifwe want PI to P9 to be true, the rulefor the product of two

negative numbers isforced upon us.

The various consequences of P9 examined so far, although interesting and im-

portant, do not really indicate the significance of P9; after all, we could have listed

each of these properties separately. Actually, P9 is the justification for almost all

algebraic manipulations. For example, although we have shown how to solve the

equation

(x- l)(x -2) = 0,

we can hardly expect to be presented with an equation in this form. We are more

likely to be confronted with the equation

x
2 - 3.x + 2 = 0.

The "factorization" x — 3.x: + 2 = (jc — l)(.v — 2) is really a triple use of P9:

(a- - 1) • (x - 2) = x • (.v - 2) + (-1) (x - 2)

= jc.jc+x-(-2) + (-1).jc + (-1).(-2)

= a-
2 +a-[(-2) + (-1)] + 2

= x
2 - 3x + 2.

A final illustration of the importance ofP9 is the fact that this property is actually

used every time one multiplies arabic numerals. For example, the calculation

13

x24

52

26

312

is a concise arrangement for the following equations:

13-24= 13 • (2 10 + 4)

= 13 2- 10+ 13-4

= 26- 10 + 52.

(Note that moving 26 to the left in the above calculation is the same as writing

26 • 10.) The multiplication 13 • 4 = 52 uses P9 also:

13-4 = • 10 + 3) -4

= l . 10-4 + 3-4

= 4- 10+ 12

= 4- 10+ I • 10 + 2

= (4+ 1)- 10 + 2

= 5- 10 + 2

= 52.
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The properties P1-P9 have descriptive names which are not essential to remem-

ber, but which are often convenient for reference. We will take this opportunity to

list properties P1-P9 together and indicate the names by which they are commonly

designated.

(PI) (Associative law for addition) a + (b + c) — (a + b) + c.

(P2) (Existence of an additive a + = + a — a.

identity)

(P3) (Existence of additive inverses) a + (—a) — (—a) + a — 0.

(P4) (Commutative law for addition) a + b = b + a.

(P5) (Associative law for multiplica- a (b c) = (a b) c.

tion)

(P6) (Existence of a multiplicative a • 1 = 1 • a = a; 1/0.
identity)

(P7) (Existence of multiplicative a a~ x — a~ a = 1 , for a ^ 0.

inverses)

(P8) (Commutative law for multi- a b — b a.

plication)

(P9) (Distributive law) a • (b + c) = a b + a c.

The three basic properties of numbers which remain to be listed are concerned

with inequalities. Although inequalities occur rarely in elementary mathematics,

they play a prominent role in calculus. The two notions of inequality, a < b

(a is less than b) and a > b (a is greater than b), are intimately related: a < b

means the same as b > a (thus 1 < 3 and 3 > 1 are merely two ways of writing

the same assertion). The numbers a satisfying a > are called positive, while

those numbers a satisfying a < are called negative. While positivity can thus

be defined in terms of <, it is possible to reverse the procedure: a < b can be

defined to mean that b — a is positive. In fact, it is convenient to consider the

collection of all positive numbers, denoted by P, as the basic concept, and state

all properties in terms of P:

(P10) (Trichotomy law) For every number a, one and only one of the

following holds:

(i) a = 0,

(ii) a is in the collection P,

(iii) —a is in the collection P.

(PI 1) (Closure under addition) If a and b are in P, then a + b is in P.

(PI 2) (Closure under multiplication) If a and b are in P, then a b is

in P.
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These three properties should be complemented with the following definitions:

a > b if a — b is in P;

a < b if b > a;

a > b if a > b or a = b;

a < b if a < b or a = b*

Note, in particular, that a > if and only if a is in P.

All the familiar facts about inequalities, however elementary they may seem, are

consequences of P10-P12. For example, if a and b are any two numbers, then

precisely one of the following holds:

(i) a-b = 0,

(ii) a — b is in the collection P,

(iii) —(a — b) = b — a is in the collection P.

Using the definitions just made, it follows that precisely one of the following holds:

(i) a = b,

(ii) a > b,

(iii) b > a.

A slightly more interesting fact results from the following manipulations. If

a < b, so that b — a is in P, then surely (b + c) — {a + c) is in P\ thus, if a < b,

then a + c < b + c. Similarly, suppose a < b and b < c. Then

b — a is in P,

and c — b is in P,

so c — a = (c — b) + (b — a) is in P.

This shows that if a < b and b < c, then a < c. (The two inequalities a < b and

b < c are usually written in the abbreviated form a < b < c, which has the third

inequality a < c almost built in.)

The following assertion is somewhat less obvious: If a < and b < 0, then

ab > 0. The only difficulty presented by the proof is the unraveling of definitions.

The symbol a < means, by definition, > a, which means — a = —a is in P.

Similarly —b is in P, and consequently, by P12, (—a){—b) — ab is in P. Thus

ab > 0.

The fact that ab > if a > 0, b > and also if a < 0, Z? < has one

special consequence: a 2 > if a / 0. Thus squares of nonzero numbers are

always positive, and in particular we have proved a result which might have seemed

sufficiently elementary to be included in our list of properties: 1 > (since 1 = I ).

* There is one slightly perplexing feature of the symbols > and <. The statements

1 + 1 <3
1 + 1 <2

are both true, even though we know that < could be replaced l>\ in the first, and l>\ = in the

e< ond. This soi i <>f ihin« is hound to occur when ; is used with specific numbers; the usefulness

of the symbol is revealed by a statemenl like Theorem I here equalitj holds for some values of a

and b, while inequality holds for other values.
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THEOREM 1

The fact that —a > if a < is the basis of a concept which will play an

extremely important role in this book. For any number a, we define the absolute

value \a\ of a as follows:

\a\ —
a, a >

-a, a < 0.

Note that \a\ is always positive, except when a = 0. For example, we have
|

— 3| =

3, |7| = 7, \\ + y/2-V3\ = 1+V2-V3, and \\ + V2 - >/l0| = v/T5-v/2-l.
In general, the most straightforward approach to any problem involving absolute

values requires treating several cases separately, since absolute values are defined

by cases to begin with. This approach may be used to prove the following very

important fact about absolute values.

For all numbers a and b, we have

\a + b\ < \a\ + \b\.

PROOF We will consider 4 cases:

(1) a >0, b>0
(2) a>0, b<0
(3) a<0, b>0
(4) a <0, b<0

In case (1) we also have a + b > 0, and the theorem is obvious; in fact,

\a + b\ = a + b = \a
\
+ \b\,

so that in this case equality holds.

In case (4) we have a + b < 0, and again equality holds:

\a +b\ = -(a +b) = -a + (-b) = \a\ + \b\.

In case (2), when a > and b < 0, we must prove that

\a + b\ < a — b.

This case may therefore be divided into two subcases. If a + b > 0, then we must

prove that

a + b < a — b,

i.e., b < -b,

which is certainly true since b < and hence —b > 0. On the other hand, if

a + b < 0, we must prove that

i.e.,

b < a -

a < a.

b,

which is certainly true since a > and hence —a < 0.

Finally, note that case (3) may be disposed of with no additional work, by apply-

ing case (2) with a and /; interchanged. |
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Although this method of treating absolute values (separate consideration of var-

ious cases) is sometimes the only approach available, there are often simpler meth-

ods which may be used. In fact, it is possible to give a much shorter proof of

Theorem 1 ; this proof is motivated by the observation that

Ifll = Vfl2 .

(Here, and throughout the book, sfx denotes the positive square root of x; this

symbol is defined only when x > 0.) We may now observe that

(\a + b\)
2 = (a+ b)

2 = a
2 + lab + b

2

< a
2 + 2\a\- \b\ + b

2

= \a\
2 + 2\a\ \b\ + \b\

2

= (\a
\
+ \b\)

2

From this we can conclude that \a +b\ < \a\ + \b\ because x < v implies x < y,

provided that x and y are both nonnegative; a proof of this fact is left to the reader

(Problem 5).

One final observation may be made about the theorem we have just proved: a

close examination of either proof offered shows that

\a + b\ = \a\ + 1^1

if a and b have the same sign (i.e., are both positive or both negative), or if one of

the two is 0, while

\a +b\ < \a\ + \b\

if a and b are of opposite signs.

We will conclude this chapter with a subtle point, neglected until now, whose

inclusion is required in a conscientious survey of the properties of numbers. After

stating property P9, we proved that a — b — b — a implies a = b. The proof began

by establishing that

fl.(l +l) = fc.(l + l)
>

from which we concluded that a = b. This result is obtained from the equation

a - (1 + 1) = b • (1 + 1) by dividing both sides by 1 + 1. Division by should

be avoided scrupulously, and it must therefore be admitted that the validity of the

argument depends on knowing that 1 + 1 / 0. Problem 25 is designed to convince

you that this fact cannot possibly be proved from properties P1-P9 alone! Once

P10, Pll, and PI 2 are available, however, the proof is very simple: We have

already seen that 1 > 0; it follows that 1 + 1 > 0, and in particular 1 + 1^0.
This last demonstration has perhaps only strengthened your feeling that it is

absurd to bother proving such obvious facts, but an honest assessment of our

present situation will help justify serious consideration of such details. In this

chapter we have assumed that numbers are familiar objects, and that PI -PI 2 are

merely explicit statements of obvious, well-known properties of numbers. It would

be difficult, however, to justify this assumption. Although one learns how to "work

with" numbers in school, just what numbers are, remains rather vague. A great

deal of this book is devoted to elucidating the concept of numbers, and by the end
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of the book we will have become quite well acquainted with them. But it will be

necessary to work with numbers throughout the book. It is therefore reasonable

to admit frankly that we do not yet thoroughly understand numbers; we may still

say that, in whatever way numbers are finally defined, they should certainly have

properties PI PI 2.

Most of this chapter has been an attempt to present convincing evidence that

PI PI 2 are indeed basic properties which we should assume in order to deduce

other familiar properties of numbers. Some of the problems (which indicate the

derivation of other facts about numbers from PI-PI 2) are offered as further evi-

dence. It is still a crucial question whether PI -PI 2 actually account for all prop-

erties of numbers. As a matter of fact, we shall soon see that they do not. In the

next chapter the deficiencies of properties PI-PI 2 will become quite clear, but

the proper means for correcting these deficiencies is not so easily discovered. The

crucial additional basic property of numbers which we are seeking is profound and

subtle, quite unlike PI-P12. The discovery of this crucial property will require all

the work of Part II of this book. In the remainder of Part I we will begin to see

why some additional property is required; in order to investigate this we will have

to consider a little more carefully what we mean by "numbers."

PROBLEMS

1. Prove the following:

(i) If ax = a for some number «^0, then x = 1.

(ii) x 2 - y
2 = (x - y)(x + y).

(iii) If x 2 = y
2

, then x = y or x = —y.

(iv) x 3 — y
3 = (x — y)(x 2 + xy + y

2
).

(v) x" - y" = (x - y)(xn
~

l + xn~2
y + + xy"~ 2 + y

n~ l
).

(vi) x 3 + y = (x + y)(x — xy + y
2
). (There is a particularly easy way to

do this, using (iv), and it will show you how to find a factorization for

x" + y" whenever n is odd.)

2. What is wrong with the following "proof"? Let x = y. Then

x = xy,
2 2 2x - y = xy - y ,

(x + y)(x - y) = y(x — y),

x + v = y,

2y = y,

2 = 1.

3. Prove the following:

(i) £ = ~ if*,c#0.
b be

a c ad + be . .

(U)

i
+
l = -M--* b-**°-
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(iii) (ab) 1 = a l b [

, if a,b / 0. (To do this you must remember the

defining property of (ab)~ l

.)

a c ac
(iv) rrs-fM " ft

5/£-g,if». c.^o.

a c
(vi) \{ b,d ^ 0, then — = — if and only if ad = &c. Also determine when

b d
a b

b a

4. Find all numbers x for which

(i) 4-jc<3-2jc.
(ii) 5 - x 2 < 8.

(iii) 5 - x 2 < -2.

(iv) (x — l)(x — 3) > 0. (When is a product of two numbers positive?)

(v) x 2 - 2x + 2 > 0.

(vi) x 2 + x + 1 > 2.

(vii) jc
2 -x + 10> 16.

(viii) x 2 + x + 1 > 0.

(ix) (;c-7z-)(jf+ 5) (jc -3) > 0.

(x) (jc - l/2)(x - V2) > 0.

(xi) 2* < 8.

(xii) x + 3' < 4.

(xiii) - + > 0.
x 1 — x

(xiv) i^l > o.
x +

1

5. Prove the following:

(i) If a < /? and c < d, then a + c < b + d.

(ii) If a < fr, then —b<—a.
(iii) If a < b and c > d, then a — c < b — d.

(iv) If fl < £ and c > 0, then ac < /?c.

(v) If a < b and c < 0, then ac > /?c.

(vi) If a > 1, then a > a.

(vii) If < a < 1, then a 2 < a.

(viii) If < fl < Z? and < c < d, then ac < bd.

(ix) If < a < b, then a 2 < b2
. (Use (viii).)

(x) If a, b > and a 2 < &2
, then a < b. (Use (ix), backwards.)

6. (a) Prove that if < x < y, then x" < y", n = 1, 2, 3

(b) Prove that if x < y and « is odd, then x" < y".

(c) Prove that if x" = y" and n is odd, then x = y.

(d) Prove that if jc" = y" and /? is even, then x = y or .v = — v.



1. Basic Properties ofNumbers 15

7. Prove that if < a < b, then

>— a + b
a < V ab < —-— < b.

2

Notice that the inequality -Jab < (a + b)/2 holds for all a, b > 0. A gener-

alization of this fact occurs in Problem 2-22.

*8. Although the basic properties of inequalities were stated in terms of the col-

lection P of all positive numbers, and < was defined in terms of P, this

procedure can be reversed. Suppose that P10-P12 are replaced by

(P'10) For any numbers a and b one, and only one, of the

following holds:

(i) a = b,

(ii) a < b,

(iii) b < a.

(P'l 1) For any numbers a, b, and c, if a < b and b < c, then

a < c.

(P'12) For any numbers a, b, and c, if a < b, then

a + c < b + c.

(P'l 3) For any numbers a, b, and c, if a < b and < c, then

ac < be.

Show that P10-P12 can then be deduced as theorems.

9. Express each of the following with at least one less pair of absolute value

signs.

(i) \V2 + y/3-V5 + y/7\.

(ii) \(\a+b\-\a\-\b\)\.

(iii) \(\a+b\ + \c\ - \a + b + c\)\.

(iv) \x
2 -2xy + y

2
\.

(v) |(|V2 + V3|-|a/5-a/7|)|.

10. Express each of the following without absolute value signs, treating various

cases separately when necessary.

(i) \a + b\-\b\.

(ii) |(|*|-D|.

(iii) l*|-|*
2

|-

(iv) fl -|(fl-|fl |)|.

1 1

.

Find all numbers x for which

(i) |x - 31 = 8.

(ii) \x -3| < 8.

(iii) \x +4\ < 2.

(iv) |jc- 1| + |jc -2| > 1.

(v) |jr - 1 1 + \x + 1 1 < 2.
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(vi) |jc-1| + |jc + 1|<1.

(vii) \x - 1 1
• \x + 1 1

= 0.

(viii) \x — II • \x +21 = 3.

12. Prove the following:

(i) \xy\ = \x

in

= — , if x 7^ 0. (The best way to do this is to remember what
\x\

is.

, if y ^ 0.

(iv) \x — y\ < \x\ + \y\. (Give a very short proof.)

(
v

) \
x

\

—
\y\ — \

x ~~ y\- (A very short proof is possible, if you write things in

the right way.)

(vi) |(|.v| — \y\)\ < \x — y\. (Why does this follow immediately from (v)?)

(vii) \x + y + z\ < \x\ + \y\ + \z\. Indicate when equality holds, and prove

your statement.

13. The maximum of two numbers x and y is denoted by max(x,y). Thus

max(— 1,3) = max(3, 3) = 3 and max(— 1,—4) — max(— 4, — 1) = — 1.

The minimum of x and y is denoted by min(x, y). Prove that

x + v + I v — x I

max(x, y) =

v — x\
min(jc, y) = -

L

Derive a formula for max(x, y, z) and min(x, y,z), using, for example

max(x, y, z) = max(x , max(y, z)).

14. (a) Prove that \a\ = \—a\. (The trick is not to become confused by too many

cases. First prove the statement for a > 0. Why is it then obvious for

a < 0?)

(b) Prove that —b < a < b if and only if \a\ < b. In particular, it follows

that — |a| < a < |a|.

(c) Use this fact to give a new proof that \a + b\ < |«| + \b\.

^15. Prove that if x and y are not both 0, then

x
2 + xy + y

2 > 0.

x
4 + x3

y + x
2
y
2 + .vy

3 + y
4 > 0.

Hint: Use Problem 1

.

46. (a) Show that

(x + y) = x + y only when x = or y = 0,
t n o

(x + y)~ = x + y only when .v — or y = or x = —v.
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(b) Using the fact that

x 2 + 2xy + y
2 = (x + y)

2 > 0,

show that 4x 2 + 6xy + 4v 2 > unless x and y are both 0.

(c) Use part (b) to find out when (x + y)
4 = x 4 + y

4
.

(d) Find out when (x + y)
5 = a

5 + v
5

. Hint: From the assumption (x+y) =

x +y you should be able to derive the equation x +2x y+2xy +y —
0, if xy / 0. This implies that (x + y)

3 = x 2
y + xy 2 — xyix + y).

You should now be able to make a good guess as to when (x + y)
n — x" + y";

the proof is contained in Problem 11-63.

17. (a) Find the smallest possible value of 2x 2 — 3x + 4. Hint: "Complete the

square," i.e., write 2x 2 - 3x + 4 = 2(x - 3/4)
2 + ?

(b) Find the smallest possible value of x — 3x + 2y 2 + 4y + 2.

(c) Find the smallest possible value of x + Axy + 5y — Ax — 6y + 7.

18. (a) Suppose that b~ — Ac > 0. Show that the numbers

-b + y/b2 - Ac -b - yjb2 - Ac

2
'

2

both satisfy the equation x + bx + c = 0.

(b) Suppose that b2 — Ac < 0. Show that there are no numbers x satisfying

x 2 + bx + c = 0; in fact, x~ + bx + c. > for all x. Hint: Complete the

square.

(c) Use this fact to give another proof that if x and y are not both 0, then

x 2 + xy + y > 0.

(d) For which numbers a is it true that x~ + axy + y > whenever x and

y are not both 0?

(e) Find the smallest possible value of x" + bx + c and of ax + foe + c, for

a >0.

19. The fact that a 2 > for all numbers a, elementary as it may seem, is

nevertheless the fundamental idea upon which most important inequali-

ties are ultimately based. The great-granddaddy of all inequalities is the

Schwarz inequality:

x\y\+x2y2 < vx\ + xi vyi +yi •

(A more general form occurs in Problem 2-2 1 .) The three proofs of the

Schwarz inequality outlined below have only one thing in common—their

reliance on the fact that a 2 > for all a.

(a) Prove that if x\ = Xy\ and X2 — Ay? for some number X > 0, then

equality holds in the Schwarz inequality. Prove the same thing if \| =

y2 = 0. Now suppose that y\ and y2 are not both 0, and that there is no
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number X such that x\ = Xy\ and x2 — Xy2 . Then

< (Xyi -x\) 2 + (Xy2 -x2 )

2

= ^
2
(>'i

2 + v2
2

) - 2X(x iyi + x2y2 ) + (xr + x2
2
).

Using Problem 18, complete the proof of the Schwarz inequality.

(b) Prove the Schwarz inequality by using 2xy < x~+y (how is this derived?)

with
Xi yt

x =
, . -

v =
x\ 2 + x2

2 V vi
2

-f- v2
2

first for i = 1 and then for i = 2.

(c) Prove the Schwarz inequality by first proving that

(vi
2 + x2

2
)(yi

2 + V2
2

) = (x\y\ +x2y2 )

2 + (x\y2 - x2y\)
2

.

(d) Deduce, from each of these three proofs, that equality holds only when

yi = y2 = or when there is a number A. > such that x\ — Xy\ and

x2 = Xy2 .

In our later work, three facts about inequalities will be crucial. Although proofs

will be supplied at the appropriate point in the text, a personal assault on these

problems is infinitely more enlightening than a perusal of a completely worked-out

proof. The statements of these propositions involve some weird numbers, but their

basic message is very simple: if x is close enough to xo, and y is close enough to yo,

then x + y will be close to *o + >'o, and xy will be close to xoyo, and 1/y will be close

to 1/yo- The symbol "e" which appears in these propositions is the fifth letter of the

Greek alphabet ("epsilon"), and could just as well be replaced by a less intimidating

Roman letter; however, tradition has made the use of s almost sacrosanct in the

contexts to which these theorems apply.

20. Prove that if

then

£ £
xq\ < - and \y - y \

<
j,

\{x + y) - Uo + yo)l < e
'

\(x - y) - (xq -yo)\ < £.

*21. Prove that if

jc — jcqI < min I — , 1 I and \y — \q\ <
,2(|y |

+ l)' J
"

2(|jc |+ 1)'

then \xy - x yo\ < £.

(The notation "min" was defined in Problem 13, but the formula provided by

thai problem is irrelevant at the moment; the first inequality in the hypothesis

just means that

Ijc — *n| < ^ 7- and |.v —.vol < 1;

2(|y
l
+ D
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at one point in the argument you will need the first inequality, and at an-

other point you will need the second. One more word of advice: since the

hypotheses only provide information about x — xq and y — yo, it is almost a

foregone conclusion that the proof will depend upon writing xy — xq\q in a

way that involves x — x$ and y — yo-)

^22. Prove that if yo ^ and

^23.

/ Lvol £|yol
2

\y - y |
< mm I — , —^—

then v/0 and

1

yo
< £.

Replace the question marks in the following statement by expressions involv-

ing s, xo, and yo so that the conclusion will be true:

If yo / and

yol < ? and \x — xq\ < ?

then _v/0 and

xo

yo
< £.

This problem is trivial in the sense that its solution follows from Problems 21

and 22 with almost no work at all (notice that x/y = x 1/y). The crucial

point is not to become confused; decide which of the two problems should

be used first, and don't panic if your answer looks unlikely.

*24. This problem shows that the actual placement of parentheses in a sum is

irrelevant. The proofs involve "mathematical induction"; if you are not fa-

miliar with such proofs, but still want to tackle this problem, it can be saved

until after Chapter 2, where proofs by induction are explained.

Let us agree, for definiteness, that a\ + • • • + a„ will denote

a\ + (a2 + (fl3 H h (fl„_2 + (an -\ + an))) ••)

Thus «i + ai + «3 denotes a\ + («2 + «3), and ct\ + a2 + «3 + «4 denotes

a\ + (#2 + («3 + «4)), etc.

(a) Prove that

(a\ H \-ak ) +ak+ \
= a\ H hflt+i-

Hint: Use induction on k.

(b) Prove that if n > k, then

(a\ H h fljfc) + (ak+ \ H 1- a„) = a\ -\ V a n .

Hint: Use part (a) to give a proof by induction on k.
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(c) Let s{a\ , . .
. , ak ) be some sum formed from a\,

.

.
.

, a^. Show that

s(a\, ...,a k )=a\-\ \- ak .

Hint: There must be two sums s'(a\, ...,«/) and s"(ai+ \, . .
.

, ak ) such

that

s(a\, ...,a k ) = s'(a\ a t ) + s"{at+ \
,ak).

25. Suppose that we interpret "number" to mean either or 1 , and + and • to

be the operations defined by the following two tables.

1 1+

1

1 1

Check that properties PI—P9 all hold, even though 1 + 1=0.



CHAPTER mm NUMBERS OF VARIOUS SORTS

In Chapter 1 we used the word "number" very loosely, despite our concern with

the basic properties of numbers. It will now be necessary to distinguish carefully

various kinds of numbers.

The simplest numbers are the "counting numbers"

1,2,3

The fundamental significance of this collection of numbers is emphasized by its

symbol N (for natural numbers). A brief glance at P1-P12 will show that our

basic properties of "numbers" do not apply to N—for example, P2 and P3 do not

make sense for N. From this point of view the system N has many deficiencies.

Nevertheless, N is sufficiently important to deserve several comments before we

consider larger collections of numbers.

The most basic property of N is the principle of "mathematical induction."

Suppose P(x) means that the property P holds for the number x. Then the prin-

ciple of mathematical induction states that P(x) is true for all natural numbers x

provided that

(1) P(l) is true.

(2) Whenever P{k) is true, P{k + 1) is true.

Note that condition (2) merely asserts the truth of P(k+ 1) under the assumption

that P(k) is true; this suffices to ensure the truth of P(x) for all x, if condition

(1) also holds. In fact, if P(l) is true, then it follows that P(2) is true (by using

(2) in the special case k = 1). Now, since P(2) is true it follows that P(3) is true

(using (2) in the special case k = 2). It is clear that each number will eventually be

reached by a series of steps of this sort, so that P(k) is true for all numbers k.

A favorite illustration of the reasoning behind mathematical induction envisions

an infinite line of people,

person number 1, person number 2, person number 3, . . . .

If each person has been instructed to tell any secret he hears to the person behind

him (the one with the next largest number) and a secret is told to person number 1

,

then clearly every person will eventually learn the secret. If P(x) is the assertion

that person number .v will learn the secret, then the instructions given (to tell all

secrets learned to the next person) assures that condition (2) is true, and telling

the secret to person number 1 makes (1) true. The following example is a less

facetious use of mathematical induction. There is a useful and striking formula

which expresses the sum of the first n numbers in a simple way:

21
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n(n + l)

! + - + » =—2~-

To prove this formula, note first that it is clearly true for n = 1. Now assume that

for some natural number & we have

i + ... +t = **+i>.

Then

k(k+ 1)
1 + • • • + k + ( k + 1 )

= —- + k+\

_ k(k + 1) + 2k + 2

A:
2 + 3* + 2

(* + !)(* + 2)

so the formula is also true for k + \. By the principle of induction this proves

the formula for all natural numbers n. This particular example illustrates a phe-

nomenon that frequently occurs, especially in connection with formulas like the

one just proved. Although the proof by induction is often quite straightforward,

the method by which the formula was discovered remains a mystery. Problems 5

and 6 indicate how some formulas of this type may be derived.

The principle of mathematical induction may be formulated in an equivalent

way without speaking of "properties" of a number, a term which is sufficiently

vague to be eschewed in a mathematical discussion. A more precise formulation

states that if A is any collection (or "set"—a synonymous mathematical term) of

natural numbers and

(1) 1 is in A,

(2) k + 1 is in A whenever k is in A,

then A is the set of all natural numbers. It should be clear that this formulation

adequately replaces the less formal one given previously—we just consider the

set A of natural numbers x which satisfy P(x). For example, suppose A is the set

of natural numbers n for which it is true that

! + ... + „ =__
Our previous proof of this formula showed that A contains 1 , and that k + 1 is

in A, if A' is. It follows that A is the set of all natural numbers, i.e., that the formula

holds for all natural numbers /;.

There is yet another rigorous formulation of the principle of mathematical in-

duction, which looks quite different. If A is am collection of natural numbers, it
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is tempting to say that A must have a smallest member. Actually, this statement

can fail to be true in a rather subtle way. A particularly important set of natural

numbers is the collection A that contains no natural numbers at all, the "empty

collection" or "null set,"* denoted by 0. The null set is a collection of natural

numbers that has no smallest member—in fact, it has no members at all. This

is the only possible exception, however; if A is a nonnull set of natural numbers,

then A has a least member. This "intuitively obvious" statement, known as the

"well-ordering principle," can be proved from the principle of induction as follows.

Suppose that the set A has no least member. Let B be the set of natural numbers

n such that 1, . . . ,n are all not in A. Clearly 1 is in B (because if 1 were in A, then

A would have 1 as smallest member). Moreover, if I, ... ,k are not in A, surely

k + 1 is not in A (otherwise k + 1 would be the smallest member of A), so 1, ...
,

k: + 1 are all not in A. This shows that if k is in B, then k + 1 is in B. It follows

that every number n is in B, i.e., the numbers 1 , . . . , n are not in A for any natural

number n. Thus A = 0, which completes the proof.

It is also possible to prove the principle of induction from the well-ordering

principle (Problem 10). Either principle may be considered as a basic assumption

about the natural numbers.

There is still another form of induction which should be mentioned. It some-

times happens that in order to prove P(k + 1) we must assume not only P(k), but

also P(l) for all natural numbers I < k. In this case we rely on the "principle of

complete induction": If A is a set of natural numbers and

(1) 1 is in A,

(2) k: + 1 is in A if 1 , . . . , k are in A,

then A is the set of all natural numbers.

Although the principle of complete induction may appear much stronger than

the ordinary principle of induction, it is actually a consequence of that principle.

The proof of this fact is left to the reader, with a hint (Problem 11). Applications

will be found in Problems 7, 17, 20 and 22.

Closely related to proofs by induction are "recursive definitions." For example,

the number n\ (read "n factorial") is defined as the product of all the natural

numbers less than or equal to n:

n\ = 1 • 2 • . . . • (n — 1) • n.

This can be expressed more precisely as follows:

(1) 1! = 1

(2) n\ = n {n - 1)!.

This form of the definition exhibits the relationship between n\ and (n — 1 )! in an

* Although it may not strike you as a collection, in the ordinary sense of the word, the null set arises

quite naturally in many contexts. We frequently consider the set A, consisting of all x satisfying some
property P; often we have no guarantee that P is satisfied by any number, so that A might be —in

fact often one proves that P is always false by showing that A = 0.
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explicit way that is ideally suited for proofs by induction. Problem 23 reviews a

definition already familiar to you, which may be expressed more succinctly as a re-

cursive definition; as this problem shows, the recursive definition is really necessary

for a rigorous proof of some of the basic properties of the definition.

One definition which may not be familiar involves some convenient notation

which we will constantly be using. Instead of writing

a\ H \-an ,

we will usually employ the Greek letter £ (capital sigma, for "sum") and write

n

In other words, /~Jfl/ denotes the sum of the numbers obtained by letting

i = 1,2, ... ,n. Thus

A. - „ n(n + \)

Y,i = l + 2+---+n = —Y-.
/=i

n

Notice that the letter i really has nothing to do with the number denoted by >_, >
>

i=\

and can be replaced by any convenient symbol (except n, of course!):

A . n(n+ 1)

h=

t" =

n

To define /#/ precisely really requires a recursive definition:

2

iii + l)

2
'

7(7 + 1)

(1) ^2a t =ai,

n n -i

(2) Y< ai = J2 ai+an -

/=]

But only purveyors of mathematical austerity would insist too strongly on such

precision. In practice, all sorts of modifications of this symbolism arc used, and

no one ever considers it necessary to add any words of explanation. The symbol



2. Numbers of Various Sorts 25

I]«"
7=1
i#4

for example, is an obvious way of writing

a
i + (12 + A3 + « 5 + «6 H + ««

»

or more precisely,

3 n

/=1 ;=5

The deficiencies of the natural numbers which we discovered at the beginning

of this chapter may be partially remedied by extending this system to the set of

integers

...,-2,-1,0, 1,2

This set is denoted by Z (from German "Zahl," number). Of properties P1-P12,

only P7 fails for Z.

A still larger system of numbers is obtained by taking quotients m/n of integers

(with n / 0). These numbers are called rational numbers, and the set of all

rational numbers is denoted by Q_ (for "quotients"). In this system of numbers all

of P1-P12 are true. It is tempting to conclude that the "properties of numbers,"

which we studied in some detail in Chapter 1, refer to just one set of numbers,

namely, Q_. There is, however, a still larger collection of numbers to which proper-

ties P1-P12 apply—the set of all real numbers, denoted by R. The real numbers

include not only the rational numbers, but other numbers as well (the irrational

numbers) which can be represented by infinite decimals; n and v 2 are both

examples of irrational numbers. The proof that n is irrational is not easy—we
shall devote all of Chapter 16 of Part III to a proof of this fact. The irrationality

of v 2, on the other hand, is quite simple, and was known to the Greeks. (Since the

Pythagorean theorem shows that an isosceles right triangle, with sides of length 1

,

has a hypotenuse of length v 2, it is not surprising that the Greeks should have

investigated this question.) The proof depends on a few observations about the

natural numbers. Every natural number n can be written either in the form 2k

for some integer k, or else in the form 2k + 1 for some integer k (this "obvious"

fact has a simple proof by induction (Problem 8)). Those natural numbers of the

form 2k are called even; those of the form 2k + 1 are called odd. Note that even

numbers have even squares, and odd numbers have odd squares:

(2k)
2 = 4k

2 = 2- (2k
2
),

(2k + l)
2 = 4k

2 +4k +1=2- (2k
2 + 2k) + 1.

In particular it follows that the converse must also hold: if n~ is even, then n is even;

if n is odd, then n is odd. The proof that v2 is irrational is now quite simple.

Suppose that v 2 were rational; that is, suppose there were natural numbers p
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and q such that

We can assume that p and <y have no common divisor (since all common divisors

could be divided out to begin with). Now we have

2 o 2

This shows that p is even, and consequently p must be even; that is, p — 2k for

some natural number k. Then

p
2 = Ak 2 = 2q

2
,

so

T>2 2
2A: = q .

This shows that g is even, and consequently that q is even. Thus both p and g

are even, contradicting the fact that p and q have no common divisor. This

contradiction completes the proof.

It is important to understand precisely what this proof shows. We have demon-

strated that there is no rational number x such that x = 2. This assertion is often

expressed more briefly by saying that V2 is irrational. Note, however, that the

use of the symbol v 2 implies the existence of some number (necessarily irrational)

whose square is 2. We have not proved that such a number exists and we can as-

sert confidently that, at present, a proof is impossible for us. Any proof at this stage

would have to be based on PI-PI 2 (the only properties of R we have mentioned);

since PI-PI 2 are also true for Q the exact same argument would show that there

is a rational number whose square is 2, and this we know is false. (Note that the

reverse argument will not work—our proof that there is no rational number whose

square is 2 cannot be used to show that there is no real number whose square is 2,

because our proof used not only PI PI 2 but also a special property of Q_, the fact

that every number in Q can be written p/q for integers p and q.)

This particular deficiency in our list of properties of the real numbers could,

of course, be corrected by adding a new property which asserts the existence of

square roots of positive numbers. Resorting to such a measure is, however, neither

aesthetically pleasing nor mathematically satisfactory; we would still not know that

every number has an nth root if n is odd, and that every positive number has an

nth root if n is even. Even if we assumed this, we could not prove the existence of

a number x satisfying x 5 + x + 1 =0 (even though there does happen to be one),

since we do not know how to write the solution of the equation in terms of nlh

roots (in fact, it is known that the solution cannot be written in this form). And,

of course, we certainly do not wish to assume that all equations have solutions,

since this is false (no real number x satisfies x 2 + 1 =0, for example). In fact,

this direction of investigation is not a fruitful one. The most useful hints about the

property distinguishing R from Q, the most compelling evidence for the necessity

of elucidating this property, do not come from the study of numbers alone. In

order to study tin- properties of the real numbers in a more profound way, we
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must study more than the real numbers. At this point we must begin with the

foundations of calculus, in particular the fundamental concept on which calculus

is based—functions.

PROBLEMS

1. Prove the following formulas by induction.

(i) l- + -..+/r = .

(ii) l
3 + --- + /7

3 = (l+--- + 77)
2

.

2. Find a formula for

(i) J2 {2i ~ 1) = 1+3 + 5 + ••• + (2,7- 1).

/=]

(ii) ]T(2i - 1 )

2 = l
2 + 3

2 + 5
2 + • • • + (2/7 - l)

2
.

Hint: What do these expressions have to do with 1 + 2 + 3 + • • • + 2n and

l
2 + 22 + 3

2 + --- + (2«)
2
?

3. If < k < n, the "binomial coefficient" I I is defined by

n\ n\ n{n - 1) • • {n - k + 1)
, ll /C 7^ (J, 77

£/ fc!(n - *)! it!

7?\ /n
= 1 (a special case of the first formula if we define 0! = 1),

0/ \n'

and for k < or k > n we just define the binomial coefficient to be 0.

(a) Prove that

(The proof does not require an induction argument.)

This relation gives rise to the following configuration, known as "Pas-

cal's triangle"—a number not on one of the sides is the sum of the two

numbers above it; the binomial coefficient I

J
is the (k + l)st number

in the (77 + l)st row.

1

1 1

1 2 1

13 3 1

14 6 4 1

1 5 10 10 5 1
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(b) Notice that all the numbers in Pascal's triangle are natural numbers. Use

part (a) to prove by induction that I I is always a natural number. (Your

entire proof by induction will, in a sense, be summed up in a glance by

Pascal's triangle.)

(n\
(c) Give another proof that I

J
is a natural number by showing that

... , n.

(d) Prove the "binomial theorem": If a and b are any numbers and n is a

natural number, then

'"r
b+W

-E("V
;=0

J,

(e) Prove that

1

7=0

(.) D-iy(-);: :3-G)-<»- a
;=o

in

iv

£C)-GH>-^
eC-C +

G)
+ -- 2

/ even

«-]

4. (a) Prove that

ti\k)\i-k)-\ i

Hint: Apply the binomial theorem to (1 +.v)"(l +.v)'

(b) Prove that

k=0

n\ i In
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5. (a) Prove by induction on n that

l_ r
»+l

.2
1 + r + r" + • • + r" =

1 — r

if r ^ 1 (if r = 1, evaluating the sum certainly presents no problem).

(b) Derive this result by setting S — 1 + r + • • + r" , multiplying this equation

by r, and solving the two equations for S.

6. The formula for 1 + • —\-n may be derived as follows. We begin with the

formula

(k+ l)
3 -k 3 =3k 2 + 3k+ 1.

Writing this formula for k = 1, . . . , n and adding, we obtain

2
3 - l

3 = 3- l
2 + 3- 1 + 1

33 _ 2
3 = 3 • 2

2 + 3 • 2 + 1

(n + l)
3 -/r3 = 3-n 2 + 3-n + 1

(n + 1)3 _ 1 = 3[i2 + . . . + ,7 2j + 3 [! + . . . +n] + „,

Thus we can find >, ^ if we already know 2, k (which could have been

k=\ k=\

found in a similar way). Use this method to find

(i) l
3 + .-. + n3

.

(ii) l
4 + • • • + n\

... 1 1 1

111 —— + —— + • • • +
1-2 2-3 n(n + \)'

3 5 In + 1

12 . 22 22 • 3 2 n 2
(« + l) 2

^7. Use the method of Problem 6 to show that /_^'
;' can always be written in

/=l

the form

+ An p + Bn p - 1 +Cn p
- 2 + ---

.

P + l

(The first 10 such expressions are
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£* = v + \n

k=\
n

E*
2
= l»

3

k=]

+w + i»

E*3

=i»
4

k=\

+v + \»
2

E*4
= K

k=\

+v +w -

30
n

±*5 =y + 1»
5
+ n»

4
--±n

k=\

J2
kb =W +V +I"

5

~b' + A"
k=\

X>
7 = i„ 8 +V + h»

6 - T4"
4
+ T2"

2

k=\

£*•-*»» +v+i« 7 -^»5

+i«
3

-a»
A?

E/.9
1 „ 10 _, 1 9 3 M 8 7„6, 1„4 3 „2

^ =
To" + 2

/7 + 4
;/ ~ To" + 2

H ~ 20
n

k=\

J2><
]0

=Ti»
n
+ W +l»

9 -
1 "

7 + 1 "
5 ~V +W».

*=1

Notice that the coefficients in the second column are always i, and that after

the third column the powers of n with nonzero coefficients decrease by 2 until

n 2 or n is reached. The coefficients in all but the first two columns seem to

be rather haphazard, but there actually is some sort of pattern; finding it may
be regarded as a super-perspicacity test. See Problem 27-17 for the complete

story.)

8. Prove that every natural number is either even or odd.

9. Prove that if a set A of natural numbers contains hq and contains k + 1

whenever it contains k, then A contains all natural numbers > hq.

10. Prove the principle of mathematical induction from the well-ordering prin-

ciple.

11. Prove the principle of complete induction from the ordinary principle of

induction. Hint: If A contains 1 and A contains // + 1 whenever it contains

1 /?, consider the set B of all k such that 1 k are all in A.

12. (a) If a is rational and b is irrational, is a + b necessarily irrational? What

if a and b arc both irrational?
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(b) If a is rational and b is irrational, is ab necessarily irrational? (Careful!)

(c) Is there a number a such that a is irrational, but a is rational?

(d) Are there two irrational numbers whose sum and product are both ra-

tional?

13. (a) Prove that V3, v 5, and V 6 are irrational. Hint: To treat V 3, for exam-

ple, use the fact that every integer is of the form 3n or 3« + 1 or 3« + 2.

Why doesn't this proof work for v 4?

(b) Prove that v2 and V3 are irrational.

14. Prove that

(a) V 2 + v 6 is irrational.

(b) v 2 + V3 is irrational.

15. (a) Prove that if x = p + ^fq where p and # are rational, and m is a natural

number, then xm = a + b^/q for some rational a and b.

(b) Prove also that (/? - y/q)
m —a - bjq.

16. (a) Prove that if m and n are natural numbers and m</n~ < 2, then

(m + In) /(m + n) > 2; show, moreover, that

(m + 2n) 2
rrr

— -~— 2 < 2 =-.

(m + n)" n-

(b) Prove the same results with all inequality signs reversed.

(c) Prove that if m/n < v 2, then there is another rational number m'/n'

with m/n < m'/n' < v2.

'17. It seems likely that \fn is irrational whenever the natural number // is not

the square of another natural number. Although the method of Problem 1

3

may actually be used to treat any particular case, it is not clear in advance

that it will always work, and a proof for the general case requires some extra

information. A natural number p is called a prime number if it is impos-

sible to write p = ab for natural numbers a and b unless one of these is p,

and the other 1 ; for convenience we also agree that 1 is not a prime number.

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19. If n > 1 is not a

prime, then n — ab, with a and b both < n; if either a or b is not a prime it

can be factored similarly; continuing in this way proves that we can write n

as a product of primes. For example, 28 = 4 • 7 = 2 2 7.

(a) Turn this argument into a rigorous proof by complete induction. (To

be sure, any reasonable mathematician would accept the informal argu-

ment, but this is partly because it would be obvious to her how to state

it rigorously.)

A fundamental theorem about integers, which we will not prove here, states

that this factorization is unique, except for the order of the factors. Thus,

for example, 28 can never be written as a product of primes one of which
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is 3, nor can it be written in a way that involves 2 only once (now you should

appreciate why 1 is not allowed as a prime).

(b) Using this fact, prove that *J~n is irrational unless n = m 2
for some natural

number m

.

(c) Prove more generally that Zfn is irrational unless n = m k
.

(d) No discussion ofprime numbers should fail to allude to Euclid's beautiful

proof that there are infinitely many of them. Prove that there cannot be

only finitely many prime numbers p\, p2, P3, ...
, pn by considering

P\ P2 ••• • Pi, + 1.

*18. (a) Prove that if x satisfies

.v"+a„_ix""
1 +...+a =0,

for some integers fln_i, ... , «o, then x is irrational unless x is an integer.

(Why is this a generalization of Problem 17?)

(b) Prove that V 6 — v 2 — V 3 is irrational.

(c) Prove that v 2 + v 2 is irrational. Hint: Start by working out the first 6

powers of this number.

19. Prove Bernoulli's inequality: If h > — 1, then

(1 +/?)" > 1 +nh

for any natural number n. Why is this trivial if h > 0?

20. The Fibonacci sequence a\, «2> a3? • is defined as follows:

01 = 1,

fl2 = 1,

a„ = a„-\ + a„_2 for n > 3.

This sequence, which begins 1, 1, 2, 3, 5, 8, . . . , was discovered by Fibonacci

(circa 1175-1250), in connection with a problem about rabbits. Fibonacci

assumed that an initial pair of rabbits gave birth to one new pair of rabbits

per month, and that after two months each new pair behaved similarly. The

number a„ of pairs born in the nth month is an-\ + fl„_2, because a pair of

rabbits is born for each pair born the previous month, and moreover each

pair born two months ago now gives birth to another pair. The number of

interesting results about this sequence is truly amazing—there is even a Fi-

bonacci Association which publishes a journal, The Fibonacci Quarterly. Prove

that

/1+V5Y' /1-V5Y'

a„ =
v/5

One way of deriving this astonishing formula is presented in Problem 24-16.



2. Numbers of Various Sorts 33

21. The Schwarz inequality (Problem 1-19) actually has a more general form:

n

£* 2
-E* 2

Give three proofs of this, analogous to the three proofs in Problem 1-19.

22. The result in Problem 1-7 has an important generalization: If a\, . . . , an > 0,

then the "arithmetic mean"

a\-\ Yan
A„ =

and "geometric mean"

G„ = Va
i • • - an

satisfy

G n < An .

(a) Suppose that a\ < A n . Then some a, satisfies a, > A„; for convenience,

say ai > A„. Let a\ = A n and let «2 = «i + «2 — o-\. Show that

a\ci2 > a\ai.

Why does repeating this process enough times eventually prove that G n <

An ? (This is another place where it is a good exercise to provide a formal

proof by induction, as well as an informal reason.) When does equality

hold in the formula G„ < A„?

The reasoning in this proof is related to another interesting proof.

(b) Using the fact that G n < A„ when n = 2, prove, by induction on k, that

Gn < A n for n = 2*.

(c) For a general n, let 2m > n. Apply part (b) to the 2'" numbers

a\, . .

.

, an , A n , . .
.

, An

2'" -n times

to prove that G„ < A„.

23. The following is a recursive definition of a":

Prove, by induction, that

(Don't try to be fancy: use either induction on n or induction on m, not both

at once.)

a
1 = a,

a"
+1 = a" -a.

a"
+m = a" -a'",

<
„ll\l» „nm
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24. Suppose we know properties PI and P4 for the natural numbers, but that

multiplication has never been mentioned. Then the following can be used

as a recursive definition of multiplication:

lb = b,

(a + 1) • b = a -b + b.

Prove the following (in the order suggested!):

a-(b + c) = a-b + a-c (use induction on a),

a • 1 = a,

a b — b a (you just finished proving the case b = 1).

25. In this chapter we began with the natural numbers and gradually built up to

the real numbers. A completely rigorous discussion of this process requires

a little book in itself (see Part V). No one has ever figured out how to get to

the real numbers without going through this process, but if we do accept the

real numbers as given, then the natural numbers can be defined as the real

numbers of the form 1, 1 + 1, 1 + 1 + 1, etc. The whole point of this problem

is to show that there is a rigorous mathematical way of saying "etc."

(a) A set A of real numbers is called inductive if

(1) 1 is in A,

(2) k + 1 is in A whenever k is in A.

Prove that

(b)

(i) R is inductive.

(ii) The set of positive real numbers is inductive.

(iii) The set of positive real numbers unequal to A is inductive.

(iv) The set of positive real numbers unequal to 5 is not inductive.

(v) If A and B are inductive, then the set C of real numbers which

are in both A and B is also inductive.

A real number n will be called a natural number if n is in every inductive

set.

I I ( , I RE

(i) Prove that 1 is a natural number.

(ii) Prove that k + 1 is a natural number if k is a natural number.

26. There is a puzzle consisting of three spindles, with n concentric rings of

decreasing diameter stacked on the first (Figure 1). A ring at the top oi a

stack may be moved from one spindle to another spindle, provided that it

is not placed on top of a smaller ring. For example, if the smallest ring is

moved to spindle 2 and the next-smallest ring is moved to spindle 3, then

the smallest ring may be moved to spindle 3 also, on top of the next-smallest.

Prove that the entire stack of n rings can be moved onto spindle 3 in 2" — 1

moves, and that this cannot be done in fewer than 2" — 1 moves.
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*27. University B. once boasted 17 tenured professors of mathematics. Tradi-

tion prescribed that at their weekly luncheon meeting, faithfully attended by

all 17, any members who had discovered an error in their published work

should make an announcement of this fact, and promptly resign. Such an an-

nouncement had never actually been made, because no professor was aware

of any errors in her or his work. This is not to say that no errors existed,

however. In fact, over the years, in the work of every member of the de-

partment at least one error had been found, by some other member of the

department. This error had been mentioned to all other members of the

department, but the actual author of the error had been kept ignorant of the

fact, to forestall any resignations.

One fateful year, the department was augmented by a visitor from another

university, one Prof. X, who had come with hopes of being offered a perma-

nent position at the end of the academic year. Naturally, he was apprised, by

various members of the department, of the published errors which had been

discovered. When the hoped-for appointment failed to materialize, Prof. X
obtained his revenge at the last luncheon of the year. "I have enjoyed my visit

here very much," he said, "but I feel that there is one thing that I have to tell

you. At least one of you has published an incorrect result, which has been

discovered by others in the department." What happened the next year?

**28. After figuring out, or looking up, the answer to Problem 27, consider the fol-

lowing: Each member of the department already knew what Prof. X asserted,

so how could his saying it change anything?
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The statement is so frequently made

that the differential calculus deals with

continuous magnitude, andyet

an explanation of this continuity is

nowhere given;

even the most rigorous expositions

of the differential calculus do not base

their proofs upon continuity but,

with more or less consciousness of thefact,

they either appeal to geometric notions

or those suggested by geometry,

or depend upon theorems which are never

established in a purely arithmetic manner.

Among these, for example,

belongs the above-mentioned theorem,

and a more careful investigation

convinced me that this theorem, or

any one equivalent to it, can be regarded

in some way as a sufficient basis

for infinitesimal analysis.

It then only remained to discover its true

origin in the elements of arithmetic

and thus at the same time

to secure a real definition of

the essence of continuity.

I succeeded Nov. 24, 1858, and

afew days afterward I communicated

the results

ofmy meditations to my dearfriend

Durege with whom I had a long

and lively discussion.

RICHARD DEDEKIND



CHAPTER FUNCTIONS

Undoubtedly the most important concept in all of mathematics is that of a

function—in almost every branch of modern mathematics functions turn out to

be the central objects of investigation. It will therefore probably not surprise you

to learn that the concept of a function is one of great generality. Perhaps it will

be a relief to learn that, for the present, we will be able to restrict our attention to

functions of a very special kind; even this small class of functions will exhibit suffi-

cient variety to engage our attention for quite some time. We will not even begin

with a proper definition. For the moment a provisional definition will enable us to

discuss functions at length, and will illustrate the intuitive notion of functions, as

understood by mathematicians. Later, we will consider and discuss the advantages

of the modern mathematical definition. Let us therefore begin with the following:

PROVISIONAL DEFINITION A function is a rule which assigns, to each of certain real numbers, some other real

number.

The following examples of functions are meant to illustrate and amplify this defi-

nition, which, admittedly, requires some such clarification.

Example 1 The rule which assigns to each number the square of that number.

Example 2 The rule which assigns to each number y the number

y
3 + 3y + 5

y
2 +l

•

Example 3 The rule which assigns to each number c^ 1,-1 the number

c
3 + 3c + 5

c2 -l '

Example 4 The rule which assigns to each number x satisfying —17 < x < tt/3

the number x .

Example 5 The rule which assigns to each number a the number if a is

irrational, and the number 1 if a is rational.

Example 6 The rule which assigns

to 2 the number 5,

to 17 the number
36

TV

39



40 Foundations

TV

to — the number 28,

36
to — the number 28,

and to any y ^ 2, 17, jt~/\7, or 36/tt, the number 16 if y is of the form a + bv2
for a, b in Q.

Example 7 The rule which assigns to each number t the number /
3 + a\ (This

rule depends, of course, on what the number x is, so we are really describing

infinitely many different functions, one for each number x
.)

Example 8 The rule which assigns to each number z the number of 7's in the

decimal expansion of z, if this number is finite, and —n if there are infinitely many
7's in the decimal expansion of z.

One thing should be abundantly clear from these examples—a function is any

rule that assigns numbers to certain other numbers, not just a rule which can

be expressed by an algebraic formula, or even by one uniform condition which

applies to every number; nor is it necessarily a rule which you, or anybody else,

can actually apply in practice (no one knows, for example, what rule 8 associates

to 7r). Moreover, the rule may neglect some numbers and it may not even be clear

to which numbers the function applies (try to determine, for example, whether the

function in Example 6 applies to it). The set of numbers to which a function does

apply is called the domain of the function.

Before saying anything else about functions we badly need some notation. Since

throughout this book we shall frequently be talking about functions (indeed we shall

hardly ever talk about anything else) we need a convenient way of naming func-

tions, and of referring to functions in general. The standard practice is to denote

a function by a letter. For obvious reasons the letter "/" is a favorite, thereby

making "g" and "h" other obvious candidates, but any letter (or any reasonable

symbol, for that matter) will do, not excluding "x" and "y", although these letters

are usually reserved for indicating numbers. If / is a function, then the number

which / associates to a number x is denoted by f(x)—this symbol is read "/ of

x" and is often called the value of/ at*. Naturally, if we denote a function by x,

some other letter must be chosen to denote the number (a perfectly legitimate,

though perverse, choice would be "/," leading to the symbol x(f)). Note that the

symbol f(x) makes sense only for x in the domain of /; for other x the symbol

f(x) is not defined.

If the functions defined in Examples 1 8 are denoted by /, g, /?, r, .v, #, ax ,

and y, then we can rewrite their definitions as follows:

(1) f(x)=x 2
for all x.

(2) g(y) = y—— for all y.

y
L + 1

c3 + 3c + 5
(3) h(c) = - —~ — for all c # 1, -1.

cL — 1
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(4) r(x) = x 1
for all x such that -17 < x < tt/3.

(5) s(x) =

(6) 9(x) =

0, x irrational

1, x rational.

5, x=2
36

x= 17
77

28,

i
71

•r =
T7

28,
36

71

16. x ^ 2, r,
71 36

, or — , and x — a + b\/2 for a, b in Q_.
7T

(7) ax (t) = t + x for all numbers ?.

(8) v(a-) =
77, exactly t? 7's appear in the decimal expansion of x

—7T, infinitely many 7's appear in the decimal expansion of x.

These definitions illustrate the common procedure adopted for defining a func-

tion /—indicating what f(x) is for every number x in the domain of /. (Notice

that this is exactly the same as indicating f(a) for every number a, or f(b) for ev-

ery number b, etc.) In practice, certain abbreviations are tolerated. Definition (1)

could be written simple

(1) f(x) = x 2

the qualifying phrase "for all x" being understood. Of course, for definition (4)

the only possible abbreviation is

(4) r(x)=x 2
,

-17<a<tt/3.

It is usually understood that a definition such as

k(x) =
I

1

-v ^ 0, 1

can be shortened to

1 1

*(*) = -+- —

;

x x — 1

in other words, unless the domain is explicitly restrictedfurther, it is understood to consist of

all numbersfor which the definition makes any sense at all.

You should have little difficulty checking the following assertions about the func-

tions defined above:

/(* + 1) = /(*) + 2x + 1;

g(x) = h(x)i£ jc
3 + 3* + 5 = 0;

r(x +[) = r(x) + 2x + 1 if -17 < x < ^ - 1;
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s{x + y) = six) if y is rational;

-G) -MS)--
If the expression /(5(a)) looks unreasonable to you, then you are forgetting that

s{a) is a number like any other number, so that f{s{a)) makes sense. As a matter

of fact, f(s(a)) = s(a) for all a. Why? Even more complicated expressions than

f(s(a)) are, after a first exposure, no more difficult to unravel. The expression

/(r(s(0(a3
(j(i)))))),

formidable as it appears, may be evaluated quite easily with a little patience:

f(r(s(e(a3 (yQ))))))

= /(r(j(0(a3 (O))j))

= /(r(*(0(3))))

= /(r(j(16)))

= /(r(D)

= /(D
= 1.

The first few problems at the end of this chapter give further practice manipulating

this symbolism.

The function defined in (1) is a rather special example of an extremely impor-

tant class of functions, the polynomial functions. A function / is a polynomial

function if there are real numbers flo? • • • > an such that

fix) = anx + a
;
,_]A'"~ + • • • + ajx" + a\x + ao, for all x

(when f(x) is written in this form it is usually tacitly assumed that a„ ^ 0). The

highest power of x with a nonzero coefficient is called the degree of /; for

example, the polynomial function / defined by fix) = 5x + 137a — tt has

degree 6.

The functions defined in (2) and (3) belong to a somewhat larger class of func-

tions, the rational functions; these are the functions of the form p/q where p
and q are polynomial functions (and q is not the function which is always 0). The

rational functions are themselves quite special examples of an even larger class of

functions, very thoroughly studied in calculus, which are simpler than many ofthe

functions first mentioned in this chapter. The following are examples of this kind

of function:

(9)

1 2 1 -2
X + A" + x sin A

f(r\ —J \x ) — . .2
\ sin a + a sin a

(10) fix) = sin (a
2
).

(11) fix) = sin(sin(A )).
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. 2 • -2 -22 • /-* + sin(jc sinx)
(12) /(jc) = sin (sin (sin (x sin x ))) • sin :

\ jc + sin x

By what criterion, you may feel impelled to ask, can such functions, especially a

monstrosity like (12), be considered simple? The answer is that they can be built

up from a few simple functions using a few simple means of combining functions.

In order to construct the functions (9)—(12) we need to start with the "identity

function" Z, for which I(x) — x, and the "sine function" sin, whose value sin(jc) at

x is often written simple sin x . The following are some of the important ways in

which functions may be combined to produce new functions.

If / and g are any two functions, we can define a new function f + g, called

the sum of / and g, by the equation

(f + g)(x) = f(x) + g(x).

Note that according to the conventions we have adopted, the domain of / + g

consists of all x for which "fix) + gix)" makes sense, i.e., the set of all x in both

domain / and domain g. If A and B are any two sets, then A D B (read "A

intersect 5" or "the intersection of A and B") denotes the set of x in both A

and B; this notation allows us to write domain (/ + g) = domain / Pi domain g.

f
In a similar vein, we define the product / • g and the quotient — (or f/g) of

8

f and g by

(/ • g)(x) = f(x) • gix)

^«= /w
and

(£\™ =
g(x)

Moreover, if g is a function and c is a number, we define a new function c g by

(c g)(x) = c g(x).

This becomes a special case of the notation / • g if we agree that the symbol c

should also represent the function / defined by fix) = c; such a function, which

has the same value for all numbers x , is called a constant function.

The domain of / • g is domain / D domain g, and the domain of c g is simply

the domain of g. On the other hand, the domain of f/g is rather complicated—it

may be written domain / D domain g D {x : gix) ^ 0}, the symbol {x : gix) ^ 0}

denoting the set of numbers x such that gix) / 0. In general, {x : . .
.

} denotes

the set of all jc such that " ..." is true. Thus {x : x +3 < 11} denotes the set of

all numbers x such that x~ < 8, and consequently [x : x +3 < 11} = {x : x < 2}.

Either of these symbols could just as well have been written using y everywhere

instead of x. Variations of this notation are common, but hardly require any

discussion. Any one can guess that {x > : jt
3 < 8} denotes the set of positive

numbers whose cube is less than 8; it could be expressed more formally as {jc :

x > and x 3 < 8}. Incidentally, this set is equal to the set {x : < jc < 2}. One
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variation is slightly less transparent, but very standard. The set {1,3,2,4}, for

example, contains just the four numbers 1, 2, 3, and 4; it can also be denoted by

{.v : x = 1 or x = 3 or x = 2 or x = 4}.

Certain facts about the sum, product, and quotient of functions are obvious con-

sequences of facts about sums, products, and quotients of numbers. For example,

it is very easy to prove that

(f + g) + h =f + (g + h).

The proof is characteristic of almost every proof which demonstrates that two

functions are equal—the two functions must be shown to have the same domain,

and the same value at any number in the domain. For example, to prove that

(f + g) + h = f + (g+ h), note that unraveling the definition of the two sides gives

[(/ + g) + h](x) = (f + g)(x) + h{x)

= [f(x) + g(x)]+h(x)

and

[/ + (g + h)](x) = fix) + (g + h)(x)

= f(x)+[g(x) + h(x)],

and the equality of [f(x) + g(x)] + h{x) and f(x) + [g(x) + h(x)] is a fact about

numbers. In this proof the equality of the two domains was not explicitly men-

tioned because this is obvious, as soon as we begin to write down these equations;

the domain of (/ + g) + It and of / + (g + h) is clearly domain / Pi domain g (1

domain h. We naturally write / + g + h for (/ + g) + h — f + (g + /?), precisely

as we did for numbers.

It is just as easy to prove that (/ • g) h = / • (g h), and this function is denoted

by / • g - h. The equations f + g = g + f and f • g = g • f should also present

no difficulty.

Using the operations +, • , / we can now express the function f defined in (9)

by

/ + /•/ + /• sin • sin

/= : : : •

/ sin +/ • sin • sin

It should be clear, however, that we cannot express function (10) this way. We re-

quire yet another way of combining functions. This combination, the composition

of two functions, is by far the most important.

If / and g are any two functions, we define a new function / o g, the compo-
sition of / and g, by

(fog)(x) = f(g(x)):

the domain of fog is {x : a
-

is in domain g and g(x) is in domain /}. The symbol

"fog" is often read "/ circle g." Compared to the phrase "the composition of /
and g" this has the advantage of brevity, of course, but there is another advantage

of far greater import: there is much less chance of confusing /' g with go/, and
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these must not be confused, since they are not usually equal; in fact, almost any /
and g chosen at random will illustrate this point (try f = I I and g — sin, for

example). Lest you become too apprehensive about the operation of composition,

let us hasten to point out that composition is associative:

(fog) oh = /o (g oh)

(and the proof is a triviality); this function is denoted by f o g o h. We can now
write the functions (10), (1 1), (12) as

(10) / = sin o (/•/),

(11) / = sin o sin o (/ • /),

(12) / = (sin • sin) o sin o (sin • sin) o (/ • [(sin • sin) o (/ • /)]) •

/ + sin o (/ • sin)
sin o

/ + sin

One fact has probably already become clear. Although this method of writing

functions reveals their "structure" very clearly, it is hardly short or convenient. The

shortest name for the function / such that fix) = sin(jc ) for all x unfortunately

seems to be "the function / such that f(x) = sin(x
2
) for all x" The need for

abbreviating this clumsy description has been clear for two hundred years, but no

reasonable abbreviation has received universal acclaim. At present the strongest

contender for this honor is something like

x -» sin(x )

(read "x goes to sin(x
2)" or just "x arrow sin(x

2
)"), but it is hardly popular among

writers of calculus textbooks. In this book we will tolerate a certain amount of

ellipsis, and speak of "the function f(x) — sin(jc )." Even more popular is the

quite drastic abbreviation: "the function sin(jc )." For the sake of precision we

will never use this description, which, strictly speaking, confuses a number and

a function, but it is so convenient that you will probably end up adopting it for

personal use. As with any convention, utility is the motivating factor, and this

criterion is reasonable so long as the slight logical deficiencies cause no confusion.

On occasion, confusion will arise unless a more precise description is used. For

example, "the function x + /
3 " is an ambiguous phrase; it could mean either

J T

x — x + t , i.e., the function / such that f(x) = x + r for all x

or

t -> x + 1
3

, i.e., the function / such that f(t)=x + t
3
for all t.

As we shall see, however, for many important concepts associated with functions,

calculus has a notation which contains the "jc —>" built in.

By now we have made a sufficiently extensive investigation of functions to war-

rant reconsidering our definition. We have defined a function as a "rule," but it is

hardly clear what this means. If we ask "What happens if you break this rule?" it

is not easy to say whether this question is merely facetious or actually profound.
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A more substantial objection to the use of the word "rule" is that

f(x)=x 2

and

f(x) =jc 2 + 3a- + 3-3(jc + 1)

are certainly different rules, if by a rule we mean the actual instructions given for

determining f(x); nevertheless, we want

and

f(x) = x
2

/(jt) = jc
2 + 3* + 3 - c(* + 1)

to define the same function. For this reason, a function is sometimes defined as an

"association" between numbers; unfortunately the word "association" escapes the

objections raised against "rule" only because it is even more vague.

There is, of course, a satisfactory way of defining functions, or we should never

have gone to the trouble of criticizing our original definition. But a satisfactory

definition can never be constructed by finding synonyms for English words which

are troublesome. The definition which mathematicians have finally accepted for

"function" is a beautiful example of the means by which intuitive ideas have been

incorporated into rigorous mathematics. The correct question to ask about a

function is not "What is a rule?" or "What is an association?" but "What does

one have to know about a function in order to know all about it?" The answer to

the last question is easy—for each number x one needs to know the number fix);

we can imagine a table which would display all the information one could desire

about the function f(x) = x :

x fix)

1 1

-1 1

2 4

-2 4

s/2 2

-v/2 2

IX 7T
2

—n 71

It is not even necessary to arrange the numbers in a table (which would actually

be impossible if we wanted to list all of them). Instead of a two column array we

can consider various pairs of numbers

(1.1). (-1.1). (2.4). (-2.4). (it, it
2
), (72,2),...
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simply collected together into a set.* To find f{\) we simply take the second

number of the pair whose first member is 1; to find f(n) we take the second

number of the pair whose first member is 7r . We seem to be saying that a function

might as well be defined as a collection of pairs of numbers. For example, if we
were given the following collection (which contains just 5 pairs):

/ = {(1,7), (3,7), (5,3), (4,8), (8,4)},

then f(\) = 7, /(3) = 7, /(5) = 3, /(4) = 8, /(8) = 4 and 1,3, 4, 5, 8 are the

only numbers in the domain of /. If we consider the collection

/ = {(1,7), (3,7), (2,5), (1,8), (8,4)},

then /(3) = 7, /(2) = 5, /(8) = 4; but it is impossible to decide whether /(l) = 7

or f{\) — 8. In other words, a function cannot be defined to be any old collection

of pairs of numbers; we must rule out the possibility which arose in this case. We
are therefore led to the following definition.

DEFINITION A function is a collection of pairs of numbers with the following property: if

(a,b) and (a,c) are both in the collection, then b = c; in other words, the

collection must not contain two different pairs with the same first element.

This is our first full-fledged definition, and illustrates the format we shall always

use to define significant new concepts. These definitions are so important (at

least as important as theorems) that it is essential to know when one is actually

at hand, and to distinguish them from comments, motivating remarks, and casual

explanations. They will be preceded by the word DEFINITION, contain the term

being defined in boldface letters, and constitute a paragraph unto themselves.

There is one more definition (actually defining two things at once) which can

now be made rigorously:

DEFINITION If / is a function, the domain of / is the set of all a for which there is some b

such that (a, b) is in /. If a is in the domain of /, it follows from the definition

of a function that there is, in fact, a unique number b such that (a,b) is in /.

This unique b is denoted by f{a).

With this definition we have reached our goal: the important thing about a

function / is that a number f(x) is determined for each number x in its domain.

You may feel that we have also reached the point where an intuitive definition has

been replaced by an abstraction with which the mind can hardly grapple. Two
consolations may be offered. First, although a function has been defined as a

*The pairs occurring here are often called "ordered pairs," to emphasize that, for example, (2. 4) is

not the same pair as (4, 2). It is only fair to warn that we are going to define functions in terms of

ordered pairs, another undefined term. ( )rdered pairs can be defined, however, and an appendix t< i

this chapter has been provided lor skeptics.
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collection of pairs, there is nothing to stop you from thinking of a function as a

rule. Second, neither the intuitive nor the formal definition indicates the best way
of thinking about functions. The best way is to draw pictures; but this requires a

chapter all by itself

PROBLEMS

1. Let /(*)= 1/(1+ x). What is

(i) f(f(x)) (for which x does this make sense?).

«> 'G
(iii) f(cx).

(iv) f(x+y).
(v) /(x) + /(y).

(vi) For which numbers c is there a number jt such that f(cx) = f(x).

Hint: There are a lot more than you might think at first glance.

(vii) For which numbers c is it true that f(cx) = f(x) for two different

numbers x?

2. Let g(x) = x , and let

0, x rational

*«-!, x irrational.

(i) For which v is /z(v) < y?

(ii) For which y is /?(y) < g(y)?

(iii) What is g(A(z)) - Mz)?
(iv) For which w is g(u;) < if?

(v) For which e is g(g(e)) = g(£)?

3. Find the domain of the functions defined by the following formulas.

f(x) = yi-.v 2
.

(ii) /(.v) = Vl-\/l-* 2
.

(iii) /(x)=
:r + «•

x — 1 x — z

iv f(x)= y
7

! -.v 2 + v/x
2 -l.

(v) /(jc) = >/l - .v + v/jc - 2.

Let S(x) = x 2
, let P(x) = 2 V

, and let s(jc) = sin*. Find each of the following.

In each case you answer should be a number.

(i) (SoP)(y).

(ii) (So S )(y).

(iii) (SoPo S )(t) + (soP)(t).

(iv) s(t
3
).

Express each of the following functions in terms of S, P, S, using only

+, • , and o (for example, the answer to (i) is P o s). In each case your



3. Functions 49

answer should be a. function.

> S1I I V
i) fix) = 2 s

ii) f{x) — sin2 v
.

iii) f(x) = sin a .

iv) /(a) = sin a (remember that sin a is an abbreviation for (sin*) ).

v) /(/) = 22
. (Note: a h ' always means a (i)

;
this convention is adopted

because (a
b
)
c can be written more simply as a bc

.)

vi) f{u) =sin(2" +2" 2

).

vii) f{y) = sin (sin (sin (2
2 ~

))).

viii) f(a) = 2 sin2 " + sin (a
2

) + 2sin(a2+sina)
.

Polynomial functions, because they are simple, yet flexible, occupy a favored

role in most investigations of functions. The following two problems illustrate their

flexibility, and guide you through a derivation of their most important elementary

properties.

6. (a) If x\, ... , x„ are distinct numbers, find a polynomial function /) of

degree n — 1 which is 1 at x, and at Xj for j ^ i. Hint: the product of

all (a — Xj) for j / /, is at Xj if j / / . (This product is usually denoted

by
n

Y\(x-Xj),

the symbol n (capital pi) playing the same role for products that E plays

for sums.)

(b) Now find a polynomial function / of degree n — 1 such that /(a,) = «,,

where a\, ... , an are given numbers. (You should use the functions

fi from part (a). The formula you will obtain is called the "Lagrange

interpolation formula.")

7. (a) Prove that for any polynomial function /, and any number a, there is a

polynomial function g, and a number b, such that f(x) = (a —a)g(x)+ b

for all a. (The idea is simply to divide (a — a) into f(x) by long division,

until a constant remainder is left. For example, the calculation

A 2 +A -2

A- \

V
),3

X 3 —x
-3a + 1

2A

A 2

-3a

—A

-2a+1
-2a + 2

-

1
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shows that x 3 — 3.v + 1 = (x — l)(x 2 + x — 2) — 1. A formal proof is

possible by induction on the degree of /.)

(b) Prove that if f(a) = 0, then f(x) = (x — a)g(A') for some polynomial

function g. (The converse is obvious.)

(c) Prove that if / is a polynomial function of degree n , then / has at most

n roots, i.e., there are at most n numbers a with f(a) = 0.

(d) Show that for each n there is a polynomial function of degree n with

n roots. If n is even find a polynomial function of degree n with no

roots, and if n is odd find one with only one root.

8. For which numbers a, b, c, and d will the function

ax + b

ex + d

satisfy /(/(*)) = x for all x (for which this equation makes sense)?

9. (a) If A is any set of real numbers, define a function C\ as follows:

1 . a in A
CA (x)-

(J, x not in A

.

Find expressions for Cahb and Caub and Cr.^, in terms of Ca and Cg.

(The symbol AC\ B was defined in this chapter, but the other two may
be new to you. They can be defined as follows:

A U B = {x : x is in A or x is in B},

R — A = {x : .v is in R but x is not in A}.)

(b) Suppose / is a function such that f(x) = or 1 for each x. Prove that

there is a set A such that f = Ca-

(c) Show that / = / if and only if / = Ca for some set A.

10. (a) For which functions / is there a function g such that f = g Hint: You

can certainly answer this question if "function" is replaced by "number."

(b) For which functions / is there a function g such that / = \/g?

(x(t))~ + b{t)x(t) + c(t) =

for all numbers t ?

*(d) What conditions must the functions a and b satisfy if there is to be a

function x such that

a(t)x(t) + b(t) =0

for all numbers t? How many such functions x will there be?

11. (a) Suppose that H is a function and v is a number such that H(H(y)) = v.

What is

H(H(H(-(H(y)-) ?

80 times
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(b) Same question if 80 is replaced by 8 1

.

(c) Same question if H{H{y)) = H{y).

*(d) Find a function H such that H{H{x)) = H{x) for all numbers x, and

such that H(l) = 36, H(2) = n/3, #(13) = 47, H(36) = 36, H(jc/3) =
7r/3, //(47) = 47. (Don't try to "solve" for H(x); there are many func-

tions // with H{H{x)) = H(x). The extra conditions on // are supposed

to suggest a way of finding a suitable //
.)

*(e) Find a function H such that H{H{x)) — H{x) for all x, and such that

H(\) = l, H(\l)= 18.

12. A function / is even if fix) = f(—x) and odd if /(x) = —/(—x). For

example, / is even if fix) = x or /(x) = |x| or /(x) = cosx, while / is

odd if fix) — x or fix) — sinx.

(a) Determine whether / + g is even, odd, or not necessarily either, in the

four cases obtained by choosing / even or odd, and g even or odd. (Your

answers can most conveniently be displayed in a 2 x 2 table.)

(b) Do the same for f • g.

(c) Do the same for fog.
(d) Prove that every even function / can be written fix) = g(|x|), for in-

finitely many functions g.

!

13. (a) Prove that any function / with domain R can be written / = E + O,

where E is even and O is odd.

(b) Prove that this way of writing / is unique. (If you try to do part (b) first,

by "solving" for E and O you will probably find the solution to part (a).)

14. If / is any function, define a new function |/| by |/|(x) = |/(x)|. If /
and g are functions, define two new functions, max(/, g) and min(/, g), by

max(/, g)(x) = max(/(x), g(x)),

min(/, g)(x) = min(/(x), g(x)).

Find an expression for max(/, g) and min(/, g) in terms of
|

|.

15. (a) Show that / = max(/, 0) + min(/, 0). This particular way of writing

/ is fairly useful; the functions max(/, 0) and min(/, 0) are called the

positive and negative parts of /.

(b) A function / is called nonnegative if fix) > for all x. Prove that any

function / can be written / = g — h, where g and h are nonnegative,

in infinitely many ways. (The "standard way" is g = max(/, 0) and h =
— min(/, 0).) Hint: Any number can certainly be written as the difference

of two nonnegative numbers in infinitely many ways.

'16. Suppose / satisfies fix + y) = fix) + f(y) for all x and y.

(a) Prove that /(xi +••• + *„) = /(jq) + ••• + /(*„).

(b) Prove that there is some number c such that f(x) = ex for all rational

numbers x (at this point we're not trying to say anything about fix) for

irrational x). Hint: First figure out what c must be. Now prove that
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fix) = ex, first when x is a natural number, then when x is an integer,

then when x is the reciprocal of an integer and, finally, for all rational jc .

"17. If f{x) = for all x, then / satisfies fix + y) = fix) + f(y) for all x and y,

and also fix y) = fix) fiy) for all x and y. Now suppose that / satisfies

these two properties, but that fix) is not always 0. Prove that fix) = x for

all x, as follows:

(a) Prove that /(l) = 1.

(b) Prove that fix) — x if x is rational.

(c) Prove that fix) > if x > 0. (This part is tricky, but if you have

been paying attention to the philosophical remarks accompanying the

problems in the last two chapters, you will know what to do.)

(d) Prove that fix) > fiy) if x > y.

(e) Prove that fix) = x for all x. Hint: Use the fact that between any two

numbers there is a rational number.

"18. Precisely what conditions must f,g,h, and k satisfy in order that f(x)giy) =
hix)kiy) for all x and y?

"19. (a) Prove that there do not exist functions / and g with either ofthe following

properties:

(i) f(x) + giy) = xy for all x and y.

(ii) fix) giy) = x + y for all x and y.

Hint: Try to get some information about / or g by choosing particular

values of x and y.

(b) Find functions / and g such that fix + y) = gixy) for all x and y.

"20. (a) Find a function /, other than a constant function, such that \fiy)
—

fix)\<\y-x\.
(b) Suppose that fiy) — fix) < iy — x) 2

for all x and y. (Why does this

imply that \fiy) — fix)\ < iy — x) 2
?) Prove that / is a constant function.

Hint: Divide the interval from x to y into n equal pieces.

21. Prove or give a counterexample for each of the following assertions:

(a) fo(g + h) = fog + foh.
(b) ig + h)of = gof + hof.

(c) 7— = 7°^
f °g f

(d) -— = /° -
f°g \8

22. (a) Suppose g = h o /. Prove that if fix) — fiy). then g(x) = giy).

(b) Conversely, suppose that / and g are two functions such that gix) = giy

)

whenever fix) = fiy). Prove that g = h o f for some function //. Hint:

Just try to define hiz) when z is of the form z = fix) (these arc the only z

that matter) and use the hypotheses to show that your definition will not

run into trouble.
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23. Suppose that / o g = /, where I(x) = x. Prove that

(a) if x ^ y, then g(x) ^ g(y);

(b) every number b can be written b — f(a) for some number a.

*24. (a) Suppose g is a function with the property that g(x) ^ g(y) if x ^ y.

Prove that there is a function / such that / o g = I

.

(b) Suppose that / is a function such that every number b can be written

b — f(a) for some number a. Prove that there is a function g such that

fog = I.

*25. Find a function / such that g o f = I for some g, but such that there is no

function h with f o h = I

.

*26. Suppose / o g = I and h o f = I. Prove that g = h. Hint: Use the fact that

composition is associative.

27. (a) Suppose f(x ) = x + 1. Are there any functions g such that fog = go f?
(b) Suppose / is a constant function. For which functions g does / o g =

8 of?
(c) Suppose that fog = go f for all functions g. Show that / is the identity

function, f(x) = x.

28. (a) Let F be the set of all functions whose domain is R. Prove that, using +
and • as defined in this chapter, all of properties PI—P9 except P7 hold

for F, provided and 1 are interpreted as constant functions.

(b) Show that P7 does not hold.

*(c) Show that P10-P12 cannot hold. In other words, show that there is

no collection P of functions in F, such that P10-P12 hold for P. (It is

sufficient, and will simplify things, to consider only functions which are

except at two points *o and jci.)

(d) Suppose we define / < g to mean that f(x) < g(x) for all x. Which of

P'IO-P'13 (in Problem 1-8) now hold?

(e) If / < g, is h o f < h o g ? Is / o h < g o h ?
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APPENDIX. ORDERED PAIRS

Not only in the definition of a function, but in other parts of the book as well,

it is necessary to use the notion of an ordered pair of objects. A definition has

not yet been given, and we have never even stated explicitly what properties an

ordered pair is supposed to have. The one property which we will require states

formally that the ordered pair {a, b) should be determined by a and b, and the

order in which they are given:

if (a, b) = (c, d), then a = c and b = d.

Ordered pairs may be treated most conveniently by simply introducing {a , b)

as an undefined term and adopting the basic property as an axiom—since this

property is the only significant fact about ordered pairs, there is not much point

worrying about what an ordered pair "really" is. Those who find this treatment

satisfactory need read no further.

The rest of this short appendix is for the benefit of those readers who will feel

uncomfortable unless ordered pairs are somehow defined so that this basic property

becomes a theorem. There is no point in restricting our attention to ordered pairs

of numbers; it is just as reasonable, and just as important, to have available the

notion of an ordered pair of any two mathematical objects. This means that our

definition ought to involve only concepts common to all branches of mathematics.

The one common concept which pervades all areas of mathematics is that of a

set, and ordered pairs (like everything else in mathematics) can be defined in this

context; an ordered pair will turn out to be a set of a rather special sort.

The set {a,b}, containing the two elements a and b, is an obvious first choice,

but will not do as a definition for (a,b), because there is no way of determining

from {a, b} which of a or b is meant to be the first element. A more promising

candidate is the rather startling set:

{{a},{a,b}}.

This set has two members, both of which are themselves sets; one member is the set

{a}, containing the single member a, the other is the set {«, b}. Shocking as it may
seem, we are going to define (a, b) to be this set. The justification for this choice is

given by the theorem immediately following the definition—the definition works,

and there really isn't anything else worth saying.

DEFINITION (a, 6) = {{«}, {«,*}}.

theorem l II' (a, b) — (c, d), then a — c and b = d.

PROOF The hypothesis means thai

{{a}, [a,b}} = {{c], {c.d}}.

Now {{<-/}, {aJ>}} contains just two members, {a} and {a.b}; and a is the only

common element of these two members of
{
{a}, {a, b} }. Similarly, c is the unique
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common member of both members of { {<?}, {c, d) }. Therefore a = c. We there-

fore have

{{a}, {a,b}} = {{a}, {a,d}},

and only the proof that b = d remains. It is convenient to distinguish 2 cases.

Case 1. b = a. In this case, {a,b} = {a}, so the set {
{a}, {a, b] } really has only one

member, namely, {a}. The same must be true of {{a}, {a, d}}, so {a,d\ = {a},

which implies that d — a — b.

Case 2. b ^ a. In this case, b is in one member of
{ {a}, {a, b} } but not in the

other. It must therefore be true that b is in one member of { {a}, {a, d) } but not

in the other. This can happen only if b is in {a, d}, but b is not in {a}; thus b = a

or b — d, but b ^ a; so b = d. |



CHAPTER GRAPHS

Mention the real numbers to a mathematician and the image of a straight line will

probably form in her mind, quite involuntarily. And most likely she will neither

banish nor too eagerly embrace this mental picture of the real numbers. "Geomet-

ric intuition" will allow her to interpret statements about numbers in terms of this

picture, and may even suggest methods of proving them. Although the properties

of the real numbers which were studied in Part I are not greatly illuminated by a

geometric picture, such an interpretation will be a great aid in Part II.

You are probably already familiar with the conventional method of considering

_, i | |
|

,_ the straight line as a picture of the real numbers, i.e., of associating to each real

-1 \ 1 2 3 number a point on a line. To do this (Figure 1) we pick, arbitrarily, a point which

FIGUR1 |

we label 0, and a point to the right, which we label 1. The point twice as far to

the right is labeled 2, the point the same distance from to 1, but to the left of 0,

is labeled — 1, etc. With this arrangement, if a < b, then the point corresponding

to a lies to the left of the point corresponding to b. We can also draw rational

numbers, such as ^, in the obvious way. It is usually taken for granted that the

irrational numbers also somehow fit into this scheme, so that every real number

can be drawn as a point on the line. We will not make too much fuss about

justifying this assumption, since this method of "drawing" numbers is intended

solely as a method of picturing certain abstract ideas, and our proofs will never

rely on these pictures (although we will frequently use a picture to suggest or help

explain a proof). Because this geometric picture plays such a prominent, albeit

inessential role, geometric terminology is frequently employed when speaking of

numbers—thus a number is sometimes called a point, and R is often called the

real line.

The number \a—b\ has a simple interpretation in terms of this geometric picture:

it is the distance between a and b, the length of the line segment which has a as one

end point and b as the other. This means, to choose an example whose frequent

occurrence justifies special consideration, that the set of numbers x which satisfy

\x — a\ < s may be pictured as the collection of points whose distance from a is

less than s. This set of points is the "interval" from a — e to a + e, which may also

be described as the points corresponding to numbers x with a — s < x < a + s

(Figure 2).

Sets of numbers which correspond to intervals arise so frequently that it is desir-

able to have special names for them. The set {x : a < x < b) is denoted by (a, b)

and called the open interval from a to b. This notation naturally creates some

ambiguity, since (a, b) is also used to denote a pair ofnumbers, but in context it is

always clear (or can easily be made clear) whether one is talking about a pair or

an interval. Note that if a > b, then (a,b) = 0, the set with no elements; in prac-

56
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the open interval (a, b) the closed interval [a, b]

a
")

the interval (—00, a)

the interval (a, 00)

the interval (—00, a]

the interval [a, 00)

FKJURE 3

(0, b) (a,b)
1 -f

1

(-1.1).
1

.(l.D
1

|

, 1

(0, 0) (a, 0)

(-I.-!)' •(1.-1)

FIGURE 4

fix) = 1

fix)

FIGURE 5

fix)

fix)=x
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tice, however, it is almost always assumed (explicitly if one has been careful, and

implicitly otherwise), that whenever an interval ia, b) is mentioned, the number a

is less than b.

The set {x : a < x < b) is denoted by [a, b] and is called the closed interval

from a to b. This symbol is usually reserved for the case a < b, but it is sometimes

used for a = b, also. The usual pictures for the intervals (a, b) and [a, b] are shown

in Figure 3; since no reasonably accurate picture could ever indicate the difference

between the two intervals, various conventions have been adopted. Figure 3 also

shows certain "infinite" intervals. The set {x : x > a} is denoted by (a, 00),

while the set {x : x > a} is denoted by [a, 00); the sets (—00, a) and (—00, a] are

defined similarly. At this point a standard warning must be issued: the symbols 00

and —00, though usually read "infinity" and "minus infinity," art purely suggestive;

there is no number "00" which satisfies 00 > a for all numbers a. While the

symbols 00 and —00 will appear in many contexts, it is always necessary to define

these uses in ways that refer only to numbers. The set R of all real numbers is

also considered to be an "interval," and is sometimes denoted by (—00, 00).

Of even greater interest to us than the method of drawing numbers is a method

of drawing pairs of numbers. This procedure, probably also familiar to you, re-

quires a "coordinate system," two straight lines intersecting at right angles. To

distinguish these straight lines, we call one the horizontal axis, and one the vertical

axis. (More prosaic terminology, such as the "first" and "second" axes, is probably

preferable from a logical point of view, but most people hold their books, or at

least their blackboards, in the same way, so that "horizontal" and "vertical" are

more descriptive.) Each of the two axes could be labeled with real numbers, but

we can also label points on the horizontal axis with pairs (a , 0) and points on the

vertical axis with pairs (0, /?), so that the intersection of the two axes, the "origin"

of the coordinate system, is labeled (0, 0). Any pair ia, b) can now be drawn as

in Figure 4, lying at the vertex of the rectangle whose other three vertices are la-

beled (0, 0), (a, 0), and (0, b). The numbers a and b are called the first and second

coordinates, respectively, of the point determined in this way.

Our real concern, let us recall, is a method of drawing functions. Since a func-

tion is just a collection of pairs of numbers, we can draw a function by drawing

each of the pairs in the function. The drawing obtained in this way is called the

graph of the function. In other words, the graph of / contains all the points cor-

responding to pairs ix, fix)). Since most functions contain infinitely many pairs,

drawing the graph promises to be a laborious undertaking, but, in fact, many
functions have graphs which are quite easy to draw.

Not surprisingly, the simplest functions of all, the constant functions fix) = c,

have the simplest graphs. It is easy to see that the graph of the function fix) = c

is a straight line parallel to the horizontal axis, at distance c from it (Figure 5).

The functions fix) — ex also have particularly simple graphs straight lines

through (0, 0), as in Figure 6. A proof of this fact is indicated in Figure 7:
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(x, ex)

FIGURE 7

ia,b)

length c — a

FIGURE 8

Let x be some number not equal to 0, and let L be the straight line which passes

through the origin O, corresponding to (0,0), and through the point A, corre-

sponding to (x,cx). A point A', with first coordinate y, will lie on L when the

triangle A'BO is similar to the triangle ABO, thus when

A'B' AB
OB' OB

= c;

FIG 1 RE 9

this is precisely the condition that A' corresponds to the pair (y, cy), i.e., that A'

lies on the graph of /. The argument has implicitly assumed that c > 0, but the

other cases are treated easily enough. The number c, which measures the ratio of

the sides of the triangles appearing in the proof, is called the slope of the straight

line, and a line parallel to this line is also said to have slope c.

This demonstration has neither been labeled nor treated as a formal proof.

Indeed, a rigorous demonstration would necessitate a digression which we are

not at all prepared to follow. The rigorous proof of any statement connecting

geometric and algebraic concepts would first require a real proof (or a precisely

stated assumption) that the points on a straight line correspond in an exact way

to the real numbers. Aside from this, it would be necessary to develop plane

d-b geometry as precisely as we intend to develop the properties of real numbers.

Now the detailed development ofplane geometry is a beautiful subject, but it is by

no means a prerequisite for the study of calculus. We shall use geometric pictures

only as an aid to intuition; for our purposes (and for most of mathematics) it is

perfectly satisfactory to define the plane to be the set of all pairs of real numbers,

and to define straight lines as certain collections of pairs, including, among others,

the collections {(x , ex) : x 3. real number}. To provide this artificially constructed

geometry with all the structure of geometry studied in high school, one more

definition is required. If (a, b) and (c, d) are two points in the plane, i.e., pairs of

real numbers, we define the distance between (a, b) and (c, d) to be

y/(a-c) 2 + (b-d) 2
.

If the motivation for this definition is not clear, Figure 8 should serve as adequate

explanation—with this definition the Pythagorean theorem has been built into our

geometry*

Reverting once more to our informal geometric picture, it is not hard to see

(Figure 9) that the graph of the function f(x) = ex + d is a straight line

with slope c, passing through the point (0, d). For this reason, the functions

f{x) = ex + d are called linear functions. Simple as they are, linear func-

tions occur frequently, and yon should feel comfortable working with them. The

following is a typical problem whose solution should not cause any trouble. Given

two distinct points (a,b) and (c,d), find the linear function / whose graph goes

through (a, b) and (c, d). This amounts to saying that f(a) — b and /(c) = d. II

* The fastidious reader might object to this definition on the grounds that nonncgalive numbers

are nol yet known to have square roots. This objection is really unanswerable at the moment—the

del mil ion will just have to be accepted with reservations, until this little point is settled.
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/ is to be of the form f(x) = ax + /3, then we must have

therefore a = {d

fix)

b)/(c

d

aa + ft
= b,

ac + fi
= d\

a) and ft
= b - [{d

c — a

b d
—x+b

b d
—a = —

b)/(c

-b
c — a

a)]a, so

(x -a) + b,

FIGURE 10

a formula most easily remembered by using the "point-slope form" (see Problem 6).

Of course, this solution is possible only if a ^ c; the graphs of linear functions

account only for the straight lines which are not parallel to the vertical axis. The

vertical straight lines are not the graph of any function at all; in fact, the graph of a

function can never contain even two distinct points on the same vertical line. This

conclusion is immediate from the definition of a function—two points on the same

vertical line correspond to pairs of the form (a, b) and (a, c) and, by definition, a

function cannot contain (a, b) and (a, c) if b / c. Conversely, if a set of points in

the plane has the property that no two points lie on the same vertical line, then

it is surely the graph of a function. Thus, the first two sets in Figure 10 are not

graphs of functions and the last two are; notice that the fourth is the graph of a

function whose domain is not all of R, since some vertical lines have no points on

them at all.

After the linear functions the simplest is perhaps the function f(x) — x . If we

draw some of the pairs in /, i.e., some of the pairs of the form (x, x 2
), we obtain

a picture like Figure 1 1

.

(-1,1).

'(2,4)

'(§-!)

(1.1)

,'..
>

• <v*>

(0,0)

FKillRK I I
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FIGURE 12

It is not hard to convince yourself that all the pairs (x, x 2
) lie along a curve like

the one shown in Figure 12; this curve is known as a parabola.

Since a graph is just a drawing on paper, made (in this case) with printer's ink,

the question "Is this what the graph really looks like?" is hard to phrase in any

sensible manner. No drawing is ever really correct since the line has thickness.

Nevertheless, there are some questions which one can ask: for example, how can

you be sure that the graph does not look like one of the drawings in Figure 13?

It is easy to see, and even to prove, that the graph cannot look like (a); for if

< x < v, then x 2 < y
2

, so the graph should be higher at y than at x, which is

not the case in (a) . It is also easy to see, simply by drawing a very accurate graph,

first plotting many pairs (x, x ), that the graph cannot have a large "jump" as in (b)

or a "corner" as in (c). In order to prove these assertions, however, we first need

to say, in a mathematical way, what it means for a function not to have a "jump"

or "corner"; these ideas already involve some of the fundamental concepts of

calculus. Eventually we will be able to define them rigorously, but meanwhile you

may amuse yourself by attempting to define these concepts, and then examining

your definitions critically Later these definitions may be compared with the ones

mathematicians have agreed upon. If they compare favorably, you are certainly

to be congratulated!

The functions fix) = x", for various natural numbers n, are sometimes called

power functions. Their graphs are most easily compared as in Figure 14, by

drawing several at once.

The power functions are only special cases of polynomial functions, introduced

in the previous chapter. Two particular polynomial functions are graphed in

(b)

fix) = x

I I ( ,
I l< E 14
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/(x) = x 2 + X

f(x) = x 3 - 3x

FIGURE 15

Figure 15, while Figure 16 is meant to give a general idea of the graph of the

polynomial function

fix) anx" +a„_\x" H \- a ,

in the case an > 0.

In general, the graph of / will have at most n — \ "peaks" or "valleys" (a "peak"

is a point like (x, f(x)) in Figure 16, while a "valley" is a point like (y, f(y)). The

number of peaks and valleys may actually be much smaller (the power functions,

for example, have at most one valley). Although these assertions are easy to make,

we will not even contemplate giving proofs until Part III (once the powerful meth-

ods of Part III are available, the proofs will be very easy).

Figure 1 7 illustrates the graphs of several rational functions. The rational func-

tions exhibit even greater variety than the polynomial functions, but their behavior

will also be easy to analyze once we can use the derivative, the basic tool of Part III.

Many interesting graphs can be constructed by "piecing together" the graphs of

functions already studied. The graph in Figure 18 is made up entirely of straight

lines. The function / with this graph satisfies

/
n

n+\

f

f{x)=\.

n+\

> 1.

and is a linear function on each interval [\/(n + 1), 1/n] and [—1/n, —\/{n + 1)].

(The number is not in the domain of /.) Of course, one can write out an explicit

formula for f(x), when x is in [l/(n + 1), 1/n]; this is a good exercise in the use

of linear functions, and will also convince you that a picture is worth a thousand

words.

FIGURE 16
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/(*) =
l

/(*) =

/(*) =

(a) (b)

/(*) =

(d)

l+x 2

FIGURE 17

FIGURK 18
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It is actually possible to define, in a much simpler way, a function which exhibits

this same property of oscillating infinitely often near 0, by using the sine function,

which we will discuss in detail in Chapter 15. As usual, we are using radian

measure, so an angle of Itc means an angle "all the way around" a circle, an

angle of it an angle halfway around (or 180° in layman's terms), an angle of 7r/2

a right angle, etc.

The graph of the sine function is shown in Figure 19.

FIGURE 19

Now consider the function fix) — sin l/x. The graph of / is shown in Fig-

ure 20. To draw this graph it helps to first observe that

f(x) =

f{x)= 1

for .v =
1 1 1

for x = t:—

.

1 1

^77" t7T + Z7T ^JT + A-JT

1

f(x) = -1 for a- = —
,

3

1 1

' 3.

Notice that when x is large, so that \/x is small, fix) is also small; when x is

I k;i RE 20
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FIGURE 21

"large negative," that is, when |.v| is large for negative x, again f{x) is close to 0,

although fix) < 0.

An interesting modification of this function is f(x) = x sin l/x. The graph of

this function is sketched in Figure 2 1 . Since sin 1 jx oscillates infinitely often near

between 1 and — 1, the function fix) = x sin l/x oscillates infinitely often between

x and —x. The behavior of the graph for x large or large negative is harder to

9 • 1

/(*) = xL
sin -

FIGURE 2 2
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analyze. Since sin 1 /x is getting close to 0, while x is getting larger and larger, there

seems to be no telling what the product will do. It is possible to decide, but this is

another question that is best deferred to Part III. The graph of f(x) = x sin i/x

has also been illustrated (Figure 22).

For these infinitely oscillating functions, it is clear that the graph cannot hope to

be really "accurate." The best we can do is to show part of it, and leave out the

part near (which is the interesting part). Actually, it is easy to find much simpler

functions whose graphs cannot be "accurately" drawn. The graphs of

m-\ x: x < 1

x > 1

and g(x)
.2

X < 1

X > 1

can only be distinguished by some convention similar to that used for open and

closed intervals (Figure 23).

Out last example is a function whose graph is spectacularly nondrawable:

fix)
0,

1,

x irrational

x rational.

FIGURE 24

/(*) =
0,

x rational

x irrational

(x,y)

FIGURE 2 5

The graph of / must contain infinitely many points on the horizontal axis and

also infinitely many points on a line parallel to the horizontal axis, but it must not

contain either of these lines entirely. Figure 24 shows the usual textbook picture

of the graph. To distinguish the two parts of the graph, the dots are placed closer

together on the line corresponding to irrational x . (There is actually a mathemat-

ical reason behind this convention, but it depends on some sophisticated ideas,

introduced in Problems 21-5 and 21-6.)

The peculiarities exhibited by some functions are so engrossing that it is easy

to forget some of the simplest, and most important, subsets of the plane, which

are not the graphs of functions. The most important example of all is the circle.

A circle with center (a, b) and radius r > contains, by definition, all the points

(x, y) whose distance from (a, b) is equal to r. The circle thus consists (Figure 25)

of all points (x,y) with

^ a)
2 + (v -b) 2 = r

or

(jc - a)
2 + (y - b)

2
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The circle with center (0,0) and radius 1 , often regarded as a sort of standard copy,

is called the unit circle.

A close relative of the circle is the ellipse. This is defined as the set of points,

the sum of whose distances from two "focus" points is a constant. (When the two

foci are the same, we obtain a circle.) If, for convenience, the focus points are

taken to be (— c, 0) and (c, 0), and the sum of the distances is taken to be la (the

factor 2 simplifies some algebra), then (x, y) is on the ellipse if and only if

V(x-(-c)) 2 +y 2 + y/(x - c)
2 + y

2 = la

or

or

or

or

or

or

(̂x + c)
2 + y

2 =2a- y/(x - c)
2 + y

2

2 + lex + c
2 + y

2 = 4a 2 — 4a \/(x - c)
2 + y

2 + x
2 - lex + c

2 + y
2

,2„2

4(cx - a
2

) = -4a V(x - c)
2 + y

2

c
L
x
L — Icxa^ + a = a (x — lex + c + y )

/ 2 2\ 2 2 2 2/2 2\(c — fl )jc — a y~ = a (c — a )

= 1.11 2cr a- — cz

This is usually written simply

- + ^=1
a L bL

where b = v a 2 — c2 (since we must clearly choose a > c, it follows that

a 2 — c
2 > 0). A picture of an ellipse is shown in Figure 26. The ellipse inter-

sects the horizontal axis when y = 0, so that

= 1. ±a,

FKil'RK 26



FIGURE 27
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and it intersects the vertical axis when x = 0, so that

„2

b2
= 1, y = ±b.

The hyperbola is defined analogously, except that we require the difference of

the two distances to be constant. Choosing the points (— c, 0) and (c, 0) once

again, and the constant difference as 2a, we obtain, as the condition that (x, y)

be on the hyperbola,

A \^ 2
x + cy + y — v (x — cy + y = ±2a,

which may be simplified to

2 2 2a A a- — cA
= 1.

In this case, however, we must clearly choose c > a, so that a — c2 < 0. If

/? = vc2 — a 2
, then (x, y) is on the hyperbola if and only if

2 2

a 2 b2

The picture is shown in Figure 27. It contains two pieces, because the difference

between the distances of (x, y) from (— c, 0) and (c, 0) may be taken in two dif-

ferent orders. The hyperbola intersects the horizontal axis when y = 0, so that

x = ±a, but it never intersects the vertical axis.

It is interesting to compare (Figure 28) the hyperbola with a = b = v 2 and

the graph of the function f(x) — l/x. The drawings look quite similar, and

the two sets are actually identical, except for a rotation through an angle of 7r/4

(Problem 23).

Clearly no rotation of the plane will change circles or ellipses into the graphs of

functions. Nevertheless, the study of these important geometric figures can often

be reduced to the study of functions. Ellipses, for example, are made up of the

figu R 1 . : s
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graphs of two functions,

/w = Wi-uV),
and

g(x) -bJT~^ (x
2
/a

2
),

—a < x < a

-a < x < a.

Of course, there are many other pairs of functions with this same property. For

example, we can take

fix)
b \/l - (x

2
/a

2
), < x < a

and

g(x) =

We could also choose

f(x) =

and

-W 1 - (x
2
/a

2
), -a<x<0

-bf\ < 2 I 2\
(x /a ),

yrr (x
2
/a

2
,

< x < a

-a < x < 0.

b v 1 — (x"/a"), x rational, — a < x < a

I
—b v 1 — {x"ja ), x irrational, — a < x < a

Six) =
—b v 1 — (x Ja ), x rational, — a < x <

b\[\ (x
2
/a

2
), x irrational, a < x < a.

But all these other pairs necessarily involve unreasonable functions which jump
around. A proof, or even a precise statement of this fact, is too difficult at present.

Although you have probably already begun to make a distinction between those

functions with reasonable graphs, and those with unreasonable graphs, you may
find it very difficult to state a reasonable definition of reasonable functions. A
mathematical definition of this concept is by no means easy, and a great deal of this

book may be viewed as successive attempts to impose more and more conditions

that a "reasonable" function must satisfy. As we define some of these conditions,

we will take time out to ask if we have really succeeded in isolating the functions

which deserve to be called reasonable. The answer, unfortunately, will always be

"no," or at best, a qualified "yes."

PROBLEMS

1 . Indicate on a straight line the set of all x satisfying the following conditions.

Also name each set, using the notation for intervals (in some cases you will

also need the U sign).

(i) |.v-3|<l.

(ii) |jc-3| < 1.

(iii) |.v — a\ < e.

Cw) \x
2 -\\<l
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1

1

5M
(vi) = < a (give an answer in terms of a, distinguishing various cases).

1 +x z

(vii) x 2 + 1 > 2.

(viii) (*+ 1)(jc - l)(x -2) > 0.

2. There is a very useful way of describing the points of the closed interval [a, b]

(where we assume, as usual, that a < b).

(a) First consider the interval [0, b], for b > 0. Prove that if x is in [0, b],

then x = tb for some / with < t < 1 . What is the significance of the

number t? What is the mid-point of the interval [0, b]?

(b) Now prove that if x is in [a, b], then x = (1 — t)a + tb for some t with

< t < 1. Hint: This expression can also be written as a + t(b — a).

What is the midpoint of the interval [a, b]? What is the point 1/3 of the

way from a to b?

(c) Prove, conversely, that if < t < 1, then (1 — t)a + tb is in [a, b].

(d) The points of the open interval (a, b) are those of the form (1 — t)a + tb

for < t < 1

.

3. Draw the set of all points (x, y) satisfying the following conditions. (In most

cases your picture will be a sizable portion of a plane, not just a line or curve.)

(i) x > y.

(ii) x + a > y + b.

(iii) y < x-.

(iv) y < x^-.

(v) \x — y\ < 1.

(vi) \x + y\ < 1.

(vii) x + y is an integer.

(viii) is an integer.
x + v

(ix) (x- l)
2 + (_v-2)

2 < 1.

(x) ;t
2 < y < x 4

.

4. Draw the set of all points (x, y) satisfying the following conditions:

(i) 1x1+ Ivl = 1.

(") 1*1 - \y\ = l.

(iii) \X- 1| =\y- 1|.

(iv) |1
- x

\

= \y- 1|.

(v) x 2 + y
2 = 0.

(vi) xy = 0.

(vii) jc
2 - 2x + v

2 = 4.

(viii)
T 2

x = y .
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5. Draw the set of all points (x, y) satisfying the following conditions:

(1,/n)

(1,»)

I K. i RE 29

7.

(i)

(in)

fiv)

x = r

y
2

->

a 1
b<

x = \y\.

x = sin v.

= 1.

Hint: You already know the answers when x and y are interchanged.

(a) Show that the straight line through (a, b) with slope m is the graph of the

function f(x) — mix — a) + b. This formula, known as the "point-slope

form" is far more convenient than the equivalent expression f(x) —
mx + (b — ma); it is immediately clear from the point-slope form that the

slope is m, and that the value of / at a is b.

(b) For a / c, show that the straight line through (a,b) and (c, d) is the

graph of the function

/(*)= (x-a) + b.
c — a

When are the graphs of f(x) = mx + b and g(x)

straight lines?

m'x + b' parallel

(a) For any numbers A, B, and C, with A and B not both 0, show that the

set of all (x, y) satisfying Ax + By + C = is a straight line (possibly a

vertical one). Hint: First decide when a vertical straight line is described.

(b) Show conversely that every straight line, including vertical ones, can be

described as the set of all (x, y) satisfying Ax + By + C = 0.

8. (a) Prove that the graphs of the functions

f(x) = mx + b,

g(x) = nx + c,

are perpendicular if mn = — 1, by computing the squares of the lengths

of the sides of the triangle in Figure 29. (Why is this special case, where

the lines intersect at the origin, as good as the general case?)

(b) Prove that the two straight lines consisting of all ix, y) satisfying the con-

ditions

Ax + By + C = 0.

A'x + B'y + C = 0,

are perpendicular if and only if A A' + BB' = 0.

9. (a) Prove, using Problem 1-19, that

>/(*i +y\)
2 + (x2 + yi)

2
< Vxi

2 +x 2
2 + x/v

i + yi
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(b) Prove that

V (*3 - a-
i )

2 + (>'3 - vi)
2 < V (x2 - x\)

2 + (y2 - yi)
2

+ v (-V3 - a-2 )

2 + (V3 - yz)
2

-

Interpret this inequality geometrically (it is called the "triangle inequal-

ity"). When does strict inequality hold?

10. Sketch the graphs of the following functions, plotting enough points to get

a good idea of the general appearance. (Part of the problem is to make

a reasonable decision how many is "enough"; the queries posed below are

meant to show that a little thought will often be more valuable than hundreds

of individual points.)

f(x)=x-\— . (What happens for x near 0, and for large x? Where

does the graph lie in relation to the graph of the identify function? Why
does it suffice to consider only positive x at first?)

in

iv

fix) = x -
1

fix)
1— X

1

x z

fix) = x 2
1—

~J1'

1 1

.

Describe the general features of the graph of / if

(i) / is even.

(ii) / is odd.

(iii) / is nonnegative.

(iv) f(x) = fix + a) for all x (a function with this property is called peri-

odic, with period a.

12. Graph the functions fix) — Xfx for m = 1,2,3, 4. (There is an easy way to

do this, using Figure 14. Be sure to remember, however, that %fx means the

positive mth root of x when m is even; you should also note that there will be

an important difference between the graphs when m is even and when /;/ is

odd.)

13. (a) Graph f(x) — \x\ and f(x) = x .

(b) Graph fix) = |
sin.v| and f(x) = sin x. (There is an important differ-

ence between the graphs, which we cannot yet even describe rigorously.

See if you can discover what it is; part (a) is meant to be a clue.)

14. Describe the graph of g in terms of the graph of / if
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15.

16.

17.

18.

ij g(x) = f(x)+c.

ii) g(x) = f(x + c). (It is easy to make a mistake here.)

. {
' ' ' (Distinguish the cases c = 0, c > 0, c < 0.)

IV) g(x) = f{cx).

v) g(x) = /(l/x).

g(x) = f(\x\).

vn) g(jc>=|/(jc)|.

viii) g(x) = max(/, 0).

ix) g(x) = min(/, 0).

x) gO) = max(/, 1).

Draw the graph of /(x) = ax" + Z?x + c. Hint: Use the methods of Prob-

lem 1-18."

Suppose that A and C are not both 0. Show that the set of all (x, y) satisfying

Ax 2 + Bx + Cy 2 + Dy + E =

is either a parabola, an ellipse, or an hyperbola (or a "degenerate case": two

lines [either intersecting or parallel], one line, a point, or 0). Hint: The

case C = is essentially Problem 15, and the case A = is just a minor

variant. Now consider separately the cases where A and B are both positive

or negative, and where one is positive while the other is negative. When do

we have a circle?

The symbol [jc] denotes the largest integer which is < x. Thus, [2.1] = [2] =
2 and [—0.9] = [—1] = — 1. Draw the graph of the following functions

(they are all quite interesting, and several will reappear frequently in other

problems).

iv

M

fix) = Jx-[x].

f(x) = [x] + Jx~-

n
/(*) =

/(*) =

[x].

1

I

Graph the following functions.

(i) fix) — {x}, where {x} is defined to be the distance from x to the nearest

integer.

(ii) f{x) = {2x}.

(iii) fix) = {x) + \{2x).

(iv) fix) = {4x).

(v) /(.v) = {.v} + i{2.v} + i{4.v}.
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l-KH'RE 30

Many functions may be described in terms of the decimal expansion of a num-

ber. Although we will not be in a position to describe infinite decimals rigorously

until Chapter 23, your intuitive notion of infinite decimals should suffice to carry

you through the following problem, and others which occur before Chapter 23.

There is one ambiguity about infinite decimals which must be eliminated: Every

decimal ending in a string of 9's is equal to another ending in a string of 0's (e.g.,

1 .23999 . . . = 1.24000 . .
.
). We will always use the one ending in 9's.

s

19. Describe as best you can the graphs of the following functions (a complete

picture is usually out of the question).

(i) fix) = the 1st number in the decimal expansion of x.

(ii) fix) = the 2nd number in the decimal expansion of x.

(iii) fix) = the number of 7's in the decimal expansion of x if this number

is finite, and otherwise.

(iv) fix) = if the number of 7's in the decimal expansion of x is finite,

and 1 otherwise,

(v) fix) — the number obtained by replacing all digits in the decimal

expansion of x which come after the first 7 (if any) by 0.

(vi) fix) = if 1 never appears in the decimal expansion of x, and n if 1

first appears in the nth place.

*20. Let

21.

^22.

/(*) =
rational in lowest terms.

0, x irrational

1 x = P

q q

(A number p/q is in lowest terms if p and q are integers with no common
factor, and q > 0). Draw the graph of / as well as you can (don't sprinkle

points randomly on the paper; consider first the rational numbers with q = 2,

then those with q = 3, etc.).

(a) The points on the graph of fix) — x 2 are the ones of the form (jc, x 2
).

Prove that each such point is equidistant from the point (0, i) and the

graph of gix) = —\. (See Figure 30.)

Given a horizontal line L, the graph of gix) = y, and a point P = (a, fi)

not on L, so that y ^ fi, show that the set of all points (jc, v) equidistant

from P and L is the graph of a function of the form fix) = ax 2 + bx+c.

What is this set if y = /J?

(b)

Show that the square of the distance from (c, d) to ix, mx) is

-2md - 2c) + d 2 + c
2

.x
2
im

2 + 1) +jc(-

Using Problem 1-18 to find the minimum of these numbers, show that

the distance from (c, d) to the graph of fix) = mx is

\cm - d\/y/m 2 + 1.

(b) Find the distance from (c, d) to the graph of fix)

this case to part (a).)

mx + b. (Reduce
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*23. (a) Using Problem 22, show that the numbers x' and y' indicated in Fig-

ure 3 1 are given by

x = —=x + —=y,
V2 V2

y
l l

s/2 s/l

FIGURE 31

(b) Show that the set of all {x, y) with fx'/v2 ) — (y'/v 2 ) = 1 is the same

as the set of all (jc, y) with xy = 1

.
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{v\,v2 )

FIGURE

(Ul + W],V2 + W2)

. (l»2 + U>2) - V2

(Vl + Wl) - V\

FIGURE 2

APPENDIX 1. VECTORS

Suppose that v is a point in the plane; in other words, v is a pair of numbers

v = (l)\, V2).

For convenience, we will use this convention that subscripts indicate the first and

second pairs of a point that has been described by a single letter. Thus, if we
mention the points w and z, it will be understood that w is the pair (w\, W2),

while z is the pair (z\, zi).

Instead of the actual pair of numbers (v\, V2), we often picture v as an arrow

from the origin O to this point (Figure 1), and we refer to these arrows as vectors

in the plane. Of course, we've haven't really said anything new yet, we've simply

introduced an alternate term for a point of the plane, and another mental picture.

The real point of the new terminology is to emphasize that we are going to do

some new things with points in the plane.

For example, suppose that we have two vectors (i.e., points) in the plane,

V = (V\, V2), W = (U>1, W2).

Then we can define a new vector (a new point of the plane) v + if by the equation

(1) V + W = (V\ + W\, Vl + U>2).

Notice that all the letters on the right side of this equation are numbers, and the

+ sign is just our usual addition of numbers. On the other hand, the + sign on

the left side is new: previously, the sum of two points in the plane wasn't defined,

and we've simply used equation (1) as a definition.

A very fussy mathematician might want to use some new symbol for this newly

defined operation, like

v + w, or perhaps v w,

but there's really no need to insist on this; since v + w hasn't been defined before,

there's no possibility of confusion, so we might as well keep the notation simple.

Of course, any one can make new notation; for example, since it's our definition,

we could just as well have defined v + w as (v\ + w\ 1U2, ^2 + w
\

2
), or by some

other equally weird formula. The real question is, does our new construction have

any particular significance?

Figure 2 shows two vectors v and w, as well as the point

(l>l + W\, V2 + W2),

which, for the moment, we have simply indicated in the usual way, without drawing

an arrow. Note that it is easy to compute the slope of the line L between v and

our new point: as indicated in Figure 2, this slope is just

(t>2 + W2) — l>2 U'2

(v\ +Wi) - V\ W\
'

and this, of course, is the slope of our vector w, from the origin O to (w\, W2). In

other words, the line L is parallel to w.
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FIGURE 3

FIGURE 4

Similarly, the slope of the line M between (w\, W2) and our new point is

(t>2 + Wj) — Vl)i t>2

(V\ + U)\) - V2 V[
'

which is the slope of the vector u; so M is parallel to v. In short, the new point

v + w lies on the parallelogram having v and w as sides. When we draw v + w as

an arrow (Figure 3), it points along the diagonal of this parallelogram. In physics,

vectors are used to symbolize forces, and the sum of two vectors represents the

resultant force when two different forces are applied simultaneously to the same

object.

Figure 4 shows another way ofvisualizing the sum v+ w. Ifwe use "w" to denote

an arrow parallel to w, and having the same length, but starting at v instead of at

the origin, then v + w is the vector from O to the final endpoint; thus we get to

v + w by first following v, and then following w.

Many of the properties of + for ordinary numbers also hold for this new + for

vectors. For example, the "commutative law"

V + W = W + V,

is obvious from the geometric picture, since the parallelogram spanned by v and

w is the same as the parallelogram spanned by w and v. It is also easily checked

analytically, since it states that

(V\ -f W\, 1)2 + Wi) — (U)\ + V\, W2+ V2),

and thus simply depends on the commutative law for numbers:

V\ + W\ = W\ + V[,

Vi + U>2 = Wi + t>2-

Similarly, unraveling definitions, we find the "associative law"

[v + w] + z = v + [w + z]

.

Figure 5 indicates a method of finding v + w + z.

The origin O — (0, 0) is an "additive identity,"

O + v = v + O v,

and if we define

then we also have

v = (—ui, -V2),

FIGUR E 5

V + (— v) — — V + V = O.

Naturally we can also define

w — v = w + (— v),

exactly as with numbers; equivalently,

W — V = (W\ — Vl, W2 — V2).
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Just as with numbers, our definition of w — v simply means that it satisfies

w — v

w — v

FIGURE 6

FIGURE 7

f Re(v)

At-

v + (w — v) w.

FIGURE 8

Figure 6(a) shows v and an arrow "w — v" that is parallel to w — v but that starts

at the endpoint of v. As we established with Figure 4, the vector from the origin

to the endpoint of this arrow is just v + (w — v) — w (Figure 6(b)). In other words,

we can picture w — v geometrically as the arrow that goes from itoio (except that

it must then be moved back to the origin).

There is also a way of multiplying a number by a vector: For a number a and

a vector v = (y\, V2), we define

a v = (av\, CIV2)

(We sometimes simply write av instead of a • v; of course, it is then especially

important to remember that v denotes a vector, rather than a number.) The

vector a v points in the same direction as v when a > and in the opposite

direction when a < (Figure 7).

You can easily check the following formulas:

a • (b • v) = (ab) v,

1 • v = v,

0v = O,

— 1 • v = —v.

Notice that we have only defined a product of a number and a vector, we have

not defined a way of 'multiplying' two vectors, to get another vector.* However,

there are various ways of 'multiplying' vectors to get numbers, which are explored

in the following problems.

PROBLEMS

1. Given a point v of the plane, let Re(v) be the result of rotating v around the

origin through an angle of (Figure 8). The aim of this problem is to obtain

a formula for Rg, with minimal calculation.

(a) Show that

Re (\, 0) = (cos#, sin 6), [we should really write Re((l, 0)), etc.]

R9 (0, 1) = (-sin0,cos0).

(b) Explain why we have

Re (v + w) = Re(v) + Ro(w),

Re(a w) = a Ro(w).

(c) Now show that for any point (x, y) we have

Re(x, y) = (x cosO — y sin#, xsmO + y cosO).

*If you jump to Chapter 25, you'll find that there is an important way of defining a product, but

this is something very special for the plane—it doesn't work for vectors in 3-space, for example, even

though the other constructions do.
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(d) Use this result to give another solution to Problem 4-23.

Given v and w, we define the number

V . w — V\W\ + V2W2',

this is often called the 'dot product' or 'scalar product' of v and w ('scalar'

being a rather old-fashioned word for a number, as opposed to a vector).

(a) Given v, find a vector w such that v • w — 0. Now describe the set of all

such vectors w.

(b) Show that

V • w = W • V

V ' (w + z) = v - W + V • z

and that

a (v • w) = (a v) ' w = v • (a w).

Notice that the last of these equations involves three products: the dot

product • of two vectors; the product • of a number and a vector; and

the ordinary product • of two numbers.

(c) Show that v • v > 0, and that v • v — only when v — O . Hence we can

define the norm ||u|| as

||y|| = y/v • V,

which will be only for v = O. What is the geometric interpretation of

the norm?

(d) Prove that

\\v + w\\ < || i>|| + ||w||,

and that equality holds if and only if v — or w = or w = a v for

some number a > 0.

(e) Show that

||l' + w\\" -
||
v — U)\\~

V ' w —
4

3. (a) Let Re be rotation by an angle of 6 (Problem 1). Show that

Re(v) • Re(w) = v • w.

(b) Let e = (1, 0) be the vector of length 1 pointing along the first axis, and

let w = (cos#, sin 0); this is a vector of length 1 that makes an angle of

with the first axis (compare Problem 1). Calculate that

e . w = cos#.

Conclude that in general

v • w =
||

ii|| •
||
it

||
• COS0,

where is the angle between v and w.
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4.

FIGURE 9

u;|| • sin#

Given two vectors v and w, we'd expect to have a simple formula, involving

the coordinates v\, t>2, i^i, u>2, for the area of the parallelogram they span.

Figure 9 indicates a strategy for finding such a formula: since the triangle

with vertices u;, A, v + u> is congruent to the triangle 05u, we can reduce

the problem to an easier one where one side of the parallelogram lies along

the horizontal axis:

(a) The line L passes through v and is parallel to w, so has slope wj/u)].

Conclude that the point B has coordinate

V\W2 - W\V2

W2

and that the parallelogram therefore has area

det(i\ w) = v\u>2 — W[V2-

This formula, which defines the determinant det, certainly seems to be simple

enough, but it can't really be true that det(u, w) always gives the area. After

all, we clearly have

det(it), v) = — det(u, w),

so sometimes det will be negative! Indeed, it is easy to see that our "deriva-

tion" made all sorts ofassumptions (that u>2 was positive, that B had a positive

coordinate, etc.) Nevertheless, it seems likely that det(u, w) is ± the area; the

next problem gives an independent proof.

(a) If v points along the positive horizontal axis, show that det(u, w) is the

area of the parallelogram spanned by i; and w for w above the horizontal

axis (u>2 > 0), and the negative of the area for w below this axis.

(b) If Re is rotation by an angle of (Problem 1), show that

det(/?6iu, Row) = det(i>, w).

Conclude that det(i\ w) is the area of the parallelogram spanned by

v and w when the rotation from v to w is counterclockwise, and the

negative of the area when it is clockwise.

Show that

and that

det(u, w + z) = det(u, w) + det(i>, z)

det(u + w, z) = det(i>, z) + det(u;, z)

FIGURE 10

a det(u, w) = det(a v, w) = det(u, a w).

1. Using the method of Problem 3, show that

det(i', w) =
||

i»|| ||u)|| • sin 0,

which is also obvious from the geometric interpretation (Figure 10).



80 Foundations

(1,0,0)

FIGURE 1

APPENDIX 2. THE CONIC SECTIONS

Although we will be concerned almost exclusively with figures in the plane,

defined formally as the set of all pairs of real numbers, in this Appendix we want

to consider three-dimensional space, which we can describe in terms of triples of

real numbers, using a "three-dimensional coordinate system," consisting of three

straight lines intersecting at right angles (Figure 1). Our horizontal and vertical axes

now mutate to two axes in a horizontal plane, with the third axis perpendicular to

both.

One of the simplest subsets of this three-dimensional space is the (infinite) cone

illustrated in Figure 2; this cone may be produced by rotating a "generating line,"

of slope C say, around the third axis.

slope C

FIGURE 2

For any given first two coordinates x and y, the point (x, y, 0) in the horizontal

plane has distance v x + y from the origin, and thus

(1) (x, y, z) is on the cone if and only if z = ±Cvx" + y .

We can descend from these three-dimensional vistas to the more familiar two-

dimensional one by asking what happens when we intersect this cone with some

plane P (Figure 3).

cone

plane P

FIGURE 3

If the plane is parallel to the horizontal plane, there's certainly no mystery—the

intersection is just a circle. Otherwise, the plane P intersects the horizontal plane
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slope —C

FIGURE 4

in a straight line. We can make things a lot simpler for ourselves if we rotate

everything around the vertical axis so that this intersection line points straight out

from the plane of the paper, while the first axis is in the usual position that we
are familiar with. The plane P is thus viewed "straight on," so that all we see

(Figure 4) is its intersection L with the plane of the first and third axes; from this

view-point the cone itself simply appears as two straight lines.

If this line L happens to be vertical, consisting of all points (a,z) for some a,

then equation (1) says that the intersection of the cone and the plane consists of

all points (a, y, z) with

2 ^2 2 r2 2
z — C y = C a

,

which is an hyperbola.

Otherwise, in the plane of the first and third axes, the line L can be described

as the collection of all points of the form

(x,Mx + B),

where M is the slope of L. For an arbitrary point (x, y, z) it follows that

(2) (x, y, z) is in the plane P if and only if z = Mx + B.

Combining (1) and (2), we see that (x, y, z) is in the intersection of the cone and

the plane if and only if

(*) Mx + B = ±CV^+ r

FIGURE 5

Now we have to choose coordinate axes in the plane P. We can choose L as the

first axis, measuring distances from the intersection Q with the horizontal plane

(Figure 5); for the second axis we just choose the line through Q parallel to our

original second axis. If the first coordinate of a point in P with respect to these

axes is x, then the first coordinate of this point with respect to the original axes

can be written in the form

ax + yS

for some a and 6. On the other hand, if the second coordinate of the point with

respect to these axes is y, then y is also the second coordinate with respect to the

original axes.

Consequently, (*) says that the point lies on the intersection of the plane and the

cone if and only if

M(ax + B) + B = ±cV(ax + B)
2 +y 2

.

Although this looks fairly complicated, after squaring we can write this as

C 2
y
2 - a 2(M 2 - C 2

)x
2 + Ex + F =

for some E and F that we won't bother writing out.

Now Problem 4-16 indicates that this is either a parabola, an ellipse, or an

hyperbola. In fact, looking a little more closely at the solution, we see that the
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values of E and F are irrelevant:

(1) If M = ±C we obtain a parabola;

(2) If C > M~ we obtain an ellipse;

(3) If C < M2 we obtain an hyperbola.

These analytic conditions are easy to interpret geometrically (Figure 6):

(1) If our plane is parallel to one of the generating lines of the cone we obtain

a parabola;

(2) If our plane slopes less than the generating line of the cone (so that our

intersection omits one half of the cone) we obtain an ellipse;

(3) If our plane slopes more than the generating line of the cone we obtain an

hyperbola.

FIGURE 6

I I
<

.
I R E 7

In fact, the very names of these "conic sections" are related to this description.

The word parabola comes from a Greek root meaning 'alongside,' the same root

that appears in parable, not to mention paradigm, paradox, paragon, paragraph,

paralegal, parallax, parallel, and even parachute. Ellipse comes from a Greek root

meaning 'defect,' or omission, as in ellipsis (an omission, ... or the dots that in-

dicate it). And hyperbola comes from a Greek root meaning 'throwing beyond,' or

excess. With the currency of words like hyperactive, hypersensitive, and hyperven-

tilate, not to mention hype, one can probably say, without risk of hyperbole, that

t His. root is familiar to almost everyone.*

PROBLEMS

1. Consider a cylinder with a generator perpendicular to the horizontal plane

(Figure 7); the only requirement for a point {x , y, z) to lie on this cylinder is

* Although the correspondence between these roots and die geometric picture correspond so beau-

tifully. fi>r the sake of dull accuracy it lias to be reported that the ( heeks originally applied the words

io desi iil>< features of < ertain equations involving the conic set lions.
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that (jc, y) lies on a circle:

FIGURE 8

y = C .

Show that the intersection of a plane with this cylinder can be described by

an equation of the form

(ax + /3)
2 +y 2 = C 2

.

What possibilities are there?

2. In Figure 8, the sphere S\ has the same diameter as the cylinder, so that its

equator C\ lies along the cylinder; it is also tangent to the plane P at Fi.

Similarly, the equator Ci of S2 lies along the cylinder, and S2 is tangent to P
at F2 .

(a) Let z be any point on the intersection of P and the cylinder. Explain

why the length of the line from z to Fjis equal to the length of the vertical

line L from z to C\.

(b) By proving a similar fact for the length of the line from z to F2, show that

the distance from z to F\ plus the distance from z to F2 is a constant, so

that the intersection is an ellipse, with foci F\ and F2 .

3. Similarly, use Figure 9(a) to prove geometrically that the intersection of a

plane and a cone is an ellipse when the plane intersects just one half of the

cone. Similarly, use (b) to prove that the intersection is an hyperbola when
the plane intersects both halves of the cone.

(a) (b)

l l ( ; l R E v
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APPENDIX 3. POLAR COORDINATES

length r

FIGURE 1

In this chapter we've been acting all along as if there's only one way to label

points in the plane with pairs of numbers. Actually, there are many different

ways, each giving rise to a different "coordinate system." The usual coordinates

of a point are called its cartesian coordinates, after the French mathematician

and philosopher Rene Descartes (1596-1650), who first introduced the idea of

coordinate systems. In many situations it is more convenient to introduce polar

coordinates, which are illustrated in Figure 1 . To the point P we assign the polar

coordinates (r,9), where r is the distance from the origin O to P, and 9 is the

measure, in radians, of the angle between the horizontal axis and the line from

O to P. This 9 is not determined unambiguously. For example, points on the

right side of the horizontal axis could have either 9 = or 9 = 2tt ; moreover, 9

is completely ambiguous at the origin O. So it is necessary to exclude some ray

through the origin if we want to assign a unique pair (r, 9) to each point under

consideration.

On the other hand, there is no problem associating a unique point to any pair

(r,9). In fact, it is possible (though not approved of by all) to associate a point

to (r, 9) when r < 0, according to the scheme indicated in Figure 2. Thus, it

always makes sense to talk about "the point with polar coordinates (r,9)," (with

or without the possibility of r < 0), even though there is some ambiguity when we

talk about "the polar coordinates" of a given point.

P is the point with polar coordinates (r,8\)

and also the point with polar coordinates

(-r,92 ).

I I CURE 2

It is clear from Figure 1 (and Figure 2) that the point with polar coordinates

(r, 6) has cartesian coordinates (x, v) given by

x = r cos 9

,

v = r sin 9

.
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FIGURE 3

Conversely, if a point has cartesian coordinates (x,y), then (any of) its polar co-

ordinates (r, 9) satisfy

=±v?+ y
4

tan0 = - if*#0.
x

Now suppose that / is a function. Then by the graph off in polar co-

ordinates we mean the collection of all points P with polar coordinates (r, 9)

satisfying r = f{9). In other words, the graph of / in polar coordinates is the

collection of all points with polar coordinates (f(9),9). No special significance

should be attached to the fact that we are considering pairs (f(0),0), with f(9)
first, as opposed to pairs (x, f(x)) in the usual graph of /; it is purely a matter of

convention that r is considered the first polar coordinate and 9 is considered the

second.

The graph of / in polar coordinates is often described as "the graph of the

equation r = /(#)." For example, suppose that / is a constant function, f(9) = a

for all 9. The graph of the equation r = a is simply a circle with center O and

radius a (Figure 3). This example illustrates, in a rather blatant way, that polar

coordinates are likely to make things simpler in situations that involve symmetry

with respect to the origin O.

The graph ofthe equation r = 9 is shown in Figure 4. The solid line corresponds

to all values of 9 > 0, while the dashed line corresponds to values of 9 < 0.

FIGURE 4 Spiral of Archimedes

FIGURE 5

As another example involving both positive and negative r, consider the graph of

the equation r = cos9. Figure 5(a) shows the part that corresponds to < 9 < it/2

Figure 5(b) shows the part corresponding to n/2 < 9 < n\ here r < 0. You can

check that no new points are added for 9 > n or 9 < 0. It is easy to describe

this same graph in terms of the cartesian coordinates of its points. Since the polar

coordinates of any point on the graph satisfy

r — cos i
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and hence

r = r cos 0,

its cartesian coordinates satisfy the equation

x
2 + y

2 = x

which describes a circle (Problem 4-16). [Conversely, it is clear that if the cartesian

coordinates of a point satisfy x 2 + y
2 = x, then it lies on the graph of the equation

r — cos 0.]

Although we've now gotten a circle in two different ways, we might well be

hesitant about trying to find the equation of an ellipse in polar coordinates. But

it turns out that we can get a very nice equation if we choose one of the foci as

the origin. Figure 6 shows an ellipse with one focus at O, with the sum of the

distances of all points from O and the other focus f being 2a. We've chosen f to

the left of O, with coordinates written as

(-2ea,0).

(We have < e < 1, since we must have 2a > distance from f to O).

FIGURE 6

The distance r from (x, y) to O is given by

(1) r
2 =x 2 + y

2
.

By assumption, the distance from (x, y) to f is 2a — r, hence

(2a -r) 2 = (x - [-2ea])
2 + y

2
,

or

(2) Aa 2 - bar + r
2 = x

2 + 4eax + 4s
2
a
2 + y

2

Subtracting (1) from (2), and dividing by 4a, we get

9
a — r = ex + e a,
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or

2
r = a — ex — s a

= (1 — e")a — EX,

which we can write as

(3) r = A-sx, for A = (1 — £
2
)a.

Substituting r cosO for x, we have

r = A — sr co$0,

r(l + e cosO) = A,

and thus

(4) r =
1 + £ COS

In Chapter 4 we found that

x 2
y 2

(5) - +
}
T, = 1

a- b~

is the equation in cartesian coordinates for an ellipse with la as the sum of the

distances to the foci, but with the foci at (— c, 0) and (c, 0), where

b = y/a 2 -c2
.

Since the distance between the foci is 2c, when this ellipse is moved left by c

units, so that the focus (c, 0) is now at the origin, we get the ellipse (4) when we
take c = sa or e = c/a (with equation (3) determining A). Conversely, given

the ellipse described by (4), for the corresponding equation (5) the value of a is

determined by (3),

A
a = =-,

1 -s 2

and again using c = sa, we get

b = \la
2 — c2 — \la

2 — s 2a 2 = ay 1 — £ 2 =
yr E'

Thus, we can obtain a and b, the lengths ofthe major and minor axes, immediately

from e and A.

The number

c Va 2 -b2
I (y

a a V

the eccentricity of the ellipse, determines the "shape" of the ellipse (the ratio of the

major and minor axes), while the number A determines its "size," as shown by (4).
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i i ( . i i< i ; 7

(x,y)

y = a

PROBLEMS

1. If two points have polar coordinates (r\, 9\) and (rj, Oi)-, show that the dis-

tance d between them is given by

O 1
d = r\" + r2 — 2r\r2cos(0\ — Go).

What does this say geometrically?

2. Describe the general features of the graph of / in polar coordinates if

(i) / is even.

(ii) / is odd.

(iii) f(9) = f(9+jz).

3. Sketch the graphs of the following equations.

(i) r — a sin#.

(ii) r — a sec9. Hint: It is a very simple graph!

(iii) r — cos 29. Good luck on this one!

(iv) r = cos 39.

(v) r =
\
cos 29

1

.

(vi) r =
|
cos 39

\

.

4. Find equations for the cartesian coordinates of points on the graphs (i), (ii)

and (iii) in Problem 3.

5. Consider a hyperbola, where the difference of the distance between the two

foci is the constant 2a, and choose one focus at O and the other at (— 2ea, 0).

(In this case, we must have s > 1). Show that we obtain the exact same

equation in polar coordinates

A
r =

1 + s cos 9

as we obtained for an ellipse.

Consider the set of points (x, y) such that the distance (x, y) to O is equal to

the distance from (x, v) to the line y = a (Figure 7). Show that the distance

to the line is a — r cos 9, and conclude that the equation can be written

a = r(\ + cos 9).

Notice that this equation for a parabola is again of the same form as (4).

Now, for any A and s, consider the graph in polar coordinates of the equa-

tion (4), which implies (3). Show that the points satisfying this equation satisfy

(1 e
2
)x

2 + v
2 = A 2 2Asx.

Using Problem 4-16, show that this is an ellipse for s < 1, a parabola for

s — 1 , and a hyperbola for e > 1

.



4, Appendix 3. Polar Coordinates 89

8. (a) Sketch the graph of the cardioid r = 1 — sin 9.

(b) Show that it is also the graph of r = — 1 — sin#.

(c) Show that it can be described by the equation

x
2 + v

2 = y/x
2 + y

2 - y,

FIGURE 8

and conclude that it can be described by the equation

(x
2 + y

2 + y)
2 = x

2 + y
2

9. Sketch the graphs of the following equations.

(i) r = l-isin0.

(ii) r = l-2sin0.

(iii) r = 2 + cos#.

10. (a) Sketch the graph of the lemniscate

r
2 = 2a

2
cos26.

(b) Find an equation for its cartesian coordinates.

(c) Show that it is the collection of all points P in Figure 8 satisfying

d\d2 = a~

.

(d) Make a guess about the shape of the curves formed by the set of all P
satisfying d\di = b, when b > a and when b < a 2

.



CHAPTER LIMITS

The concept of a limit is surely the most important, and probably the most difficult

one in all of calculus. The goal of this chapter is the definition of limits, but we
are, once more, going to begin with a provisional definition; what we shall define

is not the word "limit" but the notion of a function approaching a limit.

PROVISIONAL DEFINITION The function / approaches the limit / near a, if we can make f(x) as close as we
like to / by requiring that x be sufficiently close to, but unequal to, a.

Of the six functions graphed in Figure 1 , only the first three approach / at a

.

Notice that although g(a) is not defined, and h(a) is defined "the wrong way," it

is still true that g and h approach / near a. This is because we explicitly ruled

out, in our definition, the necessity of ever considering the value of the function

at a—it is only necessary that f(x) should be close to / for x close to a, but unequal

to a. We are simply not interested in the value of f(a), or even in the question of

whether f(a) is defined.

i i<;rki;

One convenient way of picturing the assertion that / approaches / near a is

provided by a method of drawing functions that was not mentioned in Chapter 4.

In this method, we draw two straight lines, each representing R, and arrows from

a point x in one, to fix) in the other. Figure 2 illustrates such a picture for two

different functions.

90
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(a) f(x) = c

FIGURE 2

Now consider a function / whose drawing looks like Figure 3. Suppose we ask

that f(x) be close to /, say within the open interval B which has been drawn

in Figure 3. This can be guaranteed if we consider only the numbers x in the

interval A of Figure 3. (In this diagram we have chosen the largest interval which

will work; any smaller interval containing a could have been chosen instead.) Ifwe

FIGURE 3 FIGURE 4

choose a smaller interval B' (Figure 4) we will, usually, have to choose a smaller A',

but no matter how small we choose the open interval B, there is always supposed

to be some open interval A which works.

A similar pictorial interpretation is possible in terms of the graph of /, but in

this case the interval B must be drawn on the vertical axis, and the set A on the

horizontal axis. The fact that / (x ) is in B when x is in A means that the part of the

graph lying over A is contained in the region which is bounded by the horizontal

lines through the end points of B; compare Figure 5(a), where a valid interval A
has been chosen, with Figure 5(b), where A is too large.
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f(x) = 3x

FIGURE 6

IT)
of

To take a specific simple example, let's consider the function f(x) = 3x with

a = 5 (Figure 6). Presumably / should approach the limit 15 near 5—we ought

to be able to get f(x) as close to 15 as we like if we require that x be sufficiently

close to 5. To be specific, suppose we want to make sure that 3x is within

1 5 . This means that we want to have

1

10'

which we can also write as

15 — — <3x < 15 +

-Jo
<3x ~ l5<

Jo-

To do this we just have to require that

1

s 1—
wt: < x — j < —

-,
30 30

or simply \x — 5| < 3^; There is nothing special about the number jq. It is just as

easy to guarantee that |3jc — 15| <
LOO ; simply require that \x — 5| < l

300
. In fact,

if we take any positive number e we can make \3x — 15 1 < s simply by requiring

that \x — 5 1 < e/3.

There's also nothing special about the choice a = 5. It's just as easy to see that

/ approaches the limit 3a at a for any a: To ensure that

\3x — 3a\ < e

we just have to require that

\x — a\ <

Naturally, the same sort of argument works for the function f(x) = 3,000,000.v.

We just have to be 1,000,000 times as careful, choosing \x — a\ < e/3, 000, 000 in

order to ensure that \f(x) — a\ < e.

The function f(x) = x is a little more interesting. Presumably, we should be

able to show that f(x) approaches 9 near 3. This means that we need to show

how to ensure the inequality

|.r
2 - 9| < e

for any given positive number e by requiring |.v — 3| to be small enough. The

obvious first step is to write

\x
2 ~9\ = \x -3| • \x +3|,

which gives us the useful \x — 3| factor. Unlike the situation with the previous

examples, however, the extra factor here is |jc+3|, which isn't a convenient constant

like 3 or 3,000,000. But the only crucial thing is to make sure that wc can say

something about how big |jc + 3| is. So the first thing we'll do is to require that

\x — 3 1 < 1. Once we've specified that |.v — 3| < 1, or 2 < x < 4, we have

5 < x + 3 < 7 and we've guaranteed that \x + 3\ < 7. So we now have

\x
2 - 91 = l.v - 31 • \x + 31 < 7|.v - 31,
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which shows that we have \x
2 — 9| < £ for \x — 3| < e/7, provided that we've

also required that |jc — 3 1 < 1. Or, to make it look more official: we require that

\x — 3| < min(e/7, 1).

The initial specification \x — 3| < 1 was simply made for convenience. We
could just as well have specified that |jc — 3| < jq or \x — 3| < 10 or any other

convenient number. To make sure you understand the reasoning in the previous

paragraph, it is a good exercise to figure out how the argument would read if we
chose |jc — 3 1 < 10.

Our argument to show that / approaches 9 near 3 will basically work to show

that / approaches a near a for any a, except that we need to worry a bit more

about getting the proper inequality for |jc + a\. We first require that |jc — a\ < 1,

again with the expectation that this will ensure that |jc + a
|

is not too large. In

fact, Problem 1-12 shows that

\a\ < \x < 1.

so

x\ < 1 + \a\

and consequently

so that we then have

\x+a\ < \x\ + \a\ < 2\a\ + 1.

\x
2 -a 2

\
= \x — a\

< \x — a I

|* + a\

(2|fl| + l),

which shows that we have \x" — a"\ < s for \x —a\< e/(2\a\ + 1), provided that we

also have \x — a\ < 1. Officially: we require that |.v — a\ < min(e/(2|a| + 1), 1).

In contrast to this example, we'll now consider the function fix) = \/x (for

x ^ 0), and try to show that / approaches 1/3 near 3. This means that we need

to show how to guarantee the inequality

I

< £

1

x

1

~3 =
3-x 1

=

3

'

1

3x \x

for any given positive number s by requiring \x — 3| to be small enough. We begin

by writing

1 l ^ _ V 11
• |jc — 3|,

giving us the nice factor \x — 3\, and even an extra i for good measure, along with

the problem factor 1/|.\ |. In this case, we first need to make sure that |.v| isn't too

small, so that \/\x\ won't be too large.

We can first require that |jc — 3| < 1, because this gives 2 < x < 4, so that

111
4
<

x
<
r
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possible values for x

a <

FIGURE 7

a >

which not only tells us that — < — , but also that x > 0, which is important in

order to conclude that — < —
. We now have

Ul 2

< -|,-3|

<
i/x — 1/3 1 < s for \x — 3 1 < 6s, provided that we've

1 . Or, to make it look official again: we require that

which shows that we have

also required that \x — 3|

\x — 3| < min(6£, 1).

Ifwe instead wanted to show that / approaches — 1/3 near —3, we would begin

by stipulating that |jc — (— 3)| < 1, giving —4 < x < —2, once again implying that

|1/jc| < 1/2, so that everything works as before.

To show in general that / approaches \/a near a for any a we proceed in

basically the same way, except that, again, we have to be a little more careful

in formulating our initial stipulation. It's not good enough simply to require that

\x — a
|
should be less than 1, or any other particular number, because if a is close to

this would allow values of x that are negative (not to mention the embarrassing

possibility that x — 0, so that f{x) isn't even defined!).

The trick in this case is to first require that

\x — a <

in other words, we require that x be less than half as far from as a (Figure 7).

You should be able to check first that x / and that l/|.v| < 2/|fl|, and then work

out the rest of the argument.

With all the work required for these simple examples, you may have begun to

quail at the prospect of tackling even more complicated functions. But that won't

really be necessary, since we will eventually have some basic theorems that we can

rely on. Instead of worrying about the unpleasant algebra that might be involved

in functions like f(x) = x or f(x) = \/x , we'll turn our attention to some

examples that might appear to be even more frightening.

Consider first the function f(x) — xsinl/x (Figure 8). Despite the erratic

behavior of this function near it is clear, at least intuitively, that / approaches

/ = near a = (remember that our provisional definition specifically exempts

x — a from consideration, so it doesn't matter that this function isn't even defined

at 0). We want to show that we can get f{x) = x sin l/x as close to as desired

if we require that x be sufficiently close to 0, but ^ 0. In other words, for any

number e > 0, we want to show that we can ensure that

l/U)-0| =
I

.v sin < e

by requiring that |.v| = \x — 0| is sufficiently small (but / 0). But this is easy. Since

I

Sill

x
< 1

,

for all x ^ 0,
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we have

.v sin < x ,
for all x / 0,

so we can make |jc sin l/.v| < s simply by requiring that |a| < e and / 0.

For the function f(x) = a
- -

sin l/x (Figure 9) it seems even clearer that / ap-

proaches near 0. If, for example, we want

x sin <
1

To

' I ft \ 2
l

/ / f(x) = x L
sin -

then we certainly need only require that \x \
< jq and i ^0, since this implies

that \x
2

\
< -4y and consequently

2 . 1

x sin —
x

< \x' < <
100

(We could do even better, and allow |jc
|
< 1/V 10 and x ^ 0, but there is no

particular virtue in being as economical as possible.) In general, if s > 0, to

ensure that

x sm
1

< e,

FIGURE 9
we need only require that

|jc
|
< s and jc^O,

FIGUR E I

f(x) = Vl-vhm
1

provided that e < 1. Ifwe are given an £ which is greater than 1 (it might be, even

though it is "small" e's which are of interest), then it does not suffice to require

that |a| < £, but it certainly suffices to require that |jc
j
< 1 and i^O.

As a third example, consider the function f(x) —

order to make \y/\x\ sin l/.v| < £ we can require that

x
|
sin l/x (Figure 10). In

|.v| < s and x ^

(the algebra is left to you)
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FIG URE 12

Finally, let us consider the function fix) = sin l/x (Figure 1 1). For this function

it is false that / approaches near 0. This amounts to saying that it is not true

for every number e > that we can get \f(x) — 0| < s by choosing x sufficiently

small, and ^ 0. To show this we simply have to find one e > for which the

condition \f(x) — 0| < s cannot be guaranteed, no matter how small we require

|jc| to be. In fact, s = 7 will do: it is impossible to ensure that |/(jc)| < \ no

matter how small we require |jc
|
to be; for if A is any interval containing 0, there

is some number x = \/(\tt + Inn) which is in this interval, and for this x we have

f{x)=\.

FIGURE I 1

This same argument can be used (Figure 12) to show that / does not approach

any number near 0. To show this we must again find, for any particular number /,

some number s > so that \f(x) — l\ < e is not true, no matter how small x is

required to be. The choice s — \ works for any number /; that is, no matter how

small we require |.r| to be, we cannot ensure that \f(x) — l\ < 5. The reason is,

that for any interval A containing we can find both x\ and X2 in this interval

with

/(*i) = l and f(x2) = -l,

namely

I

X] =
Kit + 2nn

and
1

x?
kJT + 2niJT

for large enough n and m. But the interval from / — 7 to / + ^ cannot contain

both — 1 and 1 , since its total length is only 1 ; so we cannot have

1
1 — / 1 < I and also |

— 1 — / 1 < ^,

no matter what /is.

The phenomenon exhibited by f(x) = sin l/.v near can occur in many ways,

f we consider the function

,, . [0. x irrational
fix) = , -

I . x rational.
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.-•'/(*) =
x, x rational

0, x irrational

FIGURE 13

f{x) = -1, X <

f(x) = 1, x >

FIGURE 14

then, no matter what a is, / does not approach any number / near a. In fact, we

cannot make \f(x) — l\ < \ no matter how close we bring x to «, because in any

interval around a there are numbers x with fix) = 0, and also numbers x with

f(x) = 1, so that we would need |0 — /| < j and also |1 — /| < -j.

An amusing variation on this behavior is presented by the function shown in

Figure 13:

x, x rational

0, .v irrational.
/(*) =

The behavior of this function is "opposite" to that of g(x) = sin l/x; it ap-

proaches at 0, but does not approach any number at a, if a ^ 0. By now you

should have no difficulty convincing yourself that this is true.

We conclude with a very simple example (Figure 14):

fix)
-

1 , x <
1, x>0.

If a > 0, then / approaches 1 near a: indeed, to ensure that \f(x) — 1

certainly suffices to require that |jc — d\ < a, since this implies

< e it

or

-a < x

< x

so that f{x) = 1. Similarly, if b < 0, then / approaches —1 near b: to ensure

that \f(x) — (—1)1 < s it suffices to require that ]x — b\ < —b. Finally, as you may
easily check, / does not approach any number near 0.

The time has now come to point out that of the many demonstrations about

limits which we have given, not one has been a real proof. The fault lies not

with our reasoning, but with our definition. If our provisional definition of a

function was open to criticism, our provisional definition of approaching a limit

is even more vulnerable. This definition is simply not sufficiently precise to be

used in proofs. It is hardly clear how one "makes" fix) close to / (whatever

"close" means) by "requiring" x to be sufficiently close to a (however close "suffi-

ciently" close is supposed to be). Despite the criticisms of our definition you may
feel (I certainly hope you do) that our arguments were nevertheless quite convinc-

ing. In order to present any sort ofargument at all, we have been practically forced

to invent the real definition. It is possible to arrive at this definition in several steps,

each one clarifying some obscure phrase which still remains. Let us begin, once

again, with the provisional definition:

The (unction / approaches the limit / near a. if we can make fix) as close

as we like to / by requiring that x be sufficiently close to, but unequal to, a.

The very first change which we made in this definition was to note thai making

fix) close to / meant making \f(x) — /| small, and similarly for x and a:
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The function / approaches the limit / near a, if we can make 1/00 —l\ as

small as we like by requiring that \x — a\ be sufficiently small, and x ^ a.

The second, more crucial, change was to note that making \f(x) — l\ "as small as

we like"" means making \f(x) — l\ < s for any e > that happens to be given us:

The function / approaches the limit / near a, if for every number s > we
can make \f(x) — l\ < s by requiring that \x — a\ be sufficiently small, and

x / a.

There is a common pattern to all the demonstrations about limits which we have

given. For each number s > we found some other positive number, 8 say, with

the property that if .r^a and \x — a\ < 8, then \f(x) — 1\ < s. For the function

f(x) = .v sin l/.v (with a = 0, / = 0), the number 8 was just the number e;

for f(x) = yixlsin l/x, it was e ; for f(x) — x it was the minimum of 1 and

s/(2\a\ + 1). In general, it may not be at all clear how to find the number 8,

given s, but it is the condition \x —a\<8 which expresses how small "sufficiendy"

small must be:

The function / approaches the limit / near a, if for every e > there is some

8 > such that, for all x, if \x — a\ < 8 and x ^ a, then \f(x) — l\ < e.

This is practically the definition we will adopt. We will make only one trivial

change, noting that
u
|x — a\ < 8 and x ^ a" can just as well be expressed "0 <

\x — a I < 5."

DEFINITION The function f approaches the limit / near a means: for every e > there

is some 8 > such that, for all x, if < |.\" — a\ < 8, then \f(x) — 1\ < s.

This definition is so important {everything we do from now on depends on it) that

proceeding any further without knowing it is hopeless. If necessary memorize it,

like a poem! That, at least, is better than stating it incorrectly; if you do this you

are doomed to give incorrect proofs. A good exercise in giving correct proofs is to

review every fact already demonstrated about functions approaching limits, giving

formal proofs of each. In most cases, this will merely involve a bit of rewording

to make the arguments conform to our formal definition—all the algebraic work

has been done already. When proving that / does not approach / at a, be sure to

negate the definition correctly:

If it is not true that

for every e > there is some 8 > such that, for all .v, if <

(hen \f(x) — l\ < s,

then

a\ < <5,
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there is some £ > such that for every 8 > there is some x which satisfies

< \x — a\ < 8 but not \f(x) — l\ < s.

Thus, to show that the function f(x) = sin l/x does not approach near 0, we

consider £ = \ and note that for every 8 > there is some x with < \x — 0| < 8

but not
|
sin l/x —

|
< i—namely, an x of the form \/(n/2 + 2mt), where n is

so large that l/(n/2 + 2mt) < 8.

As a final illustration of the use of the definition of a function approaching a

limit, we have reserved the function shown in Figure 15, a standard example, but

one of the most complicated:

/(*)
0, Jt irrational, < x < 1

\/q, x = p/q in lowest terms, < x < 1.

(Recall that p/q is in lowest terms if p and q are integers with no common factor

and q > 0.)

/(*) =
0, x irrational

— , x = — in lowest terms

j—

u

5 4
3 4
4 5

FIGURE 15

For any number a, with < a < 1, the function / approaches at a. To prove

this, consider any number £ > 0. Let n be a natural number so large that \/n < £.

Notice that the only numbers x for which \f(x) — 0| < s could be false are:

1 3

4'

4

2 3

5'

5

1 n — 1

(If a is rational, then a might be one of these numbers.) However many of these

numbers there may be, there are, at any rate, only finitely many. Therefore, of all

these numbers, one is closest to a; that is, \p/q — a\ is smallest for one p/q among
these numbers. (If a happens to be one of these numbers, then consider only the

values \p/q — a\ for p/q / a) This closest distance may be chosen as the 8. For

if < \x — a\ < 5, then x is not one of

n- 1
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and therefore \f(x) — 0| < s is true. This completes the proof. Note that our

description of the <5 which works for a given e is completely adequate—there is no

reason why we must give a formula for 8 in terms of e.

Armed with our definition, we are now prepared to prove our first theorem; you

have probably assumed the result all along, which is a very reasonable thing to do.

This theorem is really a test case for our definition: if the theorem could not be

proved, our definition would be useless.

THEOREM 1 A function cannot approach two different limits near a. In other words, if /
approaches / near a, and / approaches m near «, then I = m.

PROOF Since this is our first theorem about limits it will certainly be necessary to translate

the hypotheses according to the definition.

Since / approaches / near a, we know that for any e > there is some number

8\ > such that, for all x,

if < |jc — a\ < 8\, then \f(x) — l\ < s.

We also know, since / approaches m near a, that there is some 82 > such that,

for all x,

if < |jc — a\ < 82, then \f(x) — m\ < e.

We have had to use two numbers, 8\ and 82, since there is no guarantee that the 8

which works in one definition will work in the other. But, in fact, it is now easy to

conclude that for any e > there is some 8 > such that, for all x,

if < \x — a\ < 8, then \f(x) — I\ < e and \f(x) — m\ < e;

we simply choose 8 = min(<$i, dh).

To complete the proofwe just have to pick a particular s > for which the two

conditions

|/0r) — /| < £ and \f(x) — m\ < s

cannot both hold, if / / w. The proper choice is suggested by Figure 16. If

/ 7^ m, so that |/ — m\ > 0, we can choose |/ — m|/2 as our s. It follows that there

is a 8 > such that, for all x,

\l — m\

-- in

length —-— length —-

—

FI G 1 RE 16

2

\l-m\

if < \x -a\<8, then |/(jc) - /| <

and
I
f(x) —m\ <

z

This implies that for < \x — a\ < 8 we have

|/
- m

\
= \l - f(x) + fix) -m\<\l- f(x)\ + |/(.v) - m\

\l-m\ \l-m\

= |/-m|,

a contradiction. |
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The number / which / approaches near a is denoted by lim fix) (read: the limit

of fix) as x approaches a). This definition is possible only because ofTheorem 1,

which ensures that lim f(x) never has to stand for two different numbers. The
x—ni

equation

lim f(x) = I

x—>a

has exactly the same meaning as the phrase

/ approaches / near a.

The possibility still remains that / does not approach / near a, for any /, so that

lim fix) = / is false for every number /. This is usually expressed by saying that

"lim fix) does not exist."
x-*a

Notice that our new notation introduces an extra, utterly irrelevant letter x,

which could be replaced by /, y, or any other letter which does not already

appear—the symbols

lim fix), lim /(f), lim /(y),
x—>a t—>a y—>a

all denote precisely the same number, which depends on / and a, and has nothing

to do with x, t, or y (these letters, in fact, do not denote anything at all). A more

logical symbol would be something like lim /, but this notation, despite its brevity,
a

is so infuriatingly rigid that almost no one has seriously tried to use it. The notation

lim fix) is much more useful because a function / often has no simple name, even
x—>a

though it might be possible to express fix) by a simple formula involving x. Thus,

the short symbol

lim(x + shut)
x — a

could be paraphrased only by the awkward expression

lim /, where fix) = x + sin .v.

a

Another advantage of the standard symbolism is illustrated by the expressions

lim* + r\
x — a

lim* + t
3

.

The first means the number which / approaches near a when

f(x) = x +f3
, for all .v;

the second means the number which / approaches near a when

fit)= x + t
3

, for all f.

You should have little difficulty (especially if you consult Theorem 2) proving that

lim x +t3 — a +r\
x -> a

Y\mx +f3 = x +a 3
.
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These examples illustrate the main advantage of our notation, which is its flex-

ibility. In fact, the notation lim f{x) is so flexible that there is some danger of
x—>a

forgetting what it really means. Here is a simple exercise in the use of this no-

tation, which will be important later: first interpret precisely, and then prove the

equality of the expressions

lim f(x) and lim f{a +h).

An important part of this chapter is the proof of a theorem which will make

it easy to find many limits, as we promised long ago. The proof depends upon

certain properties of inequalities and absolute values, hardly surprising when one

considers the definition of limit. Although these facts have already been stated in

Problems 1-20, 1-21, and 1-22, because of their importance they will be presented

once again, in the form of a lemma (a lemma is an auxiliary theorem, a result that

justifies its existence only by virtue of its prominent role in the proof of another

theorem). The lemma says, roughly, that if x is close to xq, and y is close to yo,

then x + y will be close to xo + yo, and xy will be close to xoyo, and 1/y will be

close to 1/yo- This intuitive statement is much easier to remember than the precise

estimates of the lemma, and it is not unreasonable to read the proof ofTheorem 2

first, in order to see just how these estimates are used.

LEMMA (l)If

then

(2) If

£ £
\x --vol < - and \y - y \

< -,

\(x + y) - Uo + vo)! < £

\x — .vol < min ( 1,

then

(3) If y # and

then y / and

2(|yol + D

\xy -xoyo I
< e.

and
| y — yo I

<
2(1x01 + 1)'

|
v — yo| < min

1 1

y yo

Vol e\yo\

2 ' 2

< £.

proof (1) \(x + y) - (xo + yo ) I
= IU - xo) + (y - yo)|

£ £
<\x- .vol + \y - vol <i+2 =£ '

(2) Since \x — xq\ < 1 we have

|.V
|

— |.V()| < \x — xq\ < 1

,
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so that

Thus

\x\ < 1 + |* |.

\xy - xoyol = \x(y - y ) + yo(x - x )\

< \x\ \y - vol + I vol • \x -x
\

< (1 + kol)
2(|.v

|
+ l)

+ Ivol
2(|vol + D

£ £
< - + - = £.

2 2

(3) We have

\yo\ - \y\ < l.v -vol <
I
vol

so Ivl >
I
vol/2. In particular, v ^ 0, and

Thus
1 1

y vo

1 2— <
l.v

I l.vol

lyo — vl 2 1 f|v
|

2
_—=r- = 8

- I
\y\ \yo\ l.vol ivol

theorem 2 If lim f(x) = I and lim g(x) = m, then
x—*a x—*a

(1) \im(f +g)(x)=-l + m;
x—>-a

(2) \im(f g)(x)=l -m.

Moreover, if m ^ 0, then

(3) lim (-)(*) = -•

PROOF The hypothesis means that for every £ > there are <5i,^2 > such that, for

all x,

if < \x — a\ < 8\, then \f(x) — l\ < s,

and if < \x — a\ < 82, then \g(x) — m\ < £.

This means (since, after all, e/2 is also a positive number) that there are 8\, 82 >

such that, for all x,

£
if < \x — a\ < <5i, then \f(x) — l\ < -,

and if < |.v — a| < 52, then \g(x) — m\ < -.

Now let 8 = min(<5i, #2). If < |.v — a\ < 5, then < \x — a\ < 8\ and

< |jc — a\ < 81 are both true, so both

£ £
\f(x) - /| < - and \g(x) - m\ < -
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are true. But by part (1) of the lemma this implies that |(/ + g){x) — (I + m)| < e.

This proves (1).

To prove (2) we proceed similarly, after consulting part (2) of the lemma. If

£ > there are 8\, 82 > such that, for all x,

if < \x — a\ < 8\, then \f{x) — 1\ < min
( 1,

and if < \x — a\ < 82, then \g(x) — m\ <

2(|ro|+ 1)

£

2(|/|+1)

Again let 8 = min(<$i, 82). If < \x — a\ < 5, then

. / £ \ £
\f(x) — I\ < nun I 1, — I and \g(x) — m\ <

2(\m\ + l)J
,ov

2(|/| + l)

So, by the lemma, |(/ • g)(x) —I m\ < e, and this proves (2).

Finally, if e > there is a 8 > such that, for all ,y,

/i 1 1 i2\
. / I'" I

£\fn\~ \

if < \x — a\ < (5, then \g(x) —m\ < min I -r-,

< £.

K

2 2 /'

But according to part (3) of the lemma this means, first, that g(x) ^ 0, so (l/g)(x)

makes sense, and second that

- (x) - -
,8/ m

This proves (3). |

Using Theorem 2 we can prove, trivially, such facts as

,. x3 + 7x 5 a 3 + la 5

hm —= — = —= —
-,

x^a x- +1 a 2 + 1

without going through the laborious process of finding a 8, given an e. We must

begin with

lim 7 = 7,
x—*a

lim 1 = 1,

x—*a

lim x = a,
x—*a

but these are easy to prove directly. If wc want to find the 8, however, the proof of

Theorem 2 amounts to a prescription for doing this. Suppose, to take a simpler

example, that we want to find a 8 such that, for all x,

if < |.v - a\ < 8, then \x + x - (a~ + a)\ < £.
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Consulting the proof ofTheorem 2(1), we see that we must first find 8\ and 8i >

such that, for all x,

9 9^"
if < |.v — a\ < <5i, then \x — a

|
< —

s
and if < \x — a\ < 8i, then |x — a\ < —

.

Since we have already given proofs that lim x = a" and lim x = a, we know how
x—>a x—*a

to do this:

2 \

Thus we can take

8 = min(5i, 82) = min I min I 1

2\a\ + 1

If a ^ 0, the same method can be used to find a 8 > such that, for all x,

1 1

if < I .V — a I < <5, then
9 1

x z a z
< £.

The proof of Theorem 2(3) shows that the second condition will follow if we find

a 8 > such that, for all .v,

if < \x — a\ < 8, then \x — a \
< min

Thus we can take
/ I \ i2
/ . / |<z| fieri

min

i i2 i i4or efl

<5 = min
2 ' 2

1,

V
'

2|a|+l

Naturally, these complicated expressions for <5 can be simplified considerably, after

they have been derived.

One technical detail in the proof of Theorem 2 deserves some discussion. In

order for lim fix) to be defined it is, as we know, not necessary for / to be defined
x^-a

at «, nor is it necessary for / to be defined at all points x ^ a. However, there

must be some 8 > such that f(x) is defined for x satisfying < \x — a\ < 8;

otherwise the clause

"if < \x -a\<8, then \f(x) - 1\ < e"

would make no sense at all, since the symbol f(x) would make no sense for

some x's. If / and g are two functions for which the definition makes sense,

it is easy to see that the same is true for f + g and f g. But this is not so

clear for i/g, since \/g is undefined for x with g{x) = 0. However, this fact gets

established in the proof of Theorem 2(3).
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I—

(a)

I—

(b)

FIGURE 17

FIGliRl. 18

There are times when we would like to speak of the limit which / approaches

at a, even though there is no 8 > such that fix) is defined for x satisfying

< \x — a\ < 8. For example, we want to distinguish the behavior of the two

functions shown in Figure 17, even though they are not defined for numbers less

than a. For the function of Figure 17(a) we write

lim f(x)=l or lim f(x) = I.

x—*a+ x\.a

(The symbols on the left are read: the limit of f(x) as x approaches a from above.)

These "limits from above" are obviously closely related to ordinary limits, and the

definition is very similar: lim fix) = / means that for every e > there is a 8 >
x—>a+

such that, for all x,

if < A' — a < 8, then \f(x) — l\ < e.

(The condition "0 < x — a < 8" is equivalent to "0 < \x — a\ < 8 and x > a.")

"Limits from below" (Figure 18) are defined similarly: lim fix) = I (or
x—>a~

lim fix) — I) means that for every e > there is a 8 > such that, for
x'fa

all x,

if < a — x < 8, then |/(.v) — /| < e.

It is quite possible to consider limits from above and below even if / is defined

for numbers both greater and less than a. Thus, for the function / of Figure 14,

we have

lim fix) = 1 and
x^0+

lim fix) = — 1,

jc->0-
'

It is an easy exercise (Problem 29) to show that lim fix) exists if and only if
x—*a

lim fix) and lim fix) both exist and are equal.
x—Ki+ .v—>a~

Like the definitions of limits from above and below, which have been smuggled

into the text informally, there are other modifications of the limit concept which

will be found useful. In Chapter 4 it was claimed that if x is large, then sin l/.v is

(lose to 0. This assertion is usually written

lim sin 1 /.v = 0.

The symbol lim fix) is read "the limit of fix) as x approaches oo," or "as x
x—*-oo

becomes infinite," and a limit ofthe form lim fix) is often called a limit at infinity.
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Figure 19 illustrates a general situation where lim f(x) = I. Formally, lim f{x) =
X—»0O AT->00

/ means that for every £ > there is a number N such that, for all x,

if x > N, then |/(jc) - /| < s.

The analogy with the definition of ordinary limits should be clear: whereas the

condition "0 < \x — a\ < 5" expresses the fact that x is close to a, the condition

"x > ./V" expresses the fact that x is large.

FIGURE 19

We have spent so little time on limits from above and below, and at infinity

because the general philosophy behind the definitions should be clear if you un-

derstand the definition of ordinary limits (which are by far the most important).

Many exercises on these definitions are provided in the Problems, which also con-

tain several other types of limits which are occasionally useful.

PROBLEMS

1. Find the following limits. (These limits all follow, after some algebraic ma-

nipulations, from the various parts of Theorem 2; be sure you know which

ones are used in each case, but don't bother listing them.)

lim
x —

1

lim
:

3 -8

mi

LV

•2 X

lim —
x->3 x

lim —
x-»;y jc

lim —
y-*x x

vi lim
Va + h — sfa

Find the following limits.

.. 1 - v
7^

Inn
x-»-l
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1
--Vi -v 2

lim
A

1
--v7

! -x 2

3. In each of the following cases, determine the limit / for the given a, and

prove that it is the limit by showing how to find a 8 such that \f(x) — 1\ < e

for all x satisfying < \x — a\ < 8.

(i) f(x ) = a- [3 - cos(a
2
)], a = 0.

fix) =x 2 + 5x -2, a = 2.

100
(m) fix)

*5.

a = 1.

A"

,4
iv) fix) = x, arbitrary a.

A 4 + I.

, a =0.vi) /(*) = -
r

2 — sin" a

vii) f{x) = vM? a = 0.

viii) /(a) = y^", a = \.

For each of the functions in Problem 4-17, decide for which numbers a the

imit lim f(x) exists.
x—*a

a) Do the same for each of the functions in Problem 4-19.

b) Same problem, if we use infinite decimals ending in a string of 0's

instead of those ending in a string of 9's.

Suppose the functions / and g have the following property: for all e >

and all a,

if < Ia — 21 < sin' + e, then |/(a) — 2| < e,

if < \x — 2| < e , then |g(A) — 4| < s

.

For each £ > find a 8 > such that, for all a,

(i) if < |a - 2| < 8, then |/(jc) +g(Jt) - 6\ < s.

(ii) if < |a - 2| < 5, then |/(x)g(*) - 8| < £.

(iii) if < |a — 21 < <5, then < £.
{ }

g(x) 4

(iv) if < |a — 21 < 8, then : < £.
V ;

Six) 2

Give an example of a function / for which the following assertion is false:

If |/(.v) — l\ < s when < \x — a\ < 5, then |/(a) — /| < £/2 when

< |a — a\ < 8/2.
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8. (a) If lim fix) and lim gix) do not exist, can lim [/(*) + g(x)] exist? Can
x—>a x—>a x-^a

lim fix)gix) exist?
x—*a

(b) If lim fix) exists and lim[/(A') + g(x)] exists, must lim g(x) exist?
x—>a x—*a x—>a

(c) If lim f{x) exists and lim g(x) does not exist, can lim [f(x)-\-g(x)] exist?

(d) If lim fix) exists and lim f(x)g(x) exists, does it follow that lim g(x)
x^-a x^>-a x^-a

exists?

9. Prove that lim f{x) = lim f(a + h). (This is mainly an exercise in under-
x-+a

'

/,^0

standing what the terms mean.)

10. (a) Prove that lim f(x) = I if and only if lim[/(.t) — /] = 0. (First see why
x—*a x—»a

the assertion is obvious; then provide a rigorous proof. In this chapter

most problems which ask for proofs should be treated in the same way.)

(b) Prove that lim f(x) — lim f(x — a).
v^O x-*a

(c) Prove that lim f(x) = lim fix ).

X—*0 X—>0

(d) Give an example where lim f(x) exists, but lim f(x) does not.
x—>-0 x—>0

11. Suppose there is a 8 > such that f{x) = g(x) when < \x — a\ < 8. Prove

that lim f(x) — lim g(x). In other words, lim f(x) depends only on the
x—*a x—>a x^>-a

values of f(x) for x near a—this fact is often expressed by saying that limits

are a "local property." (It will clearly help to use 8' , or some other letter,

instead of 5, in the definition of limits.)

12. (a) Suppose that f{x) < g(x) for all x. Prove that lim f{x) < lim g(x),
x—>a x—*a

provided that these limits exist.

(b) How can the hypotheses be weakened?

(c) If f{x) < gix) for all x, does it necessarily follow that lim fix) <
x—*a

lim gix)?
x^a

13. Suppose that fix) < gix) < hix) and that lim fix) = lim hix). Prove that
x—>a x—*a

lim gix) exists, and that lim gix) — lim fix) = lim hix). (Draw a picture!)
x—>a x—>a x-+a x—>a

44. (a) Prove that if lim fix)/x = / and b ^ 0, then lim f{bx)/x = bl. Hint:
x—>-0 x—>0

Write fibx)/x = b[f(bx)/bx].

(b) What happens if b — 0?

(c) Part (a) enables us to find lim(sin2x)/x in terms of lim(sinx)/.t. Find
x—>0 x—»0

this limit in another way.

15. Evaluate the following limits in terms of the number a — lim (sin x) /x.
x—*0

(i) lim
™3».

lim

x

sinajc

0 sin bx



110 Foundations

16.

17.

sin 2a
iii) lim

x^-0 x

iv) lim
sin 2a

A^O a z

,. 1 — cos a
lim -

.

x^-0 x 2

tan2 a + 2x
vi) km r

—

o x+x-

vii) lim
a sin x

viii) lim

ix) lim
x-»l

lim

v^O 1 — COS*

sin (a + /?) — sin a

h

sin (a
2 — 1)

x- 1

a 2
(3 + sin a)

x^-0 (x + sin a) 2
-

1

xi) lim (a — 1) sin
,

v-1 \x - 1

a) Prove that if lim f(x) = l, then lim |/|(a) = |/|.
x^>a .r—*a

b) Prove that if lim f(x) = I and lim g(x) — m, then lim max(/, g)(x) =
x—*-a

'

x-*a x-+a

max(/, m) and similarly for min.

a) Prove that lim \/x does not exist, i.e., show that lim 1/a = I is false for
x-^0 v^O

every number /.

b) Prove that lim l/(.v — 1) does not exist.

18. Prove that if lim f(x) = /, then there is a number <5 > and a number M
X—fCl

such that |/(Jt) | < M if < \x — a\ < 8. (What does this mean pictorially?)

Hint: Why does it suffice to prove that /— 1 < f(x) < /+1 forO < \x—a\ < 8?

19. Prove that if f{x) — for irrational x and fix) — 1 for rational x,

then lim f(x) does not exist for any a.

*20. Prove that if f(x) — x for rational x, and f(x) = —x for irrational x, then

lim f(x) does not exist if a ^ 0.

21. (a) Prove that if lim g(x) = 0, then lim #(a ) sin l/.v = 0.
x—*0 x—*Q

(b) Generalize this fact as follows: If lim g(x) = and \h(x)\ < M for all a,
x—>0

then lim g(x)h(x) — 0. (Naturally it is unnecessary to do part (a) if you
x—»o

succeed in doing part (b); actually the statement of part (b) may make it

easier than (a) that's one of the values of generalization.)
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22. Consider a function / with the following property: if g is any function for

which limgOc) does not exist, then lim[/(x) + g(x)] also does not exist.
.*—>-0 x—*0

Prove that this happens if and only if Km f(x) does exist. Hint: This is

jc-»-0

actually very easy: the assumption that lim f(x) does not exist leads to an
x—*0

immediate contradiction if you consider the right g.

**23. This problem is the analogue of Problem 22 when f + g is replaced by f • g.

In this case the situation is considerably more complex, and the analysis

requires several steps (those in search of an especially challenging problem

can attempt an independent solution).

(a) Suppose that lim f(x) exists and is ^ 0. Prove that if lim g(x) does not
x— () x—»0

exist, then lim f(x)g(x) also does not exist.
x—>0

(b) Prove the same result if lim |,/"(jc)| = oo. (The precise definition of this

sort of limit is given in Problem 37.)

(c) Prove that if neither of these two conditions holds, then there is a function

g such that lim g(x) does not exist, but lim f(x)g(x) does exist.
x—*0 x—>0

Hint: Consider separately the following two cases: (1) for some £ >

we have |/(jc)I > s for all sufficiently small x. (2) For every e > 0, there

are arbitrarily small x with |/(jc)| < £. In the second case, begin by

choosing points xn with \xn \
< \/n and |/(jc„)| < \/n.

*24. Suppose that A n is, for each natural number n, some finite set of numbers in

[0, 1], and that A„ and Am have no members in common if m ^ n. Define

/ as follows:

et v f
1/", x in A n

\ (J, x not in A„ lor any n.

Prove that lim f(x) = for all a in [0, 1].
x—*a

25. Explain why the following definitions of lim f(x) = I are all correct:
x-*a

For every 8 > there is an e > such that, for all jc,

(i) if < \x — a\ < e, then \f{x) — 1\ < 8.

(ii) if < \x — a\ < s, then |/(.v) - 1\ < S.

(iii) if < |jc — a\ < e, then \f{x) — I\ < 58.

(iv) if < \x - a\ < e/10, then \f(x) -l\ < 8.

*26. Give examples to show that the following definitions of lim f(x) = I are not
x—*a

correct.

(a) For all 8 > there is an e > such that if < \x — a\ < 8, then

\f(x)-l\ <e.

(b) For all s > there is a 8 > such that if |/(jc) — /] < s, then <

I jc — a\ < 8.
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27. For each of the functions in Problem 4-17 indicate for which numbers a the

one-sided limits lim fix) and lim fix) exist.
x—>a + x—*a~

*28. (a) Do the same for each of the functions in Problem 4-19.

(b) Also consider what happens if decimals ending in O's are used instead of

decimals ending in 9's.

29. Prove that lim fix) exists if lim f{x) — lim f(x).
x^-a x—«+

'

x^-a~

30. Prove that

(i) lim f{x) = lim f(—x).

(ii) lim/(|*|)= lim f(x).
x^>0 x->0+

(iii) lim fix ) = lim f(x).
x-+0 x—»0+

(These equations, and others like them, are open to several interpretations.

They might mean only that the two limits are equal if they both exist; or that

if a certain one of the limits exists, the other also exists and is equal to it; or

that if either limit exists, then the other exists and is equal to it. Decide for

yourself which interpretations are suitable.)

31. Suppose that lim fix) < lim fix). (Draw a picture to illustrate this as-
x—>a~ X—a+

sertion.) Prove that there is some 8 > such that fix) < fiy) whenever

x < a < y and \x — a\ < 8 and |v — a\ < 8. Is the converse true?

32. Prove that lim ia„x" H h a )/ibm x'" H h bo) (with an / and bm ^ 0)
X-^-OQ

exists if and only if m > n. What is the limit when m — n? When m > n?

Hint: the one easy limit is lim 1/jc = 0; do some algebra so that this is the
X—>00

only information you need.

33. Find the following limits.

(i)

,
• 3

x + sin x
lim — —

.

x-*oo Dx + 6

(ii)

xsinx
1 1 *-v-»

1 c •

(iii) lim V x 2 + x — x.
X—»00

(iv)

x 2
i\ + sin x)

lim
:

~^—
jr->oo ix + Sinx) z

34. Prove that lim fi\/x)-
x^0+

35. Find the following limits

(i)

sin x
lim .

x^-oo x

(ii) lim x sin —

.

x-*oo x

lim fix).
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36. Define " lim f(x) = L"
x-*— oo

(a) Find lim (anx
n + • • • + a )/(bmx

m + • + b ).
X^>— 00

(b) Prove that lim f(x) = lim f(—x).
X—f-OO x—>— 00

(c) Prove that lim f{\/x) = lim f(x).
x-+0- x->—oo

37. We define lim f(x) = oo to mean that for all TV there is a 8 > such that,
x—*a

for all x, if < \x — a\ < <5, then f{x) > N. (Draw an appropriate picture!)

(Of course, we may still say that lim f(x) "does not exist" in the usual sense.)
x—>a

(a) Show that lim l/(x — 3)
2 = oo.

x—*-3

(b) Prove that if f(x) > s > for all x, and lim g{x) = 0, then
x—*a

lim f(x)/\g(x)\ = oo.
x—*a

38. (a) Define lim f(x) = oo and lim f{x) = oo. (Or at least convince your-
x^>-a+ x^f-a"

self that you could write down the definitions ifyou had the energy. How
many other such symbols can you define?)

(b) Prove that lim 1 /x — oo.

(c) Prove that lim f(x) = oo if and only if lim f{\/x) = oo.

39. Find the following limits, when they exist.

... a-
3 + 4.y-7

1 lim
l~i TTx^-oo lx £ — X + 1

7
(ii) lun x(\ + sin"x).

x—*oc

(iii) lim x sin x

.

x—»oo

(iv) lim x sin —

.

.r—>oo x

(v) lim vi 2 + 2x — x.
x—>oo

(vi) lim jc(vx + 2 — a/^")-
x—»oo

\X
Vll lim

j:-*oo x

40. (a) Find the perimeter of a regular rc-gon inscribed in a circle of radius r.

[Answer: 2rn sin(7r/n).]

(b) What value does this perimeter approach as n becomes very large?

(c) What limit can you guess from this?
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41.

FIGURE 20

(a) For c > 1, show that c
l/n — 'l/c approaches 1 as n becomes very large.

Hint: Show that for any £ > we cannot have c
l/n > 1 + e for large n.

(b) More generally, if c > 0, then c 1//,? approaches 1 as n becomes very large.

Alter sending the manuscript for the first edition of this book off to the printer,

I thought of a much simpler way to prove that lim x 2 = a 2 and lim jc
3 =

x—>a x—>a

a , without going through all the factoring tricks on page 92. Suppose, for

example, that we want to prove that lim x = a", where a > 0. Given

£ > 0, we simply let 8 be the minimum of v a 2 + e — a and a — v a 2 — e

(see Figure 19); then \x — a\ < 8 implies that \l

a

2 — e < x < \J

a

2 + s, so

a~ — s < x~ < a~ + £, or \x~ — a
\
< £. It is fortunate that these pages had

already been set, so that I couldn't make these changes, because this "proof"

is completely fallacious. Wherein lies the fallacy?
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FIGURE 1

If / is an arbitrary function, it is not necessarily true that

lim f(x) = f(a).
X—X2

In fact, there are many ways this can fail to be true. For example, / might not

even be defined at a, in which case the equation makes no sense (Figure 1).

Again, lim f(x) might not exist (Figure 2). Finally, as illustrated in Figure 3,
x—*a

even if / is defined at a and lim f(x) exists, the limit might not equal f(a).

(a)

FIGURE 2

S

(b) (c)

We would like to regard all behavior of this type as abnormal and honor, with

some complimentary designation, functions which do not exhibit such peculiarities.

The term which has been adopted is "continuous." Intuitively, a function / is

continuous if the graph contains no breaks, jumps, or wild oscillations. Although

this description will usually enable you to decide whether a function is continuous

simply by looking at its graph (a skill well worth cultivating) it is easy to be fooled,

and the precise definition is very important.

DEFINITION

I I ( , I K X. 3

The function / is continuous at a if

lim f(x) = f{a).

We will have no difficulty finding many examples of functions which are, or are

not, continuous at some number a—every example involving limits provides an

example about continuity, and Chapter 5 certainly provides enough of these.

The function f(x) = sin \/x is not continuous at 0, because it is not even defined

at 0, and the same is true of the function g(x) = x sin i/x. On the other hand, if

we are willing to extend the second of these functions, that is, if we wish to define

115
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FIGURE 4

a new function G by

G(x) =
x sin 1 jx

,

a,

x ^0
x = 0,

then the choice of a = G(0) can be made in such a way that G will be continuous

at —to do this we can (if fact, we must) define G(0) =0 (Figure 4). This sort of

extension is not possible for /; if we define

F(x)
sin 1/a,

a,

x^O
x = 0,

then F will not be continuous at 0, no matter what a is, because lim f(x) does
x^0

not exist.

The function

/(*) =
x,

0,

x rational

x irrational

is not continuous at a, if a ^ 0, since lim f(x) does not exist. However, lim f{x) =

= /(0), so / is continuous at precisely one point, 0.

The functions f(x) — c, g(x) = x, and h{x) — x are continuous at all num-

bers a, since

lim fix) = lim c = c = f(a),
x^*a x^a

lim g(x) = lim x = a = g(a),

lim /i(a") = lim x = a" = h(a).
x-*a x—*a

Finally, consider the function

/(*) =
0, x irrational

x = p/q in lowest terms.

In Chapter 5 we showed that lim f(x) = for all a (actually, only for < a < 1,
x—>a

but you can easily see that this is true for all a). Since = f{a) only when a is

irrational, this function is continuous at a if a is irrational, but not if a is rational.

It is even easier to give examples of continuity if we prove two simple theorems.

THEOREM l If / and g are continuous at a, then

(1) / + g is continuous at a,

(2) / • g is continuous at a.

Moreover, if g (a) ^ 0, then

(3) \/g is continuous at a.
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PROOF

THEOREM 2

Since / and g are continuous at a,

lim f(x) — f{a) and lim g{x) — g{a).
x— a

'

.r—>a

By Theorem 2(1) of Chapter 5 this implies that

lim(/ + g)(x) = f(a) + g{a) = (f + g)(a),
x—*a

which is just the assertion that / + g is continuous at a. The proofs of parts (2)

and (3) are left to you. |

Starting with the functions f(x) = c and f(x) = x, which are continuous at a,

for every a, we can use Theorem 1 to conclude that a function

/(*) =
bnx

n + bn-ix
n- 1 +--- + b

cm x
l"+cn,_ l

x" 1 -' + --- + c

is continuous at every point in its domain. But it is harder to get much further

than that. When we discuss the sine function in detail it will be easy to prove that

sin is continuous at a for all a; let us assume this fact meanwhile. A function like

/(*) =
• 2 ,2,4-

sin x + x + x suijc

27 a i~- 2
sin" x + 4*- sin x

can now be proved continuous at every point in its domain. But we are still

unable to prove the continuity of a function like f(x) = sin(x"); we obviously

need a theorem about the composition of continuous functions. Before stating this

theorem, the following point about the definition of continuity is worth noting. If

we translate the equation lim f(x) = f(a) according to the definition of limits,

we obtain

for every e > there is 8 > such that, for all x,

if < \x — a\ < 8, then \f(x) — f(a)\ < s.

But in this case, where the limit is /(a), the phrase

< \x — a\ < 8

may be changed to the simpler condition

\x — a\ < S,

since if x = a it is certainly true that \f(x) — f(a)\ < s.

If g is continuous at a, and / is continuous at g(a), then / o g is continuous at a.

(Notice that / is required to be continuous at g(a), not at a.)

proof Let s > 0. We wish to find a 8 > such that for all x,

if \x -a\ < 8. then \(f o g)(x ) - (/ 6 g)(a)\ < e,

i.e., \f(g(x))- f(g(a))\ <e.
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We first use continuity of / to estimate how close g(x) must be to g(a) in order

for this inequality to hold. Since / is continuous at g(a), there is a 8' > such

that for all y,

(1) if \y-g(a)\ < 8\ then |/(j) - f(g(a))\ < s.

In particular, this means that

(2) if \g(x) - g(a)\ < 8\ then \f(g(x)) - f(g(a))\ < s.

We now use continuity of g to estimate how close x must be to a in order for the

inequality \g{x) — g{a)\ < 8' to hold. The number 8' is a positive number just like

any other positive number; we can therefore take 8' as the e (!) in the definition of

continuity of g at a. We conclude that there is a 8 > such that, for all v,

(3) if \x — a\ < 8, then \g(x) — g(a)\ < 8'.

Combining (2) and (3) we see that for all x,

if |.v -a\< 8, then \f(g(x)) - f(g(a))\ < e. |

We can now reconsider the function

x sin \/x, x ^
'0. * = 0.

We have already noted that / is continuous at 0. A few applications ofTheorems 1

and 2, together with the continuity of sin, show that / is also continuous at a, for

fl/0. Functions like f{x) = sin(.r~ + sin(jc + sin (x ))) should be equally easy

for you to analyze.

The few theorems of this chapter have all been related to continuity of functions

at a single point, but the concept of continuity doesn't begin to be really interesting

until we focus our attention on functions which are continuous at all points ofsome

interval. If / is continuous at x for all x in (a,b), then / is called continuous

on (a, b); as a "special case", / is continuous on R = (
— oo, oo) [see page 57] if

it is continuous at x for all x in R. Continuity on a closed interval must be defined

a little differently; a function / is called continuous on [a, b] if

(1) /is continuous at x for all x in (a,b),

(2) lim f{x) = f(a) and lim f(x) = f(b).

(We also often simply say that a function is continuous if it is continuous at x for

all jc in its domain.)

Functions which are continuous on an interval are usually regarded as especially

well behaved; indeed continuity might be specified as the first condition which a

"reasonable" function ought to satisfy. A continuous function is sometimes de-

scribed, intuitively, as one whose graph can be drawn without lifting your pencil

from the paper. Consideration of the function

^Y%__ f
*sinl/*, x#0

'
{X) ~] 0. x =
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shows that this description is a little too optimistic, but it is nevertheless true that

there are many important results involving functions which are continuous on an

interval. There theorems are generally much harder than the ones in this chapter,

but there is a simple theorem which forms a bridge between the two kinds of results.

The hypothesis of this theorem requires continuity at only a single point, but the

conclusion describes the behavior of the function on some interval containing the

point. Although this theorem is really a lemma for later arguments, it is included

here as a preview of things to come.

THEOREM 3 Suppose / is continuous at a, and fia) > 0. Then fix) > for all x in some

interval containing a; more precisely, there is a number <5 > such that fix) >
for all x satisfying \x — a\ < 8. Similarly, if f{a) < 0, then there is a number 8 >

such that f{x) < for all x satisfying \x — a\ < 8.

PROOF

fia) + e=\fia)_

fia)

fia)-e= \fia)

FIGURE 5

Consider the case fia) > 0. Since / is continuous at a, for every s > there is a

8 > such that, for all x,

if |.v — a\ < 8, then \fix) — f(a)\ < e,

i.e., — e < fix) — fia) < s.

In particular, this must hold for s = ?/(«), since j fia) > (Figure 5). Thus

there is 8 > so that for all x,

if \x - a\ < 8, then -\fia) < fix) - fia) < \f(a),

and this implies that fix) > \ fia) > 0. (We could even have picked s to be fia)

itself, leading to a proof that is more elegant, but more confusing to picture.)

A similar proof can be given in the case fia) < 0; take s = —\f(a). Or one

can apply the first case to the function — /. |

PROBLEMS

1. For which of the following functions / is there a continuous function F with

domain R such that Fix) — fix) for all x in the domain of /?

(i) fix) =

(ii) fix) =

x 2 -4
x-2'
\x\

X

(iii) fix) = 0, x irrational.

(iv) f(x) = l/q, x = p/q rational in lowest terms.

2. At which points are the functions of Problems 4-17 and 4-19 continuous?



1 20 Foundations

3. (a) Suppose that / is a function satisfying \f{x)\ < \x\ for all x. Show that

/ is continuous at 0. (Notice that /(0) must equal 0.)

(b) Give an example of such a function / which is not continuous at any

a ^ 0.

(c) Suppose that g is continuous at and g(0) = 0, and |/(a)| < |g(Jt)|.

Prove that / is continuous at 0.

4. Give an example of a function / such that / is continuous nowhere, but \f\

is continuous everywhere.

5. For each number a, find a function which is continuous at a, but not at any

other points.

6. (a) Find a function / which is discontinuous at 1, \, A, 1, . . . but continuous

at all other points.

(b) Find a function / which is discontinuous at 1, j? ^, \, • • • , and at 0, but

continuous at all other points.

7. Suppose that / satisfies f(x + y) = f(x) + f(y), and that / is continuous

at 0. Prove that / is continuous at a for all a.

8. Suppose that / is continuous at a and f(a) = 0. Prove that if a / 0, then

/ + a is nonzero in some open interval containing a

.

9. (a) Suppose / is defined at a but is not continuous at a. Prove that for

some number e > there are numbers x arbitrarily close to a with

|/(jc) — f(a)\ > s. Illustrate graphically.

(b) Conclude that for some number £ > either there are numbers x arbi-

trarily close to a with f{x) < f(a) — s or there are numbers x arbitrarily

close to a with f(x) > f(a) + e.

10. (a) Prove that if / is continuous at a, then so is |/|.

(b) Prove that every function / continuous on R can be written f = E + O,

where E is even and continuous and O is odd and continuous.

(c) Prove that if / and g are continuous, then so are max( /", g) and

min(/, g).

(d) Prove that every continuous / can be written / = g — h, where g and h

are nonnegative and continuous.

11. Prove Theorem 1(3) by using Theorem 2 and continuity of the function

/(*)= l/x.

:

12. (a) Prove that if /' is continuous at / and lim g(x) = /, then lim f(g(x)) =
x—*a x—*a

/(/). (You can go right back to the definitions, but it is easier to consider

the function G with G(x) = g(x) for x ^ a, and G(a) = I.)

(b) Show that if continuity of / at / is not assumed, then it is not generally

true that lim f(g(x)) = /(lim g(x)). Hint: Try f(x) = for x ^ I, and
x—-a

'

x—>a

/(0= I-
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13. (a) Prove that if / is continuous on [a, b], then there is a function g which

is continuous on R, and which satisfies gix) — fix) for all x in [a,&].

Hint: Since you obviously have a great deal of choice, try making g

constant on (
— oo,a] and [b, oo).

(b) Give an example to show that this assertion is false if [a , b] is replaced

by (a,b).

14. (a) Suppose that g and h are continuous at a, and that g(a) — h(a). Define

f(x) to be gix) if jc > a and h(x) if x < a. Prove that / is continuous

at a.

(b) Suppose g is continuous on [a.b] and h is continuous on [b, c] and

g(b) = h(b). Let f(x) be g(x) for x in [a,b] and h(x) for x in [fr,c].

Show that / is continuous on [a, c]. (Thus, continuous functions can be

"pasted together".)

15. Prove that if / is continuous at a, then for any £ > there is a 8 > so that

whenever \x — a\ < 8 and \y — a\ < 8, we have \f(x) — f(y)\ < s.

16. (a) Prove the following version of Theorem 3 for "right-hand continuity":

Suppose that lim f(x) = f(a), and f(a) > 0. Then there is a number
x—>a+

8 > such that f(x) > for all x satisfying < x — a < 8. Similarly,

if f(a) < 0, then there is a number 8 > such that f(x) < for all x

satisfying < x — a < 8

.

(b) Prove a version of Theorem 3 when lim f(x) = f(b).
x—*b~

17. If lim f(x) exists, but is ^ f(a), then / is said to have a removable dis-
x—*a

continuity at a.

(a) If f{x) — sin \/x for x ^ and /(0) = 1, does / have a removable

discontinuity at 0? What if fix) = x sin i/x for x / 0, and /(0) = 1?

(b) Suppose / has a removable discontinuity at a. Let gix) = fix) for

x ^ a, and let gia) = lim fix). Prove that g is continuous at a. (Don't
x-*a

work very hard; this is quite easy.)

(c) Let fix) = if x is irrational, and let fip/q) = \jq if p/q is in lowest

terms. What is the function g defined by gix) = lim fiy)?

*(d) Let / be a function with the property that every point of discontinuity

is a removable discontinuity. This means that lim fiy) exists for all x,
V—KV

but / may be discontinuous at some (even infinitely many) numbers x.

Define gix) = lim fiy). Prove that g is continuous. (This is not quite
v—*

so easy as part (b).)

**(e) Is there a function / which is discontinuous at every point, and which has

only removable discontinuities? (It is worth thinking about this problem

now, but mainly as a test of intuition; even if you suspect the correct

answer, you will almost certainly be unable to prove it at the present

time. See Problem 22-33.)



CHAPTER THREE HARD THEOREMS

This chapter is devoted to three theorems about continuous functions, and some

of their consequences. The proofs of the three theorems themselves will not be

given until the next chapter, for reasons which are explained at the end of this

chapter.

THEOREM l If / is continuous on [a,b] and f(a) < < fib), then there is some x in [a,b]

such that f(x) = 0.

(Geometrically, this means that the graph of a continuous function which starts

below the horizontal axis and ends above it must cross this axis at some point, as

in Figure 1.)

theorem 2 If / is continuous on [a , b] , then / is bounded above on [a , b] , that is, there is

some number N such that f(x) < N for all x in [«,&].

(Geometrically, this theorem means that the graph of / lies below some line par-

allel to the horizontal axis, as in Figure 2.)

THEOREM 3 If / is continuous on [a,&], then there is some number v in [a,b] such that

f(y) > fix) for all x in [a, b] (Figure 3).

These three theorems differ markedly from the theorems of Chapter 6. The

hypotheses of those theorems always involved continuity at a single point, while

FIGl RE FIGURE 2

122

FIGURE *
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4l 2

FIGURE 4

N

2N

FIGURE 5

V X 1

the hypotheses of the present theorems require continuity on a whole interval

[a, b]—if continuity fails to hold at a single point, the conclusions may fail. For

example, let / be the function shown in Figure 4,

/(*)
1.

1,

0<x <

V2<x <2
Vi

Then / is continuous at every point of [0, 2] except V2, and f(0) < < /'(2),

but there is no point x in [0, 2] such that fix) = 0; the discontinuity at the single

point v 2 is sufficient to destroy the conclusion of Theorem 1

.

Similarly, suppose that / is the function shown in Figure 5,

/(*) =
\/x,

0,

x ^0
x = 0.

Then / is continuous at every point of [0, 1] except 0, but / is not bounded above

on [0, 1]. In fact, for any number N > we have f(\/2N) = 2N > N.

This example also shows that the closed interval [a, b] in Theorem 2 cannot be

replaced by the open interval (a,b), for the function / is continuous on (0, 1), but

is not bounded there.

Finally, consider the function shown in Figure 6,

/(*)
X

0,

X < 1

X > 1.

FIGURE 6

On the interval [0, 1] the function / is bounded above, so / does satisfy the

conclusion of Theorem 2, even though / is not continuous on [0, 1]. But /
does not satisfy the conclusion of Theorem 3—there is no y in [0, 1] such that

f(y) > fix) for all x in [0, 1]; in fact, it is certainly not true that f{\) > f(x) for

all x in [0, 1] so we cannot choose v = 1, nor can we choose < v < 1 because

fiy) < fix ) if x is any number with y < x < 1.

This example shows that Theorem 3 is considerably stronger than Theorem 2.

Theorem 3 is often paraphrased by saying that a continuous function on a closed

interval "takes on its maximum value" on that interval.

As a compensation for the stringency of the hypotheses of our three theorems,

the conclusions are of a totally different order than those of previous theorems.

They describe the behavior of a function, not just near a point, but on a whole in-

terval; such "global" properties of a function are always significantly more difficult

to prove than "local" properties, and are correspondingly of much greater power.

To illustrate the usefulness ofTheorems 1, 2, and 3, we will soon deduce some im-

portant consequences, but it will help to first mention some simple generalizations

of these theorems.

theorem 4 If / is continuous on [a, b] and f(a) < c < f(b), then there is some x in [a, b\

such that f(x) = c.



124 Foundations

PROOF Let g = f — c. Then g is continuous, and g(a) < < g(b). By Theorem 1, there

is some x in [a,b] such that g(x) = 0. But this means that fix) = c. |

theorem 5 If /" is continuous on [a,b] and f(a) > c > f(b), then there is some x in [a,b]

such that /(jc) = c.

PROOF The function —/ is continuous on [a,b] and —f(a) < — c < —fib). By The-

orem 4 there is some x in [a,b] such that — fix) = — c, which means that

/GO = c. I

Theorems 4 and 5 together show that / takes on any value between f(a)

and f(b). We can do even better than this: if c and d are in [a, ft], then /
takes on any value between /(c) and f(d). The proof is simple: if, for example,

c < d, then just apply Theorems 4 and 5 to the interval [c, d]. Summarizing, if a

continuous function on an interval takes on two values, it takes on every value in

between; this slight generalization of Theorem 1 is often called the Intermediate

Value Theorem.

THEOREM 6 If / is continuous on [a , b] , then / is bounded below on [a , b] , that is, there is

some number N such that fix) > N for all x in [a, b].

PROOF The function —/ is continuous on [a, b], so by Theorem 2 there is a number M
such that — fix) < M for all x in [«, b]. But this means that f(x) > —M for all x

in [a, b], so we can let N = —M. |

Theorems 2 and 6 together show that a continuous function / on [a , b] is

bounded on [a, ft], that is, there is a number TV such that |/(x)| < /V for all x in

[a , b] . In fact, since Theorem 2 ensures the existence of a number N\ such that

fix) < N\ for all x in [a, b], and Theorem 6 ensures the existence of a number

A^2 such that f(x) > M for all x in [a, b], we can take iV = max(|A^i |, |A^|).

theorem 7 If / is continuous on [a, b], then there is some y in [a, b] such that /(y) < fix)

for all x in [a , b]

.

(A continuous function on a closed interval takes on its minimum value on that

interval.)

PROOF The function —/ is continuous on [a, b]; by Theorem 3 there is some y in [a, b]

such that —fiy) > ~f(x) for all x in [a,b], which means that /(y) < fix) for

all x in [«,/?]. |

Now that we have derived the trivial consequences of Theorems 1, 2, and 3, we

can begin proving a few interesting things.

theorem 8 Every positive number has a square root. In other words, if a > 0, then there is

some number x such that x~ = a.
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PROOF

FIGURE 7

Consider the function fix) = x 2
, which is certainly continuous. Notice that the

statement of the theorem can be expressed in terms of /: "the number a has a

square root" means that / takes on the value a. The proof of this fact about /
will be an easy consequence of Theorem 4.

There is obviously a number b > such that f(b)>a (as illustrated in Figure 7);

in fact, if a > 1 we can take b — a, while if a < 1 we can take b = 1. Since

/(0) < a < f(b), Theorem 4 applied to [0, b] implies that for some x (in [0, b]),

we have f(x) = a, i.e., x 2 = a. |

Precisely the same argument can be used to prove that a positive number has

an nth root, for any natural number n. If n happens to be odd, one can do

better: every number has an nth root. To prove this we just note that if the positive

number a has the nth root x, i.e., if x" = a, then (—x)n = —a (since n is odd), so

—a has the nth root —x. The assertion, that for odd n any number a has an nth

root, is equivalent to the statement that the equation

x" - a =

has a root if n is odd. Expressed in this way the result is susceptible of great

generalization.

THEOREM 9 If n is odd, then any equation

x" +an-\x
n~ x

^ h«o =

has a root.

PROOF We obviously want to consider the function

n-\
f(x) = x" + a„_ix"

_1
H + a

;

we would like to prove that / is sometimes positive and sometimes negative. The

intuitive idea is that for large \x\, the function is very much like g(x) = x n and,

since n is odd, this function is positive for large positive x and negative for large

negative x . A little algebra is all we need to make this intuitive idea work.

The proper analysis of the function / depends on writing

fix) = x
n + a^i.r"-

1 + • • • + a = xn
( 1 +— +
V x

+
«0\

x")

Note that

a,
l Of
- + - + +

«o < K-i
+ ••• +

l«ol

X X^ X'

Consequently, if we choose x satisfying

(*) |jc| > 1, 2n|fl„_i|, . . . , 2n|aol>

then \x
k

\
> \x\ and

|tf#i-*l J_
2n\an-k \

In

\an -k\ \an -k\
;— < <
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so

an -\ an-2 _ «o

X X z X n
JL

] l

2n 2n 2

In other words.

which implies that

1 <
a"- i

2 ~ x x" ~ 2'

2 jc .r"

Therefore, if we choose an x\ > which satisfies (*), then

Ul)
"<u, )"fi +

a"- 1
a°

2 V X] (x\)" J

so that f(x\) > 0. On the other hand, if x2 < satisfies (*), then (x2 )" < and

^ > (x2y 1 1 + ••• +
•X? (x2y

= f(X2),

so that f{xi) < 0.

Now applying Theorem 1 to the interval [x2 , x\] we conclude that there is an x

in [x2 , x\] such that f(x) = 0. |

I I < , I RE 8

Theorem 9 disposes of the problem of odd degree equations so happily that it

would be frustrating to leave the problem of even degree equations completely

undiscussed. At first sight, however, the problem seems insuperable. Some equa-

tions, like x — 1 =0, have a solution, and some, like x + 1 = 0, do not—what

more is there to say? If we are willing to consider a more general question, how-

ever, something interesting can be said. Instead of trying to solve the equation

x" +an _ [
x"- 1 +...+fl =0,

let us ask about the possibility of solving the equations

-V" +«„_,*"- + a = c

for all possible numbers c. This amounts to allowing the constant term ao to vary.

The information which can be given concerning the solution of these equations

depends on a fact which is illustrated in Figure 8.

The graph of the function f{x) = Jc"+<r/„_i.Y"
_1 + • • • + «(), with n even, contains,

at least the way we have drawn it, a lowest point. In other words, there is a

number y such that f(y) < f(x) for all numbers x—the function / takes on a

minimum value, not just on each closed interval, but on the whole line. (Notice

that this is false if n is odd.) The proof depends on Theorem 7, but a tricky

application will be required. We can apply Theorem 7 to any interval [«,/?], and

obtain a point yo such that /(>'o) is the minimum value of / on [a, b]; but if \a, b]

happens to be the interval shown in Figure 8, for example, then the point yo will

not be the place where / has its minimum value for the whole line. In the next
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theorem the entire point of the proof is to choose an interval [a, b] in such a way

that this cannot happen.

theorem 10 If n is even and f(x) = x" + an_\x
n ~ l + • • + ao, then there is a number y such

that f(y) < f(x) for all x.

PROOF As in the proof of Theorem 9, if

M = max(l, 2n\an -\\ 2n\ao\),

then for all x with \x\ > M, we have

2 x

Since n is even, x" > for all x, so

x n
., /. a„_i

+ ••• +
ao

< x.(i + 5td + ... + ^) = /w .

provided that \x\ > M. Now consider the number f(0). Let ^ > be a number

such that b" > 2/(0) and also b > M. Then, if x > b, we have (Figure 9)

/.(*) > y ^ y ^ ^ (°)-

Similarly, if x < — b, then

Summarizing:

„ n
x " (

- b) " b" ^m/U)>y>-y- = y>/(0).

if jc > Z? or x < -b, then f(x) > /(0).

Now apply Theorem 7 to the function / on the interval [—b, b]. We conclude

that there is a number y such that

(1) if -b < x < b, then f(y) < f(x).

In particular, f(y) < f(0). Thus

(2) if x < -b or x > b, then f(x) > /(0) > /(v).

Combining (1) and (2) we see that /(y) < /(jc) for all x. |

Theorem 10 now allows us to prove the following result.

theorem li Consider the equation

n-\
(*) x" +an _ ]

x'
1
-

1 +---+a = c
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and suppose n is even. Then there is a number m such that (*) has a solution for

c > m and has no solution for c < m.

PROOF

figure: 10

Let /(*) = x" + a,,-!*"-
1 + ... +oo (Figure 10).

According to Theorem 10 there is a number v such that f(y) < fix) for all x.

Let m = f(y). If c < m, then the equation (*) obviously has no solution, since

the left side always has a value > m. If c = m, then (*) has y as a solution.

Finally, suppose c > m. Let b be a number such that b > y and f(b) > c. Then
/(v) = m < c < f(b). Consequently, by Theorem 4, there is some number x in

[y, b] such that f(x) = c, so x is a solution of (*). |

These consequences of Theorems 1, 2, and 3 are the only ones we will derive

now (these theorems will play a fundamental role in everything we do later, how-

ever). Only one task remains—to prove Theorems 1, 2, and 3. Unfortunately,

we cannot hope to do this—on the basis of our present knowledge about the real

numbers (namely, PI—PI 2) a proof is impossible. There are several ways of con-

vincing ourselves that this gloomy conclusion is actually the case. For example,

the proof of Theorem 8 relies only on the proof of Theorem 1; if we could prove

Theorem 1 , then the proof of Theorem 8 would be complete, and we would have

a proof that every positive number has a square root. As pointed out in Part I, it

is impossible to prove this on the basis of P1-P12. Again, suppose we consider the

function

1

fix) = -^r

I [GURE

If there were no number x with x = 2, then / would be continuous, since the

denominator would never = 0. But / is not bounded on [0, 2] . So Theorem 2

depends essentially on the existence of numbers other than rational numbers, and

therefore on some property of the real numbers other than PI -PI 2.

Despite our inability to prove Theorems 1, 2, and 3, they are certainly results

which we want to be true. If the pictures we have been drawing have any con-

nection with the mathematics we are doing, if our notion of continuous function

corresponds to any degree with our intuitive notion, Theorems 1, 2, and 3 have

got to be true. Since a proof of any of these theorems must require some new

property of R which has so far been overlooked, our present difficulties suggest a

way to discover that property: let us try to construct a proof of Theorem 1 , for

example, and see what goes wrong.

One idea which seems promising is to locate the first point where fix) = 0, that

is, the smallest x in [a,b] such that fix) = 0. To find this point, first consider

the set A which contains all numbers x in [a,b] such that / is negative on [o,*].

In Figure 11, x is such a point, while x' is not. The set A itself is indicated by a

heavy line. Since / is negative at a, and positive at b, the set A contains some

points greater than a, while all points sufficiently close to b are not in A. (We are

here using the continuity of / on \a. /?], as well as Problem 6-16.)
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f(x) < for all x in this interval

A would also contain

all these points

FIGURE 12

A could really be

only this big.

f(x) >0 for all x

in this interval

FIGURE 13

Now suppose a is the smallest number which is greater than all members of A;

clearly a < a < b. We claim that f(oc) = 0, and to prove this we only have to

eliminate the possibilities /(or) < and /(or) > 0.

Suppose first that f(ct) < 0. Then, by Theorem 6-3, fix) would be less than

for all x in a small interval containing a, in particular for some numbers bigger

than a (Figure 12); but this contradicts the fact that a, is bigger than every member
of A, since the larger numbers would also be in A. Consequently, /(or) < is

false.

On the other hand, suppose /(or) > 0. Again applying Theorem 6-3, we see that

fix) would be positive for all x in a small interval containing or, in particular for

some numbers smaller than a (Figure 13). This means that these smaller numbers

are all not in A. Consequently, one could have chosen an even smaller a which

would be greater than all members of A. Once again we have a contradiction;

f{a) > is also false. Hence f(a) — and, we are tempted to say, Q.E.D.

We know, however, that something must be wrong, since no new properties of R
were ever used, and it does not require much scrutiny to find the dubious point.

It is clear that we can choose a number a which is greater than all members of A
(for example, we can choose a = b), but it is not so clear that we can choose a

smallest one. In fact, suppose A consists of all numbers x > such that x 2 < 2.

If the number V 2 did not exist, there would not be a least number greater than

all the members of A; for any y > V2 we chose, we could always choose a still

smaller one.

Now that we have discovered the fallacy, it is almost obvious what additional

property of the real numbers we need. All we must do is say it properly and use it.

That is the business of the next chapter.

PROBLEMS

For each of the following functions, decide which are bounded above or below

on the indicated interval, and which take on their maximum or minimum
value. (Notice that / might have these properties even if / is not continuous,

and even if the interval is not a closed interval.)

W
(")

(iii)

(iv)

vi

vn

f(x) =x 2 on (-1,1).

f(x) =x 3 on (-1,1).

fix) =x 2 onR.

fix) = x on [0, oo).

/(*) = on {—a — 1,0 + 1). (We assume a > — 1. so

that —a
for a.)

fix) =

fix) =

x", x < a

a + 2, x > a

1 < a + 1 ; it will be necessary to consider several possibilities

on [- ax , x < a

a + 2, x > a

0, x irrational

\/q, x = p/q in lowest terms

1 , a + 1] . (Again assume a > — 1 .)

on [0. 1].
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[ 1, a- irrational
vin fix) = { 1

. , • , on [0, 11.

[ 1/g, a = p/q in lowest terms

,.,,,,
f

1, x irrational
rx /(a) =

\ , i
on [0, 11.

[
— l/<y, a = p/g in lowest terms

/ \ ,./ v f *, Jf rational r „ ,W /W=
{0, .irrational

m ^^
(xi) fix) = sin" (cos a + vo + a 2

) on [0, a'].

(xii) /(a) = [a] on [0,a].

For each of the following polynomial functions /, find an integer n such that

fix) — for some a between /7 and n + 1.

(i) /(A)=A 3 -A + 3.

(ii) /(a) = a 5 + 5a 4 + 2a + 1.

(iii) /(A) = A 5 +A + 1.

(iv) /(a) = 4a 2 -4a+ 1.

3. Prove that there is some number a such that

(i) *"" + - l^-rr- = 119.
1 + a- + sin" A

(ii) sin a = a — 1

.

4. This problem is a continuation of Problem 3-7.

(a) If n — k is even, and > 0, find a polynomial function of degree n with

exactly k roots.

(b) A root a of the polynomial function / is said to have multiplicity m
if fix) — (a — a)'" gix), where g is a polynomial function that does not

have a as a root. Let / be a polynomial function of degree n. Suppose

that / has k roots, counting multiplicities, i.e., suppose that k is the sum

of the multiplicities of all the roots. Show that n — k is even.

5. Suppose that / is continuous on [a, b] and that fix) is always rational. What

can be said about /?

6. Suppose that / is a continuous function on [— 1, 1] such that x~ + (/(a))" = 1

for all a. (This means that (a, fix)) always lies on the unit circle.) Show that

either fix) = V 1 — a 2 for all a, or else fix) = — v 1 — a 2 for all x.

7. How many continuous functions / are there which satisfy (/(a))" = x for

all*?

8. Suppose that / and g are continuous, that f
2 = g , and that fix) ^ for

all a. Prove that either fix) = gix) for all x, or else fix) = —gix) for all v.

9. (a) Suppose that / is continuous, that /(a) = only for x = a, and that

fix) > for some a > a as well as for some x < a. What can be said

about fix) for all x ^ a?
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FIGURE 14

(b) Again assume that / is continuous and that fix) = only for x = a,

but suppose, instead, that fix) > for some x > a and fix) < for

some x < a. Now what can be said about fix) for x / a?

*(c) Discuss the sign of x + x y + xy + y when x and y are not both 0.

10. Suppose / and g are continuous on [a, b] and that fia) < gia), but fib) >

gib). Prove that fix) = gix) for some x in [a,/?]. (If your proof isn't very

short, it's not the right one.)

11. Suppose that / is a continuous function on [0, 1] and that fix) is in [0, 1]

for each x (draw a picture). Prove that fix) = x for some number x.

12. (a) Problem 11 shows that / intersects the diagonal of the square in Fig-

ure 14 (solid line). Show that / must also intersect the other (dashed)

diagonal.

(b) Prove the following more general fact: If g is continuous on [0, 1] and

g (0) = 0, g(l) = 1 or giO) = 1, g(\) = 0, then fix) = gix) for some x.

13. (a) Let fix) = sin l/x for x ^ and let /(0) = 0. Is / continuous on

[— 1, 1]? Show that / satisfies the conclusion of the Intermediate Value

Theorem on [— 1 , 1] ; in other words, if / takes on two values somewhere

on [— 1, 1], it also takes on every value in between.

*(b) Suppose that / satisfies the conclusion of the Intermediate Value Theo-

rem, and that / takes on each value only once. Prove that / is continuous.

*(c) Generalize to the case where / takes on each value only finitely many
times.

14. If / is a continuous function on [0, 1], let

on [0, 1].

16.

*17.

be the maximum value of
| /

1

(a) Prove that for any number c we have ||c/|| = \c\ \\f\\.

*(b) Prove that \\f + g\\ < ||/|| + \\g\\. Give an example where ||/ + g\\ /
11/11 + llsll.

(c) Prove that \\h - f\\ < \\h - g\\ + \\g - f\\.

:

15. Suppose that is continuous and lim 0(x)/a" = = lim 0(.v)/.v".
X—»oo x—>—oo

(a) Prove that if n is odd, then there is a number x such that x" + </>(.v) = 0.

(b) Prove that if n is even, then there is a number y such that y" + </>( v) <

x" + c()ix) for all x.

Hint: Of which proofs does this problem test your understanding?

(a) Suppose that / is continuous on (a, b) and lim fix)
x—*a+

Prove that / has a minimum on all of ia,b).

(I)) Prove the corresponding result when a = — oo and/or b = oo

lim fix) = oo.

Let / be any polynomial function. Prove that there is some number y such

that |/()0| < |/(*)| for all x.



1 32 Foundations

FIGURE 15

/

X X +

FIGURE 16

*18. Suppose that / is a continuous function with fix) > for all x, and

lim fix) = = lim fix). (Draw a picture.) Prove that there is some
X—*O0 X^r—OO

number y such that /(y) > f{x) for all x.

*19. (a) Suppose that / is continuous on [a, b], and let x be any number. Prove

that there is a point on the graph of / which is closest to (x,0); in

other words there is some y in [a , b] such that the distance from (x , 0)

to (y, /(y)) is < distance from (x, 0) to (z, f(z)) for all z in [a, b]. (See

Figure 15.)

(b) Show that this same assertion is not necessarily true if [a , b] is replaced

by ia,b) throughout.

(c) Show that the assertion is true if [a, b] is replaced by R throughout.

(d) In cases (a) and (c), let g(x) be the minimum distance from (jc,0) to a

point on the graph of /. Prove that giy) < g(x) + \x — y\, and conclude

that g is continuous.

(e) Prove that there are numbers *o and x\ in [a,b] such that the distance

from (jto, 0) to (jci, f(x\)) is < the distance from (xq, 0) to (x\\ f{x\'))

for any xq' , x\ in [a, &].

20. (a) Suppose that / is continuous on [0, 1] and /(0) = /(l). Let n be any

natural number. Prove that there is some number x such that fix) —

f(x+ \/n), as shown in Figure 16 for n = 4. Hint: Consider the function

g(x) = f(x) — f{x + l/«); what would be true if g(x) / for all x?

*(b) Suppose < a < 1, but that a is not equal to \/n for any natural

number n. Find a function / which is continuous on [0, 1] and which

satisfies /(0) = /(l), but which does not satisfy fix) = fix + a) for

any x.

*21. (a) Prove that there does not exist a continuous function / defined on R
which takes on every value exactly twice. Hint: If fia) = fib) for

a < b, then either fix) > fia) for all x in ia,b) or fix) < fia) for

all x in ia,b). Why? In the first case all values close to fia), but slightly

larger than fia), are taken on somewhere in ia,b); this implies that

fix) < fia) for x < a and x > b.

(b) Refine part (a) by proving that there is no continuous function / which

takes on each value either times or 2 times, i.e., which takes on exactly

twice each value that it does take on. Hint: The previous hint implies

that / has either a maximum or a minimum value (which must be taken

on twice). What can be said about values close to the maximum value?

(c) Find a continuous function / which takes on every value exactly 3 times.

More generally, find one which takes on every value exactly n times, if

// is odd.

(d) Prove that if // is even, then there is no continuous / which takes on

every value exactly /; times. Hint: To treat the case n = 4, for example,

let fix\) = fix2) = /C*3) = /U4). Then either fix) > for all ,v in

two of the three intervals ix\,X2), (^2^3)) (^3^x4), or else fix) < for

all x in two of these three intervals.



CHAPTER LEAST UPPER BOUNDS

This chapter reveals the most important property of the real numbers. Never-

theless, it is merely a sequel to Chapter 7; the path which must be followed has

already been indicated, and further discussion would be useless delay.

DEFINITION A set A of real numbers is bounded above if there is a number x such that

x > a for every a in A.

Such a number x is called an upper bound for A

.

Obviously A is bounded above if and only if there is a number x which is an

upper bound for A (and in this case there will be lots of upper bounds for A); we

often say, as a concession to idiomatic English, that "A has an upper bound" when

we mean that there is a number which is an upper bound for A

.

Notice that the term "bounded above" has now been used in two ways—first, in

Chapter 7, in reference to functions, and now in reference to sets. This dual usage

should cause no confusion, since it will always be clear whether we are talking

about a set of numbers or a function. Moreover, the two definitions are closely

connected: if A is the set {f(x) : a < x < b}, then the function / is bounded

above on [a, b\ if and only if the set A is bounded above.

The entire collection R of real numbers, and the natural numbers N, are both

examples of sets which are not bounded above. An example of a set which is

bounded above is

A = {x :0 <x < 1}.

To show that A is bounded above we need only name some upper bound for A,

which is easy enough; for example, 138 is an upper bound for A, and so are 2,

lj, 1^, and 1. Clearly, 1 is the least upper bound of A; although the phrase

just introduced is self-explanatory, in order to avoid any possible confusion (in

particular, to ensure that we all know what the superlative of "less" means), we
define this explicitly.

DEFINITION A number x is a

and

least

(1)

(2)

upper bound of A if

x is an upper bound of A,

if y is an upper bound of A, then x < y.

33
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The use of the indefinite article "a" in this definition was merely a concession

to temporary ignorance. Now that we have made a precise definition, it is easily

seen that if x and v are both least upper bounds of A, then x = v. Indeed, in this

case

x < y , since v is an upper bound, and x is a least upper bound,

and y < x, since jc is an upper bound, and y is a least upper bound;

it follows that x — y. For this reason we speak of the least upper bound of A.

The term supremum of A is synonymous and has one advantage. It abbreviates

quite nicely to

sup A (pronounced "soup A")

and saves us from the abbreviation

lub A

(which is nevertheless used by some authors).

There is a series of important definitions, analogous to those just given, which

can now be treated more briefly. A set A of real numbers is bounded below if

there is a number x such that

x < a for every a in A

.

Such a number x is called a lower bound for A. A number x is the greatest

lower bound of A if

( 1 ) x is a lower bound of A
,

and (2) if y is a lower bound of A, then x > y.

The greatest lower bound of A is also called the infimum of A , abbreviated

inf A;

some authors use the abbreviation

gib A.

One detail has been omitted from our discussion so far—the question of which

sets have at least one, and hence exactly one, least upper bound or greatest lower

bound. We will consider only least upper bounds, since the question for greatest

lower bounds can then be answered easily (Problem 2).

If A is not bounded above, then A has no upper bound at all, so A certainly

cannot be expected to have a least upper bound. It is tempting to say that ,4 does

have a least upper bound if it has some upper bound, but, like the principle of

mathematical induction, this assertion can fail to be true in a rather special way.

If A = 0, then A is bounded above. Indeed, any number x is an upper bound

for 0:

x > y for every y in

simply because there is no y in 0. Since every number is an upper bound for 0,

there is surely no least upper bound for 0. With (his trivial exception however,
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FIGURE 1

our assertion is true—and very important, definitely important enough to warrant

consideration of details. We are finally ready to state the last property of the real

numbers which we need.

(PI 3) (The least upper bound property) If A is a set of real numbers,

/4/0, and A is bounded above, then A has a least upper bound.

Property PI 3 may strike you as anticlimactic, but that is actually one of its

virtues. To complete our list of basic properties for the real numbers we require no

particularly abstruse proposition, but only a property so simple that we might feel

foolish for having overlooked it. Of course, the least upper bound property is not

really so innocent as all that; after all, it does not hold for the rational numbers Q

.

For example, if A is the set of all rational numbers x satisfying x < 2, then there

is no rational number y which is an upper bound for A and which is less than or

equal to every other rational number which is an upper bound for A . It will become

clear only gradually how significant PI 3 is, but we are already in a position to

demonstrate its power, by supplying the proofs which were omitted in Chapter 7.

theorem 7-1 If / is continuous on [a,b] and f(a) < < f(b), then there is some number x

in [a, b] such that f(x) = 0.

PROOF

fix) < for all x

this interval

FIGURE 2

fix) > for all x

in this interval

FI GU R E 3

Our proof is merely a rigorous version of the outline developed at the end of

Chapter 7—we will locate the smallest number x in [a, b] with f(x) = 0.

Define the set A, shown in Figure 1, as follows:

A = \x : a < x < b, and / is negative on the interval [a, x] }.

Clearly A ^ 0, since a is in A; in fact, there is some 8 > such that A contains

all points x satisfying a < x < a + 8; this follows from Problem 6-16, since / is

continuous on [a, b] and /(«) < 0. Similarly, b is an upper bound for A and, in

fact, there is a 8 > such that all points x satisfying b — 8 < x < b are upper

bounds for A; this also follows from Problem 6-16, since f{b) > 0.

From these remarks it follows that A has a least upper bound a and that

a < a < b. We now wish to show that f(a) = 0, by eliminating the possibil-

ities f(a) < and f(a) > 0.

Suppose first that /(a) < 0. By Theorem 6-3, there is a 8 > such thai

f(x) < for a — 8 < x < a + 8 (Figure 2). Now there is some number xq in A
which satisfies a — 8 < xq < a (because otherwise a would not be the least upper

bound of A). This means that / is negative on the whole interval [fl,xo]. But if

X] is a number between a and a + 8, then /' is also negative on the whole interval

[xo,jci]. Therefore / is negative on the interval [a,;q], so x\ is in A. But this

contradicts the fact that a is an upper bound for A; our original assumption that

f(cx) < must be false.

Suppose, on the other hand, that f(a) > 0. Then there is a number 8 > such

that fix) > for a — 8 < x < a + 8 (Figure 3). Once again we know that there is

an xq in A satisfying a — 8 < xq < ce; but this means that / is negative on [a, xq],
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THEOREM 1

PROOF

which is impossible, since /(*o) > 0- Thus the assumption f(a) > also leads to

a contradiction, leaving f(a) = as the only possible alternative. |

The proofs of Theorems 2 and 3 of Chapter 7 require a simple preliminary

result, which will play much the same role as Theorem 6-3 played in the previous

proof.

If / is continuous at a, then there is a number 8 > such that / is bounded

above on the interval (a — 8, a + 8) (see Figure 4).

Since lim f(x) — f(a), there is, for every s > 0, a 8 > such that, for all x,
x-*-a

if \x — a\ < 8, then \f(x) — f(a)\ < s.

It is only necessary to apply this statement to some particular s (any one will do),

for example, e = 1 . We conclude that there is a <5 > such that, for all x
,

if |.v -a\ < 8, then \f(x) - f(a)\ < 1.

It follows, in particular, that if \x — a\ < 8, then f(x) — f{a) < 1. This completes

the proof: on the interval {a — 8, a + 8) the function / is bounded above by

/(«)+!• I

It should hardly be necessary to add that we can now also prove that / is

bounded below on some interval (a — 8, a + 5), and, finally, that / is bounded on

some open interval containing a.

A more significant point is the observation that if lim f(x) = f(a), then there
.v—>a+

'IGURE 4
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is a 8 > such that / is bounded on the set {x : a < x < a + 8}, and a similar

observation holds if lim fix) — f(b). Having made these observations (and
x-*-b~

assuming that you will supply the proofs), we tackle our second major theorem.

THEOREM 7-2 If / is continuous on [a , b] , then / is bounded above on [a , b]

.

PROOF Let

{/(y) :a <y <x

FIGURE 5

x : a < x < b and / is bounded above on [a, x]}.

Clearly A / (since a is in A), and A is bounded above (by b), so A has a least

upper bound a. Notice that we are here applying the term "bounded above" both

to the set A, which can be visualized as lying on the horizontal axis, and to /, i.e.,

to the sets {/(j) : a < y < x}, which can be visualized as lying on the vertical axis

(Figure 5).

Our first step is to prove that we actually have a = b. Suppose, instead, that

a < b. By Theorem 1 there is 8 > such that / is bounded on (a — 8, a +8). Since

a is the least upper bound of A there is some xo in A satisfying a— 8 < xq < a. This

means that / is bounded on [a, xo]- But if x\ is any number with a < x\ < a + 8,

then / is also bounded on [xo, jq]. Therefore / is bounded on [a,xi], so x\ is

in A, contradicting the fact that a is an upper bound for A. This contradiction

shows that a = b. One detail should be mentioned: this demonstration implicitly

assumed that a < a [so that / would be defined on some interval (a — 8, a + 8)];

the possibility a = a can be ruled out similarly, using the existence of a 8 > such

that / is bounded on {x : a < x < a + 8}.

The proof is not quite complete—we only know that / is bounded on [a, x] for

every x < b, not necessarily that / is bounded on [a, b]. However, only one small

argument needs to be added.

There is a <5 > such that / is bounded on {x : b — 8 < x < b}. There is xo

in A such that b — 8 < xq < b. Thus / is bounded on [a, xo] and also on [xo, b],

so / is bounded on [a , b] . |

To prove the third important theorem we resort to a trick.

theorem 7-3 If / is continuous on [a, b], then there is a number y in [a, b] such that f(y)>
f{x) for all X in [a, b].

PROOF We already know that / is bounded on [a , b] , which means that the set

{/(*):* in [a,b]}

is bounded. This set is obviously not 0, so it has a least upper bound a. Since

Qf > fix) for x in [a, b\ it suffices to show that a. = f(y) for some y in [a, b\.

Suppose instead that a ^ f(y) for all v in [a,b]. Then the function g defined

by

g(x) = —-, x in [a, b\
<x ~ fix)
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is continuous on [a, ft], since the denominator of the right side is never 0. On the

other hand, a is the least upper bound of {/(*) : x in [a, ft]); this means that

for every e > there is x in [a, b] with a — f(x) < e.

This, in turn, means that

for every e > there is x in [a, ft] with g(x) > 1/e.

But //;« means that g is not bounded on [a, ft], contradicting the previous theo-

rem. |

At the beginning of this chapter the set of natural numbers N was given as an

example of an unbounded set. We are now going to prove that N is unbounded.

After the difficult theorems proved in this chapter you may be startled to find

such an "obvious" theorem winding up our proceedings. If so, you are, perhaps,

allowing the geometrical picture of R to influence you too strongly. "Look," you

may say, "the real numbers look like

12 3 n x n + 1

so every number x is between two integers n, n + 1 (unless x is itself an integer)."

Basing the argument on a geometric picture is not a proof, however, and even the

geometric picture contains an assumption: that if you place unit segments end-to-

end you will eventually get a segment larger than any given segment. This axiom,

often omitted from a first introduction to geometry, is usually attributed (not quite

justly) to Archimedes, and the corresponding property for numbers, that N is not

bounded, is called the Archimedean property of the real numbers. This property is not

a consequence of PI-P12 (see reference [14] of the Suggested Reading), although

it does hold for Q, of course. Once we have PI 3 however, there are no longer

any problems.

theorem 2 N is not bounded above.

PROOF Suppose N were bounded above. Since N ^ 0, there would be a least upper

bound a for N. Then

a > // for all n in N.

Consequently,

a > n -f 1 for all // in N,

since n + \ is in N if /; is in N. But this means that

a — 1 > n for all /; in N,

and this means thai a - 1 is also an upper bound for N, contradicting the fact that

a is the least upper bound. I



8. Least Upper Bounds 1 39

There is a consequence ofTheorem 2 (actually an equivalent formulation) which

we have very often assumed implicitly.

theorem 3 For any e > there is a natural number n with \/n < s.

PROOF Suppose not; then 1/n > e for all n in N. Thus n < 1/e for all n in N. But this

means that 1/e is an upper bound for N, contradicting Theorem 2. |

A brief glance through Chapter 6 will show you that the result of Theorem 3

was used in the discussion of many examples. Of course, Theorem 3 was not

available at the time, but the examples were so important that in order to give

them some cheating was tolerated. As partial justification for this dishonesty we

can claim that this result was never used in the proof of a theorem, but if your faith

has been shaken, a review of all the proofs given so far is in order. Fortunately,

such deception will not be necessary again. We have now stated every property of

the real numbers that we will ever need. Henceforth, no more lies.

PROBLEMS

1 . Find the least upper bound and the greatest lower bound (if they exist) of

the following sets. Also decide which sets have greatest and least elements

(i.e., decide when the least upper bound and greatest lower bound happens

to belong to the set).

—
: n in N

n

—
: n in Z and n ^

n

{x : A' = or x — \/n for some // in N}.

[x : < x < V2 and x is rational}.

[x : x 2 + x + 1 > 0}.

{x :x 2 + x- 1 < 0}.

{x : x < and x 2 + x — 1 < 0}.

1

2.

(iv)

(v)

(vi)

(vii)

(viii) + (-!)"
: n inN

(a) Suppose A ^ is bounded below. Let —A denote the set of all —x
for x in A. Prove that —A ^ 0, that —A is bounded above, and that

— sup(—A) is the greatest lower bound of A.

(b) If A 7^ is bounded below, let B be the set of all lower bounds of A.

Show that B ^ 0, that B is bounded above, and that sup B is the greatest

lower bound of A.

3. Let / be a continuous function on [a, b\ with f(a) < < f{b).

(a) The proof of Theorem 7-1 showed that there is a smallest A" in \a.b\

with f{x) = 0. If there is more than one a in \a,b\ with /(a) = 0,

is there necessarily a second smallest? Show that there is a largest x in
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\a,b] with f(x) = 0. (Try to give an easy proof by considering a new
function closely related to /.)

(b) The proof of Theorem 7-1 depended upon considering A = ix : a <

x < b and / is negative on [a, x] }. Give another proof of Theorem 7-1

,

which depends upon consideration of B = {x : a < x < b and f(x)<
0}. Which point x in [a,b] with f(x) = will this proof locate? Give

an example where the sets A and B are not the same.

*4. (a) Suppose that / is continuous on [a,b] and that f(a) = f(b) = 0.

Suppose also that f(xo) > for some xq, in [a, b]. Prove that there are

numbers c and d with a<c<xo<d<b such that /(c) = f(d) = 0,

but f(x) > for all x in (c, d). Hint: The previous problem can be used

to good advantage.

(b) Suppose that / is continuous on [a, b] and that f(a) < f(b). Prove that

there are numbers c and d with a < c < d < b such that f(c) = f(a)

and f(d) = f(b) and f(a) < f(x) < f(d) for all x in (c, J).

5. (a) Suppose that y — x > 1. Prove that there is an integer k such that

x < k < v. Hint: Let / be the largest integer satisfying I < x, and

consider / + 1

.

(b) Suppose x < v. Prove that there is a rational number r such that jc <

r < y. Hint: If \/n < y —x, then ny — nx > 1. (Query: Why have parts

(a) and (b) been postponed until this problem set?)

(c) Suppose that r < s are rational numbers. Prove that there is an irrational

number between r and s. Hint: As a start, you know that there is an

irrational number between and 1

.

(d) Suppose that x < y. Prove that there is an irrational number between x

and v. Hint: It is unnecessary to do any more work; this follows from

(b) and (c).

*6. A set A of real numbers is said to be dense if every open interval contains a

point of A . For example, Problem 5 shows that the set of rational numbers

and the set of irrational numbers are each dense.

(a) Prove that if / is continuous and f(x) = for all numbers x in a dense

set A, then f(x) = for all x.

(b) Prove that if / and g are continuous and f(x) = g(x) for all x in a dense

set A, then f(x) = g(x) for all x.

(c) If we assume instead that f(x) > g(x) for all x in A, show that f(x) >

g(x) for all x. Can > be replaced by > throughout?

7. Prove that if / is continuous and f(x + y) = f(x) + f(y) for all x and v,

then there is a number c such that f(x) = ex for all x. (This conclusion

can be demonstrated simply by combining the results of two previous prob-

lems.) Point of information: There do exist noncontinuous functions / satisfying

f(x + y) = f{x) + f(y) for all x and y, but we cannot prove this now; in

fact, this simple question involves ideas that are usually never mentioned in

undergraduate courses (see reference [7] in the Suggested Reading).
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*8. Suppose that / is a function such that f(a) <

ure 6).

f(b) whenever a < b (Fig-

FIGURF, 6

FIGURE 7

(a) Prove that lim f(x) and lim f{x) both exist. Hint: Why is this prob-
x—>a~ jc—«+

lem in this chapter?

(b) Prove that / never has a removable discontinuity (this terminology comes

from Problem 6-17).

(c) Prove that if / satisfies the conclusions of the Intermediate Value The-

orem, then / is continuous.

*9. If / is a bounded function on [0, 1], let |||/||| = sup{ |/(jf)| : x in [0, lj}.

Prove analogues of the properties of
|| ||

in Problem 7-14.

10. Suppose a > 0. Prove that every number x can be written uniquely in the

form x — kct + x', where k is an integer, and < x' < a.

11. (a) Suppose that a\,a2,a$, . .. is a sequence of positive numbers with

&n+\ S «/?/2. Prove that for any e > there is some n with an < e.

(b) Suppose P is a regular polygon inscribed inside a circle. If P' is the

inscribed regular polygon with twice as many sides, show that the differ-

ence between the area of the circle and the area of P' is less than half the

difference between the area of the circle and the area of P (use Figure 7).

(c) Prove that there is a regular polygon P inscribed in a circle with area

as close as desired to the area of the circle. In order to do part (c) you

will need part (a). This was clear to the Greeks, who used part (a) as the

basis for their entire treatment of proportion and area. By calculating

the areas of polygons, this method ("the method of exhaustion") allows

computations of tz to any desired accuracy; Archimedes used it to show-

that =jy < 7i <
=f.

But it has far greater theoretical importance:

*(d) Using the fact that the areas of two regular polygons with the same num-

ber of sides have the same ratio as the square of their sides, prove that the

areas of two circles have the same ratios as the square of their radii. Hint:

Deduce a contradiction from the assumption that the ratio of the areas

is greater, or less, than the ratio of the square of the radii by inscribing

appropriate polygons.

12. Suppose that A and B are two nonempty sets of numbers such that jc < y

for all x in A and all v in B.

(a) Prove that sup A < y for all y in B.

(b) Prove that sup A < inf B.

13. Let A and B be two nonempty sets ofnumbers which are bounded above, and

let A+ B denote the set of all numbers x+y with x in A and y in B. Prove that

sup(A+ Z?) = sup A+sup B. Hint: The inequality sup(A+5) < sup A+supB
is easy. Why? To prove that sup A + sup B < sup(A + B) it suffices to prove

that sup A + sup B < sup(/4 + B) + s for all s > 0; begin by choosing x in A



142 Foundations

and v in B with sup A — x < e/2 and sup B — y < e/2.

FIGURE 8 | 1 1 1 1

1

ci\ ai fl3 bj, £>2 b\

14. (a) Consider a sequence of closed intervals I\ — \a\, b\], li = [«2> b{\, . . .

.

Suppose that a„ < an+ \ and bn+ \
< b„ for all n (Figure 8). Prove that

there is a point x which is in every /„.

(b) Show that this conclusion is false if we consider open intervals instead of

closed intervals.

The simple result of Problem 14(a) is called the "Nested Interval Theorem." It

may be used to give alternative proofs of Theorems 1 and 2. The appropriate

reasoning, outlined in the next two problems, illustrates a general method, called

a "bisection argument."

*15. Suppose / is continuous on [a,b] and f(a) < < f(b). Then either

f((a + b)/2) = 0, or / has different signs at the end points of the interval

[a, (a + b)/2], or / has different signs at the end points of [(a + b)/2, b].

Why? If f((a + b)/2) ^ 0, let I\ be the interval on which / changes sign.

Now bisect I\. Either / is at the midpoint, or / changes sign on one of the

two intervals. Let h be that interval. Continue in this way, to define /„ for

each n (unless / is at some midpoint). Use the Nested Interval Theorem

to find a point x where f(x) = 0.

*16. Suppose / were continuous on [<z,&], but not bounded on [«,/?]. Then /
would be unbounded on either [a, (a + b)/2] or [(a +b)/2, b]. Why? Let /]

be one of these intervals on which / is unbounded. Proceed as in Problem 1

5

to obtain a contradiction.

17. (a) Let A = {x : x < a}. Prove the following (they are all easy):

(i) If x is in A and v < x, then y is in A.

(ii) A ^ 0.

(iii) A ^ R.

(iv) If x is in A, then there is some number x' in A such that x < x'

.

(b) Suppose, conversely, that A satisfies (i)—(iv). Prove that A = fv : x <

sup A).

*18. A number x is called an almost upper bound for A if there are only

finitely many numbers y in A with y > x. An almost lower bound is

defined similarly.

(a) Find all almost upper bounds and almosl lower bounds of the sds in

Problem 1

.

(b) Suppose that A is a bounded infinite set. Prove thai the set B of all

almost upper bounds of A is nonempty, and bounded below.
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(c) It follows from part (b) that inf B exists; this number is called the limit

superior of A, and denoted by lim A or lim sup A. Find lim A for each

set A in Problem 1.

(d) Define lim A, and find it for all A in Problem 1.

:

19. If A is a bounded infinite set prove

(a) lim A < lim A

.

(b) lim A < sup A

.

(c) If lim A < sup A , then A contains a largest element.

(d) The analogues of parts (b) and (c) for lim .

shadow points

FIGURE 9

20. Let / be a continuous function on R. A point x is called a shadow point

of / if there is a number y > x with /(>') > fix). The rationale for this

terminology is indicated in Figure 9; the parallel lines are the rays of the sun

rising in the east (you are facing north). Suppose that all points of (a, b) are

shadow points, but that a and b are not shadow points. Clearly, f(a) > f(b).

(a) Suppose that f{a) > f(b). Show that the point where / takes on its

maximum value on [a, b] must be a.

(b) Then show that this leads to a contradiction, so that in fact we must have

f(a) = fib).

This little result, known as the Rising Sun Lemma, is instrumental in

proving several beautiful theorems that do not appear in this book; see

page 450.
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b2 + e

b^8 for b

8 for a

1!(. i:RE 1

APPENDIX. UNIFORM CONTINUITY

Now that we've come to the end of the "foundations," it might be appropriate

to slip in one further fundamental concept. This notion is not used crucially in

the rest of the book, but it can help clarify many points later on.

We know that the function f{x) - x 2
is continuous at a for all a. In other

words,

if a is any number, then for every e > there is some 8 >

such that, for all x, if \x — a\ < 8, then \x~ - w\ < s.

Of course, 8 depends on e. But <5 also depends on a—the 8 that works at a might

not work at b (Figure 1). Indeed, it's clear that given e > there is no one 8 >

that works for all a, or even for all positive a. In fact, the number a +8/2 will

certainly satisfy \x - a\ < <5, but if a > 0, then

8
Cl+

2
a a8 +

8
2

> a8,

and this won't be < s once a > s/8. (This is just an admittedly confusing compu-

tational way of saying that / is growing faster and faster!)

On the other hand, for any e > there will be one 8 > that works for all a

in any interval [-#,#]. In fact, the 8 which works at N or -N will also work

everywhere else in the interval.

As a final example, consider the function f{x) = sin l/x, or the function whose

graph appears in Figure 18 on page 62. It is easy to see that, so long as £ < 1,

there will not be one 8 > that works for these functions at all points a in the

open interval (0, 1).

These examples illustrate important distinctions between the behavior ofvarious

continuous functions on certain intervals, and there is a special term to signal this

distinction.

DEFINITION The function / is uniformly continuous on an interval A if for every £ >

there is some 8 > such that, for all x and y in A,

if |.r -y\<8, then |/'U) - f(y)\ < s.

We've seen that a function can be continuous on the whole line, or on an open

interval, without being uniformly continuous there. On the other hand, the func-

tion f(x) = x 2 did turn out to be uniformly continuous on any closed interval.

This shouldn't be too surprising it's the same soil of thing that occurs when we

ask whether a function is bounded on an interval—and we would be led to suspect

that any continuous function on a closed interval is also uniformly continuous on

that interval. In order to prove this, we'll need to deal first with one subtle point.

Suppose thai we have two intervals [a,b] and [b, c] with the common end-

point b, and a function /' that is continuous on [a, c]. Let £ > and suppose that
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<«5

FIGURE 2

the following two statements hold:

(i) if x and y are in [a, b] and |jc — y\ < 8\, then \f(x) — f(y)\ < £,

(ii) if x and y are in [b, c] and |x — y\ < 82, then |/(x) — f(y)\ < £.

We'd like to know if there is some 8 > such that \f(x) — f(y)\ < £ whenever

x and y are points in [a,c] with |jc — v | < 8. Our first inclination might be to

choose 8 as the minimum of 8\ and 8j. But it is easy to see what goes wrong

(Figure 2): we might have x in [a,b] and y in \b, c], and then neither (i) nor (ii)

tells us anything about |/(jc) — f(y)\. So we have to be a little more cagey, and

also use continuity of / at b.

LEMMA Let a < b < c and let / be continuous on the interval [a,c]. Let £ > 0, and

suppose that statements (i) and (ii) hold. Then there is a 8 > such that,

if x and y are in [a, c] and \x — y\ < 8, then \f(x) — f(y)\ < e.

PROOF Since / is continuous at b, there is a ($3 > such that,

if \x -b\< S3, then \f(x) - f(b)\ < -.

It follows that

111 if \x — b\ < 82 and \y — b\ < 83, then \f(x) — f(y)\ < e.

Choose 8 to be the minimum of 8\, 82, and ^3. We claim that this 8 works. In

fact, suppose that x and y are any two points in [a, c] with |jc — y\ < 8. If x and y

are both in [a, b], then \f(x) — f(y)\ < £ by (i); and if x and y are both in [b, c],

then \f(x) — f(y)\ < £ by (ii). The only other possibility is that

x < b < y or v < b < x.

In either case, since \x — y\ < 8, we also have \x — b\ < 8 and |v

|/U)-/(v)|<eby(iii). I

THEOREM 1 If / is continuous on [«,/?], then / is uniformly continuous on [a, b],

b\ < 8. So

PROOF It's the usual trick, but we've got to be a little bit careful about the mechanism of

the proof. For £ > let's say that / is £-good on [a, b] if there is some 8 > such

that, for all v and z in [a , b] ,

if \y-z\ <8, then \f(y)-f(z)\ < e.

Then we're trying to prove that / is £-good on [a, b] for all £ > 0.

Consider any particular £ > 0. Let

A = {x : a < x < b and / is £-good on [a, x]}.

Then A ^ (since a is in A), and A is bounded above (by b), so A has a least

upper bound a. We really should write aB , since A and a might depend on £. But

we won't since we intend to prove that a = b, no matter what e is.
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Suppose that we had a < b. Since / is continuous at a, there is some <5o >

such that, if
| v — a\ < <5o, then \f(y) — /(a?)

I

< e/2. Consequently, if \y — a\ < So

and \z — ot\ < So, then \f(y) — f(z)\ < e. So / is surely e-good on the interval

[a — So, a +80]. On the other hand, since a is the least upper bound of A, it

is also clear that / is e-good on [a, a — 80]. Then the Lemma implies that / is

e-good on [a, a + 80], so a + 8q is in A, contradicting the fact that a is an upper

bound.

To complete the proof we just have to show that a = b is actually in A. The

argument for this is practically the same: Since / is continuous at b, there is some

<5o > such that, if b — 8q < v < b, then |/(v) — f(b)\ < e/2. So / is e-good on

[b — 80, b]. But / is also e-good on [a, b — 80], so the Lemma implies that / is

e-good on [a, b~\. |

PROBLEMS

1. (a) For which of the following values of a is the function f{x) = xa uni-

formly continuous on [0, 00): a — 1/3, 1/2, 2, 3?

(b) Find a function / that is continuous and bounded on (0, 1], but not

uniformly continuous on (0, 1].

(c) Find a function / that is continuous and bounded on [0, 00) but which

is not uniformly continuous on [0, 00).

2. (a) Prove that if / and g are uniformly continuous on A, then so is f + g.

(b) Prove that if / and g are uniformly continuous and bounded on A, then

fg is uniformly continuous on A.

(c) Show that this conclusion does not hold if one of them isn't bounded.

(d) Suppose that / is uniformly continuous on A, that g is uniformly con-

tinuous on 5, and that f(x) is in B for all x in A. Prove that g o / is

uniformly continuous on A.

3. Use a "bisection argument" (page 142) to give another proof of Theorem 1.

4. Derive Theorem 7-2 as a consequence of Theorem 1

.
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In 1604, at the height of

his scientific career, Galileo argued

thatfor a rectilinear motion

in which speed increases proportionally

to distance covered,

the law of motion should be

just that (x = ct2
)

which he had discovered

in the investigation offalling bodies.

Between 1695 and 1700

not a single one of the monthly issues

of Leipzig's Acta Eruditorum was published

without articles ofLeibniz,

the Bernoulli brothers

or the Marquis de VHopital treating,

with notation only slightly differentfrom

that which we use today,

the most varied problems of

differential calculus, integral calculus

and the calculus of variations.

Thus in the space of almost precisely

one century

infinitesimal calculus or,

as we now call it in English,

The Calculus,

the calculating tool par excellence,

had been forged;

and nearly three centuries of

constant use have not completely dulled

this incomparable instrument.

NICHOLAS BOURBAKI



CHAPTER DERIVATIVES

The derivative of a function is the first of the two major concepts of this section.

Together with the integral, it constitutes the source from which calculus derives

its particular flavor. While it is true that the concept of a function is fundamental,

that you cannot do anything without limits or continuity, and that least upper

bounds are essential, everything we have done until now has been preparation—if

adequate, this section will be easier than the preceding ones—for the really exciting

ideas to come, the powerful concepts that are truly characteristic of calculus.

Perhaps (some would say "certainly") the interest of the ideas to be introduced

in this section stems from the intimate connection between the mathematical con-

cepts and certain physical ideas. Many definitions, and even some theorems, may
be described in terms of physical problems, often in a revealing way. In fact, the

demands of physics were the original inspiration for these fundamental ideas of

calculus, and we shall frequently mention the physical interpretations. But we

shall always first define the ideas in precise mathematical form, and discuss their

significance in terms of mathematical problems.

The collection of all functions exhibits such diversity that there is almost no

hope of discovering any interesting general properties pertaining to all. Because

continuous functions form such a restricted class, we might expect to find some

nontrivial theorems pertaining to them, and the sudden abundance of theorems

after Chapter 6 shows that this expectation is justified. But the most interesting

and most powerful results about functions will be obtained only when we restrict

our attention even further, to functions which have even greater claim to be called

"reasonable," which are even better behaved than most continuous functions.

f(x) = \x\,x>0

f(x)=x 2,x<0

i k, i k i; i

FI GUR E 2

Figure 1 illustrates certain types of misbehavior which continuous functions can

display. The graphs of these functions are "bent" at (0,0), unlike the graph of

Figure 2, where it is possible to draw a "tangent line" at each point. The quotation

marks have been used to avoid the suggestion that we have defined "bent" or

149
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FIGURE 3

"tangent line," although we are suggesting that the graph might be "bent" at a

point where a "tangent line" cannot be drawn. You have probably already noticed

that a tangent line cannot be defined as a line which intersects the graph only

once—such a definition would be both too restrictive and too permissive. With

such a definition, the straight line shown in Figure 3 would not be a tangent line

to the graph in that picture, while the parabola would have two tangent lines at

each point (Figure 4), and the three functions in Figure 5 would have more than

one tangent line at the points where they are "bent."

FIGURE 4

FIGURE 5

A more promising approach to the definition of a tangent line might start with

"secant lines," and use the notion of limits. If h ^ 0, then the two distinct points

(a, f(a)) and (a + h, f(a + /?)) determine, as in Figure 6, a straight line whose

slope is

f(a + h)-f(a)

h

\ f(a + h)-f(a)

FIGURE 6

As Figure 7 illustrates, the "tangent line" at (a,f(a)) seems to be the limit, in

some sense, of these "secant lines," as h approaches 0. We have never before

talked about a "limit" of lines, but we can talk about the limit of their slopes: the
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DEFINITION

FIGURE 7

slope of the tangent line through (a, f(a)) should be

f(a+h)-f(a)
lim

h

We are ready for a definition, and some comments.

The function / is differentiable at a if

lim
h->0

f(a+h)-f(a)
h

exists.

In this case the limit is denoted by/' (a) and is called the derivative of/ at

a. (We also say that / is differentiable if /" is differentiable at a for every a

in the domain of /.)

The first comment on our definition is really an addendum; we define the

tangent line to the graph of / at (a, f(a)) to be the line through (a, f(a))

with slope f'(a). This means that the tangent line at (a, f(a)) is defined only if

/ is differentiable at a.

The second comment refers to notation. The symbol f'(a) is certainly rem-

iniscent of functional notation. In fact, for any function /, we denote by /'the

function whose domain is the set of all numbers a such that / is differentiable

at a, and whose value at such a number a is

lim
ft—

f(a+h)-f(a)
h

(To be very precise: /' is the collection of all pairs

f(a + h)-f(a)
a, lim

/i— h

for which lim [f(a + h) — f(a)]/h exists.) The function /' is called the derivative
ft—>0

of/.

Our third comment, somewhat longer than the previous two, refers to the phys-

ical interpretation of the derivative. Consider a particle which is moving along a

straight line (Figure 8(a)) on which we have chosen an "origin" point O, and a

direction in which distances from O shall be written as positive numbers, the dis-

tance from O of points in the other direction being written as negative numbers.

Let s(t) denote the distance of the particle from O, at time t. The suggestive nota-

tion s(t) has been chosen purposely; since a distance s(t) is determined for each

t=0 t=\
motion of the particle >—

•

>_

«

t = 5 t =4 t = 3 ) t =
• < • < •—

*

I l(, I RE 8 a

line along which particle is moving
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"distance"
graph of s

FIGURE 8(b)

number t, the physical situation automatically supplies us with a certain function s.

The graph of s indicates the distance of the particle from (9, on the vertical axis,

in terms of the time, indicated on the horizontal axis (Figure 8(b)).

The quotient

s(a + h) — s(a)

h

has a natural physical interpretation. It is the "average velocity" of the particle

during the time interval from a to a + h. For any particular a, this average speed

depends on h, of course. On the other hand, the limit

s{a + h) — s{a)
hm
h^O h

depends only on a (as well as the particular function s) and there are important

physical reasons for considering this limit. We would like to speak of the "velocity

of the particle at time a," but the usual definition of velocity is really a definition

of average velocity; the only reasonable definition of "velocity at time a" (so-called

"instantaneous velocity") is the limit

s{a + h) — s(a)
lim

h

Thus we define the (instantaneous) velocity of the particle at a to be s'{a).

Notice that s'{a) could easily be negative; the absolute value \s'{a)\ is sometimes

called the (instantaneous) speed.

It is important to realize that instantaneous velocity is a theoretical concept,

an abstraction which does not correspond precisely to any observable quantity.

While it would not be fair to say that instantaneous velocity has nothing to do

with average velocity, remember that s'{t) is not

s(t + h)-s(t)

h

for any particular /z, but merely the limit of these average velocities as h ap-

proaches 0. Thus, when velocities are measured in physics, what a physicist really

measures is an average velocity over some (very small) time interval; such a pro-

cedure cannot be expected to give an exact answer, but this is really no defect,

because physical measurements can never be exact anyway.

The velocity of a particle is often called the "rate of change of its position." This

notion of the derivative, as a rate of change, applies to any other physical situation

in which some quantity varies with time. For example, the "rate of change of

mass" of a growing object means the derivative of the function m, where m{t) is

the mass at time /.

In order to become familiar with the basic definitions of this chapter, we will

spend quite some time examining the derivatives of particular functions. Before

proving the important theoretical results of Chapter 1 1, we want to have a good

idea of what the derivative of a function looks like. The next chapter is devoted

exclusively i<> one aspect of this problem—calculating the derivative of compli-

cated functions. In this chapter we will emphasize the concepts, rather than the



9. Derivatives 153

slope 2a

FIGURE 9

calculations, by considering a few simple examples. Simplest of all is a constant

function, f(x) = c. In this case

,. f(a+h)-f(a) c-
hm = hm
h^O h h^O h

0.

Thus / is differentiable at a for every number a, and f'(a) = 0. This means that

the tangent line to the graph of / always has slope 0, so the tangent line always

coincides with the graph.

Constant functions are not the only ones whose graphs coincide with their tan-

gent lines—this happens for any linear function f(x) = ex + d. Indeed

f'(a) — lim

— lim

f(a+h)-f(a)
h

c(a + h) + d — [ca + d]

h

ch
= lim — — c\

h^Q h

h

(a + h) 2 -a 2

h

a~ + 2ah + h - a"

the slope of the tangent line is c, the same as the slope of the graph of /.

A refreshing difference occurs for f(x) = x. Here

w, ,
.. f(a + h)-f{a)

f (a) = hm

= lim

= lim

— lim 2a + h
h-*0

= 2a.

Some of the tangent lines to the graph of / are shown in Figure 9. In this picture

each tangent line appears to intersect the graph only once, and this fact can be

checked fairly easily: Since the tangent line through (a, a ) has slope 2a, it is the

graph of the function

g(x) = 2a(x — a) + a

= 2ax — a .

Now, if the graphs of / and g intersect at a point (x, f(x)) = (x, g(x)), then

0;

x = 2ax — a~

or x~ — 2ax + «"

so (x -a) 2 =0
or x = a.

In other words, (a, a ) is the only point of intersection.
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figi ki; 10

The function f(x) — x 2 happens to be quite special in this regard; usually a

tangent line will intersect the graph more than once. Consider, for example, the

function f(x) = x 3
. In this case

f'(a) = lim

= lim
h-+0

f(a+h)-f(a)

(a + h)
3 -a 3

lim

= lim
h-»0

a 3 + 3a 2h+3ah 2 + h 3 -a 3

3a 2
h + 3ah 2 + h 3

h

= lim 3a + 3ah + h

= 3a .

Thus the tangent line to the graph of / at (a, a 3
) has slope 3a 2

. This means that

the tangent line is the graph of

g(x) = 3a"(x —a) + a~

= 3a"x — 2a~

.

The graphs of / and g intersect at the point (x, fix)) = (x, g(x)) when

.v
3 = 3a

2
x - 2a

3

or x
3 - 3a

2
x + la 3

0.

This equation is easily solved if we remember that one solution of the equation

has got to be x = a, so that (x — a) is a factor of the left side; the other factor can

then be found by dividing. We obtain

(x - a)(x
2 + ax - 2a

2
) = 0.

It so happens that x 2 + ax — 2a 2
also has x — a as a factor; we obtain finally

(x — a){x — a)(x + 2a) = 0.

Thus, as illustrated in Figure 10, the tangent line through (a, a ) also intersects

the graph at the point (—2a, —8a 3
). These two points are always distinct, except

when a — 0.

We have already found the derivative of sufficiendy many functions to illustrate

the classical, and still very popular, notation for derivatives. For a given function /,

the derivative /' is often denoted by

dfix)

For example, the symbol

dx

dx 2

~dx
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denotes the derivative of the function f(x) = x 2
. Needless to say, the separate

parts of the expression

df(x)

dx

are not supposed to have any sort of independent existence—the J's are not num-

bers, they cannot be canceled, and the entire expression is not the quotient of two

other numbers "df(x)" and "dx." This notation is due to Leibniz (generalh

considered an independent co-discoverer of calculus, along with Newton), and is

affectionately referred to as Leibnizian notation.* Although the notation df{x)/dx

seems very complicated, in concrete cases it may be shorter; after all, the symbol

dx 2/dx is actually more concise than the phrase "the derivative of the function

f{x)=x 2r

The following formulas state in standard Leibnizian notation all the information

that we have found so far:

dc

dx
= 0,

d( ax + b)

dx
—

- o. ,

dx 2

1„

dx
= zx

dx 3

— 1y

dx
— DX

Although the meaning of these formulas is clear enough, attempts at literal

interpretation are hindered by the reasonable stricture that an equation should

not contain a function on one side and a number on the other. For example, if

the third equation is to be true, then either df(x)/dx must denote f'(x), rather

than /', or else 2x must denote, not a number, but the function whose value at v

is 2x . It is really impossible to assert that one or the other of these alternatives is

intended; in practice df(x)/dx sometimes means /' and sometimes means f'(.\ ),

while 2x may denote either a number or a function. Because of this ambiguity,

most authors are reluctant to denote f'(a) by

df(x)
—,— (a);
dx

instead f'(a) is usually denoted by the barbaric, but unambiguous, symbol

df(x)

dx

* Leibniz was led to this symbol by his intuitive notion of the derivative, which he considered to be,

not the limit ofquotients
\ f(x + h)- f(x)]/h, but the "value" of this quotient when h is an "inliniteK

small" number. This "infinitely small" quantity was denoted by dx and the corresponding "infinitely

small" difference f(x+dx)—f(x) by df(x). Although this poinl ofview is impossible to reconcile with

properties (PI)—(PI 3) ol the real numbers, some people find this notion of the derivative congenial.
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In addition to these difficulties, Leibnizian notation is associated with one more

ambiguity. Although the notation dx 2/dx is absolutely standard, the notation

df(x)/dx is often replaced by df/dx. This, of course, is in conformity with the

practice of confusing a function with its value at x . So strong is this tendency that

functions are often indicated by a phrase like the following: "consider the function

y = x 2 ." We will sometimes follow classical practice to the extent of using y

as the name of a function, but we will nevertheless carefully distinguish between

the function and its values—thus we will always say something like "consider the

function (defined by) y(x) = jc
2 ."

Despite the many ambiguities of Leibnizian notation, it is used almost exclu-

sively in older mathematical writing, and is still used very frequently today. The

staunchest opponents of Leibnizian notation admit that it will be around for quite

some time, while its most ardent admirers would say that it will be around for-

ever, and a good thing too! In any case, Leibnizian notation cannot be ignored

completely.

The policy adopted in this book is to disallow Leibnizian notation within the

text, but to include it in the Problems; several chapters contain a few (immediately

recognizable) problems which are expressly designed to illustrate the vagaries of

Leibnizian notation. Trusting that these problems will provide ample practice in

this notation, we return to our basic task of examining some simple examples of

derivatives.

The few functions examined so far have all been differentiable. To fully ap-

preciate the significance of the derivative it is equally important to know some

examples of functions which are not differentiable. The obvious candidates are the

three functions first discussed in this chapter, and illustrated in Figure 1 ; if they

turn out to be differentiable at something has clearly gone wrong.

Consider first f(x) — \x\. In this case

f(0 + h)-f(0) \h\

h h

Now \h\/h = 1 for h > 0, and \h\/h = —1 for h < 0. This shows that

lim
/i— h

does not exist.

In fact,

.. f(h) - /(0)
,and lim = — I.

// •() h

(These two limits are sometimes called the right-hand derivative and the left-

hand derivative, respectively, of / at 0.)
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./"

/'

FIGURE 1 I

f'j

f

FIGURE 12

If a / 0, then f'(a) does exist. In fact,

.f(-v)=l

/'(*) = -1

if x > 0,

if x < 0.

The proof of this fact is left to you (it is easy if you remember the derivative of a

linear function). The graphs of / and of /' are shown in Figure 1 1.

For the function

/M={*
2

'

X H
[ X, X > I),

a similar difficulty arises in connection with f'(0). We have

h 2

f(h) ~ /(0) h
= h, h <

Therefore,

- = 1, /? >0.
I /;

/i->0- /?

but lim = 1.

Thus /'(0) does not exist; / is not differentiable at 0. Once again, however, f'(x)

exists for x ^ —it is easy to see that

/'(*) =
2x, x <

1, ^>0.

The graphs of / and /' are shown in Figure 12.

Even worse things happen for f(x) = y/\x\. For this function

f(h)-f(0)

sfh 1— = —

,

h >

I

h <0.

In this case the right-hand limit

,. f(h) - /(0) 1

hm = lim —7=

does not exist; instead 1/v/z becomes arbitrarily large as h approaches 0. And,

what's more, —l/y/—h becomes arbitrarily large in absolute value, but negative

(Figure 13).

FIGURE \ }
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fix)

1 K.I RE 14

The function f(x) = l/x, although not differentiable at 0, is at least a little

better behaved than this. The quotient

h ~ h

f(h) - /(0) 1 I

h /,2/3 (Vh\

simply becomes arbitrarily large as h goes to 0. Sometimes one says that / has

an "infinite" derivative at 0. Geometrically this means that the graph of / has a

"tangent line" which is parallel to the vertical axis (Figure 14). Of course, f(x) —
— l/x has the same geometric property, but one would say that / has a derivative

of "negative infinity" at 0.

Remember that differentiability is supposed to be an improvement over mere

continuity. This idea is supported by the many examples of functions which are

continuous, but not differentiable; however, one important point remains to be

noted:

THEOREM l If / is differentiable at a, then / is continuous at a.

PROOF hm / (a + h) — f(a) = hm • //

v f(a + h)-f(a)
— hm • hm /?

h-+0 ll h-+0

= /'(fl)-0

= 0.

As we pointed out in Chapter 5, the equation lim f(a + h) — f(a) = is equivalent

to lim f(x) = f(a); thus / is continuous at a. |
x—>a

It is very important to remember Theorem 1, and just as important to remember

that the converse is not true. A differentiable function is continuous, but a con-

tinuous function need not be differentiable (keep in mind the function f(x) = \x\,

and you will never forget which statement is true and which false).

The continuous functions examined so far have been differentiable at all points

with at most one exception, but it is easy to give examples of continuous functions

which are not differentiable at several points, even an infinite number (Figure 15).

Actually, one can do much worse than this. There is a function which is continuous

I I
(

.
i RE 15
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everywhere and differentiable nowhere! Unfortunately, the definition of this function will

be inaccessible to us until Chapter 24, and I have been unable to persuade the

artist to draw it (consider carefully what the graph should look like and you will

sympathize with her point of view). It is possible to draw some rough approxima-

tions to the graph, however; several successively better approximations are shown

in Figure 16.

Although such spectacular examples of nondifferentiability must be postponed,

we can, with a little ingenuity, find a continuous function which is not differentiable

at infinitely many points, all ofwhich are in [0, 1]. One such function is illustrated in

Figure 17. The reader is given the problem of defining it precisely; it is a straight

line version of the function

/(*) =
x sin — , x ^

x

0. x = 0.

FIGURE 17

This particular function / is itself quite sensitive to the question of differentiability.

Indeed, for ft/0we have
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f(h) - /(0)

h

h sin i

h 1

= sin —
h h

Long ago we proved that lim sin 1 / h does not exist, so / is not differentiable at 0.

Geometrically, one can see that a tangent line cannot exist, by noting that the

secant line through (0, 0) and (h, f(h)) in Figure 18 can have any slope between

— 1 and 1 , no matter how small we require h to be.

x sin -, i^
x

0, x =

FIGURE 18

This finding represents something of a triumph; although continuous, the func-

tion / seems somehow quite unreasonable, and we can now enunciate one math-

ematically undesirable feature of this function—it is not differentiable at 0. Nev-

ertheless, one should not become too enthusiastic about the criterion of differen-

tiability. For example, the function

g(x) = x sin
1

0,

is differentiable at 0; in fact g'(0) = 0:

,. g(h) - g(0)
lim
h-*

.v^0

A=0

h sin -

= lim
h-y0 ll

= lim h sin —
/i-»0 //

= 0.

The tangent line to the graph of g at (0,0) is therefore the horizontal axis (Fig-

ure 19).

This example suggests that we should seek even more restrictive conditions on a

function than mere differentiability. We ean actually use the derivative to formulate

such conditions ifwe introduce another set of definitions, the last oi this chapter.
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\ /

\ /

\

\

A /I
f .

fr
U/w ,. ^nA 1 1<

J

IP ^
1

1// \

/ \

/ \

/ \

x sin - , jc ^
a;

* =

FIGURE 19

For any function /, we obtain, by taking the derivative, a new function /' (whose

domain may be considerably smaller than that of f). The notion of differentia-

bility can be applied to the function /', of course, yielding another function (/')',

whose domain consists of all points a such that /' is differentiable at a. The func-

tion (/')' is usually written simply /" and is called the second derivative of /.

If f"(a) exists, then / is said to be 2-times differentiable at a, and the number

f"(a) is called the second derivative of/ at a.

In physics the second derivative is particularly important. If s(t) is the posi-

tion at time t of a particle moving along a straight line, then s"(t) is called the

acceleration at time t. Acceleration plays a special role in physics, because, as

stated in Newton's laws of motion, the force on a particle is the product of its mass

and its acceleration. Consequently you can feel the second derivative when you

sit in an accelerating car.

There is no reason to stop at the second derivative—we can define /"' = (/")',

f"" = (/'")', etc. This notation rapidly becomes unwieldy, so the following abbre-

viation is usually adopted (it is really a recursive definition):

Thus

f(i) _ /',

f
(k+1) = (f

ik)
y.

HV> = f
/(2) = f" = ify,

/(3) = f" = (fy,
W4) rllll = (/'")'

etc.

The various functions f
(k
\ for k > 2, are sometimes called higher-order

derivatives of /.

Usually, we resort to the notation f
{k) only for k > 4, but it is convenient to

have f
{k) defined for smaller k also. In fact, a reasonable definition can be made

for / ,
namely,

f(0)
_. r
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(fix) = x<

(a)

fix) = 2x

fix) = 2

(c)

f
(k) (x)=0,k>3

(d)

I l(,l Rl. 20

Leibnizian notation for higher-order derivatives should also be mentioned. The
natural Leibnizian symbol for f"(x), namely,

'df(x)

dx

is abbreviated to

d2
f(x)

(dx)2

dx

or more frequently to
d 2

f(x)

dx 2

Similar notation is used for f
(k)

(x).

The following example illustrates the notation f
{k
\ and also shows, in one very

simple case, how various higher-order derivatives are related to the original func-

tion. Let fix) = x 2
. Then, as we have already checked,

f(x) = 2x,

/"(*) = 2,

f(x) = 0,

f k)
(x) = 0, if*>3.

Figure 20 shows the function /, together with its various derivatives.

A rather more illuminating example is presented by the following function,

whose graph is shown in Figure 21(a):

,2

fix)
—X'

It is easy to see that

Moreover,

f'(a) = 2a

f'ia) = -la

x >0
x < 0.

if a >0,

ifa <0.

/'(0) = lim
h->0

fih) - /(0)

//

Now

and

so

,. fih)
lim
/i-»-0 //

lim = lim — —
/j->o+ /? ^-*o+ h

v
f(h)

v
" /;2

nlim = hm = U,
h->0- h h->0- h

/(0) = limm = o.
h->0 h

This information can all be summarized as follows:

./"(-v) = 2|.v|.
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/(*) = x 2
, x>0
x\ jc<0

f\x) = 2\x\

f"(x) = -2, x <

/"(*) = 2, x >

(c)

FIGURE 2

It follows that /"(0) does not exist! Existence of the second derivative is thus a

rather strong criterion for a function to satisfy. Even a "smooth looking" function

like / reveals some irregularity when examined with the second derivative. This

suggests that the irregular behavior of the function

1

g(x)
x sin

0,

x /0

x =

might also be revealed by the second derivative. At the moment we know that

g'iP) = 0, but we do not know g'(a) for any a ^ 0, so it is hopeless to begin

computing g"(0). We will return to this question at the end of the next chapter,

after we have perfected the technique of finding derivatives.

PROBLEMS

1. (a) Prove, working directly from the definition, that if f(x) = l/x, then

f'(a) = -1/a 2
, fora ^ 0.

(b) Prove that the tangent line to the graph of / at (a, I /a) does not intersect

the graph of /, except at (a, \/a).

2. (a) Prove that if f(x)= l/x 2
, then f'(a) = -2/a 3

for a ^ 0.

(b) Prove that the tangent line to / at (a, I /a ) intersects / at one other

point, which lies on the opposite side of the vertical axis.

3. Prove that if f(x) = >/x, then f'(a) = \/(2s/a), for a > 0. (The expression

you obtain for [f(a + h) — f(a)]/h will require some algebraic face lifting,

but the answer should suggest the right trick.)

4. For each natural number n, let S„(x) = x". Remembering that S\'(x) — 1,

S2(x) = 2x, and S^'ix) = 3x , conjecture a formula for Sn '(x). Prove your

conjecture. (The expression (x + //)" may be expanded by the binomial

theorem.)

5. Find /' if f(x) = [x].

6. Prove, starting from the definition (and drawing a picture to illustrate):

(a) if g(x) = f(x) + c, then g'(x) = /'(*);

(b) if g(x) = cf(x), then g'(x) = cf'(x).

7. Suppose that f(x) = x .

(a) What is /'(9), /'(25), /'(36)?

(b) What is f(3
2
), /'(5 2

), f(6
2
)?

(c) What is f(a 2
), f(x

2
)?

If you do not find this problem silly, you are missing a very important point:

f'(x
2
) means the derivative of / at the number which we happen to be

calling x 2
; it is not the derivative at x of the function g(x) — f(x

2
). Just to

drive the point home:

(d) For f(x) = x 3
, compare f'(x ) and g'{x) where g{x) — f(x

2
).
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10.

11.

12.

(a) Suppose g{x) = f(.x+c). Prove (starting from the definition) that g'{x) —
f'(x + c). Draw a picture to illustrate this. To do this problem you must

write out the definitions of g'(x) and fix + c) correctly. The purpose

of Problem 7 was to convince you that although this problem is easy, it is

not an utter triviality, and there is something to prove: you cannot simply

put prime marks into the equation g(x) = f(x + c). To emphasize this

point:

(b) Prove that if g(x) = f(cx), then g'(x) = c f'(cx). Try to see pictorially

why this should be true, also.

(c) Suppose that / is differentiable and periodic, with period a (i.e.,

fix + a) = fix) for all x). Prove that /' is also periodic.

Find f'{x) and also f'(x + 3) in the following cases. Be very methodical,

or you will surely slip up somewhere. Consult the answers (after you do the

problem, naturally).

f(x) = (x+3) 5
.

f(x+3)=x 5
.

f(x+3) = (x + 5)
7

.

(")

(in

Find f'(x) if f(x) = g(t + x), and if fit) = g(t + x). The answers will not

be the same.

(a) Prove that Galileo was wrong: if a body falls a distance s(t) in t seconds,

and s' is proportional to s, then s cannot be a function of the form

s(t) = cf

(b) Prove that the following facts are true about s if s(t) = (a/2)t (the first

fact will show why we switched from c to a/2):

(i) s"it ) — a (the acceleration is constant).

(ii) [s'it)]
2 = lasit).

(c) If s is measured in feet, the value of a is 32. How many seconds do you

have to get out of the way of a chandelier which falls from a 400-foot

ceiling? If you don't make it, how fast will the chandelier be going when

it hits you? Where was the chandelier when it was moving with half that

speed?

Imagine a road on which the speed limit is specified at every single point. In

other words, there is a certain function L such that the speed limit x miles

from the beginning of the road is L(jc). Two cars, A and B, are driving along

this road; car A's position at time t is a(t), and car fi's is bit).

(a) What equation expresses the fact that car A always travels at the speed

limit? (The answer is not a' it) = Lit).)

Suppose that A always goes at the speed limit, and that ZJ's position at

time / is A\ position at time / — 1 . Show that B is also going at the speed

limit at all times.

Suppose, instead, that B always stays a constant distance behind A. Un-

der what conditions will B still always travel at the speed limit?

(b)

(c)
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13. Suppose that fia) = g(a) and that the left-hand derivative of / at a equals

the right-hand derivative of g at a. Define h(x) = f(x) for x < a, and

h(x) = g(x) for x > a. Prove that h is differentiable at a.

14.

15.

16.

17.

18.

19.

20.

FIGURE 22

Let f{x) — x 2
if x is rational, and f(x) = if x is irrational. Prove that

/ is differentiable at 0. (Don't be scared by this function. Just write out the

definition of /'(0).)

(a) Let / be a function such at |/(x)| < x 2
for all x. Prove that / is

differentiable at 0. (If you have done Problem 14 you should be able to

do this.)

(b) This result can be generalized if x is replaced by |g0c)|, where g has

what property?

Let a > 1. If / satisfies |/(.v)| < \x\
a

,
prove that / is differentiable at 0.

Let < < 1. Prove that if / satisfies |/(jc)| > \x\? and /(0) = 0, then /
is not differentiable at 0.

Let fix) — for irrational x, and \/q for x = p/q in lowest terms. Prove

that / is not differentiable at a for any a. Hint: It obviously suffices to prove

this for irrational a. Why? If a — m.axaia}, ... is the decimal expansion

of a, consider [fia + h) — f(a)]/h for h rational, and also for

h = —0.00 . . . 0an+ \an+ 2 ....

(a) Suppose that f(a) = g(a) = h(a), that f(x) < g(x) < h(x) for all x,

and that f'(a) = h'(a). Prove that g is differentiable at a, and that

f'(a) — g'(a) = h'{a). (Begin with the definition of g'(a).)

(b) Show that the conclusion does not follow if we omit the hypothesis

f(a) = g(a) - h(a).

Let / be any polynomial function; we will see in the next chapter that /
is differentiable. The tangent line to / at (a, /(«)) is the graph of g(x) =
f'(a)(x — a) + /(a). Thus f(x) — g(x) is the polynomial function d{x) =

fix) — f\a)ix — a) — /(a). We have already seen that if fix) = x 2
, then

dix) = (jc — a)
2

, and if fix) — x 3
, then dix) — ix — a) (x + 2a).

(a) Find dix) when fix) — x 4
, and show that it is divisible by (x — a) 2

.

(b) There certainly seems to be some evidence that dix) is always divisible by

ix —a) 2
. Figure 22 provides an intuitive argument: usually, lines parallel

to the tangent line will intersect the graph at two points; the tangent line

intersects the graph only once near the point, so the intersection should

be a "double intersection." To give a rigorous proof, first note that

dix) fix)- fia)

x — a x — a
- fia).

Now answer the following questions. Why is fix) — fia) divisible

by ix —a)? Why is there a polynomial function h such that hix) =
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21.

22.

d(x)/(x - a) for x # a? Why is lim /?U) = 0? Why is ft(a) = 0? Why

does this solve the problem?

(a) Show that f'(a) = \im[f(x) — f(a)]/(x — a). (Nothing deep here.)
x—*-a

(b) Show that derivatives are a "local property": if f(x) = g(x) for all x in

some open interval containing a, then f'(a) = g'(a). (This means that

in computing f'{a), you can ignore f(x) for any particular x ^ a. Of
course you can't ignore f{x) for all such x at once!)

(a) Suppose that / is differentiable at x. Prove that

f(x+h)-f(x-h)
f'(x) = lim

h->0 2/7

Hint: Remember an old algebraic trick—a number is not changed if the

same quantity is added to and then subtracted from it.

**(b) Prove, more generally, that

f(x + h)-f(x-k)

23.

24.

25.

26.

fix) lim
h + k

Although we haven't encountered something like lim before, its mean-

ing should be clear, and you should be able to make an appropriate s-8

definition. The important thing here is that we actually have lim , so

that we are only considering positive h and k.

Prove that if / is even, then f'(x) = —f'(—x). (In order to minimize con-

fusion, let g(x) = f(—x); find g'(x) and then remember what other thing g

is.) Draw a picture!

Prove that if / is odd, then f'{x) — f'{—x). Once again, draw a picture.

Problems 23 and 24 say that /' is even if / is odd, and odd if / is even.

What can therefore be said about f
(k)

?

Find f"(x) if

fix) = x\
ii) fix) = X 5

.

iii) f(x)=x 4
.

iv) fix+3) = x 5
.

27. If S„(x) — x", and < k < n, prove that

S„
ik)

ix) = .n-k

(n-k)l'

=«, .

./i-£

28. (a) Find /'(*) if fix) = \x\
3

. Find f"(x). Does f'"(x) exist for all x?

(b) Analyze / similarly if f(x) = .v
4

for x > and f(x) = — .v
4

for x < 0.
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29. Let f(x) - xn for x > and let f(x) = for x < 0. Prove that /
(n_1)

exists

(and find a formula for it), but that / (" }
(0) does not exist.

30. Interpret the following specimens of Leibnizian notation; each is a restate-

ment of some fact occurring in a previous problem.

dx" „ ,

dx
nx

nil

IV

vi;

Vll

Vlll

IX)

dy

I

v

d[f(x) + c] dfjx)

dx

'fix)

dx

d[cf(x)]

dx

dz dy

dx dx

dx 3

= c-
dx

if z = v + c.

dx
—

x=a i-

df(x+a)

dx

df(cx)

dx x=b

df(cx)
= C

dx

**-*(

3a
4

.

df(x)

x=b

= C

dx

df(x)

dx

x=b+a

x=cb

df(y)

dy

dx k "'\k

n-k



CHAPTER DIFFERENTIATION

The process of finding the derivative of a function is called differentiation. From the

previous chapter you may have the impression that this process is usually laborious,

requires recourse to the definition of the derivative, and depends upon successfully

recognizing some limit. It is true that such a procedure is often the only possible

approach—if you forget the definition of the derivative you are likely to be lost.

Nevertheless, in this chapter we will learn to differentiate a large number of func-

tions, without the necessity of even recalling the definition. A few theorems will

provide a mechanical process for differentiating a large class of functions, which

are formed from a few simple functions by the process of addition, multiplication,

division, and composition. This description should suggest what theorems will be

proved. We will first find the derivative of a few simple functions, and then prove

theorems about the sum, products, quotients, and compositions of differentiable

functions. The first theorem is merely a formal recognition of a computation

carried out in the previous chapter.

THEOREM l If / is a constant function, fix) = c, then

f'{a) = for all numbers a.

PROOF f(a+h)-f(a) c-c
f (a) = lim = hm = 0. I

h->0 h /i^o h

The second theorem is also a special case of a computation in the last chapter.

THEOREM 2 If / is the identity function, f{x) = x, then

f'(a) — 1 for all numbers a.

PROOF f'(a) = lim
f(fl+h)-f(a)

h

a + h — a
— lim

h^-0 h

h
= lim - = 1 . |

h^o h

The derivative of the sum of two functions is just what one would hope the

sum of the derivatives.

168



THEOREM 3

PROOF

THEOREM 4
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If / and g are differentiable at a, then / + g is also differentiable at a, and

(f+g)'{a) = f{a) + g'{a).

(/ + g) (a) = hm -

/(a + h) + g(a +h)- [/(a) + g(a)]
= hm -

h^O h

lim
/(fl+/l)-/(fl)

|

g(fl+/l)-g(fl)

f(a + h)-f(a) g(a+h)-g(a)
= lim h hm

= /'(a) + g\a). |

The formula for the derivative of a product is not as simple as one might wish,

but it is nevertheless pleasantly symmetric, and the proof requires only a simple

algebraic trick, which we have found useful before—a number is not changed if

the same quantity is added to and subtracted from it.

If / and g are differentiable at a, then / g is also differentiable at a, and

(/• g)\a) = f\a)-g{a) + f{a) • g'{a).

(f-g)(a + h)-(f-g)(a)PROOF (/ . g)'(fl ) = lim
/i^O

= lim

= lim

h

f(a+h)g(a + h)- f(a)g(a}

h

f(a + h)[g(a + h )-g(a)] [f(a+ h) - f(a)]g(a)

h h

= hm / (a + n) • hm h lim • hm g{a)
/i— /i^o /; fi^O h h^O

= f(a)-g'(a) + f(a)-g(a).

(Notice that we have used Theorem 9-1 to conclude that lim f(a + h) = f(a).) |
ft->0

In one special case Theorem 4 simplifies considerably:

THEOREM 5 If g(x) = cf(x) and / is differentiable at a, then g is differentiable at «, and

g'{a) = c f'(a).

proof If h(x) = c, so that g = h f, then by Theorem 4,

g'(a) = (h f)'(a)

= h(a)-f'(a) + h'(a)-f(a)

= c-f'(a) + 0-f(a)
= c-f'(a). |
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Notice, in particular, that (-f)'(a) = —f'(a), and consequently (/ — g)'(a) —
(f+[-g])'(a) = f'(a)-g'(a).

To demonstrate what we have already achieved, we will compute the derivative

of some more special functions.

theorem 6 If f(x) = xn
for some natural number n, then

f'(a)=nan- 1

for all a.

PROOF The proof will be by induction on n. For n = 1 this is simply Theorem 2. Now
assume that the theorem is true for n, so that if f(x) = .v", then

f'(a) = nan~ ]

for all a.

Let g(x) — xn+ . If I(x) = x, the equation x"+l — x" x can be written

g(x) = f(x) I(x) for all x;

thus g = f I . It follows from Theorem 4 that

g'{a) = (f I)'(a) = f'(a) 1(a) + f(a) I'(a)

= na"-
1

-a + a" 1

= rw" + a"

= (n + \)a'\ for all a.

This is precisely the case n + 1 which we wished to prove. |

Putting together the theorems proved so far we can now find /' for / of the

form

f(x) = a„x" + an_\x
n ~

H + ai% + a\x + aq.

We obtain

f'(x) — na„x"~ + (n — \)a„_\x"~ H + 2«2-1'' + a\-

We can also find f":

fix) = n(n - Y)anx
n-2 + (n - \){n - 2)a„_i.v"-

3 + • • • + 2a 2 .

This process can be continued easily. Each differentiation reduces the highest

power of x by 1 , and eliminates one more a, . It is a good idea to work out the

derivatives /'", f
{4)

, and perhaps /
(5)

,
until the pattern becomes quite clear. The

last interesting derivative is

f
(n)

(x) = n\an ;

for k > n we have

/
u,

(x) = 0.

Clearly, the next step in our program is to find the derivative of a quotient f/g.

It is quite a bit simpler, and, because of Theorem 4, obviously sufficient to find

the derivative <>l I /g.
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THEOREM 7 If g is differentiable at a, and g(a) / 0, then \/g is differentiable at a, and

PROOF Before we even write

(a+h) (a)

h

we must be sure that this expression makes sense—it is necessary to check that

(\/g)(a + h) is defined for sufficiently small h. This requires only two observations.

Since g is, by hypothesis, differentiable at a, it follows from Theorem 9-1 that g is

continuous at a. Since g{a) ^ 0, it follows from Theorem 6-3 that there is some

8 > such that g(a + h) ^ for \h\ < <5. Therefore (\/g)(a + h) does make sense

for small enough h , and we can write

lim

(a + h) (a)
1 1

g(a + h) g(a)

h^O h

= lim
g(a) --g(a + h)

h[g(a) g(a + h)]

— lim
~[g(a + h) -g(a)]

h

= lim
-[g(a + h) - g(a)]

h

- n't n\ .

1

1

g(a)g(a + h)

1

lim —
h^O g(a) g(a + h)

6
[g(a)] 2

'

(Notice that we have used continuity of g at a once again.) |

The general formula for the derivative of a quotient is now easy to derive.

Though not particularly appealing, it is important, and must simply be memo-
rized (I always use the incantation: "bottom times derivative of top, minus top

times derivative of bottom, over bottom squared.")

theorem 8 If / and g are differentiable at a and g(a) ^ 0, then f/g is differentiable at a.

and

f\ g(a)f(a)-f(a)g'(a)
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PROOF Since f/g = f (1/g) we have

^Yw
8

f'(a) (a) + f(a)
8

fja) f(a)(-g'(a))

8(a) ' [8(a)] 2

f'(a)-g(a)-f(a)-g'(a)

[8(a)] 2

(a)

We can now differentiate a few more functions. For example,

if/U) =

if/(*) =

if/(-v) =

X
2 -l

-Y
2 +l
X

x 2 +l
1

then f'(x) =

then fix) =

(x
2 + \)(2x) - (a-

2 - \)(2x)

(x 2 +\) 2

(x
2 +l)-x(2x) 1-x 2

4x

(.v
2 + l)

2.

(x 2 +l) 2 U 2 + D 2

1

then/ r

(x) = - ^==(-\)x
x A

-2

Notice that the last example can be generalized: if

1

f(x)=x~" = for some natural number n
,

then

fix) =
-nx

-2n
= (-n)x-"-

thus Theorem 6 actually holds both for positive and negative integers. Ifwe inter-

pret f{x) = x° to mean f(x) = 1, and f(x) = • x~ [

to mean f'(x) = 0, then

Theorem 6 is true for n = also. (The word "interpret" is necessary because it is

not clear how 0° should be defined and, in any case, •

_1
is meaningless.)

Further progress in differentiation requires the knowledge of the derivatives of

certain special functions to be studied later. One of these is the sine function. For

the moment we shall divulge, and use, the following information, without proof:

sin' (a) = cosrt

cos' (a) = — sin«

for all a ,

for all a

,

This information allows us to differentiate many other functions. For example, if

f(x) = x sin A",

then

fix) = x cos a + sin x,

f"(x) = —x sin x + cos a + cosx

= —x sin x + 2 cos x ;
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if

then

if

then

Notice that

• 2
g(x) = sin x = sin a • sin a,

g' (x ) = sin x cos x + cos x sin x

= 2 sin x cos a,

g"(x) = 2[(sin a)(— sin*) + cos a cosa]

= 2[cos~ a — sin a];

h {x ) = cos x = cos x • cos x

,

h'(x) = (cosa)(— sin a) + (— sinA)cosA

= —2 sin a cos a,

h"{x) = —2 [cos" a — sin a].

g'(x) + h'(x)=0,

hardly surprising, since (g + h)(x) = sin" a + cos2 a = 1 . As we would expect, we

also have g"(x) + h"(x) = 0.

The examples above involved only products of two functions. A function involv-

ing triple products can be handled by Theorem 4 also; in fact it can be handled

in two ways. Remember that / • g h is an abbreviation for

(f-g)-h or f-(g-h).

Choosing the first of these, for example, we have

(/ • g h)'(x) = (f g)'(x) h(x) + (/ • g)(x)h'(x)

= [f'(x)g(x) + f(x)g'(x)]h(x) + f(x)g(x)h'(x)

= f'(x)g(x)h(x)+ f(x)g'(x)h(x) + f(x)g(x)h'(x).

The choice of / • (g h) would, of course, have given the same result, with a

different intermediate step. The final answer is completely symmetric and easily

remembered:

(f • g • h)' is the sum of the three terms obtained by differentiating each of /,

g, and h and multiplying by the other two.

For example, if

f(x) = x sin A COS A

,

then

/'(a) = 3a sin a cos a + x~ cos a cos a + a (sinA)(— sin a).

Products of more than 3 functions can be handled similarly. For example, you

should have little difficulty deriving the formula

(f-g-h- k)'(x) = f'(x)g(x)h(x)k(x) + f(x)g'(x)h(x)k(x)

+ f(x)g(x)h'(x)k(x) + f(x)g(x)h(x)k'(x).
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You might even try to prove (by induction) the general formula:

(/l • . .

.
• /,)'(*) = J2 h {x) fi-\(x)fi'(x)fi+i(x) /»(*).

l=\

Differentiating the most interesting functions obviously requires a formula for

(/ ° gY(x ) m terms of /' and g'. To ensure that / o g be differentiable at a, one

reasonable hypothesis would seem to be that g be differentiable at a. Since the

behavior of /' o g near a depends on the behavior of / near g{a) (not near a), it

also seems reasonable to assume that / is differentiable at g(a). Indeed we shall

prove that if g is differentiable at a and / is differentiable at g(a), then / o g is

differentiable at a, and

(fo gy(a) = f'(g(a)).g'(a).

This extremely important formula is called the Chain Rule, presumable because

a composition of functions might be called a "chain" of functions. Notice that

(f §)' is practically the product of /' and g', but not quite: /' must be evaluated

at g(a) and g' at a. Before attempting to prove this theorem we will try a few

applications. Suppose

f(x) = sin.v .

Let us, temporarily, use S to denote the ("squaring") function S(.x) = x 2
. Then

/ = sin o S.

Therefore we have

f'(x) = sin'(S(jc)) • S'(x)

— cos.t'
2
-2x.

Qtiite a different result is obtained if

In this case

f(x) = sin" X.

f = S o sin,

so

f'{x) = ^'(sinA') • sin'(.v)

= 2 sin x cos x

.

Notice that this agrees (as it should) with the result obtained by writing / = sin • sin

and using the product formula.

Although we have invented a special symbol, S, to name the "squaring" function,

it does not take much practice to do problems like this without bothering to write

down special symbols for functions, and without even bothering to write down the

particular composition which / is—one soon becomes accustomed to taking /
apart in one's head. The following differentiations may be used as practice for

such mental gymnastics il yon find it necessary to work a few out on paper, by

all means do so, but try to develop the knack ofwriting /" immediately after seeing
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the definition of /; problems of this sort are so simple that, if you just remember

the Chain Rule, there is no thought necessary.

if fix) = sinx then fix) — cosjt • 3x~

fix) = sin x /'(jc)=3sin x-cosx

.1 1 /-l
fix) — sin — f (x) = cos — • I

—=-

x x \ x-

f(x) = sin (sin x) fix) — cos (sin x) • cos*

fix) = sinU
3 + 3;r) fix) = cos(jc

3 + 3jc
2

) • (3x
2 + 6.x)

fix) = (a-
3 + 3x2)

53
f(x) = 53(.t

3 + 3.t
2

)

52
• (3.x-

2 + 6x).

A function like

9 9 • 9 9
/(x) = sin"x = [sinx ] ,

which is the composition of three functions,

f = S o sin o S,

can also be differentiated by the Chain Rule. It is only necessary to remember

that a triple composition / o g o h means if°g)oh or f o ig oh). Thus if

fix) = sin x

we can write

f = iS o sin) o 5,

f = S o (sin o £).

The derivative of either expression can be found by applying the Chain Rule

twice; the only doubtful point is whether the two expressions lead to equally simple

calculations. As a matter offact, as any experienced differentiator knows, it is much
better to use the second:

/ = S o (sin o S).

We can now write down fix) in one fell swoop. To begin with, note that the first

function to be differentiated is S, so the formula for fix) begins

/'(*) = 2( ) |.

Inside the parentheses we must put sinjc , the value at .v of the second function,

sin o S. Thus we begin by writing

fix) = 2sinx"

(the parentheses weren't really necessary, after all). We must now multiply this

much of the answer by the derivative of sin o S at x; this part is easy it involves a

composition of two functions, which we already know how to handle. We obtain,

for the final answer.

f{x) = 2 sin* cos x" 2x.
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The following example is handled similarly. Suppose

/(*) = sin(sin* 2
).

Without even bothering to write down / as a composition gohok ofthree functions,

we can see that the left-most one will be sin, so our expression for f'{x) begins

f'(x) = cos( ) |.

Inside the parentheses we must put the value of h °k(x); this is simply sin* (what

you get from sin (sin * ) by deleting the first sin). So our expression for /'(jc) begins

/'(*) = cos(sinjc ) |.

We can now forget about the first sin in sin (sin jc); we have to multiply what we

have so far by the derivative of the function whose value at x is sin* —which is

again a problem we already know how to solve:

fix) — cos(sin* ) • cos*" • 2jc.

Finally, here are the derivatives of some other functions which are the composition

of sin and S, as well as some other triple compositions. You can probably just

"see" that the answers are correct—if not, try writing out / as a composition:

9
if /(jc) = sin((sin*) )

fix) = [sin (sin jc)]

/(jc) = sin (sin (sin x))

f(x) = sin (jc sinjc)

then /'(jc) = cos((sin*) ) • 2 sin* • cos*

/'(jc) = 2sin(sinjc) • cos (sin*) • cos*

/'(jc) = cos (sin (sin jc)) • cos(sin;c) • cos*

/'(jc) = 2sin(jc sin*) cos(* sin*)

• [sin * + * cos *]

/(x) = sin (sin (* sin*)) /'(*) = cos(sin(* sin*)) • cos(* sin*)

• [2* sin * + *~ cos *]

.

The rule for treating compositions of four (or even more) functions is easy—

always (mentally) put in parentheses starting from the right,

/o (go (h ok)),

and start reducing the calculation to the derivative of a composition of a smaller

number of functions:

f'(g(h(k(x))))

For example, if

/(*) = sin
2
(sin

2
(*)) \ f = S o sin o S o sin

= S o (sin o (S o sin))
|

then

/'(*) = 2 sin (sin *) • cos(sin".v) • 2 sin * • cos x :
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if

then

if

then

f(x) = sin((sin x ) ) [/ = sin o 5 o sin o S

= sin o (S o (sin o 5))]

f'(x) = cos((sin x ) )-2sinx • cosx" • 2x;

/(jc) = sin (sin(sinx)) [fill in yourself, if necessary]

f'(x) — 2 sin (sin (sin x)) • cos (sin (sin x)) • cos(sinx) • cos*.

With these examples as reference, you require only one thing to become a master

differentiator—practice. You can be safely turned loose on the exercises at the end

of the chapter, and it is now high time that we proved the Chain Rule.

The following argument, while not a proof, indicates some of the tricks one

might try, as well as some of the difficulties encountered. We begin, of course,

with the definition

—

(f o g)(a + h) - (f o g)(a)

(f °g)'(a) = lim
h-*0 h

f(g(a + h))-f(g(a))
= lim .

/i->o h

Somewhere in here we would like the expression for g'(a). One approach is to

put it in by fiat:

f(g(a+h))-f(g(a)) f(g(a + h))-f(g(a)) g(a + h) - g(a)
lim = lim •

.

h-+0 h h^-o g(a + h)—g{a) h

This does not look bad, and it looks even better if we write

r (fog)(a + h)-(fog)(a)
lim
h-+0 h

f(g(a) + [g(a+h)-g(a)])-f(g(a)) g(a+h)-g(a)
= lim • lim .

h^O g(a + h) — g{a) h^O h

The second limit is the factor g'{a) which we want. If we let g(a + h) — g{a) — k

(to be precise we should write k(h)), then the first limit is

f(g(a)+k)-f(g(a))
lim .

h^O k

It looks as if this limit should be f'(g(a)), since continuity of g at a implies that A'

goes to as h does. In fact, one can, and we soon will, make this sort of reasoning

precise. There is already a problem, however, which you will have noticed if you

are the kind of person who does not divide blindly. Even for h ^ we might have

g{a + h) — g{a) = 0, making the division and multiplication by g(a + h) — g(a)

meaningless. True, we only care about small h, but g(a + h) — g(a) could be

for arbitrarily small h. The easiest way this can happen is for g to be a constant
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THEOREM 9 (THE CHAIN RULE)

PROOF

function, g{x) — c. Then g(a + h) — g{a) = for all h. In this case, / o g is also

a constant function, (/ o g){x) = /(c), so the Chain Rule does indeed hold:

(fog)'(a) = = f'(g(a))-g'(a).

However, there are also nonconstant functions g for which g(a + h) — g(a) —
for arbitrarily small h. For example, if a = 0, the function g might be

g(x)

In this case, g'(0) = 0, as we showed in Chapter 9. If the Chain Rule is correct, we
must have (/ o g)'(0) = for any differentiable /, and this is not exactly obvious.

A proof of the Chain Rule can be found by considering such recalcitrant functions

separately, but it is easier simply to abandon this approach, and use a trick.

If g is differentiable at a, and / is differentiable at g(a), then fog is differentiable

at a, and

(fog)'{a) = f'{g{a))-g\a).

2
1

x sin —

,

x ^0
X

0. jc = 0.

Define a function </> as follows:

f(g(a+h))

0(A) =
i£ g(a + h) - g(a) j=

if gia + h) - gifl) = 0.

g{a +h) - g(a)

It should be intuitively clear that is continuous at 0: When h is small,

g(a + h) — g(a) is also small, so if g(a + h) — g(a) is not zero, then </>(/?) will

be close to f'(g(a)); and if it is zero, then (j)(h) actually equals f'(g(a)), which

is even better. Since the continuity of </> is the crux of the whole proof we will

provide a careful translation of this intuitive argument.

We know that f is differentiable at g{a). This means that

f(g(a) + k)-f(g(a))
lim
k^0

= f'(g(a)).

Thus, if s > there is some number 8' > such that, for all k,

f(g(a)+k)- f(g(a))
(1) ifO < |it | <8 f

, then -/'(*(«)) < E.

Now g is differentiable at a, hence continuous at a, so there is a 8 > such that,

for all h,

(2) if \h\ < 8, then \g(a + h) - g(a)\ < 8'.

Consider now any h with \h\ < 8. If k = g(a + h) — g(a) ^ 0, then

f(g(a + h)) - f(g(a)) f(g(a) + k) - f(g(a))
(p(h) = = ;

g(a +h) - g(a) k

it follows from (2) that |A:| < 8', and hence from (1) that

\(f>ih) - f\g{a))\ <e.
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On the other hand, if g(a + h) — g(a) = 0, then (p(h) = f(g(a)), so it is surely

true that

\4>(h)- f'{g{a))\ <e.

We have therefore proved that

lim 0(A) = /'(*(«)),

so is continuous at 0. The rest of the proof is easy. If // / 0, then we have

f(g(a+h))-f(g(a)) g(a + h)-g(a)
= <f>(h)

n h

even if g(a + h) — g{a) = (because in that case both sides are 0). Therefore

(f w . .. f(g(a + h))-f(g(a)) g(a+h)-g(a)
(f o g) (a) = hm - = lim </>(/?) lim

h^o h h^o h^o h

= f(g(a))-g'(a).i

Now that we can differentiate so many functions so easily we can take another

look at the function

x sin — , x yt U
fix)

0, x = 0.

In Chapter 9 we showed that /'(0) = 0, working straight from the definition (the

only possible way). For x ^ we can use the methods of this chapter. We have

„ • 1 2 1

/ (x) = 2x sin—\- x cos —
1

x z

Thus

/'(*)
2x sin cos — , i^0

0, 0.

As this formula reveals, the first derivative /' is indeed badly behaved at —it is

not even continuous there. If we consider instead

fix)
x : sm — , x/0

x

0, x = 0.

then

fix)
3x sin x cos — , x ^ l)

x x

0, x = 0.

In this case /' is continuous at 0, but ,/"(0) does not exist (because the expres-

sion 3x sin 1/x defines a function which is differentiable at but the expression

—xcos 1/x does not).
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As you may suspect, increasing the power of x yet again produces another

improvement. If

/(*)
x 4

sin — , x ^
x

0,

then

4x 3
sin -

./ (*) = x

0,

a:
2
cos

x = 0,

1

X ^0

x = 0.

It is easy to compute, right from the definition, that (/')'(O) = 0, and f"(x) is

easy to find for x ^ 0:

fix) = 1 2x 2
sin 4x cos 2x cos —

0,

1

sin .v/0

x = 0.

In this case, the second derivative /" is not continuous at 0. By now you may have

guessed the pattern, which two of the problems ask you to establish: if

1

x sin — , x ^
x

0, jc = 0,

/(*) =

then /'(()), . . .
, /

(">(0) exist, but f
{n)

is not continuous at 0; if

fix) =
x 2«+l sin _

f
x ^0

X

0, jc = 0,

then f'(0), ..., /
(w)

(0) exist, and /"" is continuous at 0, but / ('" is not differ-

entiable at 0. These examples may suggest that "reasonable" functions can be

characterized by the possession of higher-order derivatives—no matter how hard

we try to mask the infinite oscillation of / (x ) = sin 1 /x , a derivative of sufficiently

high order seems able to reveal the underlying irregularity. Unfortunately, we will

see later that much worse things can happen.

After all these involved calculations, we will bring this chapter to a close with

a minor remark. It is often tempting, and seems more elegant, to write some of

the theorems in this chapter as equations about functions, rather than about their

values. Thus Theorem 3 might be written

(/ + *)' = /' + *'.

Theorem 4 might be written as

if-gy = f-g'+f-g,

and Theorem 9 often appears in the form

if °g)' = if °g) -g'-
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Strictly speaking, these equations may be false, because the functions on the left-

hand side might have a larger domain than those on the right. Nevertheless, this

is hardly worth worrying about. If / and g are differentiable everywhere in their

domains, then these equations, and others like them, are true, and this is the only-

case any one cares about.

PROBLEMS

1. As a warm up exercise, find fix) for each of the following /. (Don't worry

about the domain of / or /'; just get a formula for fix) that gives the right

answer when it makes sense.)

(i) f(x) = sm(x+x 2
).

(ii) f(x) = sinx + sinjc .

(iii) f(x) = sin(cos x).

(iv) f(x) = sin(sinx).

, n • /cosx\
(v) /(jc) = an(—).

, ., „ sin (cos x)
(vi) /(*) = —- -.

X

(vii) f(x) — sin (a + sin x).

(viii) f(x) = sin(cos(sin a)).

2. Find f'(x) for each of the following functions /. (It took the author 20 min-

utes to compute the derivatives for the answer section, and it should not take

you much longer. Although rapid calculation is not the goal of mathematics,

if you hope to treat theoretical applications of the Chain Rule with aplomb,

these concrete applications should be child's play—mathematicians like to

pretend that they can't even add, but most of them can when they have to.)

(i) f(x) = sm((x + \)
2
(x + 2)).

(ii) / (a- ) = sin
3
(a

2 + sin x )

.

(iii) f{x) = sin ((x + sin a) ).

.
/ r3 \

(iv) f(x) = sin
cos* 3

(v) f(x) = sin(x sin x) + sin(sin x~).

(vi) f(x) = (cos a-)
31 '.

/ -\ ft \ -2 • 2-22
(vn) /(.v) = sin x sm x sin x .

(viii) f{x) — sin (sin (sin x)).

(ix) f(x) = (x + sin
5
x)6 .

(x) fix) — sin(sin(sin(sin(sin x)))).

(xi) fix) = sin((sin
7

.v
7 + l)

7
).

(xii) fix) = iHx
2 + x) 3 + x)

4 +x) 5
.

(xiii) fix) = sin(x 2 + sin(x 2 + sinjc
2
)).

(xiv) fix) = sin(6cos(6sin(6cos6A))).
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(xv) f{x)

(xvi) f(x) =

2 2
sin x sin x

1 + sin x

1

x + sin x

/ „3

(xvii) /(*) = sin
sin

y \ sm

5.

(xviii)/(*) = sin I

^ sm
x — sin .v

3. Find the derivatives of the functions tan, cotan, sec, cosec. (You don't have

to memorize these formulas, although they will be needed once in a while; if

you express your answers in the right way, they will be simple and somewhat

symmetrical.)

4. For each of the following functions /, find f'(f(x)) (not (f o f)'(x)).

1

(id

!,11

(iv

/(*) =
1 + x

f(x) = simr.

f(x) = x 2
.

/CO = 17.

For each of the following functions /, find f(f'(x)).

(i) fix) = -.

(iii)

(iv)

f(x) = x 2
.

fix) = 17.

f(x)= 17.v.

Find /' in terms of g' if

(")

(iii)

(iv)

(v)

(vi)

f(x) = g(x + g(a)).

f(x) = g(x-g(a)).

f(x) = g(x+g(x)).

f(x) = g(x)(x-a).

fix) = g{a)(x -a).

f(x + 3) = g(x 2
).

A circular object is increasing in size in some unspecified manner, but it

is known that when the radius is 6, the rate of change of the radius is 4.

Find the rate of change of the area when the radius is 6. (If /•(/) and A(t)

represent the radius and the area at time t, then the functions r and A

satisfy A = nr \ a straightforward use of the Chain Rule is called for.)
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(b) Suppose that we are now informed that the circular object we have been

watching is really the cross section of a spherical object. Find the rate

of change of the volume when the radius is 6. (You will clearly need to

know a formula for the volume of a sphere; in case you have forgotten,

the volume is ^tt times the cube of the radius.)

(c) Now suppose that the rate of change of the area of the circular cross

section is 5 when the radius is 3. Find the rate of change of the volume

when the radius is 3. You should be able to do this problem in two

ways: first, by using the formulas for the area and volume in terms of

the radius; and then by expressing the volume in terms of the area (to

use this method you will need Problem 9-3).

8. The area between two varying concentric circles is at all times 9n in . The
rate of change of the area of the larger circle is 10;r in"/sec. How fast is the

circumference of the smaller circle changing when it has area 16tt in
2
?

9. Particle A moves along the positive horizontal axis, and particle B along the

graph of f(x) = -V3i, x < 0. At a certain time, A is at the point (5,0)

and moving with speed 3 units/sec; and B is at a distance of 3 units from

the origin and moving with speed 4 units/sec. At what rate is the distance

between A and B changing?

10. Let f(x) = x sin i/x for x ^ 0, and let f(0) = 0. Suppose also that h and k

are two functions such that

h'{x) = sin
2
(sin(jr + 1)) k\x) = f(x + 1)

/i(0)=3 k(0)=0.

Find

(i) (foh)'(O).

(ii) (k o /)'(0).

(iii) a'{x"), where a(x) — h(x~). Exercise great care.

11. Find /'(0) if

/(*) =
g(.t)sin -, x ^

x

0, x = 0.

and

g(0) = g'(0) = 0.

12. Using the derivative of f{x) = l/x, as found in Problem 9-1, find (l/g)'(x)

by the Chain Rule.

13. (a) Using Problem 9-3, find f'(x) for -1 < x < 1, if f(x) = y/\ -x 2
.

(b) Prove that the tangent line to the graph of / at (a, vl — a 2
) intersects

the graph only at that point (and thus show that the elementary geometry

definition of the tangent line coincides with ours).
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14. Prove similarly that the tangent lines to an ellipse or hyperbola intersect these

sets only once.

15. If / + g is differentiable at a, are / and g necessarily differentiable at a?

If / • g and / are differentiable at a, what conditions on / imply that g is

differentiable at a?

16.

17.

18.

(a) Prove that if / is differentiable at a, then |/| is also differentiable at a,

provided that f{a) ^ 0.

(b) Give a counterexample if f{a) = 0.

(c) Prove that if / and g are differentiable at a, then the functions

max(/, g) and min(/, g) are differentiable at a, provided that f(a) ^
8(a).

(d) Give a counterexample if f{a) — g(a).

Give an example of functions / and g such that g takes on all values, and fog
and g are differentiable, but / isn't differentiable. (The problem becomes

trivial ifwe don't require that g takes on all values; g could just be a constant

function, or a function that only takes on values in some interval (a,b), in

which case the behavior of / outside of (a, b) would be irrelevant.)

(a) If g = f
2 find a formula for g' (involving /').

(b) If g = (f)
2

, find a formula for g' (involving /").

(c) Suppose that the function / > has the property that

1

f
iff = f +

Find a formula for /" in terms of /. (In addition to simple calculations,

a bit of care is needed at one point.)

19. If / is three times differentiable and f'(x) / 0, the Schwarzian derivative of /
at x is defined to be

2

2>/(*) =
f'"(x) 3 (f"(x)

f'{x) 2\f'{x)

(a) Show that

(b) Show that if f(x) =
ex + a

quently, 2)(/ o g) = 2)g.

®(fog) = [<2)fog].g' 2 +®g

ax + b
with ad - be # 0, then 9/ = 0. Conse-

20. Suppose that /
(n)

(fl) and g
{n)

(a) exist. Prow Leibniz'sformula:

k=0

(f-g)
(n
Ha) = J2(i)f

ik) (")-8
(n A,

<«>
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*21. Prove that if f
(n)

igia)) and g
(n)

(a) both exist, then (/ o g)
(n)

(a) exists. A
little experimentation should convince you that it is unwise to seek a formula

for (/ o gY
n)

{a). In order to prove that (/ o g)
(w)

(a) exists you will therefore

have to devise a reasonable assertion about (fog)^(a) which can be proved

by induction. Try something like: "(/ o g)
(n)

(a) exists and is a sum of terms

each of which is a product of terms of the form ... ."

22. (a) If f{x) = anx" +an_\x"~
{

-\ |-ao> find a function g such that g' = /.

Find another.

(b) If

find a function g with g' = f.

(c) Is there a function

/(jc) = a„jc H +a H 1 h —

-

jc jc
w

such that fix)=\/x?

23. Show that there is a polynomial function / of degree n such that

(a) f'{x) = for precisely n — 1 numbers jc.

(b) /'(jc) = for no x, if n is odd.

(c) fix) — for exacdy one x, if n is even.

(d) fix) = for exacdy k numbers x, if n — & is odd.

24. (a) The number a is called a double root of the polynomial function / if

fix) = (jc — a)
2
g(;c) for some polynomial function g. Prove that a is a

double root of / if and only if a is a root of both / and /'.

(b) When does fix) — ax 2 + bx + c (a ^ 0) have a double root? What does

the condition say geometrically?

25. If / is differentiable at a, let d(x) = fix)- f(a)(x -a)- fia). Find d\a).

In connection with Problem 24, this gives another solution for Problem 9-20.

*26. This problem is a companion to Problem 3-6. Let a\, . .

.

, an and b\, ... ,bn

be given numbers.

(a) If x\, . .
.

, xn are distinct numbers, prove that there is a polynomial func-

tion / of degree 2n — 1, such that fixf) — fixj) = for j ^ i, and

/(jc,) = a, and fixi) = b
t

. Hint: Remember Problem 24.

(b) Prove that there is a polynomial function / of degree In — 1 with /(jc,) =
a, and /'(jc,) = &,- for all i.

*27. Suppose that a and b are two consecutive roots of a polynomial function /,

but that a and b are not double roots, so that we can write /(jc) =
(jc — a)(jc — b)gix) where gia) ^ and gib) ^ 0.

(a) Prove that gia) and gib) have the same sign. (Remember that a and b

are consecutive roots.)
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(b) Prove that there is some number x with a < x < b and fix) = 0. (Also

draw a picture to illustrate this fact.) Hint: Compare the sign of f'(a)

and f'(b).

(c) Now prove the same fact, even if a and b are multiple roots. Hint: If

f{x) = (x —a)'"(x — b)"g(x) where g(a) ^ and gib) ^ 0, consider the

polynomial function h(x) = f'(x)/(x — a)'"~
[

(x — /?)""'.

This theorem was proved by the French mathematician Rolle, in connection

with the problem of approximating roots of polynomials, but the result was

not originally stated in terms of derivatives. In fact, Rolle was one of the

mathematicians who never accepted the new notions of calculus. This was

not such a pigheaded attitude, in view of the fact that for one hundred years

no one could define limits in terms that did not verge on the mystic, but on

the whole history has been particularly kind to Rolle; his name has become

attached to a much more general result, to appear in the next chapter, which

forms the basis for the most important theoretical results of calculus.

28. Suppose that f(x) = xg(x) for some function g which is continuous at 0.

Prove that / is differentiable at 0, and find /'(0) in terms of g.

29. Suppose / is differentiable at 0, and that /(0) = 0. Prove that fix) — xg(x)

for some function g which is continuous at 0. Hint: What happens if you try

to write g(x) = f(x)/x?

30. If fix) = x~ n
for n in N, prove that

f
{k)

(x) = (-\<*>,... ,x*(» + *-i)L-«-*

= (-!)**!

(n-1)!

n + k - 1 -n-k
for x # 0.

*31. Prove that it is impossible to write x = f{x)g{x) where / and g are differ-

entiable and /(0) = g(0) = 0. Hint: Differentiate.

32. What is f
{k)

ix) if

(a) /(*)= \/(x-a)"?

*(b) fix) =\ /(x
2 -\)?

*33. Let fix) = x 2"sin l/.v if x # 0, and let /(0) = 0. Prove that /'(0)

/""(0) exist, and that f
[u)

is not continuous at 0. (You will encounter the

same basic difficulty as that in Problem 21 .)

*34. Lei f(x) = x 2n+l
sin l/.v if x ^ 0, and let /(0) = 0. Prow that ./'(())

/""(0) exist, that /
(/,)

is continuous at 0, and that /"" is not differentiable

atO.



10. Differentiation 187

35. In Leibnizian notation the Chain Rule ought to read:

df(g(x)) df(y)

dx dy

dgixf

-MM dx

Instead, one usually finds the following statement: "Let y = g(x) and

Z = f(y). Then dz dz dy „

dx dy dx

Notice that the z in dz/dx denotes the composite function fog, while the z

in dz/dy denotes the function /; it is also understood that dz/dy will be "an

expression involving y," and that in the final answer g(x) must be substituted

for y. In each of the following cases, find dz/dx by using this formula; then

compare with Problem 1

.

(i) z = siny, y — x + x 2
.

(ii) z = siny, y = cos*.

(iii) z = sin u , u = sin x

.

(iv) z = sin v

,

v = cost/, u = sin*.



CHAPTER SIGNIFICANCE OF THE DERIVATIVE

One aim in this chapter is to justify the time we have spent learning to find the

derivative of a function. As we shall see, knowing just a little about /' tells us a

lot about /. Extracting information about / from information about /' requires

some difficult work, however, and we shall begin with the one theorem which is

really easy.

This theorem is concerned with the maximum value of a function on an interval.

Although we have used this term informally in Chapter 7, it is worthwhile to be

precise, and also more general.

DEFINITION

X2 X3

FIGURE 1

Let / be a function and A a set of numbers contained in the domain of /.

A point x in A is a maximum point for / on A if

/(*) > /(y) f°r every v in A.

The number f(x) itself is called the maximum value of / on A (and we also

say that / "has its maximum value on A at x").

Notice that the maximum value of / on A could be f(x) for several different x

(Figure 1); in other words, a function / can have several different maximum points

on A, although it can have at most one maximum value. Usually we shall be

interested in the case where A is a closed interval [a , b] ; if / is continuous, then

Theorem 7-3 guarantees that / does indeed have a maximum value on [a , b]

.

The definition of a minimum of / on A will be left to you. (One possible

definition is the following: / has a minimum on A at x, if —/ has a maximum
on A at x.)

We are now ready for a theorem which does not even depend upon the existence

of least upper bounds.

THEOREM l Let / be any function defined on (a,b). If x is a maximum (or a minimum) point

for / on (a,b), and / is differentiate at x, then f'(x) = 0.

(Notice that we do not assume differentiability, or even continuity, of / at other

points.)

PROOF Consider the case where / has a maximum at x. Figure 2 illustrates the simple idea

behind the whole argument—secants drawn through points to the left of (x, f(x))

have slopes > 0, and secants drawn through points to the right of (x, f(x)) have

slopes < 0. Analytically, this argument proceeds as follows.

188



11. Significance of the Derivative 189

a x x + h b

FIGURE 2

FIGURE 3

If h is any number such that x + h is in (a, b), then

f(x)>f(x+h),

since / has a maximum on (a, b) at x. This means that

f(x+h)-f(x)<0.

Thus, if h > we have

f(x+h)-fjx)
h

<0.

and consequently

,. fix + h)-fix)
hm < (J.

h->0+ h

On the other hand, if h < 0, we have

f(x + h)- fix)

h
>0,

so

/U+/7)-/(x)
hm > U.

By hypothesis, / is differentiable at x, so these two limits must be equal, in fact

equal to fix). This means that

f'(x) < and fix) > 0,

from which it follows that fix) = 0.

The case where / has a minimum at x is left to you (give a one-line proof). |

Notice (Figure 3) that we cannot replace (a, b) by [a, b] in the statement of the

theorem (unless we add to the hypothesis the condition that x is in ia,b).)

Since fix) depends only on the values of / near x, it is almost obvious how to

get a stronger version ofTheorem 1. We begin with a definition which is illustrated

in Figure 4.

DEFINITION Let / be a function, and A a set of numbers contained in the domain of /.

A point x in A is a local maximum [minimum] point for / on A if

there is some <5 > such that x is a maximum [minimum] point for / on

A nix -8,x + 8).

THEOREM 2 If x is a local maximum or minimum for / on (a, b) and / is differentiable at x,

then fix) = 0.

proof You should see why this is an easy application of Theorem 1 . |
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The converse ofTheorem 2 is definitely not true—it is possible for f'(x) to be

even if x is not a local maximum or minimum point for /. The simplest example

is provided by the function f(x) — x 3
; in this case f'(0) = 0, but / has no local

maximum or minimum anywhere.

Probably the most widespread misconceptions about calculus are concerned

with the behavior of a function / near x when f'(x) = 0. The point made in

the previous paragraph is so quickly forgotten by those who want the world to be

simpler than it is, that we will repeat it: the converse ofTheorem 2 is not true—the

condition f'(x) — does not imply that x is a local maximum or minimum point

of /. Precisely for this reason, special terminology has been adopted to describe

numbers x which satisfy the condition fix) — 0.

DEFINITION A critical point of a function / is a number x such that

f'(x) = 0.

The number f(x) itself is called a critical value of /.

x\

a local

minimum point

FIG 1 RE 4

X2

a local

maximum point

The critical values of /, together with a few other numbers, turn out to be the

ones which must be considered in order to find the maximum and minimum of a

given function /. To the uninitiated, finding the maximum and minimum value

of a function represents one of the most intriguing aspects of calculus, and there

is no denying that problems of this sort are fun (until you have done your first

hundred or so).

Let us consider first the problem of finding the maximum or minimum of /
on a closed interval [a,/?]. (Then, if / is continuous, we can at least be sure

that a maximum and minimum value exist.) In order to locate the maximum and

minimum of / three kinds of points must be considered:

(1) The critical points of / in [a, b].

(2) The end points a and b.

(3) Points x in [a, b] such that / is not differentiable at x.

If x is a maximum point or a minimum point for / on [a, £>] , then x must be in one

of the three classes listed above: for if x is not in the second or third group, then

x is in (a, b) and / is differentiable at x; consequentiy f'(x) = 0, by Theorem 1,

and this means that .v is in the first group.

If there are many points in these three categories, finding the maximum and

minimum of / may still be a hopeless proposition, but when there are only a few

critical points, and only a few points where / is not differentiable, the procedure is

fairly straightforward: one simply finds f(x) for each x satisfying f'(x) = 0, and

f(x) for each x such that / is not differentiable at x and, finally, f{a) and fib).

The biggest of these will be the maximum value of /, and the smallest will be the

minimum. A simple example follows.
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1 a

FIGURE 5

/(O)

b 1

Suppose we wish to find the maximum and minimum value of the function

f(x)=x 3 -x

on the interval [—1,2]. To begin with, we have

f(x) =3x 2 - 1,

so f'(x) — when 3x — 1 =0, that is, when

x = y/T/3 or - vT/3.

The numbers y 1/3 and — y 1/3 both lie in [— 1 , 2], so the first group ofcandidates

for the location of the maximum and the minimum is

(1) /lA -VT73:

The second group contains the end points of the interval,

(2) - 1, 2.

The third group is empty, since / is differentiable everywhere. The final step is to

compute

f(y/l/3) = (7173

)

3 -

/(- v
/r/3) = (- v

/T73) 3

/(-D = 0.

f(2) = 6.

1/3 = ivM/3 - vl/3 = — §vT/3,

(-7173 ) = -JX/T73 + /T73 =
§x/Ia

Clearly the minimum value is — ^y 1/3, occurring at y 1/3, and the maximum
value is 6, occurring at 2.

This sort ofprocedure, if feasible, will always locate the maximum and minimum
value of a continuous function on a closed interval. If the function we are dealing

with is not continuous, however, or if we are seeking the maximum or minimum
on an open interval or the whole line, then we cannot even be sure beforehand

that the maximum and minimum values exist, so all the information obtained by

this procedure may say nothing. Nevertheless, a little ingenuity will often reveal

the nature of things. In Chapter 7 we solved just such a problem when we showed

that if n is even, then the function

f(x)=x"+a n^x"-
] +.-.+ao

has a minimum value on the whole line. This proves that the minimum value must

occur at some number x satisfying

/'(*) = nxn~ l + (n - l)a„_iJc
B-2 +.. a\.

If we can solve this equation, and compare the values of f(x) for such x, we can

actually find the minimum of /'. One more example may be helpful. Suppose we
wish to find the maximum and minimum, if they exist, of the function
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on the open interval (— 1, 1). We have

fix) =
2x

U-*2
)
2

so f'(x) = only for x = 0. We can see immediately that for x close to 1 or — 1 the

values of f(x) become arbitrarily large, so / certainly does not have a maximum.
This observation also makes it easy to show that / has a minimum at 0. We just

note (Figure 5) that there will be numbers a and b, with

— 1 < a < and < b < 1

,

such that f(x) > /(0) for

— 1 < x < a and b < x < 1

f(x) = jc
3 - x

— x'

This means that the minimum of / on [a , b\ is the minimum of / on all of

(— 1, 1). Now on [a,b] the minimum occurs either at (the only place where

/' = 0), or at a or b, and a and b have already been ruled out, so the minimum
value is /(0) = 1.

In solving these problems we purposely did not draw the graphs of fix) = x —x
and f(x) = 1/(1 — x ), but it is not cheating to draw the graph (Figure 6) as long

as you do not rely solely on your picture to prove anything. As a matter of fact, we

are now going to discuss a method of sketching the graph of a function that really

gives enough information to be used in discussing maxima and minima—in fact

we will be able to locate even local maxima and minima. This method involves

consideration of the sign of f'(x), and relies on some deep theorems.

The theorems about derivatives which have been proved so far, always yield

information about /' in terms of information about /. This is true even of Theo-

rem 1 , although this theorem can sometimes be used to determine certain informa-

tion about /, namely, the location of maxima and minima. When the derivative

was first introduced, we emphasized that f'(x) is not [f(x + h) — f(x)]/h for any

particular h, but only a limit of these numbers as h approaches 0; this fact becomes

painfully relevant when one tries to extract information about / from information

about /'. The simplest and most frustrating illustration of the difficulties encoun-

tered is afforded by the following question: If fix) = for all x, must / be a

constant function? It is impossible to imagine how / could be anything else, and

this conviction is strengthened by considering the physical interpretation—if the

velocity of a particle is always 0, surely the particle must be standing still! Never-

theless it is difficult even to begin a proof that only the constant functions satisK

f'(x) = for all x. The hypothesis /'(jc) = only means that

Inn
h •()

f(x +h)- f(x)
= 0.

FIGl Kl. 6 and it is not at all obvious how one can use the information about the limit to

derive information about the (unction.
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FIGURE 7

FIGURE 8

The fact that / is a constant function if /'(jc) = for all jc, and many other facts

of the same sort, can all be derived from a fundamental theorem, called the Mean
Value Theorem, which states much stronger results. Figure 7 makes it plausible

that if / is differentiable on [a, b], then there is some x in (a, b) such that

/'(*) =
fib) - f(a)

b — a

Geometrically this means that some tangent line is parallel to the line between

(a, f(a)) and (b, f(b)). The Mean Value Theorem asserts that this is true—there

is some x in (a,b) such that fix), the instantaneous rate of change of / at jc, is

exactly equal to the average or "mean" change of / on [a, b], this average change

being [f(b) — f(a)]/[b — a]. (For example, if you travel 60 miles in one hour,

then at some time you must have been traveling exactly 60 miles per hour.) This

theorem is one of the most important theoretical tools of calculus—probably the

deepest result about derivatives. From this statement you might conclude that the

proof is difficult, but there you would be wrong—the hard theorems in this book

have occurred long ago, in Chapter 7. It is true that if you try to prove the Mean
Value Theorem yourselfyou will probably fail, but this is neither evidence that the

theorem is hard, nor something to be ashamed of. The first proof of the theorem

was an achievement, but today we can supply a proof which is quite simple. It

helps to begin with a very special case.

THEOREM 3 (ROLLE'S THEOREM) If / is continuous on [a,b] and differentiable on (a, b), and f(a) = f(b), then

there is a number x in (a, b) such that f'(x) = 0.

FIGURE 9

PROOF Iffollows from the continuity of / on [a , b] that / has a maximum and a minimum
value on [a , b]

.

Suppose first that the maximum value occurs at a point x in (a.b). Then

/'(jc) — by Theorem 1, and we are done (Figure 8).

Suppose next that the minimum value of / occurs at some point x in (a,b).

Then, again, /'(jc) = by Theorem 1 (Figure 9).

Finally, suppose the maximum and minimum values both occur at the end

points. Since f(a) = f(b), the maximum and minimum values of / are equal,

so / is a constant function (Figure 10), and for a constant function we can choose

any jc in (a,b). |

FIGURE io

Notice that we really needed the hypothesis that / is differentiable everywhere

on (a,b) in order to apply Theorem 1. Without this assumption the theorem is

false (Figure 11).

You may wonder why a special name should be attached to a theorem as easily

proved as Rolle's Theorem. The reason is, that although Rollc's Theorem is a

special case of the Mean Value Theorem, it also yields a simple proof of the Mean
Value Theorem. In order to prove the Mean Value Theorem we will apply Rolle's

Theorem to the function which gives the length of the- vertical segment shown in
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FIGURE 11

Figure 12; this is the difference between f(x), and the height at x of the line L

between (a, f(a)) and (b, f{b)). Since L is the graph of

we want to look at

gix)

fix) -

f(b) - f(a)

b — a

fib)-f(a)

b — a

(x-a) + f(a),

(x-a)- f(a).

As it turns out, the constant f(a) is irrelevant.

THEOREM 4 (THE MEAN VALUE

THEOREM)

If / is continuous on [a, b] and differentiable on (a, b), then there is a number x

in (a , b) such that

fib) - fia)
f'ix) =

b — a

proof Let

(a, f(a))

(b, fib))

I I ( , I R 1. 12

h(x) = f(x)
f(b)-f(a)

b-a
(x -a).

Clearly, h is continuous on [a, b] and differentiable on (a, b), and

h(a) = fia).

h(b) = f(b)-

= fia).

fjb)-f(a)

b — a
(x-a)

Consequently, we may apply Rolle's Theorem to h and conclude that there is

some x in (a, b) such that

= ti(x) = f(x)
fib) - fia)

b — a

so that

fib) - fia)
fix) =

M
;

' '
. |

b — a

Notice that the Mean Value Theorem still fits into the pattern exhibited by

previous theorems—information about / yields information about /'. This infor-

mation is so strong, however, that we can now go in the other direction.

COROLLARY l If / is defined on an interval and f'(x) = for all x in the interval, then / is

constant on the interval.

PR( )< )i Let a and b be any I \v<> points in the interval with a ^ b. Then there is some x in
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(a,b) such that

/'(*)
fib) - fia)

b — a

But f'(x) — for all x in the interval, so

fib) - fia)=
b — a

and consequently fia) = fib). Thus the value of / at any two points in the

interval is the same, i.e., / is constant on the interval. |

Naturally, Corollary 1 does not hold for functions defined on two or more in-

tervals (Figure 13).

corollary 2 If / and g are defined on the same interval, and fix) = g'(x) for all x in the

interval, then there is some number c such that / = g + c.

PROOF For all x in the interval we have (/ — g)\x) = fix ) — g'ix ) = so, by Corollary 1

,

there is a number c such that / — g = c. |

The statement of the next corollary requires some terminology, which is illus-

trated in Figure 14.

DEFINITION A function is increasing on an interval if fia) < fib) whenever a and b are

two numbers in the interval with a < b. The function / is decreasing on

an interval if f(a) > fib) for all a and b in the interval with a < b. (We

often say simply that / is increasing or decreasing, in which case the interval is

understood to be the domain of /.)

corollary 3 If fix) > for all x in an interval, then / is increasing on the interval; if fix) <

for all x in the interval, then / is decreasing on the interval.

PROOF Consider the case where fix) > 0. Let a and b be two points in the interval with

a < b. Then there is some x in (a, b) with

fix) =
fib) - fia)

b — a

But fix) > for all x in (a, b), so

fib) - fia)

b — a
>0.

Since b - a > it follows that fib) > fia).

The proof when fix) < for all x is left to you. |
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a b

(a) an increasing function

(b) a decreasing function

FIGl RE 14

Notice that although the converses of Corollary 1 and Corollary 2 are true (and

obvious), the converse of Corollary 3 is not true. If / is increasing, it is easy to

see that f'{x) > for all x, but the equality sign might hold for some x (consider

f(x) = x\
Corollary 3 provides enough information to get a good idea of the graph of

a function with a minimal amount of point plotting. Consider, once more, the

function f(x) = x 3 — x. We have

f'(x) = 3x
2 -\.

We have already noted that f'(x) = for x = y 1/3 and x = — y^l/3, and it is

also possible to determine the sign of f'(x) for all other x. Note that 3x 2 — 1 >

precisely when

3x 2 > 1

x
2
>\.

x > y 1/3 or x < — y

thus 3x — 1 < precisely when

-7173 < x < yi73.

1/3;

Thus / is increasing for x < —yl/3, decreasing between — yl/3 and vl/3,

and once again increasing for x > y/i/3. Combining this information with the

following facts

(1) /(- V
/I73) = ^ v

/I73,

/(/I73) = -|vT73,

(2) /(x)=0forx = -l,0, 1,

(3) f(x) gets large as x gets large, and large negative as x gets large negative,

it is possible to sketch a pretty respectable approximation to the graph (Figure 15).

By the way, notice that the intervals on which / increases and decreases could

have been found without even bothering to examine the sign of /'. For example,

since /' is continuous, and vanishes only at —vl/3 and yl/3, we know that /'

always has the same sign on the interval (— \J\/3, vl/3). Since /(— vl/3) >

f(y/\/3 ), it follows that / decreases on this interval. Similarly, /' always has the

same sign on (y/l/3, oo) and f(x) is large for large x, so / must be increasing on

(vl/3, oo). Another point worth noting: If /' is continuous, then the sign of /'

on the interval between two adjacent critical points can be determined simply by

finding the sign of f'(x) for any one x in this interval.

Our sketch of the graph of f(x) = x 3 — x contains sufficient information

to allow us to say with confidence that —y/\/3 is a local maximum point, and that

Vl/3 is a local minimum point. In fact, we can give a general scheme for decid-
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/ increasing

/

/ decreasing i / increasing

FIGURE 15

ing whether a critical point is a local maximum point, a local minimum point, or

neither (Figure 16):

(1) if /' > in some interval to the left of x and /' < in some interval to

the right of x, then x is a local maximum point.

(2) if /' < in some interval to the left of x and /' > in some interval to

the right of jc, then x is a local minimum point.

(3) if /' has the same sign in some interval to the left of x as it has in some

interval to the right, then x is neither a local maximum nor a local minimum
point.

(There is no point in memorizing these rules—you can always draw the pictures

yourself.)

The polynomial functions can all be analyzed in this way, and it is even possible

to describe the general form of the graph of such functions. To begin, we need a

/' > /' <

(a)

/' < /' >

(b)

/' < /' <

(d)

FIGURK 16
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FIGURE 17

(-1,-1)

l [GURE 18

(0,0)

(1,-1)

result already mentioned in Problem 3-7: If

f(x) = a„x" + a„_ hx"-
] + + <*o.

then / has at most n "roots," i.e., there are at most n numbers x such that

f(x) = 0. Although this is really an algebraic theorem, calculus can be used

to give an easy proof. Notice that if x\ and X2 are roots of / (Figure 17), so that

f(x\) — f(x2) — 0, then by Rolle's Theorem there is a number A' between x\

and X2 such that f'(x) = 0. This means that if / has k different roots x\ < a2 <
• < JCfc, then /' has at least k — \ different roots: one between x\ and X2, one

between X2 and A3, etc. It is now easy to prove by induction that a polynomial

function

f(x)=aHx
H + an-ix

a- i +---+ao

has at most n roots: The statement is surely true for n = 1 , and if we assume that

it is true for n, then the polynomial

g(x) = bn+] x"
+l + b„x" + + b

could not have more than /; + 1 roots, since if it did, g' would have more than n

roots.

With this information it is not hard to describe the graph of

fix) = a„x" + fl,,-!*"-
1 + • • • + oo.

The derivative, being a polynomial function of degree n — 1, has at most

n — 1 roots. Therefore / has at most n — 1 critical points. Of course, a criti-

cal point is not necessarily a local maximum or minimum point, but at any rate,

if a and b are adjacent critical points of /, then /' will remain either positive or

negative on (a,b), since /' is continuous; consequently, / will be either increasing

or decreasing on (a,b). Thus / has at most n regions of decrease or increase.

As a specific example, consider the function

f(x)=x 4 -2x 2
.

Since

f'(x) = 4a-
3 - 4a = 4a(a - 1)(a + 1 ),

the critical points of / are —1,0, and 1 , and

/(-1) = -1,

/(0)=0,

/(!) = -!•

The behavior of / on the intervals between the critical points can be determined

by one of the methods mentioned before. In particular, we could determine the

sign of /' on these intervals simply be examining the formula for /'(a). On the

other hand, from the three critical values alone we can sec (Figure 18) that /
increases on (—1,0) and decreases on (0, 1). To determine the sign of /' on
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(—00, —1) and (1, oo) we can compute

/'(-2) = 4-(-2) 3 -4-(-2)

/'(2) =4- 2
3 -4-2 = 24,

-24,

and conclude that / is decreasing on (— oo, —1) and increasing on (1, oo). These

conclusions also follow from the fact that f(x) is large for large x and for large

negative x.

We can already produce a good sketch of the graph; two other pieces of infor-

mation provide the finishing touches (Figure 19). First, it is easy to determine that

f(x) = for x = 0, ±V2; second, it is clear that / is even, f(x ) = f(—x), so the

graph is symmetric with respect to the vertical axis. The function f(x) = x — x,

already sketched in Figure 15, is odd, f(x) = —f(—x), and is consequently sym-

metric with respect to the origin. Half the work of graph sketching may be saved

by noticing these things in the beginning.

(V2,0)

(-1,-1)

FIGURE 19

(1,-D

Several problems in this and succeeding chapters ask you to sketch the graphs

of functions. In each case you should determine

(1) the critical points of /,

(2) the value of / at the critical points,

(3) the sign of /' in the regions between critical points (if this is not already

clear),

(4) the numbers x such that f(x) = (if possible),

(5) the behavior of f(x) as x becomes large or large negative (if possible).

Finally, bear in mind that a quick check, to see whether the function is odd or

even, may save a lot of work.

This sort of analysis, if performed with care, will usually reveal the basic shape

of the graph, but sometimes there are special features which require a little more

thought. It is impossible to anticipate all of these, but one piece of information is

often very important. If / is not defined at certain points (for example, if / is a

rational function whose denominator vanishes at some points), then the behavior

of / near these points should be determined.

For example, consider the function

/(*) =
2jc + 2
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which is not defined at 1 . We have

(jc- 1)(2jc-2)-(jc 2 -2jc + 2)
fix) =

x(x — 2)

C*-D 2
*

(x - D 2

Thus

Moreover,

(1) the critical points of / are 0, 2.

(2) /(0) = -2,

f(2) = 2.

Because / is not defined on the whole interval (0, 2), the sign of /' must be

determined separately on the intervals (0, 1) and (1,2), as well as on the intervals

(—oo, 0) and (2, oo). We can do this by picking particular points in each of these

intervals, or simply by staring hard at the formula for /'. Either way we find that

(3) f'{x) > if x < 0,

f{x) <0 if <x < 1,

fix) < if 1 < x < 2,

fix) > if 2 < x.

Finally, we must determine the behavior of f(x) as x becomes large or large

negative, as well as when x approaches 1 (this information will also give us another

way to determine the regions on which / increases and decreases). To examine

the behavior as x becomes large we write

-2jc + 2

jc- 1

= x- 1 +
]

x-V
clearly /(jc) is close to jc — 1 (and slighdy larger) when x is large, and f(x) is close

to jc — 1 (but slightly smaller) when jc is large negative. The behavior of / near 1

is also easy to determine; since

lim(jc'
x->-l

the fraction

2jc + 2) = 1 ^ 0,

2jc + 2

I

becomes large as jc approaches 1 from above and large negative as x approaches 1

from below.

All this information may seem a bit overwhelming, but there is only one way

that it can be pieced together (Figure 20); be sure that you can account for each

feature of the graph.

When this sketch has been completed, we might note that it looks like the graph
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a-
2 - 2x + 2

1 2

FIGURE 20

of an odd function shoved over 1 unit, and the expression

x 2 -2.y+2 (x-!) 2 +l
I x- 1

shows that this is indeed the case. However, this is one of those special features

which should be investigated only after you have used the other information to get

a good idea of the appearance of the graph.

Although the location of local maxima and minima of a function is always re-

vealed by a detailed sketch of its graph, it is usually unnecessary to do so much
work. There is a popular test for local maxima and minima which depends on the

behavior of the function only at its critical points.

theorem 5 Suppose f'(a) = 0. If f"{a) > 0, then / has a local minimum at a; if f"(a) < 0,

then / has a local maximum at a.

PROOF By definition,

f(a + h)-f'(a)
f (a) = hm

/i->0 h

Since f'(a) — 0, this can be written

,. f'(a + h)

f (a) = hm
h^O h
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fix) = - v-

(a)

if(x) = x- v4

(b)

lf(x)=x 5

(c)

FIGURE 2 1

Suppose now that f"(a) > 0. Then f'ia + h)/h must be positive for sufficiently

small h. Therefore:

f'ia + /?) must be positive for sufficiently small h >

and f'ia + /?) must be negative for sufficiently small h < 0.

This means (Corollary 3) that / is increasing in some interval to the right of a

and / is decreasing in some interval to the left of a. Consequently, / has a local

minimum at a.

The proof for the case f"(a) < is similar. |

Theorem 5 may be applied to the function f(x) = x 3 — x, which has already

been considered. We have

/'(*) = 3x 2 - 1

/"(*) = 6x.

At the critical points, — y 1/3 and y 1/3, we have

.r(- v
/T73) = -6/T73<o,

f(y/l/3)=6y/t/3>0.

Consequently, — y 1/3 is a local maximum point and y 1/3 is a local minimum
point.

Although Theorem 5 will be found quite useful for polynomial functions, for

many functions the second derivative is so complicated that it is easier to consider

the sign of the first derivative. Moreover, if a is a critical point of / it may happen

that f"{a) = 0. In this case, Theorem 5 provides no information: it is possible

that a is a local maximum point, a local minimum point, or neither, as shown

(Figure 21) by the functions

fix) = -x\ fix) f(x) = x5
;

in each case f'iO) = /"(0) = 0, but is a local maximum point for the first, a

local minimum point for the second, and neither a local maximum nor minimum
point for the third. This point will be pursued further in Part IV

It is interesting to note that Theorem 5 automatically proves a partial converse

of itself.

theorem 6 Suppose f"ia) exists. If / has a local minimum at «, then f"(a) > 0; if / has a

local maximum at a, then f'ia) < 0.

PROOF Suppose / has local minimum at a. \\ f'ia) < 0, then / would also have a

local maximum at c/, by Theorem 5. Thus / would be constant in some interval

containing a, so that f'ia) = 0, a contradiction. Thus we must have f'ia) > 0.

The case of a local maximum is handled similarly. |
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THEOREM 7

(This partial converse to Theorem 5 is the best we can hope for: the > and <

signs cannot be replaced by > and <, as shown by the functions fix) = x 4 and

f(x) = -x4
.)

The remainder of this chapter deals, not with graph sketching, or maxima and

minima, but with three consequences of the Mean Value Theorem. The first is a

simple, but very beautiful, theorem which plays an important role in Chapter 15,

and which also sheds light on many examples which have occurred in previous

chapters.

Suppose that / is continuous at a, and that f'(x) exists for all x in some interval

containing a, except perhaps for x = a. Suppose, moreover, that lim fix) exists.
X—fO

Then f'ia) also exists, and

/'(a) = lim /'(*).

PROOF By definition,

FIGURE 2 2

f(a) = lim
fja+h)- fja)

h

For sufficiently small h > the function / will be continuous on [a, a + h] and

differentiable on (a, a + h) (a similar assertion holds for sufficiently small h < 0).

By the Mean Value Theorem there is a number a/, in (a, a + h) such that

f(a+h)-f(a)
h

= /'(«*)•

Now a/, approaches a as h approaches 0, because a/, is in (a, a + h); since

lim fix) exists, it follows that
x—>a

,,, , .. fia + h )- fia)
, ,

/ ia) = lim = lim / (a/,) = lim / (.*).

/j^O h /i—O *->a

(It is a good idea to supply a rigorous s-8 argument for this final step, which we

have treated somewhat informally.) |

Even if / is an everywhere differentiable function, it is still possible for /' to be

discontinuous. This happens, for example, if

fix)
x sin — , x ^ U

x

0. x = 0.

According to Theorem 7, however, the graph of /' can never exhibit a disconti-

nuity of the type shown in Figure 22. Problem 61 outlines the proof of another

beautiful theorem which gives further information about the function /', and Prob-

lem 62 uses this result to strengthen Theorem 7.

The next theorem, a generalization of the Mean Value Theorem, is of interest

mainly because of its applications.
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THEOREM 8 (THE CAUCHY MEAN
VALUE THEOREM)

PROOF

If / and g are continuous on [a,b] and differentiable on (a,b), then there is a

number x in (a, b) such that

[f{b) - f(a)]g'(x) = [gib) - g(a)]f(x).

(If g(b) ^ g(a), and g'(x) ^ 0, this equation can be written

f(b) - f(a) = f'{x)

g(b)-g(a) g'(x)-

Notice that if g(x) = x for all x, then g'{x) = 1, and we obtain the Mean Value

Theorem. On the other hand, applying the Mean Value Theorem to / and g

separately, we find that there are x and v in (a, b) with

f(b)-f(a) = fix)

g(b)-g(a) "
g'{yY

but there is no guarantee that the x and y found in this way will be equal. These

remarks may suggest that the Cauchy Mean Value Theorem will be quite difficult

to prove, but actually the simplest of tricks suffices.)

Let

h{x) = f(x)[g(b) - g(a)\ - g(x)[f(b) - /(«)].

Then h is continuous on [a, b], differentiable on (a,b), and

h(a) = f(a)g{b) - g(a)f(b) = h(b).

It follows from Rolle's Theorem that h'(x) — for some x in (a, b), which means

that

= f'(x)[g(b) - g(a)] - g'{x)[f{b) - f(a)]. |

The Cauchy Mean Value Theorem is the basic tool needed to prove a theorem

which facilitates evaluation of limits of the form

fix)
lim
x^a g(X )

when
lim f(x) = and lim g(x) = 0.

In this case, Theorem 5-2 is of no use. Every derivative is a limit of this form, and

computing derivatives frequently requires a great deal of work. If some derivatives

are known, however, many limits of this form can now be evaluated easily.

theorem 9 (L'HOPITAL'S rule) Suppose that

lim fix) — and lim #(.y) = 0.
x—*a x^a

and suppose also that lim f'(x)/g'(x) exists. Then lim f(x)/g(x) exists, and
x—*a

*

x—*a

,. fix) fix)
lim = lim .

x^a g(X ) x^a g'(x)

(Notice that Theorem 7 is a special case.)
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PROOF The hypothesis that lim f'(x)/g'(x) exists contains two implicit assumptions:
x—>a

(1) there is an interval (a — 8, a + 8) such that f'(x) and g'(x) exist for all jc in

(a — 8, a + 8) except, perhaps, for x = a,

(2) in this interval g'(x) / with, once again, the possible exception

of x = a.

On the other hand, / and g are not even assumed to be defined at a. Ifwe define

f(a) = g(a) = (changing the previous values of f(a) and g(a), if necessary),

then / and g are continuous at a. \{a<x<a+8, then the Mean Value

Theorem and the Cauchy Mean Value Theorem apply to / and g on the interval

[a, x] (and a similar statement holds for a — 8 < x < a). First applying the Mean
Value Theorem to g, we see that g(x) / 0, for if g(x) =0 there would be some x\

in (a, x) with g'(x\ ) = 0, contradicting (2). Now applying the Cauchy Mean Value

Theorem to / and g, we see that there is a number ax in (a, x) such that

[f(x)-0]g'(ax ) = [g(x)-0]f(ax )

or

/(*) /'(«x)

g(x) g'iUx)

Now ax approaches a as x approaches a, because ax is in (a,x); since we are

assuming that lim f'(v)/g'(y) exists, it follows that
y-+a

,. f(x) f'(ax ) f'(y)
lim = lim = lim .

v^a g(x) x~>a g'(ax )
y^a g'(y)

(Once again, the reader is invited to supply the details of this part of the argu-

ment.) |

PROBLEMS

1. For each of the following functions, find the maximum and minimum values

on the indicated intervals, by finding the points in the interval where the

derivative is 0, and comparing the values at these points with the values at

the end points.

(i) f(x) = x 3 - x 2 - 8a- + 1 on [-2, 2].

(ii) f(x)=x 5 +x + \ on [-1,1].

(iii) f(x ) = 3x 4 - 8.v
3 + 6.v

2 on [-£,£].

1

iv
l

/(*) = _-—

—

on[-i,l],
X D + X + 1

x + 1

x 2 +l/W =: Z2—T on[-l,i].

(vi) f{x) = -^— on [0,5].
x L — 1
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2. Now sketch the graph of each of the functions in Problem 1, and find all

local maximum and minimum points.

3. Sketch the graphs of the following functions.

4.

i) /(*)=* + -.
x

3
n) f{x) = X + —

111

LV

/(*) =

/(*) =

x 2 - 1

1+JC
2"

a) If a\ < • < a„, find the minimum value of f(x) = /_](x — «,)"

i=\

b) Now find the minimum value of /(jc) = 2, \

x ~ ai\- This is a problem

i = \

where calculus won't help at all: on the intervals between the a,'s the

function / is linear, so that the minimum clearly occurs at one of the a
t ,

and these are precisely the points where / is not differentiable. However,

the answer is easy to find if you consider how f(x) changes as you pass

from one such interval to another.

Let a > 0. Show that the maximum value of

/(*) = +
I

1 + IjcI 1 + \x — a\

is (2 + a)/( 1 + a). (The derivative can be found on each of the intervals

(—oo, 0), (0, a), and (a, oo) separately.)

5. For each of the following functions, find all local maximum and minimum

points.

x, x^3,5,7,9
5, x = 3

-3, x = 5

9. x = 7

7. x = 9.

0, x irrational

\/q, x = p/q in lowest terms.

x, x rational

0. x irrational.

1

,

x — \ In for some n in N
0, otherwise.

1, if the decimal expansion of x contains a 5

0, otherwise.

i) fix) =

ii) fix) =

iii) /(*) =

iv) fix) =

v) fix) =
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(0,a)«

9(1,

(0,-fl),

?'' (JC,0)

V

FIGURE 2 3

Surface area is the

sum of these areas

FKIl'RE 24

FIGUR E 2 5

6. Prove the following (which we often use implicitly): If / is increasing on (a, b)

and continuous at a and b, then / is increasing on [«,&]. In particular, if /
is continuous on [a, b] and /' > on (a,b), then / is increasing on [a, b].

7. A straight line is drawn from the point (0, a) to the horizontal axis, and

then back to (1, b), as in Figure 23. Prove that the total length is shortest

when the angles a and fi are equal. (Naturally you must bring a function

into the picture: express the length in terms of x, where (x,0) is the point

on the horizontal axis. The dashed line in Figure 23 suggests an alternative

geometric proof; in either case the problem can be solved without actually

finding the point (x, 0).)

8. (a) Let (jto, yo) be a point of the plane, and let L be the graph of the function

f(x) = mx + b. Find the point x such that the distance from (xq, yo) to

(Jc, /(*)) is smallest. [Notice that minimizing this distance is the same as

minimizing its square. This may simplify the computations somewhat.]

(b) Also find i by noting that the line from (xo, yo) to (x, f(x)) is perpen-

dicular to L.

(c) Find the distance from (xo, yo) to L, i.e., the distance from (xo, yo) to

(x, f(x)). [It will make the computations easier if you first assume that

b = 0; then apply the result to the graph of f(x) = mx and the point

(*0> yo ~ b)-] Compare with Problem 4-22.

(d) Consider a straight line described by the equation Ax + By + C =
(Problem 4-7). Show that the distance from (xo, yo) to this line is

(Ax + Byo + C)/y/A 2 + B 2
.

9. The previous Problem suggests the following question: What is the relation-

ship between the critical points of / and those of / ?

10. Prove that of all rectangles with given perimeter, the square has the greatest

area.

11. Find, among all right circular cylinders of fixed volume V, the one with

smallest surface area (counting the areas of the faces at top and bottom, as

in Figure 24).

12. A right triangle with hypotenuse of length a is rotated about one of its legs

to generate a right circular cone. Find the greatest possible volume of such

a cone.

13. Show that the sum of a positive number and its reciprocal is at least 2.

14. Find the trapezoid of largest area that can be inscribed in a semicircle of

radius a, with one base lying along the diameter.

15. Two hallways, of widths a and b, meet at right angles (Figure 25). What
is the greatest possible length of a ladder which can be carried horizontally

around the corner?
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16. A garden is to be designed in the shape of a circular sector (Figure 26), with

radius R and central angle 6. The garden is to have a fixed area A. For

what value of R and 9 (in radians) will the length of the fencing around the

perimeter be minimized?

FIGURE 26

17.

18.

FIGURE 2 7 19.

FIGURE 2 8

'20.

21.

FIGURE 2 9

A right angle is moved along the diameter of a circle of radius a, as shown

in Figure 27. What is the greatest possible length (A + B) intercepted on it

by the circle?

Ecological Ed must cross a circular lake of radius 1 mile. He can row across

at 2 mph or walk around at 4 mph, or he can row part way and walk the

rest (Figure 28). What route should he take so as to

see as much scenery as possible?

cross as quickly as possible?

(a) Consider points A and Bona circle with center O, subtending an angle

of a = LAOC (Figure 29). How must B be chosen so that the sum of

the areas of AAOB and ABOC is a maximum? Hint: Express things

in terms of 9 = LAOB.
(b) Prove that for n > 3, of all n-gom inscribed in a circle, the regular n-gon

has maximum area.

The lower right-hand corner of a page is folded over so that it just touches

the left edge of the paper, as in Figure 30. If the width of the paper is a and

the page is very long, show that the minimum length of the crease is 3v 3or/4.

Figure 31 shows the graph of the derivative of /. Find all local maximum and

minimum points of /.

I I', i RE 30

FIGURE 3 1

22. Suppose that / is a polynomial function, f(x) = x" + a„_]x"~ ] + ••• +ao,

with critical points — 1, 1, 2, 3, 4, and corresponding critical values 6, 1,2,

4, 3. Sketch the graph of /, distinguishing the cases n even and n odd.

23. (a) Suppose that the critical points of the polynomial function f(x) = x" +
aJI_iJc

B- 1 + --- + a are-l, 1,2,3, and /"(-l) = 0, /"(l) > 0, /"(2) <

0, f'O) = 0. Sketch the graph of / as accurately as possible on the

basis of this information.

(b) Does there exist a polynomial function with the above properties, except

that 3 is not a critical point?

24. Describe the graph of a rational function (in very general terms, similar to

the text's description of the graph of a polynomial function).
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25. (a) Prove that two polynomial functions of degree m and n, respectively,

intersect in at most max(m,n) points.

(b) For each m and n exhibit two polynomial functions of degree m and n

which intersect max(m,«) times.

26. Suppose / is a polynomial function of degree n with / > (so n must be

even). Prove that / + /' + /" + • + f
{n) > 0.

*27. (a) Suppose that the polynomial function f(x) — x" + an-\x + • + ao

has exactly k critical points and f"(x) ^ for all critical points x. Show
that n — k is odd.

(b) For each n, show that if n — k is odd, then there is a polynomial function

/ of degree n with k critical points, at each of which /" is non-zero.

(c) Suppose that the polynomial function f(x) — x" + a„-\x"~ + • • • + «o

has k\ local maximum points and ki local minimum points. Show that

&2 = k\ + 1 if n is even, and kj =k\ if n is odd.

(d) Let n, k\, ki be three integers with ki — k\ + 1 if n is even, and ki — k\ if

n is odd, and k\ + kj < n. Show that there is a polynomial function / of

degree n, with k\ local maximum points and ki local minimum points.

ki+k2

Hint: Pick a\ < ai < • • • < a^^+ki and try f'(x ) = I (*~ ai) (1 +x )

for an appropriate number /.
, = 1

28. (a) Prove that if f'{x) > M for all x in [a,b], then f{b) > f(a) + M(b-a).

(b) Prove that if /'(*) < M for all x in [a,b], then f(b)<f(a) + M(b-a).
(c) Formulate a similar theorem when |/'(jc)| < M for all x in [a, £].

29. Suppose that f'(x) > M > for all x in [0, 1]. Show that there is an interval

of length \ on which |/| > M/4.

30. (a) Suppose that f'{x) > g'(x) for all x, and that f(a) = g(a). Show that

f{x) > g(x) for x > a and f(x) < g(x) for x < a.

(b) Show by an example that these conclusions do not follow without the

hypothesis f{a) — g(a).

(c) Suppose that f{a) — g(a), that f'(x) > g'(x) for all x, and that /'(xq) >

g'(xo) for some xq > a. Show that f(x) > g(x) for all x > ao-

31. Find all functions / such that

(a) fix) — sin*.

(b) f"(x) = x\
(c) f'"(x)=x+x 2

.

32. Although it is true that a weight dropped from rest will fall s(t) = \6t
2

feet after / seconds, this experimental fact does not mention the behavior of

weights which are thrown upwards or downwards. On the other hand, the

law s"(t) = 32 is always true and has just enough ambiguity to account for

the behavior of a weight released from any height, with any initial velocity.

For simplicity let us agree to measure heights upwards from ground level;

in this case velocities are positive for rising bodies and negative for falling

bodies, and all bodies fall according to the law s"(t) = —32.



210 Derivatives and Integrals
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(a) Show that s is of the form s(t) = — \6t
2 +at + (3.

(b) By setting t = in the formula for s, and then in the formula for s',

show that s(t) = —I6t 2 + vtf + sq, where so is the height from which the

body is released at time 0, and vq is the velocity with which it is released.

(c) A weight is thrown upwards with velocity v feet per second, at ground

level. How high will it go? ("How high" means "what is the maximum
height for all times".) What is its velocity at the moment it achieves its

greatest height? What is its acceleration at that moment? When will it

hit the ground again? What will its velocity be when it hits the ground

again?

33. A cannon ball is shot from the ground with velocity v at an angle a (Fig-

ure 32) so that it has a vertical component of velocity v sin a and a hori-

zontal component v cos a. Its distance s(t) above the ground obeys the law

s(t) — — 16?" + (vsina)t, while its horizontal velocity remains constantly

v cos a.

(a) Show that the path of the cannon ball is a parabola (find the position at

each time t, and show that these points lie on a parabola).

(b) Find the angle a which will maximize the horizontal distance traveled

by the cannon ball before striking the ground.

34. (a) Give an example of a function / for which lim f(x) exists, but

lim f'(x) does not exist.
x—>oo

(b) Prove that if lim f(x) and lim f'(x) both exist, then lim f'(x) = 0.
x—*oo ;c—>oo Jt—>00

(c) Prove that if lim f(x) exists and lim f"(x) exists, then lim f"(x) = 0.
-V—>oc x—>oo x—*oo

(See also Problem 20-22.)

35. Suppose that / and g are two differentiable functions which satisfy

fg' ~ f's = 0. Prove that if f(a) = and g(a) ^ 0, then f(x) - for all x

in an interval around a. Hint: On any interval where f/g is defined, show

that it is constant.

36. Suppose that \f(x) — f(y)\ < \x — y\" for n > 1. Prove that / is constant by

considering f. Compare with Problem 3-20.

37. A function / is Lipschitz oforder aatx if there is a constant C such that

(*) \f(x)-f(y)\<C\x-y\a

for all v in an interval around x. The function / is Lipschitz of order a on an

interval if (*) holds for all x and y in the interval.

(a) If / is Lipschitz of order a > at x, then / is continuous at x.

(b) If / is Lipschitz of order a > on an interval, then / is uniformly

continuous on this interval (see Chapter 8, Appendix).

(c) If / is differentiable at x, then /' is Lipschitz of order 1 at x. Is the

converse true?

(d) If / is (li(lcrential)le on [<:/./?], is / Lipschitz of order 1 on [a,fc]?

(e) [f / is Lipschitz of order a- > 1 on |<7./;>|, then /' is constant on \a,h\.
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38. Prove that if

then

1 2

an = 0,
n + 1

«o + «!•* + •
• • + a„x" -0

for some x in (0, 1).

39. Prove that the polynomial function fm (a) = x 3 — 3x + m never has two roots

in [0, 1], no matter what m may be. (This is an easy consequence of Rolle's

Theorem. It is instructive, after giving an analytic proof, to graph fo and /2,

and consider where the graph of /„, lies in relation to them.)

40. Suppose that / is continuous and differentiable on [0, 1], that f(x) is in

[0, 1] for each x, and that f'(x) ^ 1 for all x in [0, 1]. Show that there is

exacdy one number x in [0, 1] such that f(x) = x. (Half of this problem

has been done already, in Problem 7-11.)

41. (a) Prove that the function f(x) = x — cos a satisfies f(x) = for precisely

two numbers x.

(b) Prove the same for the function f(x) = x — x sin x — cosx.

*(c) Prove this also for the function f(x) — 2x — xsinx — cos x. (Some

preliminary estimates will be useful to restrict the possible location of the

zeros of /.)

*42. (a) Prove that if / is a twice differentiable function with /(0) = and

/(l) = 1 and f'(0) = f'{\) = 0, then \f"(x)\ > 4 for some x in (0, 1).

In more picturesque terms: A particle which travels a unit distance in

a unit time, and starts and ends with velocity 0, has at some time an

acceleration > 4. Hint: Prove that either f"(x) > 4 for some x in (0, I),

or else f"(x) < —4 for some x in (j, 1).

(b) Show that in fact we must have \f"(x)\ > 4 for some x in (0, 1).

43. Suppose that / is a function such that f'(x) = l/.v for all x > and /( 1 ) =
0. Prove that f(xy) = f(x) + f(y) for all x, y > 0. Hint: Find g'(x) when

g(x) = f(xy).

44. Suppose that / satisfies

f\x) + f'(x)g(x) - f(x) =

for some function g. Prove that if / is at two points, then / is on the

interval between them. Hint: Use Theorem 6.

45. Suppose that / is continuous on [«,b], that it is //-times differentiable on

(a, b), and that f(x) = for n+ 1 different x in [a, b]. Prove that /
(n)

(jc) =
for some x in (a, b).



212 Derivatives and Integrals

46. Let x\ , . .
. , xn+ \ be arbitrary points in [a, b], and let

Q(x) = Y\(x-Xi).
i = ]

Suppose that / is (n + l)-times differentiable and that P is a polynomial

function of degree < n such that P(xj) = f{xi) for i = 1 n + 1 (see

Problem 3-6). Show that for each x in [a,b] there is a number c in (a,&)

such that

f
in+l)

(c)

f(x)-p(.x) = Q(x)-
J

\; .

(» + 1)!

Hint: Consider the function

F(0 = G(*)[/(0 - P(0] - G(0[/O0 - P(x)].

Show that F is zero at n +2 different points in [«,&], and use Problem 45.

Prove that47.

48.

9
< 66-8 < o

(without computing v 66 to 2 decimal places!).

Prove the following slight generalization of the Mean Value Theorem: If /
is continuous and differentiable on (a, b) and lim f(y) and lim /(v) exist,

then there is some x in (a, b) such that

fix) =
lim /(y) - lim f(y)
y—>b ' v—>a+

(Your proof should begin: "This is a trivial consequence of the Mean Value

Theorem because ... ".)

49. Prove that the conclusion of the Cauchy Mean Value Theorem can be written

in the form
f(b)-fja) f(x)

g(b)-g(a) " *'(*)'

under the additional assumptions that g(b) ^ g(a) and that f'(x) and g'(x)

are never simultaneously on (a,b).

50. Prove that if / and g are continuous on [a, b] and differentiable on (a,b),

and g'(x) ^ for x in (a, b), then there is some x in (a, b) with

fix) __ f(x) - f{a)

g'ix)
" g(b)-g(x)'

Hint: Multiply out first, to see what this really says.

51. What is wrong with the following use of l'Hopital's Rule:

,. Jt
3 +x-2 ,. 3v 2 +l ,. 6.v „

lim -^ = lim — — = lim —- = 3.
jc-i x 2 -3a- + 2 x^l 2jc-3 x->1 2

(The limit is actually —4.)
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(i) lim .

x^O tan x

cos2 * — 1

(11) lim =

.r^O x l

53. Find /'(0) if

/(*)

g(x)
, x #0

0, x = 0,

and g(0) = g'(0) = and g"(0) = 17.

54. Prove the following forms of l'Hopital's Rule (none requiring any essentially

new reasoning).

(a) If lim f(x) - lim g(x) = 0, and lim f'(x)/g'(x) = /, then
x— «+ x—>a+ x—« +

lim f(x)/g(x) = I (and similarly for limits from below).
x—*a +

(b) If lim f{x) = lim g(x) = 0, and lim f'(x)/g'(x) = oo, then
x—>a x->a x—>a

lim f{x)/g(x) = oo (and similarly for — oo, or if x —> a is replaced
x—*a

by x —> a + or x —»• a~).

(c) If lim /(*) = lim g(x) = 0, and lim f'{x)/g'(x) = /, then
X—>00 X—>O0 X—>00

lim f(x)/g(x) — I (and similarly for — oo). Hint: Consider

lim f(\/x)/g(l/x).

(d) If lim f(x) = lim g(x) = 0, and lim f'(x)/g'(x) = oo, then
x—>oo x—>oo .*—>oo

lim f(x)/g(x) = oo.
x -> oo

55. There is another form of l'Hopital's Rule which requires more than algebraic

manipulations: If lim f(x) = lim g(x) = oo, and lim f'(x)/g'(x) = I,

x-+oo x—>oo x—yoo

then lim f{x)/g{x) —I. Prove this as follows.
x-»-oo

(a) For every e > there is a number a such that

/'OO

*'(*)
/ < e for jc > a

.

Apply the Cauchy Mean Value Theorem to / and g on [a,x] to show

that

f(x)-f(a)
I

g(x)-g(a)

(Why can we assume g(x) — g(a) ^ 0?)

< e for x > a.
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57.

58.

*60.

61.

(b) Now write

fix) fix)- fid) fix)

g(x) g(x)-g(a) f(x)-f(a)

gjx) - gja)

Six)

(why can we assume that f(x) — f(a) 7^ for large x?) and conclude

that

— / < 2e for sufficiently lame x.
Six)

y *

56. To complete the orgy of variations on l'Hopital's Rule, use Problem 55 to

prove a few more cases of the following general statement (there are so many
possibilities that you should select just a few, if any, that interest you):

If lim f(x) lim g(x) =
*-»•[

1

} and lim f'(x)/g'(x) ( ), then lim
]

fix)/gix) — ( ). Here
[ ] can be a or a + or a or 00 or —00, and { }

can be or 00 or —00, and
( )

can be / or 00 or —00.

If / and g are differentiable and lim f(x)/g(x) exists, does it follow that
x—ya

lim f'(x)/g'(x) exists (a converse to l'Hopital's Rule)?
X—>fl

Prove that if /' is increasing, then every tangent line of / intersects the graph

of / only once. (In particular, this is true for the function f(x) = x" if n is

even.)

59. Redo Problem 10-18 (c) when

iff = f

(Why is this problem is this chapter?)

1

T2

(a) Suppose that / is differentiable on [a , b] . Prove that if the minimum
of /' on [a, b] is at a, then /'(a) > 0, and if it is at b, then fib) < 0.

(One half of the proof of Theorem 1 will go through.)

(b) Suppose that f'ia) < and f'{b) > 0. Show that fix) = for some x

in (a, b). Hint: Consider the minimum of / on [a, b]; why must it be

somewhere in (a, b)?

(c) Prove that if f'{a) < c < fib), then fix) = c for some a: in (a, b). (This

result is known as Darboux's Theorem. Note that we are not assuming

that /' is continuous.) Hint: Cook up an appropriate function to which

part (b) may be applied.

Suppose that / is differentiable in some interval containing a, but that /' is

discontinuous at a. Prove the following:

(a) The one-sided limits lim fix) and lim fix) cannot both exist. (This
x—>« 4 x—ya~

is just a minor variation on Theorem 7.)

(b) These one-sided limits cannot both exist even if we allow limits with the

value +00 or —00. Hint: Use Darboux's Theorem (Problem 60).
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^62. It is easy to find a function / such that |/| is differentiable but / is not.

For example, we can choose f{x) — 1 for a rational and f(x) = —1 for

x irrational. In this example / is not even continuous, nor is this a mere

coincidence: Prove that if |/| is differentiable at a, and / is continuous at a,

then / is also differentiable at a. Hint: It suffices to consider only a with

f(a) = 0. Why? In this case, what must \f\'(a) be?

^63. (a) Let y / and let n be even. Prove that x" + y" = (x + y)" only

when x — 0. Hint: If A'o" + y" = (a'o + y)", apply Rolle's Theorem to

f(x) = x" + y" - (x + y)" on [0, x ()].

(b) Prove that if y / and n is odd, then x" + y" = (x + y)" only if x =
or x = —y.

64. Suppose that f(0) = and /' is increasing. Prove that the function g(x) =
f(x)/x is increasing on (0, oo). Hint: Obviously you should look at g'{x).

Prove that it is positive by applying the Mean Value Theorem to / on the

right interval (it will help to remember that the hypothesis /(0) = is essen-

tial, as shown by the function f(x) = 1 + a").

65. Use derivatives to prove that if n > 1, then

(1 + a)" > 1 + nx for - 1 < a < and < a

(notice that equality holds for a = 0).

66. Let f{x) = a4 sin
2

1 fx for a ^ 0, and let /(0) = (Figure 33).

(a) Prove that is a local minimum point for /.

(b) Prove that f'(0) = /"(0) = 0.

This function thus provides another example to show that Theorem 6 cannot

be improved. It also illustrates a subtlety about maxima and minima that

often goes unnoticed: a function may not be increasing in any interval to the

right of a local minimum point, nor decreasing in any interval to the left.

1

1

\

\

/

/

i

h

\

\

/

/

FIGURE 3 3

*67. (a) Prove that if f'(a) > and /' is continuous at a, then / is increasing in

some interval containing a.

The next two parts of this problem show that continuity of /' is essential.

(b) If #(a) = a 2
sin 1/a, show that there are numbers a arbitrarily close to

with g'U) = 1 and also with g'(A) = — 1.
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(c) Suppose < a < 1. Let f(x) = ax + jc sin 1/x for x ^ 0, and let

/(0) = (see Figure 34). Show that / is not increasing in any open

interval containing 0, by showing that in any interval there are points x

with fix) > and also points x with fix) < 0.

FIGURE 3 4

**68.

The behavior of / for a > 1, which is much more difficult to analyze, is

discussed in the next problem.

Let f(x) = ax + x 2
s'm \/x for x^O, and let /(0) = 0. In order to find

the sign of /' (jc ) when a > 1 it is necessary to decide if 2x sin \/x — cos 1 /x

is < — 1 for any numbers x close to 0. It is a little more convenient to

consider the function g(y) — 2(sin y)/y — cos y for y ^ 0; we want to know

if g(y) < — 1 for large y. This question is quite delicate; the most significant

part of g(y) is — cos_y, which does reach the value — 1, but this happens only

when sin y = 0, and it is not at all clear whether g itself can have values

< — 1 . The obvious approach to this problem is to find the local minimum

values of g. Unfortunately, it is impossible to solve the equation g'(y) —
explicitly, so more ingenuity is required.

(a) Show that if g'(y) = 0, then

cosy = (sin y)

and conclude that

g(y) = (sin v)

2 - y
2

2y

2+ v-

2y
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(b) Now show that if g'(y) = 0, then

4y
2

sm" y
4 + v

4

and conclude that

2 + y
:

\g(y)\

V4 + v
4

Using the fact that (2 + y
2
)/ v 4 + y

4 > 1, show that if a = 1 , then / is

not increasing in any interval around 0.

(d) Using the fact that lim (2 + y
2 )/v 4 + v = 1, show that if a > 1, then

y->oo

/ is increasing in some interval around 0.

**69. A function / is increasing at a if there is some number 8 > such that

f(x) > f(a) if a < x < a + 8

and
/(•*) < f(a) if a — 8 < x < a.

Notice that this does not mean that / is increasing in the interval (a — 8,

a +8); for example, the function shown in Figure 34 is increasing at 0, but

is not an increasing function in any open interval containing 0.

(a) Suppose that / is continuous on [0, 1] and that / is increasing at a for

every a in [0, 1]. Prove that / is increasing on [0, 1]. (First convince

yourself that there is something to be proved.) Hint: For < b < 1

,

prove that the minimum of / on [b, 1] must be at b.

(b) Prove part (a) without the assumption that / is continuous, by consider-

ing for each b in [0, 1] the set Si, = [x : f(y) > f(b) for all y in [b, x] }.

(This part of the problem is not necessary for the other parts.) Hint:

Prove that Sb = {x : b < x < l}by considering sup Si,.

(c) If / is increasing at a and / is differentiable at a, prove that f'(a) >

(this is easy).

(d) If f'{a) > 0, prove that / is increasing at a (go right back to the definition

of /'(a)).

(e) Use parts (a) and (d) to show, without using the Mean Value Theorem,

that if / is continuous on [0, 1] and f'(a) > for all a in [0, 1], then /
is increasing on [0, 1].

(f) Suppose that / is continuous on [0, 1] and f'{a) = for all a in (0, 1 ).

Apply part (e) to the function g(x) = f(x) + ex to show that /(l) —

/(0) > —e. Similarly, show that /(l) — f(0) < s by considering h(x) =
ex - f(x). Conclude that /(0) = /(l).

This particular proof that a function with zero derivative must be constant has

many points in common with a proof of H. A. Schwarz, which may be the

first rigorous proof ever given. Its discoverer, at least, seemed to think it was.

See his exuberant letter in reference [54] of the Suggested Reading.
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**70.

**71.

(b)

(b)

If / is a constant function, then every point is a local maximum point

for /. It is quite possible for this to happen even if / is not a constant

function: for example, if f{x) = for x < and f{x) — 1 for x >

0. But prove, using Problem 8-4, that if / is continuous on [a,b] and

every point of [a,b] is a local maximum point, then / is a constant

function. The same result holds, of course, if every point of [a,b] is a

local minimum point.

Suppose now that every point is either a local maximum or a local mini-

mum point for the continuous function / (but we don't preclude the pos-

sibility that some points are local maxima while others are local minima).

Prove that / is constant, as follows. Suppose that /(ao) < fibo)- We
can assume that /(ao) < /(*) < f(bo) for ao < x < bo. (Why?) Using

Theorem 1 of the Appendix to Chapter 8, partition [ao, bo] into intervals

on which sup / — inf / < if {bo) — f(ao))/2; also choose the lengths of

these intervals to be less than (bo — ao)/2. Then there is one such interval

[ai,&l] with ao < a\ < b\ < bo and f(a\) < f{b\). (Why?) Continue

inductively and use the Nested Interval Theorem (Problem 8-14) to find

a point x that cannot be a local maximum or minimum.

A point x is called a strict maximum point for / on A if f{x) > f(y)

for all v in A with y ^ x (compare with the definition of an ordinary

maximum point). A local strict maximum point is defined in the

obvious way. Find all local strict maximum points of the function

0, x irrational

Pf(x) =
x = - in lowest terms.

q q

It seems quite unlikely that a function can have a local strict maximum
at every point (although the above example might give one pause for

thought). Prove this as follows.

Suppose that every point is a local strict maximum point for /. Let

x\ be any number and choose a\ < x\ < b\ with b\ — a\ < 1 such

that f{x\) > fix) for all x in [ai,&i]. Let xj / x\ be any point in

(a\, b\) and choose a\ < aj < xj < &2 < b\ with bi — «2 < i such that

f(xi) > fix) f°r aH x m
[
fl2>^2]- Continue in this way, and use the

Nested Interval Theorem (Problem 8-14) to obtain a contradiction.
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APPENDIX. CONVEXITY AND CONCAVITY

Although the graph of a function can be sketched quite accurately on the basis

of the information provided by the derivative, some subde aspects of the graph are

revealed only by examining the second derivative. These details were purposely

omitted previously because graph sketching is complicated enough without wor-

rying about them, and the additional information obtained is often not worth the

effort. Also, correct proofs of the relevant facts are sufficiently difficult to be placed

in an appendix. Despite these discouraging remarks, the information presented

here is well worth assimilating, because the notions of convexity and concavity are

far more important than as mere aids to graph sketching. Moreover, the proofs

have a pleasantly geometric flavor not often found in calculus theorems. Indeed,

the basic definition is geometric in nature (see Figure 1).

DEFINITION 1 A function / is convex on an interval, if for all a and b in the interval, the line

segment joining (a, f(a)) and (b, f{b)) lies above the graph of /.

(b, f(b))

(a, fia))

FIGURE I

The geometric condition appearing in this definition can be expressed in an

analytic way that is sometimes more useful in proofs. The straight line between

(a, f{a)) and (b, fib)) is the graph of the function g defined by

f(b)-f(a)
/g(x) = (x -a) + fia).

b — a

This line lies above the graph of / at x if g(x) > f(x), that is, if

or

or

fib) ~ fia)

b — a

fib) - f{a)

b — a

(x-a) + fia)> f(x)

(x -a) > fix)- fia)

f(b) - fia) f(x) - fja)
> .

b — a x — a

We therefore have an equivalent definition of convexity.

DEFINITION 2 A function / is convex on an interval if for a, x, and b in the interval with

a < x < b we have
f(x) - fia) fib) - fia)

<
x — a
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FIGURE 2

(b,f(b))

If the word "over" in Definition 1 is replaced by "under" or, equivalently, if the

inequality in Definition 2 is replaced by

fix) - f{a) f(b) - f(a)
> ,

x — a b — a

we obtain the definition of a concave function (Figure 2). It is not hard to see that

the concave functions are precisely the ones of the form — /, where / is convex.

For this reason, the next three theorems about convex functions have immediate

corollaries about concave functions, so simple that we will not even bother to

state them.

Figure 3 shows some tangent lines of a convex function. Two things seem to be

true:

(1) The graph of / lies above the tangent line at (a, f(a)) except at the point

[a, f{a)) itself (this point is called the point ofcontact of the tangent line).

(2) If a < b, then the slope of the tangent line at (a, f{a)) is less than the slope

of the tangent line at (b, f{b))\ that is, /' is increasing.

As a matter of fact these observations are true, and the proofs are not difficult.

FIGURE 3

THEOREM l Let / be convex. If / is differentiable at a, then the graph of / lies above

the tangent line through (a, /(«)), except at (a, f(a)) itself. If a < b and / is

differentiable at a and b, then f'(a) < f'(b).

PROOF If < h\ < ti2, then as Figure 4 indicates,

... fia+hO- f(a) f(a + h 2 )-f(a)
(1) < .

A nonpictorial proof can be derived immediately from Definition 2 applied to

a < a + h\ < a + hj. Inequality (1) shows that the values of

f(a+h)-f(a)
h
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a + h\ a + hi

KKiURE 4

decrease as h +
. Consequently,

f(a+h)
f'(a) < f(fl)

for h >

(in fact f'(a) is the greatest lower bound of all these numbers). But this means that

for h > the secant line through (a, f{a)) and {a + h, f(a + h)) has larger slope

than the tangent line, which implies that (a + h, f(a + h)) lies above the tangent

line (an analytic translation of this argument is easily supplied).

For negative h there is a similar situation (Figure 5): if hi < h\ < 0, then

f(a + hi)-f(a) f(a + h 2)- f(a)
> .

This shows that the slope of the tangent line is greater than

f(a+h)-f(a)
lor n < U

h

(in fact f'{a) is the least upper bound of all these numbers), so that f(a + h) lies

above the tangent line if h < 0. This proves the first part of the theorem.

FIGURE 5
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FIGURE 6

a x\ xq

IE 7

Now suppose that a < b. Then, as we have already seen (Figure 6),

f(a + (b-a))-f(a) .

j (a) < since b — a > U
b — a

fib) - fid)

b — a

and

f(b + (a-b))-f(b) .

/ (b) > since a — b < (J

a — b

_ f(a)-f(b) = f(b)-fja)

a — b b — a

Combining these inequalities, we obtain f'{a) < f'(b). |

Theorem 1 has two converses. Here the proofs will be a little more difficult.

We begin with a lemma that plays the same role in the next theorem that Rolle's

Theorem plays in the proof of the Mean Value Theorem. It states that if /'

is increasing, then the graph of / lies below any secant line which happens to be

horizontal.

lemma Suppose / is differentiable and /' is increasing. If a < b and f(a) = f(b), then

fix) < f{a) = f(b) for a < x < b.

proof Suppose that f{x) > fid) = f(b) for some x in (a,b). Then the maximum of

/ on [a,b] occurs at some point A'o in (a, b) with /(a'o) > fid) and, of course,

/'(a'o) = (Figure 7). On the other hand, applying the Mean Value Theorem to

the interval [a, xq\, we find that there is x\ with a < x\ < xq and

fl( . /Up) - fja)
f U'i )

= > 0,

A'o - a

contradicting the fact thai ./" is increasing. |
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We now attack the general case by the same sort of algebraic machinations that

we used in the proof of the Mean Value Theorem.

THEOREM 2 If / is differentiable and /' is increasing, then / is convex.

PROOF Let a < b. Define g by

f(b)-f(a)
fg(x) = fix) - (x - a).

b — a

It is easy to see that g' is also increasing; moreover, g(a) = g{b) — f(a). Applying

the lemma to g we conclude that

g(x) < fia) if a < x < b.

In other words, if a < x < b, then

fib) - fia)

FIGURE 8

f(x)~
b — a

ix - a) < fia)

or
f(x) - fia) fib) - fia)

<
x — a b — a

Hence / is convex. |

THEOREM 3

PROOF

If / is differentiable and the graph of / lies above each tangent line except at the

point of contact, then / is convex.

Let a < b. It is clear from Figure 8 that if ib, fib)) lies above the tangent line at

ia, fia)), and ia, fia)) lies above the tangent line at ib, fib)), then the slope of

the tangent line at ib, fib)) must be larger than the slope of the tangent line at

ia, fia)). The following argument just says this with equations.

Since the tangent line at ia, fia)) is the graph of the function

g(x) = f\a)(x-a) + f(a),

and since ib, fib)) lies above the tangent line, we have

(1) fib)> f'ia)ib-a) + fia).

Similarly, since the tangent line at ib, fib)) is the graph of

h(x ) = f(b)ix-b) + fib),

and ia, fia)) lies above the tangent line at ib, fib)), we have

(2) fia)> f'ib)ia-b) + fib).

It follows from (1) and (2) that fia) < fib).

It now follows from Theorem 2 that / is convex. |

If a function / has a reasonable second derivative, the information given in these

theorems can be used to discover the regions in which / is convex or concave.
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Consider, for example, the function

For this function.

/(*) =

fix) =

l+x 2

-2x

a+x 2
)
2

'

Thus f'(x) = only for x = 0, and /(0) = 1, while

fix) > if x < 0,

/'(*) < if a- > 0.

Moreover,

/U) > for all x,

f(x) —> as x —> oo or — oo,

/ is even.

FIGURE 9

The graph of / therefore looks something like Figure 9. We now compute

(l+.x- 2
)

2 (-2) + 2.v- [2(1 +.v 2
)

- 2.vJ
fix) =

(1+JC 2
)
4

2(3jc
2 - 1)

(1+JC 2
)
3

It is not hard to determine the sign of f"(x). Note first that f"(x) = only when

x = y 1/3 or —y/\/3. Since /" is clearly continuous, it must keep the same sign

on each of the sets

(-00,-/173),

(VlAoo).
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Since we easily compute, for example, that

r(-D =
/"(0) =

>

-2 <0,

4 >0,

we conclude that

/" > on (-oo, -yf\j?> ) and (y/V/3, oo),

/" <Oon(- v
/T73, /I73).

Since /" > means /' is increasing, it follows from Theorem 2 that / is convex on

(—oo, — vl/3 ) and (vl/3, oo), while on (— vl/3, v 1/3 ) f is concave (Figure 10).

FIGURE 10

Notice that at (y 1/3, |) the tangent line lies below the part of the graph to the

right, since / is convex on (y 1/3, oo), and above the part of the graph to the left,

since / is concave on (—-y/1/3, vl/3 ); thus the tangent line crosses the graph. In

general, a number a is called an inflection point of / if the tangent line to the

graph of / at (a, f(a)) crosses the graph; thus vl/3 and —vl/3 are inflection

points of fix) = 1/(1 + x 2
). Note that the condition f"{a) = does not ensure

that a is an inflection point of /; for example, if f(x) = x 4
, then /"(0) = 0, but

/ is convex, so the tangent line at (0, 0) certainly doesn't cross the graph of /. In

order to conclude that a is an inflection point of a function /, we need to know

that /" has different signs to the left and right of a.

This example illustrates the procedure which may be used to analyze any func-

tion /. After the graph has been sketched, using the information provided by /',

the zeros of /" are computed and the sign of /" is determined on the intervals

between consecutive zeros. On intervals where /" > the function is convex;

on intervals where /" < the function is concave. Knowledge of the regions of

convexity and concavity of / can often prevent absurd misinterpretation of other

data about /. Several functions, which can be analyzed in this way, are given in

the problems, which also contain some theoretical questions.
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To round out our discussion of convexity and concavity, we will prove one further

result that you may already have begun to suspect. We have seen that convex and

concave functions have the property that every tangent line intersects the graph

just once; a few drawings will probably convince you that no other functions have

this property, but the only proof I know is rather tricky.

THEOREM 4 If / is differentiable on an interval and intersects each of its tangent lines just

once, then / is either convex or concave on that interval.

/(c)-

FIGURE 11

PROOF

FIGURE 12

There are two parts to the proof.

(1) First we claim that no straight line can intersect the graph of / in three different

points. Suppose, on the contrary, that some straight line did intersect the graph

of / at {a, /(a)), (b, f{b)) and (c, /(c)), with a < b < c (Figure 11). Then we
would have

(])

f(b)-fia) f(c)-f(a)

Consider the function

g(x) =

b — a

fix) - f(a)

c — a

for x in [b, c].

Equation (1) says that g(b) = g{c). So by Rolle's Theorem, there is some number x

in (b, c) where = g'{x), and thus

0=(x-a)f'(x)-[f(x)-f(a))

fix)- f{a)

or

fix) =
.v — a

But this says (Figure 12) that the tangent line at (x, f(x)) passes through (a, f{a)),

contradicting the hypotheses.

(2) Suppose that ao < bo < co and a\ < b\ < c\ are points in the interval. Let

0<t < 1.

.v, = (1 - t)ciQ + ta\

y, = {\ -t)b + tb\

z t
= (1 -t)c + tc\

Then xo = ao and x\ = a\ and (Problem 4-2) the points x, all lie between oq

and a\, with analogous statements for y, and z.t- Moreover,

x, < y, < for 0<t < 1.

Now consider the function

, , f(yt)-f(xt ) f(z,)-f(x r )

git) = for ()</<!.

By step (1), g(l) ^ for all / in [0, 1|. So either g(t) > lor all / in [0. 1| or

g(t) < for all / in [0, 1 ]. Thus, either / is convex or / is concave. |
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PROBLEMS

1. Sketch, indicating regions ofconvexity and concavity and points of inflection,

the functions in Problem 11-1 (consider (iv) as double starred).

2. Figure 30 in Chapter 1 1 shows the graph of /'. Sketch the graph of /.

3. Show that / is convex on an interval if and only if for all x and y in the

interval we have

f(tx + (\ -t)y) <tf(x) + (\ -t)f(y), for0<f < 1.

(This is just a restatement of the definition, but a useful one.)

4. (a) Prove that if / and g are convex and / is increasing, then fog is convex.

(It will be easiest to use Problem 3.)

(b) Give an example where g o f is not convex.

(c) Suppose that / and g are twice differentiable. Give another proof of the

result of part (a) by considering second derivatives.

5. (a) Suppose that / is differentiable and convex on an interval. Show that

either / is increasing, or else / is decreasing, or else there is a number c

such that / is decreasing to the left of c and increasing to the right of c.

(b) Use this fact to give another proof of the result in Problem 4(a) when /
and g are (one-time) differentiable. (You will have to be a little careful

when comparing f'(g(x)) and f'igiy)) for x < y.)

(c) Prove the result in part (a) without assuming / differentiable. You will

have to keep track of several different cases, but no particularly clever

ideas are needed. Begin by showing that if a < b and f(a) < fib), then

/ is increasing to the right of b; and if fia) > fib), then / is decreasing

to the left of a.

*6. Let / be a twice-differentiable function with the following properties:

f{x) > for x > 0, and / is decreasing, and f'iO) = 0. Prove that

fix) = for some x > (so that in reasonable cases / will have an inflec-

tion point at x—an example is given by fix) =1/(1 -\-x )). Every hypothesis

in this theorem is essential, as shown by fix) = 1 — x , which is not positive

for all x; by fix) = x 2
, which is not decreasing; and by fix) = l/(x + 1),

which does not satisfy /'(0) = 0. Hint: Choose xq > with f'ixo) < 0. We
cannot have f'iy) < f'ixo) for all y > xo. Why not? So f'(x\ ) > f'ixo) for

some x\ > xq. Consider /' on [0, x\\.

*7. (a) Prove that if / is convex, then fi[x + y]/2) < [fix) + fiy)]/2.

(b) Suppose that / satisfies this condition. Show that f(kx + (1 — k)y) <

kfix) + (1 — k)fiy) whenever k is a rational number, between and 1,

of the form m/2" . Hint: Part (a) is the special case n = 1. Use induction,

employing part (a) at each step.

(c) Suppose that / satisfies the condition in part (a) and / is continuous.

Show that / is convex.
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"8. For n > 1, let p\ p„ be positive numbers with Y^ Pi — 1-

n

(a) For any numbers x\, .

.

. , x„ show that V] /?/•*/ lies between the smallest

and the largest x,. i=l

(b) Show the same for (I/O >^ /?/-*,, where f = >^ p t
.

;=1 i=]

(c) Prove Jensen's inequality: If / is convex, then /( N /?,a",
J

< J^ p, fjx,).

i=\ i=\

Hint: Use Problem 3, noting that pn = 1 — t . (Part (b) is needed to show
n-\

that (1/0 2, Pix i
is in the domain of / if x\, . .

. , xn are.)

(a)

(b)

FIG U RE \^

*9. (a) For any function /, the right-hand derivative, lim [f(a + h) — f(a)]/h, is

denoted by f'+ {a), and the left-hand derivative is denoted by fL(a). The
proof of Theorem 1 actually shows that f'+ {a) and f'_{a) always exist if

/ is convex on some open interval containing a. Check this assertion,

and also show that f'+ and f'_ are increasing, and that f'_{a) < f'+ {a).

(b) Conversely, suppose that / is convex on [a, b] and g is convex on [b, c],

with f(b) = g{b) and f'_ib) < g'
+ (b) (Figure 13(a)). If we define h

on [a,c] to be / on [a,b] and g on [b, c], show that h is convex on

[a, c]. Hint: Given P and Q on opposite sides of O = ib, fib)), as in

Figure 13 (b), compare the slope of OQ with that of PO

.

(c) Show that if / is convex, then f'+ia) = f'_{a) if and only if f'+ is con-

tinuous at a. (Thus / is differentiable precisely when f'+ is continuous.)

Hint: [fib) — f(a)]/(b — a) is close to f'_{a) for b < a close to a, and

f'+ {b) is less than this quotient.

*10. (a) Prove that a convex function on R, or on any open interval, must be

continuous.

(b) Give an example of a convex function on a closed interval that is not

continuous, and explain exactly what kinds of discontinuities are possible.

11. Call a function / weakly convex on an interval if for a < b < c in this interval

we have

f(x) - fia) ^ fib) - fia)

(a) Show that a weakly convex function is convex if and only if its graph

contains no straight line segments. (Sometimes a weakly convex function

is simply called "convex," while convex functions in our sense are called

"strictly convex".)

(b) Reformulate the theorems of this section for weakly convex functions.
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12. Find two convex functions / and g such that f(x) = g(x) if and only if x

is an integer. Hint: First find an example where g is merely weakly convex,

and then modify it, using the result of Problem 9 as a guide.

13. A set A of points in the plane is called convex if A contains the line segment

joining any two points in it (Figure 14). For a function /, let Af be the set

of points (x, y) with y > f(x), so that Af is the set of points on or above

the graph of /. Show that Af is convex if and only if / is weakly convex,

in the terminology of the previous problem. Further information on convex

sets will be found in reference [18] of the Suggested Reading.

(a) a convex subset of the plane

FIGURE 14

(b) a non-convex subset of the plane



CHAPTER INVERSE FUNCTIONS

We now have at our disposal quite powerful methods for investigating functions;

what we lack is an adequate supply of functions to which these methods may
be applied. We have studied various ways of forming new functions from old

addition, multiplication, division, and composition—but using these alone, we can

produce only the rational functions (even the sine function, although frequently

used for examples, has never been defined). In the next few chapters we will

begin to construct new functions in quite sophisticated ways, but there is one

important method which will practically double the usefulness ofany other method

we discover.

Ifwe recall that a function is a collection of pairs of numbers, we might hit upon

the bright idea of simply reversing all the pairs. Thus from the function

we obtain

/ = {(1,2), (3,4), (5,9), (13, 8)},

g = {(2,l), (4,3), (9,5), (8, 13)}.

While /(l) = 2 and /(3) = 4, we have g(2) = 1 and g(4) = 3.

Unfortunately, this bright idea does not always work. If

then the collection

/ = {(1,2), (3,4), (5,9), (13,4)},

{(2,1), (4, 3), (9, 5), (4, 13)

is not a function at all, since it contains both (4, 3) and (4, 13). It is clear where

the trouble lies: /(3) = /(13), even though 3^13. This is the only sort of thing

that can go wrong, and it is worthwhile giving a name to the functions for which

this does not happen.

DEFINITION A function / is one-one (read "one-to-one") if f(a) / f(b) whenever a ^ b.

The identity function / is obviously one-one, and so is the following modifica-

tion:
'

x, x ^3,5
g(x)= 3, x =5

5, x = 3.

The function f(x) = x 2
is not one-one, since /(— 1) = /(l), but if we define

g(x) = x
2

, x>0
230
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(and leave g undefined for x < 0), then g is one-one, because g is increasing (since

g'(x) = 2x > 0, for x > 0). This observation is easily generalized: If n is a natural

number and

f{x)=x\ x>0,

then /' is one-one. If n is odd, one can do better: the function

/(*) for all x

is one-one (since f'(x) — nx" > 0, for all x ^ 0).

It is particularly easy to decide from the graph of / whether / is one-one: the

condition f(a) ^ f(b) for a / b means that no horizontal line intersects the graph

of / twice (Figure 1).

a one-one function

(a)

FIGURE 1

a function that is not one-one

(b)

Ifwe reverse all the pairs in (a not necessarily one-one function) / we obtain, in

any case, some collection of pairs. It is popular to abstain from this procedure un-

less / is one-one, but there is no particular reason to do so—instead of a definition

with restrictive conditions we obtain a definition and a theorem.

DEFINITION For any function /, the inverse of /, denoted by f , is the set of all pairs

(a, b) for which the pair (b, a) is in /.

theorem l / ' is a function if and only if / is one-one.

PROOF Suppose first that / is one-one. Let (a, b) and {a, c) be two pairs in / . Then

(b,a) and (c,a) are in /, so a = f(b) and a = /(c); since / is one-one this

implies that b = c. Thus / is a function.

Conversely, suppose that /
_1

is a function. If fib) = /(c), then / contains

the pairs (b, f(b)) and (c, /(c)) = (c, f(b)), so (/(/?), b) and (f(b), c) are in f~
l

.

Since /"' is a function this implies that b — c. Thus / is one-one. |
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The graphs of / and /
_1

are so closely related that it is possible to use the

graph of / to visualize the graph of / . Since the graph of f~
l

consists of all

pairs (a, b) with (b, a) in the graph of /, one obtains the graph of /
_1

from the

graph of / by interchanging the horizontal and vertical axes. If / has the graph

shown in Figure 2(a),

FIGURE 2(a)
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This procedure is awkward with books and impossible with blackboards, so it is

fortunate that there is another way of constructing the graph of / '. The points
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(a,b) and (b,a) are reflections of each other through the graph of I(x) = x,

which is called the diagonal (Figure 4). To obtain the graph of /
_1 we merely

reflect the graph of / through this line (Figure 5).

(a,b)

(c,d)

'diagonal

• (b,a)

(d, c)

FIGURE 4 FIGURE 5

Reflecting through the diagonal twice will clearly leave us right back where we
started; this means that (/

_1
)

_1 = /, which is also clear from the definition. In

conjunction with Theorem 1, this equation has a significant consequence: if /
is a one-one function, then the function / is also one-one (since (/

_1
)

_1
is a

function).

There are a few other simple manipulations with inverse functions of which you

should be aware. Since (a, b) is in / precisely when (b, a) is in / ,
it follows that

b = f{a) means the same as a = /~ (b).

Thus f~\b) is the (unique) number a such that f(a) — b; for example, if f(x) =
x 3

, then f~(b) is the unique number a such that a' = b, and this number is, by

definition, \fb.

The fact that f~
l

(x) is the number y such that f(y) = x can be restated in a

much more compact form:

/(/ (x)) = x, for all x in the domain of f
-l

Moreover,

f-
[

(f(x)) = x, for all x in the domain of /;

this follows from the previous equation upon replacing f by f . These two

important equations can be written

fof~ l = I.

r l of = i

(except that the right side will have a bigger domain if the domain of / or f~
]

is

not all of R).
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FIGURE 6

THEOREM 2

Since many standard functions will be defined as the inverses of other functions,

it is quite important that we be able to tell which functions are one-one. We have

already hinted which class of functions are most easily dealt with—increasing and

decreasing functions are obviously one-one. Moreover, if / is increasing, then f~
l

is also increasing, and if / is decreasing, then f~
[

is decreasing (the proof is left

to you). In addition, / is increasing if and only if — / is decreasing, a very useful

fact to remember.

It is certainly not true that every one-one function is either increasing or decreas-

ing. One example has already been mentioned, and is now graphed in Figure 6:

r(*) =
x,

3,

5,

x #3,5
x =5
x = 3.

FIGURE 7

Figure 7 shows that there are even continuous one-one functions which are neither

increasing nor decreasing. But if you try drawing a few pictures you will soon

suspect that every one-one continuous function defined on an interval is either

increasing or decreasing.

If / is continuous and one-one on an interval, then / is either increasing or

decreasing on that interval.

proof The proof proceeds in three easy steps:

(1) If a < b < c are three points in the interval, then

either (i)

or (ii)

f(a) < f{b) < fie)

f(a) > f(b) > f(c).

Suppose, for example, that fia) < f(c). If we had fib) < fia) (Figure 8), then

the Intermediate Value Theorem applied to the interval [b, c] would give an x with

FIGURE 8

b < x < c and fix) — fia), contradicting the fact that / is one-one on [a.c].

Similarly, fib) > fie) would lead to a contradiction, so fia) < fib) < fie).

Naturally, the same sort of argument works for the case fia) > /(c).

(2) If a < b < c < d are four points in the interval, then

cither (i) fia) < fib) < /(c) < fid)

or (ii) fia) > fib) > /(c) > fid).

For we can apply (1) to a < b < c and then to b < c < d.
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FIGURE 9

FIGURE 10

(3) Take any a < b in the interval, and suppose that f(a) < f(b). Then / is

increasing: For if c and d are any two points, we can apply (2) to the collection

{a, b, c, d) (after arranging them in increasing order). |

Henceforth we shall be concerned almost exclusively with continuous increasing

or decreasing functions which are defined on an interval. If / is such a function,

it is possible to say quite precisely what the domain of f~
[

will be like.

Suppose first that / is a continuous increasing function on the closed interval

[a, b] . Then, by the Intermediate Value Theorem, / takes on every value between

f(a) and f{b). Therefore, the domain of f~
l

is the closed interval [f(a), f(b)].

Similarly, if / is continuous and decreasing on [a, b], then the domain of f~
[

is

[/(*), /(a)].

If / is a continuous increasing function on an open interval (a, b) the analysis

becomes a bit more difficult. To begin with, let us choose some point c in (a,b).

We will first decide which values > f(c) are taken on by /. One possibility is that

/ takes on arbitrarily large values (Figure 9). In this case / takes on all values

> f(c), by the Intermediate Value Theorem. If, on the other hand, / does not

take on arbitrarily large values, then A =
{ f (x) : c < x < b} is bounded above,

so A has a least upper bound a (Figure 10). Now suppose y is any number with

f(c) < y < a. Then / takes on some value f(x) > y (because a is the least

upper bound of A). By the Intermediate Value Theorem, / actually takes on

the value y. Notice that / cannot take on the value a itself; for if a = f(x) for

a < x < b and we choose / with x < t < b, then f(t) > a, which is impossible.

Precisely the same arguments work for values less than f{c): either / takes on

all values less than f(c) or there is a number fi < f(c) such that / takes on all

values between ft and /(c), but not /3 itself.

This entire argument can be repeated if / is decreasing, and if the domain of /
is R or (a, oo) or (— oo, a). Summarizing: if / is a continuous increasing, or

decreasing, function whose domain is an interval having one of the forms (a,b),

(—oo,b), (a, oo), or R, then the domain of f~
l

is also an interval which has one

of these four forms, and we can easily fit the remaining types of intervals, (a, b],

[a, b], (—oo, b], and [a, oo), into this discussion also.

Now that we have completed this preliminary analysis of continuous one-one

functions, it is possible to begin asking which important properties of a one-one

function are inherited by its inverse. For continuity there is no problem.

theorem 3 If / is continuous and one-one on an interval, then / is also continuous.

PROOF We know by Theorem 2 that / is either increasing or decreasing. We might as

well assume that / is increasing, since we can then take care of the other case by

applying the usual trick of considering —/. We might as well assume our interval

is open, since it is easy to see that a continuous increasing or decreasing function

on any interval can be extended to one on a larger open interval.

We must show that

\lmf- l
(x) = f-\b)

x—*b
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f(a)+8

f(a) = b

f(a)-S —

FIGURE 1 1

a + e

FIGl Kl. 12

for each b in the domain of / '
. Such a number b is of the form f(a) for some a

in the domain of /. For any e > 0, we want to find a 8 > such that, for all x,

if f(a) — 8 < x < f(a) + 8, then a — s < f (x) < a + s.

Figure 1 1 suggests the way of finding 8 (remember that by looking sideways you

see the graph of / ): since

it follows that

a — £ < a < a + s,

f(a - s) < f(a) < f(a + e);

we let 8 be the smaller of f(a + e) — f(a) and / (a) — f (a — e) . Figure 11 contains

the entire proof that this 8 works, and what follows is simply a verbal account of

the information contained in this picture.

Our choice of 8 ensures that

Consequently, if

then

f(a -s)< f(a) - 8 and f(a) + 8 < f(a + s).

f{a) -8 <x < f(a) + 8.

f(a — e) < x < f(a + e).

Since / is increasing, / is also increasing, and we obtain

f-\f(a-s)) < f-\x) < r l
(f(a + s)),

i.e.,

a — s < f~ (x) < a + s,

which is precisely what we want. |

Having successfully investigated continuity of / , it is only reasonable to tackle

differentiability. Again, a picture indicates just what result ought to be true. Fig-

ure 12 shows the graph of a one-one function / with a tangent line L through

(a, f{a)). If this entire picture is reflected through the diagonal, it shows the graph

of /
-1

and the tangent line L' through (f(a),a). The slope of L' is the reciprocal

of the slope of L. In other words, it appears that

(/-!)'(/(*,)) = -L-.
f (a)

This formula can equally well be written in a way which expresses (f~)'(b) di-

rectly, for each b in the domain of / .

^A
:•- l\'i

f'(f-Hb))

Unlike the argument for continuity, this pictorial "proof" becomes somewhat

involved when formulated analytically. There is another approach which might
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fix) = x3

THEOREM 4

(a)

FIGURE 1 3

be tried. Since we know that

f{f~\x))=x,

it is tempting to prove the desired formula by applying the Chain Rule:

f'(f-
l

(x))-(f-
l y(x)= l,

so

i\',(/"')'(*)
I

f'(f-Hx))'

Unfortunately this is not a proof that f~
x

is differentiable, since the Chain Rule

cannot be applied unless /
_1

is already known to be differentiable. But this argu-

ment does show what (/)'(*) will have to be if f~
l

is differentiable, and it can

also be used to obtain some important preliminary information.

If / is a continuous one-one function defined on an interval and /'(/(#)) = 0,

then / is not differentiable at a.

PROOF We have

f(f-\x)) = x.

If / were differentiable at a, the Chain Rule would imply that

hence

which is absurd. |

f'(f-
1
(a))'(f-

1)'(a)= 1,

0.(/" 1

)
,

(fl)= 1,

A simple example to which Theorem 4 applies is the function f(x) = x . Since

/'(0) = and = /"'(O), the function f~
l

is not differentiable at (Figure 13).

Having decided where an inverse function cannot be differentiable, we are now
ready for the rigorous proof that in all other cases the derivative is given by the

formula which we have already "derived" in two different ways. Notice that the

following argument uses continuity of / ,
which we have already proved.

THEOREM 5 Let / be a continuous one-one function defined on an interval, and suppose that

/ is differentiable at f~ (b), with derivative f'(f~
l

(b)) ^ 0. Then /~' is differ-

entiable at b, and

(f-
1
)'(b) = —

f'(f-Hb))'

proof Let b = f(a). Then

-l

lim
fc->0

f-\b + h)- f~
l

(b)

-1

= lim
f~

l

(b + h)-a
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Now every number b + h in the domain of / ' can be written in the form

b + h= f(a + k)

for a unique k (we should really write k(h), but we will stick with k for simplicity).

Then

lim
f-

[

(b + h)-a

= lim
f~\f(a + k))-a

/1-+0 f(a + k) — b

k
= lim

ft-»0 f(a + k) - f(a)

We are clearly on the right track! It is not hard to get an explicit expression for k;

since

we have

b + h = f(a + k)

f-\b + h)=a + k

or

k=f-\b + h)-f-\b).

Now by Theorem 3, the function / l

is continuous at b. This means that k

approaches as h approaches 0. Since

lim =/(«) = / (/ (ft)) ^ 0,
k^O k

this implies that

l\'<
(f-'Yib)

1

f'(f-Hb))

The work we have done on inverse functions will be amply repaid later, but here

is an immediate dividend. For n odd, let

f„(x) = x" for all x;

for n even, let

fn(x)=xn
,

x>0.

Then /„ is a continuous one-one function, whose inverse function is

gn (x)= v^ = -v
l/ ".



12. Inverse Functions 239

By Theorem 5 we have, for x ^ 0,

8n
'

(X) "
fn'Vn-H*))

1

n{fn
-

{ {x)) n - {

I

77 (A
1 /")"- 1

1 1

77 X

1

= — • X
77

-(1/n)

Thus, if f(x) = x", and a is an integer or the reciprocal of a natural number, then

fix) = axa
. It is now easy to check that this formula is true if a is any rational

number: Let a = m/n, where m is an integer, and n is a natural number; if

fix) =,-"'/" = (x
] /")"\

then, by the Chain Rule,

f(x) = m(x i/
")

1 1 .(!/«)-!

n
777 .[(w/n)-(l/n)] + [(l/«)-l]

_ ^x (m/n)-l

77

Although we now have a formula for /'(x) when f{x) — x a and a is rational,

the treatment of the function f{x) = x" for irrational a will have to be saved

for later—at the moment we do not even know the meaning of a symbol like a: .

Actually, inverse functions will be involved crucially in the definition of x a for

irrational a. Indeed, in the next few chapters several important functions will be

defined in terms of their inverse functions.

PROBLEMS

1.

/(*) =

fix) =

Find / for each of the following /.

(i) /(jc)=jc 3 + 1.

(ii) f(x) = (x-\)\

x, x rational

—.v, x irrational.

-x 2 x >

l-x 3
, x<0.

x, x^a\, a„

(v) fix) = ai+ \ x =at , /=1,
a

i
, x = an .

(vi) /(*) =*+[*].

m

IV

, n
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(vii) /(0.aifl2«3 • • • ) = 0.fl2 fl l«3 • • • • (Decimal representation is being used.

x
(viii) /(*) =

1

1 <x < 1.

2. Describe the graph of / when

(i) / is increasing and always positive.

(ii) / is increasing and always negative.

(iii) / is decreasing and always positive.

(iv) / is decreasing and always negative.

3. Prove that if / is increasing, then so is / ,
and similarly for decreasing

functions.

If / and g are increasing, is f + g? Or f • g? Or / o g?

(a) Prove that if / and g are one-one, then fog is also one-one. Find

(/ o g)~ l

in terms of / and g~K Hint: The answer is not f~
l
o g~ l

.

(b) Find g~ l

in terms of f~
l

if g(x) = 1 + f(x).

ax -\- b
Show that f{x) = ;

—
- is one-one if and only if ad — be ^ 0, and find

ex + d

f ' in this case.

7. On which intervals [a, b] will the following functions be one-one?

(i) f(x) = x3 -3x 2
.

(ii) f(x) = x 5 + x.

(iii) f(x) = (\+x 2r l

.

x + 1

X 1 + 1

8. Suppose that / is differentiable with derivative f'(x) = (1 +A" 3
)

-1 ^2
. Show

that g = f~
x

satisfies g"(x) = \g(x)2 .

9. Suppose that / is a one-one function and that / has a derivative which is

nowhere 0. Prove that / is differentiable. Hint: There is a one-step proof.

10. As a follow up to Problem 10-17, what additional condition on g will insure

that / is differentiable?

11. Find a formula for (/
-1

)"(;c).

*12. Prove that if f'(f~
l
{x)) ^ and f

(k) {f~\x)) exists, then (/
_1

)
w (jc) exists.

13. The Schwarzian derivative 2)/ was defined in Problem 10-19.

(a) Prove that if 2)/(x) exists for all x, then 2)/
_1

(x) also exists for all v in

the domain of / .

(b) Find a formula for 2)/~

'

(a).
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*14. (a) Prove that there is a differentiable function / such that [/(*)]
5 + /CO +

x = for all x. Hint: Show that / can be expressed as an inverse

function. The easiest way to do this is to find / . And the easiest way

to do this is to set x = /
_1

(v).

(b) Find /' in terms of /, using an appropriate theorem of this chapter.

(c) Find /' in another way, by simply differentiating the equation defining /.

The function in Problem 14 is often said to be defined implicitly by the

equation y +y+x = 0. The situation for this equation is quite special, however. As

the next problem shows, an equation does not usually define a function implicitly

on the whole line, and in some regions more than one function may be defined

implicitly.

15. (a) What are the two differentiable functions / which are defined implicitly

on (— 1, 1) by the equation jc +y — 1, i.e., which satisfy x +[f(x)]~ = 1

for all x in (— 1, 1)? Notice that there are no solutions defined outside

[-1,1].

(b) Which functions / satisfy x 2 + [f(x)]
2 = -1?

*(c) Which differentiable functions / satisfy [/CO] — 3/(jc) = x? Hint: It

will help to first draw the graph of the function g(x) = x — 3x.

In general, determining on what intervals a differentiable function is defined im-

plicitly by a particular equation may be a delicate affair, and is best discussed in the

context of advanced calculus. If we assume that / is such a differentiable solution,

however, then a formula for /'(jc) can be derived, exactly as in Problem 14(c), by

differentiating both sides of the equation defining / (a process known as "implicit

differentiation"):

16. (a) Apply this method to the equation [/(.v)]
2 + x 2 = 1. Notice that your

answer will involve f(x); this is only to be expected, since there is more

than one function defined implicitly by the equation y
2 + x2 = 1.

(b) But check that your answer works for both of the functions / found in

Problem 15(a).

(c) Apply this same method to [f(x)]^ — 3f(x)=x.

17. (a) Use implicit differentiation to find f'(x) and f"(x) for the functions f
defined implicitly by the equation x + y =7.

(b) One of these functions / satisfies /(-l) = 2. Find /'(-l) and /"(-l)

for this /.

18. The collection of all points (x, y) such that 3x 3 + 4x 2
y — xy 2 + 2y 3 = 4

forms a certain curve in the plane. Find the equation of the tangent line to

this curve at the point (— 1, 1).

19. Leibnizian notation is particularly convenient for implicit differentiation. Be-

cause y is so consistendy used as an abbreviation for f(x), the equation in v

and y which defines / implicitly will automatically stand for the equation
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which / is supposed to satisfy. How would the following computation be

written in our notation?

y
4 + y

3 + xy = 1

,

4y
dy

dx
+ 3y^

dx dx

dy

dx

-y

4v 3 + 3y 2 + ;t

20. As long as Leibnizian notation has entered the picture, the Leibnizian no-

tation for derivatives of inverse functions should be mentioned. If dy /dx

denotes the derivative of /, then the derivative of f~
l

is denoted by dx/dy.

Write out Theorem 5 in this notation. The resulting equation will show you

another reason why Leibnizian notation has such a large following. It will

also explain at which point (/ )' is to be calculated when using the dx/dy

notation. What is the significance of the following computation?

i/»

21.

22.

23.

*24.

y — x '
,

dx x ' n dy 1

dx dx dx

dy

n-\ny

Suppose that / is a differentiable one-one function with a nowhere zero

derivative and that f = F'. Let G(x) — xf (x) — F(f~ (x)). Prove that

G'(x) = f~
[

(x). (Disregarding details, this problem tells us a very interesting

fact: if we know a function whose derivative is /, then we also know one

whose derivative is / . But how could anyone ever guess the function G?

Two different ways are outlined in Problems 14-14 and 19-16.)

Suppose h is a function such that ti{x) = sin (sin(x + 1)) and h(0) = 3.

Find

(i) (h- l

YO).

(ii) (£-')'(3), where 0(x) = h(x + 1).

(a) Prove that an increasing and a decreasing function intersect at most once.

(b) Find two continuous increasing functions / and g such that f(x) = g(x)

precisely when x is an integer.

(c) Find a continuous increasing function / and a continuous decreasing

function g, defined on R, which do not intersect at all.

(a) If / is a continuous function on R and /' = / ,
prove that there is at

least one x such that f(x) = x. (What does the condition / = /
_1 mean

geometrically?)

(b) Give several examples of continuous / such that f = f~ and f(x) — x

for exactly one x. Hint: Try decreasing /, and remember the geometric

interpretation. One possibility is f(x) = —x.
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(c) Prove that if / is an increasing function such that / = / , then

fix) = x for all x. Hint: Although the geometric interpretation will

be immediately convincing, the simplest proof (about 2 lines) is to rule

out the possibilities f(x) < x and f(x) > x.

*25. Which functions have the property that the graph is still the graph of a func-

tion when reflected through the graph of — / (the "antidiagonal")?

26. A function / is nondecreasing if fix) < fiy) whenever x < y. (To be

more precise we should stipulate that the domain of / be an interval.) A
nonincreasing function is defined similarly. Caution: Some writers use

""increasing" instead of "nondecreasing," and "strictly increasing" for our

"increasing."

(a) Prove that if / is nondecreasing, but not increasing, then / is constant

on some interval. (Beware of unintentional puns: "not increasing" is not

the same as "nonincreasing.")

(b) Prove that if / is differentiable and nondecreasing, then f'(x) > for

all x.

(c) Prove that if f'(x) > for all x, then / is nondecreasing.

*27. (a) Suppose that f(x) > for all x, and that / is decreasing. Prove that

there is a continuous decreasing function g such that < g(x) < f(x) for

all x.

(b) Show that we can even arrange that g will satisfy lim g(x)/f(x) = 0.
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FIGURE 1

FIGURE 2

APPENDIX. PARAMETRIC REPRESENTATION OF CURVES

The material in this chapter serves to emphasize something that we noticed a

long time ago—a perfectly nice looking curve need not be the graph of a function

(Figure 1). In other words, we may not be able to describe it as the set of all points

(x, fix)). Of course, we might be able to describe the curve as the set of all points

(f(x),x); for example, the curve in Figure 1 is the set of all points (x
2
,x). But

even this trick doesn't work in most cases. It won't allow us to describe the circle,

consisting of all points (x. v) with x + y = 1, or an ellipse, and it can't be used

to describe a curve like the one in Figure 2.

The simplest way of describing curves in the plane in general harks back to the

physical conception of a curve as the path of a particle moving in the plane. At

each time /, the particle is at a certain point, which has two coordinates; to indicate

the dependence of these coordinates on the time t, we can call them u(t) and v{t).

Thus, we end up with two functions. Conversely, given two functions u and v, we

can consider the curve consisting of all points (u(t), v(t)). This curve is said to

be represented parametrically by u and v, and the pair of functions u, v is called a

parametric representation of the curve. The curve represented parametrically by

u and v thus consists of all pairs (x, y) with x = u{t) and y = v(t). It is often

described briefly as "the curve x — u{t), y — v(t)." Notice that the graph of a

function / can always be described parametrically, as the curve x — t, y = fit).

Instead of considering a curve in the plane as defined by two functions, we

can obtain a conceptually simpler picture if we broaden our original definition of

function somewhat. Instead of considering a rule which associates a number with

another number, we can consider a "function c from real numbers to the plane,"

i.e., a rule c that associates, to each number t, a. point in the plane, which we can

denote by c(t). With this notion, a curve is just a function from some interval of

real numbers to the plane.

Of course, these two different descriptions of a curve are essentially the same:

A pair of (ordinary) functions u and v determines a single function c from the real

numbers to the plane by the rule

c(t) = (u(t),v(t)),

I I ( , I K I . *

and, conversely, given a function c from the real numbers to the plane, each c(t)

is a point in the plane, so it is a pair of numbers, which we can call u(t) and v(t),

so that we have unique functions u and v satisfying this equation.

In Appendix 1 to Chapter 4, we used the term "vector" to describe a point in

the plane. In conformity with this usage, a curve in the plane may also be called

a "vector-valued function." The conventions of that Appendix would lead us to

write c(t) — (c\ (f ), cjit)), but in this Appendix we'll continue to use notation like

c(t) = (u(t), v(t)) to minimize the use of subscripts.

A simple example of a vector-valued function that is quite useful is

e(/) = (cos/, sin /),

which goes round and round the unit circle (Figure 3).
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e)(t)

FIGURE 4

For two (ordinary) functions / and g, we defined new functions f + g and / • g

by the rules

(f + g)(x) = f(x) + g(x),

(f • g)(x) = f(x) g(x).

Since we have defined a way of adding vectors, we can imitate the first of these def-

initions for vector-valued functions c and d: we define the vector-valued function

c + d by

(c + d)(t)=c(t) + d(t),

where the + on the right-hand side is now the sum of vectors. This simply amounts

to saying that if

c(t) = (u(t),v(t)),

d(t) = (w(t),z(t)),

then

(c + d){t) = (u(t), v(t)) + (w(t), z(t)) = (u(t) + w(t), v(t) + z(t)).

Recall that we have also defined a v for a number a and a vector v. To

extend this to vector-valued functions, we want to consider an ordinary function a

and a vector-valued function c, so that for each / we have a number a(t) and a

vector c(t). Then we can define a new vector-valued function a c by

(a -c)(t) =a(t)-c(t),

where the • on the right-hand side is the product of a number and a vector. This

simply amounts to saying that

(a c)(t) = a(t) (u(t), v(t)) = (a(t) u(t), a(t) v(t)).

Notice that the curve a e,

(a e)(t) = (a(t)cost, a(t)smt),

is already quite general (Figure 4). In the notation of Appendix 3 to Chapter 4,

the point (a e){t) has polar coordinates a(t) and t , so that (a e)(t) is the "graph

of a in polar coordinates."

Even more generally, given any vector-valued function c, we can define new
functions r and 9 by

c(t)=r(t)-e(9(t)).

where r{t) is just the distance from the origin to c(t), and 9(t) is some choice of

the angle of c(t) (as usual, the function 9 isn't defined unambiguously, so one has

to be careful when using this way of writing an arbitrary curve c).

We aren't in a position to extend (2) to vector-valued functions in general, since

we haven't defined the product of two vectors. However, Problems 2 and 4 of

Appendix 1 to Chapter 4 define two real-valued products v • w and det(u, w). It
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c(a + h)

c(a)

II < , I !< E 5

should be clear, given vector-valued functions c and d, how we would define two

ordinary (real-valued) functions

c • d and det(c, d).

Beyond imitating simple arithmetic operations on functions, we can consider

more interesting problems, like limits. For c(t) = (u(t), v(t)), we can define

(*) limc(f) = lim(a(f), u(0) to De (\im u(t), \imv(t)) .

Rules like

lim c + d = lim c + lim d,
t-+a t—>a t—>a

lim a c = lim a(t) lim c
t—t-a t—*a t^a

follow immediately. Problem 10 shows how to give an equivalent definition that

imitates the basic definition of limits directly.

Limits lead us of course to derivatives. For

c(t) = (u(t),v(t))

we can define c' by the straightforward definition

c'(a) = (u(a), v'(a)).

We could also try to imitate the basic definition:

c(a + h) — c{a)
c'(a) = lim

//

where the fraction on the right-hand side is understood to mean

-• [c{a + h) - e{a)}.
n

As a matter of fact, these two definitions are equivalent, because

lim
c(a + h) — c(a)

= lim
u{a + h) — u(a) v(a + h) — v(a)

,. u{a+h)-u{a) v(a + h) - v(a)
lim , lim
h^O h h^Q h

by our definition (*) of limits

= (u'(a), v'(a)).

Figure 5 shows c(a + h) and c(a), as well as the arrow from c(a) to c(a + h);

as we showed in Appendix 1 to Chapter 4, this arrow is c(a + h) — c(a), except

moved over so that it starts at c(a). As h —> 0, this arrow would appear to move

(loser and closer to the tangent of our curve, so it seems reasonable to define the

tangent line of c at c(a) to be the straight line along c'(a), when c'(a) is moved

over so that it starts at c(a). In other words, we define the tangent line of c at c(a)

as the set of all points

c(a) + s c\a)\
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for s = we get the point c(a) itself, for s = 1 we get c(a) + c' (a), etc. (Note,

however, that this definition does not make sense when c'(a) = (0, 0).) Problem 1

shows that this definition agrees with the old one when our curve c is defined by

c(t) = (t,f(t)),

so that we simply have the graph of /.

Once again, various old formulas have analogues. For example,

(c + d)'(a) = c
r

(a) + d'(a),

(a • c)'(a) = a'(a) c(a) + a(a) c'(a),

or, as equations involving functions,

(c + d)' = c' + d',

{ot c) = a • c + a. • c .

These formulas can be derived immediately from the definition in terms of the

component functions. They can also be derived from the definition as a limit,

by imitating previous proofs; for the second, we would of course use the standard

trick of writing

a(a + h)c(a + h) — a(a)c(a) =

ct(a + h) [c{a + h) - c(a)] + [a(a + h) - a(a)] c(a).

We can also consider the function

d(t) = c(p(t)) = (c o p)(t),

where p is now an ordinary function, from numbers to numbers. The new curve d

passes through the same points as c, except at different times; thus p corresponds

to a "reparameterization" of c. For

c — (u, v),

d = (u o p, v o p),

we obtain

or simply

d'{a) = (O o p)'(a), {v o p)'{a))

= (p'(a)u'(p(a)), p'{a)v\p{a)))

= p'{a) • (u'{p(a)), v\p(a)))

= p'(a) c'(p(a)),

d' = p' (c o p).

Notice that if p (a) = a, so that d and c actually pass through the same point at

time a, then d'(a) = p'(a) c'(a), so that the tangent vector d'(a) is just a multiple

of c'(a). This means that the tangent line to c at c(a) is the same as the tangent

line to the reparameterized curve d at d(a) = c(a). The one exception occurs
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when p'(a) = 0, since the tangent line for d is then undefined, even though the

tangent line for c may be defined. For example, d(t) = c(f
3
) won't have a tangent

line defined at t = 0, even though it's merely a reparameterization of c.

Finally, since we can define real-valued functions

(C'd)(t) = c(t)-d(t),

det(c, d)(t) = det(c(f), d(t)),

we ought to have formulas for the derivatives of these new functions. As you might

guess, the proper formulas are

(c • d)'(a) = c(a) • d'{a) + c'(a) • d(a),

[det(c, d)]'(a) = det(c\ d){a) + det(c\ d')(a).

These can be derived by straightforward calculations from the definitions in terms

of the component functions. But it is more elegant to imitate the proof of the or-

dinary product rule, using the simple formulas in Problems 2 and 4 of Appendix 1

to Chapter 4, and, of course, the "standard trick" referred to above.

PROBLEMS

1. (a) For a function /, the "point-slope form" (Problem 4-6) of the tangent

line at (a, f{a)) can be written as y — f(a) = (x — a)f'(a), so that the

tangent line consists of all points of the form

(x,f(a) + (x-a)f'{a)).

Conclude that the tangent line consists of all points of the form

(a+s,f(a)+sf(a)).

(b) If c is the curve c(t) = (f, f(t)), conclude that the tangent line of c at

(a, f{a)) [using our new definition] is the same as the tangent line of /
at (a, f(a)).

2. Let c(t) = (f(t), t ), where / is the function shown in Figure 21 of Chap-

ter 9. Show that c lies along the graph of the non-diffcrentiable function

h(x) = \x\, but that c'(0) = (0, 0). In other words, a reparameterization can

"hide" a corner. For this reason, we are usually only interested in curves c

with c' never equal to (0, 0).

3. Suppose that .v = u{t), y = v(t) is a parametric representation of a curve,

and that u is one-one on some interval.

(a) Show that on this interval the curve lies along the graph of / = v ou .

(b) If w is differentiable on this interval and //'(/) ^ 0, show that at the point

x — u{t) we have

v'(t)

fix)
u'{t)
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FIGURE 6

In Leibnizian notation this is often written suggestively as

dy

dy_ dt

dx dx

It

(c) We also have

u'{t)v"{t) - v'{t)u"{t)
fix) =

(u'(t)Y

4. Consider a function / defined implicitly by the equation x 2/3 + y
2^ = 1.

Compute f'{x) in two ways:

(i) By implicit differentiation.

(ii) By considering the parametric representation x = cos t, y = sin t.

5. Let x = u(t), y = v(t) be the parametric representation of a curve, with

u and v differentiable, and let P = (xo, yo) be a point in the plane. Prove

that if the point Q = (u(t), v(t)) on the curve is closest to (xo, yo)> and u'(t)

and v'(t) are not both 0, then the line from P to Q is perpendicular to the

tangent line of the curve at Q (Figure 6). The same result holds if Q is

furthest from (xq, yo).

We've seen that the "graph of / in polar coordinates" is the curve

(/•e)(0 = (/(') cos *,/(*) sin 0;

in other words, the graph of / in polar coordinates is the curve with the para-

metric representation

x = f(0)cosG, y = f(0) sinO.

(a) Show that for the graph of / in polar coordinates the slope of the tangent

line at the point with polar coordinates (f(0),9) is

/(#)cos(9 + /
/

(6>)sin<9

-/(6>) sin (9 + /'(#) cos 6>'

(b) Show that if f(0) = and / is differentiable at 9, then the line through

the origin making an angle of 9 with the positive horizontal axis is a

tangent line of the graph of / in polar coordinates. Use this result to

add some details to the graph of the Archimedean spiral in Appendix 3

of Chapter 4, and to the graphs in Problems 3 and 10 of that Appendix

as well.

(c) Suppose that the point with polar coordinates (f(9), 9) is further from

the origin O than any other point on the graph of /. What can you

say about the tangent line to the graph at this point? Compare with

Problem 5.
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(d) Suppose that the tangent line to the graph of / at the point with po-

lar coordinates (f(0),0) makes an angle of a with the horizontal axis

(Figure 7), so that a — is the angle between the tangent line and the

ray from O to the point. Show that

f(0)
tan (or - 0) =

f'(0)

7. (a) In Problem 8 of Appendix 3 to Chapter 4 we found that the cardioid

r = 1 — sin 6 is also described by the equation (x + y
2 + y) = x 2 + y .

Find the slope of the tangent line at a point on the cardioid in two ways:

FIGURE 7

(i) By implicit differentiation.

(ii) By using the previous problem.

(b) Check that at the origin the tangent lines are vertical, as they appear to

be in Figure 8.

FIGURE 8

The next problem uses the material from Chapter 15, in particular, radian

measure, and the inverse trigonometric functions and their properties.

8. A cycloid is defined as the path traced out by a point on the rim of a rolling

wheel of radius a. You can see a beautiful cycloid by pasting a reflector on

the edge of a bicycle wheel and having a friend ride slowly in front of the

headlights of your car at night. Lacking a car, bicycle, or trusting friend, you

can settle instead for Figure 9.

FIGURE 9
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(a) Let u{t) and v(t) be the coordinates of the point on the rim after the

wheel has rotated through an angle of / (radians). This means that the

arc of the wheel rim from P to Q in Figure 10 has length at. Since the

wheel is rolling, at is also the distance from O to Q. Show that we have

the parametric representation of the cycloid

u{t) — a{t — sin t)

v(t) — a(\ — cos/).

Figure 1 1 shows the curves we obtain if the distance from the point to the

center of the wheel is (a) less than the radius or (b) greater than the radius.

In the latter case, the curve is not the graph of a function; at certain times

the point is moving backwards, even though the wheel is moving forwards!

FIGURE 1

In Figure 9 we drew the cycloid as the graph of a function, but we really

need to check that this is the case:

(b) Compute u'{t) and conclude that u is increasing. Problem 3 then shows

that the cycloid is the graph of / = v o u~\ and allows us to compute

fit).

(c) Show that the tangent lines of the cycloid at the "vertices" are vertical.

It isn't possible to get an explicit formula for /, but we can come close.

(d) Show that

a - v(t)
u{t) = a arccos ±y/[2a-v(t)]v(t).

Hint: first solve for / in terms of v(t).
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(e) The first half of the first arch of the cycloid is the graph of g
l

, where

FIGURE 12

g(y) = aarccos
a — v

yj(2a - y)y.

9. Let u and v be continuous on [a,b] and differentiable on (a,b); then u

and v give a parametric representation of a curve from P = (u(a),v(a))

to Q = {u(b), v(b)). Geometrically, it seems clear (Figure 12) that at some

point on the curve the tangent line is parallel to the line segment from P
to Q. Prove this analytically. Hint: This problem will give a geometric

interpretation for one of the theorems in Chapter 1 1 . You will also need to

assume that we don't have u'(x) = v'(x) — for any x in (a, b) (compare

Problem 2).

10. The following definition of a limit for a vector-valued function is the direct

analogue of the definition for ordinary functions:

limc(0 = / means that for every e > there is some 8 > such that, for
t->a

all t, if < \t - a\ < 8, then \\c(t) -l\\ < e.

Here
|| ||

is the norm, defined in Problem 2 of Appendix 1 to Chapter 4. If

/ = (/i,/2), then

||c(/)-/||
2 = HO-/il 2 + MO-/2l

2
-

(a) Conclude that

\u(t)-h\ < \\c(t)-l\\ and \v(t) - l2 \

< ||c(0-/||,

and show that if lim c{t) = I according to the above definition, then we
t—>a

also have

lim u{t) = l\ and lim v(t) — h,

so that lim c(t) = I according to our definition (*) in terms of component

functions, on page 246.

(b) Conversely, show that if lim c(t) = I according to the definition in terms

of component functions, then also lim c(t) = I according to the above
t—*a

definition.
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FIGURE 1

FIGURE 2

FIGURE 3

The derivative does not display its full strength until allied with the "integral," the

second main concept of Part III. At first this topic may seem to be a complete

digression—in this chapter derivatives do not appear even once! The study of

integrals does require a long preparation, but once this preliminary work has been

completed, integrals will be an invaluable tool for creating new functions, and the

derivative will reappear in Chapter 14, more powerful than ever.

Although ultimately to be defined in a quite complicated way, the integral for-

malizes a simple, intuitive concept—that of area. By now it should come as

no surprise to learn that the definition of an intuitive concept can present great

difficulties
—

"area" is certainly no exception.

In elementary geometry, formulas are derived for the areas of many plane fig-

ures, but a little reflection shows that an acceptable definition of area is seldom

given. The area of a region is sometimes defined as the number of squares, with

sides oflength 1, which fit in the region. But this definition is hopelessly inadequate

for any but the simplest regions. For example, a circle of radius 1 supposedly has

as area the irrational number iz , but it is not at all clear what "jt squares" means.

Even ifwe consider a circle ofradius l/y/rr, which supposedly has area 1, it is hard

to say in what way a unit square fits in this circle, since it does not seem possible

to divide the unit square into pieces which can be arranged to form a circle.

In this chapter we will only try to define the area of some very special regions

(Figure 1)—those which are bounded by the horizontal axis, the vertical lines

through (a,0) and (b,0), and the graph of a function / such that f(x) >

for all x in [a, b]. It is convenient to indicate this region by /?(/, a, b). Notice that

these regions include rectangles and triangles, as well as many other important

geometric figures.

The number which we will eventually assign as the area of R(f,a,b) will be

called the integral of / on [a , b] . Actually, the integral will be defined even for

functions / which do not satisfy the condition f(x) > for all x in [a, b]. If / is

the function graphed in Figure 2, the integral will represent the difference of the

area of the lightly shaded region and the area of the heavily shaded region (the

"algebraic area" of R(f,a, b)).

The idea behind the prospective definition is indicated in Figure 3. The interval

[a, b] has been divided into four subintervals

[fO.'l] [/l.fe] [fe.fc] [*3,*4]

by means of numbers to, t\, ti, t?,, t\ with

a = to < t\ < tj < ?3 < U = b

(the numbering of the subscripts begins with so that the largest subscript will

equal the number of subintervals).

253
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On the first interval [to, t\] the function / has the minimum value m\ and the

maximum value M\; similarly, on the zth interval [f,-_i, tf\ let the minimum value

of / be w, and let the maximum value be M\. The sum

s = m\(t\ - to) + ni2(t2 - t\) + niT,(tT, - tn) + m\(t\ - £3)

represents the total area of rectangles lying inside the region R(f, a, b), while the

sum

S = M
x
(t\ - to) + M2 (t2 ~t[) + M3 (t3 - t2 ) + M4 (t4 - t3 )

represents the total area of rectangles containing the region R{f, a, b). The guid-

ing principle of our attempt to define the area A of R(f, a,b) is the observation

that A should satisfy

s < A and A < S\

and that this should be true, no matter how the interval [a, b] is subdivided. It is to be

hoped that these requirements will determine A. The following definitions begin

to formalize, and eliminate some of the implicit assumptions in, this discussion.

DEFINITION Let a < b. A partition of the interval [a, b] is a finite collection of points in

[a, b], one of which is a, and one of which is b.

The points in a partition can be numbered to tn so that

a = to < t\ < < /„_] < tn = b;

we shall always assume that such a numbering has been assigned.

DEFINITION Suppose / is bounded on [a, b] and P = {to t„ } is a partition of [« b}. Let

m, = inf{/(.v) : /,_i < x < ti),

Mi =sup{/(x) : r,_i <x <\ti).

The lower sum of / for P, denoted by L(f, P),

n

L(f,P) = J^m t (fi-ti-

i—\

is defined as

it-

The upper sum of / for P, denoted by U(f,P),

U(f,P) = YlMi {ti
-t

i
-

1=1

is defined as

l).

The lower and upper sums correspond to thr sums s and S in the previous

example; they are supposed to represent the total areas of rectangles lying below

and above the graph of /. Notice, however, that despite the geometric motivation,

these sums have been defined precisely without any appeal to a concept of "area."
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FIGURE 4

Two details of the definition deserve comment. The requirement that / be

bounded on [a,b] is essential in order that all the ra, and M, be defined. Note,

also, that it was necessary to define the numbers m, and M, as inf's and sup's,

rather than as minima and maxima, since / was not assumed continuous.

One thing is clear about lower and upper sums: If P is any partition, then

because

and for each i we have

L(f,P)<U(f,P),

n

n

mtiti -ti-\) < MM -ti-i).

FIGURE 5

On the other hand, something less obvious ought to be true: If P\ and Pi are

any two partitions of [a , b] , then it should be the case that

L(f,Pi)<U(f,P2),

because L(f, P\) should be < area R(f,a,b), and U(f, Pi) should be > area

R(f,a,b). This remark proves nothing (since the "area of R(f,a, by has not even

been defined yet), but it does indicate that if there is to be any hope of defining the

area of R(f,a,b), a proof that L(f, P\) < U(f, P2) should come first. The proof

which we are about to give depends upon a lemma which concerns the behavior of

lower and upper sums when more points are included in a partition. In Figure 4

the partition P contains the points in black, and Q contains both the points in

black and the points in grey. The picture indicates that the rectangles drawn for

the partition Q are a better approximation to the region R(f, a,b) than those for

the original partition P. To be precise:

lemma If Q contains P (i.e., if all points of P are also in Q), then

L(f,P)<L(f,Q),
U(f,P)>U(f,Q).

PROOF Consider first the special case (Figure 5) in which Q contains just one more point

than P.

P = {to,...,tn ),

Q = Uo tk-i,u, tk— ,tn ),

where

a — to < t\ < • • • < tk-] < u < tk < • • - < tn = b.
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Let

m' = inf{/(.v) : t^] < x < "}-

m" = inf {f(x) : w < x < /^}.

Then

L(/,P)=£m f (f;-f;-i),

fe-I /i

£(/, (?) = y^m,-(fj - r,-_i) + m'(« -rA _i) + m"(tk -u)+ ^ m,-ft - f,-_i).

(= 1 i=Jt+l

To prove that L(f, P) < L(f, Q) it therefore suffices to show that

mk (tk - tk -\) < m\u - tk-\) + m"(tk - u).

Now the set {f(x) : tk_\ < x < tk } contains all the numbers in {f(x) : tk-\ <

x < u}, and possibly some smaller ones, so the greatest lower bound of the first set

is less than or equal to the greatest lower bound of the second; thus

mk <tn'.

Similarly,

mk < m".

Therefore,

m k (tk - tk _\) = m k (u - tk-\) + m k (tk - u) < m'(u - tk _\) + m"(tk - u).

This proves, in this special case, that L(f, P) < L(f, Q). The proof that U(f, P) >

U(f, Q) is similar, and is left to you as an easy, but valuable, exercise.

The general case can now be deduced quite easily. The partition Q can be

obtained from P by adding one point at a time; in other words, there is a sequence

of partitions

P = Pl ,P2,...,Pa = Q

such that Pj+ \ contains just one more point than Pj. Then

L(f, P) = L(f, Pi ) < L(/, P2 ) < • • - < L(f, Pa ) = L(/, Q),

and

£/(/, P) = U(f, Pi) > U(f, P2 ) > •• • > £/(/, Pa ) = U(f, Q). |

The theorem we wish to prove is a simple consequence of this lemma.

THEOREM l Let P\ and P2 be partitions of [a,b], and let / be a function which is bounded

on [<7, /?]. Then

U.f\P\)< U(f,P2 ).
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PROOF There is a partition P which contains both P\ and Pj (let P consist of all points

in both P\ and Pi). According to the lemma,

L(f, PO < L(f, P) < U(f, P) < U(f, P2 ). |

f(x) = c

a = t t] t2 tn-\ tn =b

FIGURE 6

It follows from Theorem 1 that any upper sum U(f, P') is an upper bound for

the set of all lower sums L(f, P). Consequently, any upper sum U(f, P') is greater

than or equal to the least upper bound of all lower sums:

sup{L(/, P) : P a partition of [a, b]} < U(f, P').

for every P' . This, in turn, means that sup{L(/, P)} is a lower bound for the set

of all upper sums of /. Consequently,

sup{L(/,P)} <inf {£/(/, P)}.

It is clear that both of these numbers are between the lower sum and upper sum

of / for all partitions:

L(f, P') < sup{L(/, P)} < U{f, P'),

L(f,P')<in£{U(f,P)} <U(f,P'),

for all partitions P'

.

It may well happen that

sup{L(/, P)} = inf{U(f, P};

in this case, this is the only number between the lower sum and upper sum of /
for all partitions, and this number is consequently an ideal candidate for the area

of R(f,a.b). On the other hand, if

sup{L(/,P)} < inf{£/(/, />)},

then every number* between sup{L(/, P)} and inf{£/(/, P)} will satisfy

L{f,P')<x<U(f,P')

for all partitions P'

.

It is not at all clear just when such an embarrassment of riches will occur. The
following two examples, although not as interesting as many which will soon ap-

pear, show that both phenomena are possible.

Suppose first that f(x) = c for all * in [a, b] (Figure 6). If P = {to, . . . , /„} is

any partition of [a , b] , then

irij — Mi = c,

so

L(f, P) = J2 c ( fi
~ ti-l) = c(b - a),

(=1

U(f,P) = J2c(ti-ti-i)=c(b-a).
i=l
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a = ?o t\ t2 tn-\ h = b

FIGURE 7

In this case, all lower sums and upper sums are equal, and

sup{L(/, P)} = inf{£/(/, P)} = c(ft - a).

Now consider (Figure 7) the function / defined by

f 0, x irrational

|
1, x rational.

If P = {to, . . . ,tn } is any partition, then

m, = 0, since there is an irrational number in [/,_], /,],

and

Mj = \, since there is a rational number in [/,-_ i, ?,].

Therefore,

n

L(f,P) = J^0-(ti -ti
. 1)=0,

/=i

/?

C/(/,P) = £)l.(f
I--ri_i)=fe-a.

i=\

Thus, in this case it is certainly not true that sup{L(/, P)} = inf {(/(/, P)}. The

principle upon which the definition of area was to be based provides insufficient

information to determine a specific area for R(f, a, b)—any number between

and b — a seems equally good. On the other hand, the region R(f, a, b) is so

weird that we might with justice refuse to assign it any area at all. In fact, we can

maintain, more generally, that whenever

sup{L(/, P)} # inf{£/(/, />)},

the region R(f,a,b) is too unreasonable to deserve having an area. As our ap-

peal to the word "unreasonable" suggests, we are about to cloak our ignorance in

terminology.

DEFINITION A function / which is bounded on [a, b] is integrable on [a, b] if

sup{L( /, P) : P a partition of [a, b]} = inf{c/(/, P) : P a partition of [a, b]}.

In this case, this common number is called the integral of / on [a, b] and is

denoted by

/ f.

(The symbol J is called an integral sign and was originally an elongated s, for

"sum;" the numbers a and b are called the lower and upper limits (>/ integration.)

The integral f f is also called the area of R(f, a, b) when f(x) > for all .v

in [a, ft].
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THEOREM 2

If / is integrable, then according to this definition,

L(f, P) < f < U(f, P) for all partitions P of [a, b].

J a

Moreover, f f is the unique number with this property.

This definition merely pinpoints, and does not solve, the problem discussed

before: we do not know which functions are integrable (nor do we know how to

find the integral of / on [a, b] when / is integrable). At present we know only

two examples:

f
b

(1) if f(x) = c, then / is integrable on [a, b] and / f = c • (b — a).

J a

(Notice that this integral assigns the expected area to a rectangle.)

,~ N - r r , x f 0. x irrational . . . . , . r ,,
(z) it j (x) = < then / is not integrable on [a,b\.

II, x rational,

Several more examples will be given before discussing these problems further.

Even for these examples, however, it helps to have the following simple criterion

for integrability stated explicitly.

If / is bounded on [a, b], then / is integrable on [a, b] if and only if for every

£ > there is a partition P of [a , b] such that

U(f,P)-L(f,P) <s.

PROOF Suppose first that for every s > there is a partition P with

£/(/, P) - L(f, P) < e.

Since

mr{U(f,P')}<U(f,P),

sup{L(f,P')}>L(f,P),

it follows that

inf{[/(/, P')} - sup{L(/, P')} < e.

Since this is true for all e > 0, it follows that

sup{L(/, P')} = inf{U(f, />')};

by definition, then, / is integrable. The proof of the converse assertion is similar:

If / is integrable, then

sup{L(/, P)} = inf{U(f, P)}.

This means that for each e > there are partitions P', P" with

U(f,P")-L(f,P') <e.
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Let P be a partition which contains both P' and P" . Then, according to the

lemma,

consequently,

U(f,P) <U{f,P"),

L(f,P) >L(f,P');

U(f, P) - L(f, P) < U(f, P") - L(f, P') < e. |

tj-i 1 tj 2

FIGURE 8

Although the mechanics of the proof take up a little space, it should be clear

that Theorem 2 amounts to nothing more than a restatement of the definition

of integrability. Nevertheless, it is a very convenient restatement because there is

no mention of sup's and inf 's, which are often difficult to work with. The next

example illustrates this point, and also serves as a good introduction to the type

of reasoning which the complicated definition of the integral necessitates, even in

very simple situations.

Let / be defined on [0, 2] by

,, , 10, x # 1fW=
\ 1. x = l.

Suppose P = {/(> tn } is a partition of [0, 2] with

tj-i < 1 < tj

(see Figure 8). Then

but

Since

mi = M, = if /' ^ j,

nij = and Mj = 1

.

7-1

L(f, P) = ^m,(f, - tt-i) + mjOj - tj-i) + J2 nii(t
'
~ f'-i)«

i=] (=7+1

/-i

C/(/,P) = 5^Mi ft--rI-_i) + M/(f
/
-r

/_i)+ ^ Mi(ti-ti-i),

/=i t=j+\

we have

U(f,P)-L(f,P)=tj-tj- h

This certainly shows that / is integrable: to obtain a partition P with

U(f,P)-L(f,P)<s,

it is only necessary to choose a partition with

tj-i < 1 < tj and tj — tj^\ < e.

Moreover, it is clear that

L(f, P) < < U(f, P) for all partitions P.



FIGURE 9

13. Integrals 261

Since / is integrable, there is only one number between all lower and upper sums,

namely, the integral of /, so

/„'
=

Jo
0.

Although the discontinuity of / was responsible for the difficulties in this exam-

ple, even worse problems arise for very simple continuous functions. For example,

let fix) = x, and for simplicity consider an interval [0, &], where b > 0. If

P = {to /„} is a partition of [0, b], then (Figure 9)

mi = t
t-\ and Mi = tt

and therefore

Lif,P) = J^ti
-. l (ti

-t
i
- 1 )

i=\

= t it\
-

1 ) + nit2 -?!) + •• • + *„_! (tn -r„_i),

Uif,P) = Y,ti(ti~ti-l)

1=1

= t\it\ -to) + t2 it2 -t l ) + --- + tl,it„ -r„_i).

Neither of these formulas is particularly appealing, but both simplify considerably

for partitions Pn — {to, , tn ) into n equal subintervals. In this case, the length

t, — tj_\ of each subinterval is b/n, so

fo = 0,

b
t\ = -,

n

2b
t2 = — , etc;

in general

Then

n

ib

n

Lif,Pn ) = Y,h-\iU-t,- l )

i=l

A \{i-i)b\ b

i=\
1 n

Etf-D
1 u2

"-/=1

n-\

E^'b
y=o

b2
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Remembering the formula

! + ••• + *
k(k+\)

this can be written

Similarly,

(n-l)(n) b2

n-1 £2

« 2

£/(/, />„) = ]£*,&-?,-!)

^ n n
i = \

n(n + l) b2

~T~ "n 2

n+\ b2

fix) = xy

area —
2

I H.I K I. Ml

If n is very large, both L(f, P„) and £/(/, Pn ) are close to & /2, and this remark

makes it easy to show that / is integrable. Notice first that

2 b2

U(f,Pn)-L(f,Pn ) = ---.
n 1

This shows that there are partitions Pn with U(f, P„) — L(f, Pn ) as small as desired.

By Theorem 2 the function / is integrable. Moreover, fQ f may now be found

with only a little work. It is clear, first of all, that

h 2

L(f,Pn)< -j<U(f,Pn ) for all h.

This inequality shows only that b /2 lies between certain special upper and lower

sums, but we have just seen that £/(/, P„) — L(f, Pn ) can be made as small as

desired, so there is only one number with this property. Since the integral certainly

has this property, we can conclude that

Jo
"f^

Notice that this equation assigns area b /2 to a right triangle with base and alti-

tude b (Figure 10). Using more involved calculations, or appealing to Theorem 4,

it can be shown that

I

h b 2
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FIGURE 11

The function f(x) = x presents even greater difficulties. In this case (Fig-

ure 1 1), if P = {to tn ) is a partition of [0, b], then

m
{
= /fa_i) = (/,_i)

2 and M, = f(tt ) = t,

2
.

Choosing, once again, a partition Pn = {to, . .

.

, tn ) into n equal parts, so that

ti
= i -b

the lower and upper sums become

n

n* nE, ib b

(=i

; = 1

A .b1 b

77 - 7?

; = 1

/?
3 "

./= !

Recalling the formula

l
2 + --- + ^

2 = ±*(*+l)(2Jfc + l)

from Problem 2-
1 , these sums can be written as

L(f, Pn ) = — .-(n - l)(n)(2n - 1),
nJ 6

l/C/,/3
,,) = — .-(n+ l)(n)(2/7 + l).

77 •* 6

It is not too hard to show that

b 3

L(f,Pn)< J <U(f,Pn ),

and that U(f, P„) — L(f, Pn ) can be made as small as desired, by choosing n

sufficiently large. The same sort of reasoning as before then shows that

i

b b 3

/ = -*-
'o 3

This calculation already represents a nontrivial result—the area of the region

bounded by a parabola is not usually derived in elementary geometry. Never-

theless, the result was known to Archimedes, who derived it in essentially the same
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way. The only superiority we can claim is that in the next chapter we will discover

a much simpler way to arrive at this result.

Some of our investigations can be summarized as follows:

i

i:

i.

f = c (b — a) if f{x) — c for all x.

b2
a
2

/ = y-y if fix) = x for all x,

h
b3 a 3

if / (x ) = x for all x

.

This list already reveals that the notation f f suffers from the lack of a convenient

notation for naming functions defined by formulas. For this reason an alternative

notation,* analogous to the notation lim f(x), is also useful:
x—>a

rh r>b

I f{x)dx means precisely the same as / /.

Ja Ja

Thus

/'
J a

cdx = c • (b — a),

u2 2b a

L
XdX=

2 2

Ja 3 3

Notice that, as in the notation lim f(x), the symbol x can be replaced by any
x—>a

other letter (except f,a,orb, of course):

pb nb pb pb rb

\
f(x)dx= f(t)dt= f(a)da= fiy)dy= f{c)dc.

Ja Ja Ja Ja Ja

The symbol dx has no meaning in isolation, any more than the symbol x ->•

has any meaning, except in the context lim f(x). In the equation

/'
J a

2 b> fl
3

*The notation / f(x)dx is actually the older, and was for many years the only, symbol for the

integral. Leibniz used this symbol because he considered the integral to be the sum (denoted by /)
of infinitely many rectangles with height f(x) and "infinitely small" width dx. Later writers used

xq, . .

.

, xn to denote the points of a partition, and abbreviated x\ — .v,_i by A.v,. The integral was
77

defined as the limit as Ax, approaches of the sums Y^ /
'( v, ) A,v, (analogous to lower and upper

7=1

sums). The fact that the limit is obtained by changing >_] to / , ./ (v, ) to fix), and A v, todx, delights

many people.
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the entire symbol x dx may be regarded as an abbreviation for:

the function / such that f(x) = x for all x.

This notation for the integral is as flexible as the notation lim f{x). Several ex-

amples may aid in the interpretation of various types of formulas which frequently

appear; we have made use of Theorems 5 and 6.*

(1)

(2)

(3)

f
b

f
b

f
h

b2 a 2

/ (x + y) dx = x dx +
J

y dx = — - — + y (b - a).

/ (y + t)dy= / ydy+ /

J a J u J a

l!(J!
a+,)dt

)
dx=

I.

tdy =
X— %- + t(x-a).

(1 +t)(x -a)dx

I
= (1+/) / (x-a)dx

= (1+/)
b2

a(b — a)

(4) L\Ox+y)dy
)
dx =l

The computations of f x dx and f x dx may suggest that evaluating integrals

is generally difficult or impossible. As a matter of fact, the integrals of most func-

tions are impossible to determine exactly {although they may be computed to any degree

ofaccuracy desired by calculating lower and upper sums). Nevertheless, as we shall see in

the next chapter, the integral of many functions can be computed very easily.

Even though most integrals cannot be computed exactly, it is important at least

to know when a function / is integrable on [a , b] . Although it is possible to say

precisely which functions are integrable, the criterion for integrability is a little too

difficult to be stated here, and we will have to settle for partial results. The next

Theorem gives the most useful result, but the proof given here uses material from

the Appendix to Chapter 8. If you prefer, you can wait until the end of the next

chapter, when a totally different proof will be given.

*Lest chaos overtake the reader when consulting other books, equation (1) requires an important

qualification. This equation interprets f ydx to mean the integral of the function / such that each

value f(x) is the number v. But classical notation often uses y for v(.v), so f ydx might mean the

integral of some arbitraryJunction y.
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THEOREM 3 If / is continuous on [a, b], then / is integrable on [a, b].

PROOF Notice, first, that / is bounded on [a,/?], because it is continuous on [a,£]. To

prove that / is integrable on [a, b], we want to use Theorem 2, and show that for

every e > there is a partition P of [a , b] such that

U(f,P)-L(f,P) <e.

Now we know, by Theorem 1 of the Appendix to Chapter 8, that / is uniformly

continuous on [a , b] . So there is some 8 > such that for all x and y in [a , b] ,

£
if \x — y\ < 8, then \f{x) — f(y)\ <

2{b-a)

The trick is simply to choose a partition P = {to tn ] such that each \t, — /,_i |
<

8. Then for each i we have

£
\f(x)-f(y)\<

2{b-a)
for all x, y in [f,-_i, f,-],

and it follows easily that

M - >"/ < <
2(b-a) b-a

Since this is true for all /, we then have

[/(/, P) - L(f, P) = ^(M,- - m,)(t, - ti-i)

<
b — a

£

b — a

£>-',-!
= 1

b — a

which is what we wanted. |

Although this theorem will provide all the information necessary for the use of

integrals in this book, it is more satisfying to have a somewhat larger supply of

integrable functions. Several problems treat this question in detail. It will help to

know the following three theorems, which show that / is integrable on [«./?], if it

is integrable on [a, c] and [c, b]; that / + g is integrable if / and g are; and that

c f is integrable if / is integrable and c is any number.

As a simple application of these theorems, recall that if / is except at one

point, where its value is 1, then / is integrable. Multiplying this function by c, it

follows that the same is true if the value of / at the exceptional point is c. Adding

such a function to an integrable function, we see that the value of an integrable

function may be changed arbitrarily at one point without destroying integrability.

By breaking up the interval into many subintervals, we see that the value can be

changed at finitely many points.

The proofs ofthese theorems usually use the alternative criterion for integrability

in Theorem 2; as some of our previous demonstrations illustrate, the details of the
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THEOREM 4

PROOF

U =b

FIGURE 12

argument often conspire to obscure the point of the proof It is a good idea to

attempt proofs of your own, consulting those given here as a last resort, or as a

check. This will probably clarify the proofs, and will certainly give good practice

in the techniques used in some of the problems.

Let a < c < b. If / is integrable on [a, b], then / is integrable on [a, c] and on

[c, b\. Conversely, if / is integrable on [a, c] and on [c, b], then / is integrable

on [a , b] . Finally, if / is integrable on [#,£], then

J a J a Jc

Suppose / is integrable on [a, b]. If £ > 0, there is a partition P = [to, . .
.

, tn ) of

[a , b] such that

U(f,P)-L(f,P) <e.

We might as well assume that c = tj for some j . (Otherwise, let Q be the partition

which contains to,...,t„ and c; then Q contains P, so U(f, Q) — L(/, Q) <

U(f,P)-L(f,P) <s.)

Now P' = {to, . . . ,tj} is a partition of [a, c] and P" = {tj, . .

.

, /„} is a partition

of [c, b] (Figure 12). Since

L(f,P)=L(f,P') + L(f,P"),

U(f,P) = U(f,P') + U(f,P"),

we have

[U(f, P') - L(f, P')] + [U(f, P") - L(f, P")] = U(f, P) - L(f, P) < s.

Since each of the terms in brackets is nonnegative, each is less than e. This shows

that / is integrable on [a, c] and [c, b]. Note also that

L(f,P')< f f<U(f,P'),

L(f,P")< / f<U{f,P"),

so that

L(f, P)< f f+ f f < U(f, P).

Since this is true for any P, this proves that

ff + ff=ff.
J a Jc J (i

Now suppose that / is integrable on [a, c] and on [c, b]. If e > 0, there is a

partition P' of [a, c] and a partition P" of [c, b] such that

U{f,P')-L{f,P') <e/2,

U(f,P")-L(f,P")<e/2.
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THEOREM 5

PROOF

If P is the partition of [a, b] containing all the points of P' and P", then

L(f,P)=L(f,P') + L(f,P") )

U(f,P) = U(f,P') + U(j\P");

consequently,

U(f, P) - L(f, P) = [U(f, P') - L(f, P')] + [U(f, P") - L(f, P")] < e. |

Theorem 4 is the basis for some minor notational conventions. The integral

f f was defined only for a < b. We now add the definitions

f f =
J a

and
ph pa

Ju Jb
f if a > b.

With these definitions, the equation f't f + f f = f f holds for all a, c, b even

if a < c < b is not true (the proof of this assertion is a rather tedious case-by-case

check).

If / and g are integrable on [a, b], then / + g is integrable on [a, b] and

.& pb rb

(f + g)

no no pt

/ (/+*)= / /+ /
J a Ju Ja

Let P — {to tn ) be any partition of [a, b\. Let

m, = inf {(/ + g)(x) : ?;_] < x < /,},

mi = inf{fix) :r,_i < x <tt },

m," = inf{g(x) : f,_i < x < t,},

and define M,, M,', M,-" similarly. It is not necessarily true that

rm = m/ + m/',

but it is true (Problem 10) that

m, > m{ + mj".

Similarly,

Therefore,

and

Thus,

Mj < M/ + Mi".

L(f,P)+L(g,P) <L(f + g,P)

U(f + g,P) < U(f,P) + U(g,P).

L(f, P) + L(g, P) < L(f + g, P) <U(f + g, P) < U(f, P) + U(g, P).

Since / and g are integrable, there are partitions P\ P" with

U(f,P')-L(f,P') <e/2,

U(g, P")-L(g,P") <e/2.
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If P contains both P' and P", then

[/(/, P) + U(g, P) - [L(f, P) + L(g, P)] < e,

and consequently

U(f + g,P)-L(f + g,P) <s.

This proves that / + g is integrable on [a , b\ . Moreover,

(1)

and also

(2)

L(f, P) + L{g, P)<L{f + g, P)

<
J (/ + *)

< u(f + g,P) < u(f,P) + U(g ,py,

r b pb

L(f.P) + L(g.P)< /+/ g <U(f,P) + U(g,P).
Ja Ja

Since U(f, P) — L(f, P) and U(g, P) — L(g, P) can both be made as small as

desired, it follows that

£/(/, P) + U(g, P) - [L(f, P) + L(g, P)]

can also be made as small as desired; it therefore follows from (1) and (2) that

pb pb fb

/ (/ + *)= / /+/ g-l
Ja Ja Ja

THEOREM 6

PROOF

If / is integrable on [a, b], then for any number c, the function cf is integrable

on [a , b] and

J a J a

f-

The proof (which is much easier than that ofTheorem 5) is left to you. It is a good

idea to treat separately the cases c > and c < 0. Why? |

(Theorem 6 is just a special case of the more general theorem that / • g is

integrable on [a , b] , if / and g are, but this result is quite hard to prove (see

Problem 38).)

In this chapter we have acquired only one complicated definition, a few simple

theorems with intricate proofs, and one theorem which required material from the

Appendix to Chapter 8. This is not because integrals constitute a more difficult

topic than derivatives, but because powerful tools developed in previous chapters

have been allowed to remain dormant. The most significant discovery of calculus

is the fact that the integral and the derivative are intimately related—once we
learn the connection, the integral will become as useful as the derivative, and as

easy to use. The connection between derivatives and integrals deserves a separate

chapter, but the preparations which we will make in this chapter may serve as a

hint. We first state a simple inequality concerning integrals, which plays a role in

many important theorems.
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THEOREM 7 Suppose / is integrable on [a , b] and that

m < fix) < M for all x in [a,b].

Then

m(b-a)< / f < M(b - a).

area

F(c + h) - F(c)

FIGURE 13

THEOREM 8

PROOF

PROOF It is clear that

m(b -a)< L(f, P) and [/(/, P) < M(b - a)

for every partition P. Since fa f = sup{L(/, P)} = m£{U(f, P )}, the desired

inequality follows immediately. |

Suppose now that / is integrable on [a, b]. We can define a new function / on

[a,b] by

F(x)=
f f= f f(t)dt.

(This depends on Theorem 4.) We have seen that / may be integrable even if it

is not continuous, and the Problems give examples of integrable functions which

are quite pathological. The behavior of F is therefore a very pleasant surprise.

If f is integrable on [a, b] and F is defined on [a, b] by

Fix)
J a

then F is continuous on [a, b].

Suppose c is in [a, b]. Since / is integrable on [a, b] it is, by definition, bounded

on [«,&]; let M be a number such that

|/U)| < M for all x in [a, b].

If h >0, then (Figure 13)

Fic + h)- F{c)

Since

rc+h nc re

I
f ~ f =

J a J a •/<'

+h

f-

-M < fix) < M for all x,

it follows from Theorem 7 that

/c+h
f < Mh:

in other words,

( 1

)

- M -h < Fic + h)- Fie) < M • /?.

If h < 0, a similar inequality can be derived: Note that

., t/,

Fic + h)- Fie)
Jc J c+h
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Applying Theorem 7 to the interval [c + h, c], of length —h, we obtain

Mh < f < -Mh;
Jc+h

multiplying by —
1 , which reverses all the inequalities, we have

(2) Mh < F(c +h)- F(c) < -Mh.

Inequalities (1) and (2) can be combined:

\F(c + h) - F(c)\ < M \h\.

Therefore, if e > 0, we have

\F(c+h)- F(c)\ < s,

provided that \h\ < s/M. This proves that

lim F(c + h) = F(c);

in other words F is continuous at c. |

/

Figure 14 compares / and F(x) —
f'

x

f for various functions /; it appears

that F is always better behaved than /. In the next chapter we will see how true

this is.

/

/

FIGUKI. I 4
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PROBLEMS

1. Prove that fQ x 3 dx — b4/4, by considering partitions into n equal subin-
n

tervals, using the formula for Tjr which was found in Problem 2-6. This

i=\

problem requires only a straightforward imitation of calculations in the text,

but you should write it up as a formal proof to make certain that all the fine

points of the argument are clear.

Prove, similarly, that f x 4 dx = b5
/5.2.

*3. (a) Using Problem 2-7, show that the sum >^ kp/np+ can be made as close

k=l

to \/(p + 1) as desired, by choosing n large enough.

(b) Prove that j^x p dx = bp+l/\p + l) .

f
b

*4. This problem outlines a clever way to find / x p dx for < a < b. (The
Ja

result for a = will then follow by continuity.) The trick is to use partitions

P = {to /„} for which all ratios r — ti/tj_\ are equal, instead of using

partitions for which all differences f, — £;_] are equal.

(a) Show that for such a partition P we have

ti = a c
i/n

for c =

(b) If f(x) = x p
, show, using the formula in Problem 2-5, that

U(f,P) =a p+ \\ - C
- 1/")^](c , ',+ 1,/ ")'

(fl
p+l _ £P+l)c(P+l)/«

= (b
p+] -a p+l

)c
p/n

1 -r- |/,!

1 _ c(p+l)/n

1

1 +c [ /" H he/'/"

and find a similar formula for L(f, P).

(c) Conclude that

L

I'

bp+l_ ap+l

K
p dx = -

p + 1

(You might find Problem 5-41 useful.)

Evaluate without doing any computations:

/.I

(i) / A-Vl ~X 2 dx.

(ii) f (x
5 + 3)y/\ -x 2 dx.
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Prove that

for all x > 0.

f
Jo

sin J

7TT
dt > o

Decide which of the following functions are integrable on [0, 2], and calculate

the integral when you can.

(i) /(*) =

/(*)

x, 0<x < 1

x-2, 1 < a < 2.

x

,

< jc < 1

x-2, 1 < a < 2.

* + W-
.v + [.r] , x rational

0, x irrational.

1, x of the form a + bv 2 for rational a and b

0, x not of this form.

1 < A < 1

(iv) f(x) =

(v) ./•(.*•) =

(vi) f(x) =

0, x = or X > 1

.

(vii) / is the function shown in Figure 15.

FIGURE 15

8. Find the areas of the regions bounded by

(i) the graphs of f(x) = x and g(x) = — + 2.

(ii) the graphs of f(x) = x and g(x) = —a - and the vertical lines through

(-1,0) and (1,0).

(iii) the graphs of /(a) = a and g(x) = 1 — jc .

(iv) the graphs of f(x) — x and #(a) = 1 — x and h(x) = 2.

(v) the graphs of f(x) — x and g(x) = x — 2x + 4 and the vertical axis.
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(vi) the graph of f(x) = s/x, the horizontal axis, and the vertical line

through (2, 0). (Don't try to find / s/x dx\ you should see a way of
Jo

guessing the answer, using only integrals that you already know how to

evaluate. The questions that this example should suggest are considered

in Problem 2 1 .)

9. Find

[(j:< (x)g(y)dy ) dx

in terms of fa f and fc g. (This problem is an exercise in notation, with a

vengeance; it is crucial that you recognize a constant when it appears.)

10. Prove, using the notation of Theorem 5, that

m,-' +m" - inf{/(.xi) + gixj) : /,_i < x\,xj <tt ] < ///,-.

11. (a) Which functions have the property that every lower sum equals every

upper sum?

(b) Which functions have the property that some upper sum equals some

(other) lower sum?

(c) Which continuous functions have the property that all lower sums are

equal?

*(d) Which integrable functions have the property that all lower sums are

equal? (Bear in mind that one such function is f(x) = for x irrational,

f(x) = \/q for x = p/q in lowest terms.) Hint: You will need the

notion of a dense set, introduced in Problem 8-6, as well as the results of

Problem 30.

12. Ua<b<c<d and / is integrable on [a, d], prove that / is integrable on

[6,c]. (Don't work hard.)

13. (a) Prove that if / is integrable on [a, b] and f(x) > for all x in [a, b],

then / / > 0.

J a

(b) Prove that if / and g are integrable on [a, b] and f(x) > g(x) for all x
pb rh

in [a, b], then / / > / g. (By now it should be unnecessary to warn
J a Ja

that if you work hard on part (b) you are wasting time.)

14. Prove that
b+cno fb+c

/ f(x)dx = / f(x-c)dx
Ju Ja+c

(The geometric interpretation should make this very plausible.) Hint: Every

partition P — {/(),...,/„} of \ci,b] gives rise to a partition P' — [tQ + c,

...,/„+ c} of \a + c, b + c\, and conversely.
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c

15. For a, b > \ prove that

*abr 1 r l rw 1

/ -dt + -dt = -dt.
J\ t J\ t Jx t

/a pan

l/tdt = I \/tdt. Every partition P =

{to, ...,/„} of [1 , a] gives rise to a partition P' = [bt$, . .
. , btn ) of [b, ab],

and conversely.

:

16. Prove that

f f(t)dt = c f f(ct)dt.
J cu Ja

(Notice that Problem 15 is a special case.)

17. Given that the area enclosed by the unit circle, described by the equation

x + y = 1, is 7i, use Problem 16 to show that the area enclosed by the

ellipse described by the equation x /a + y /b = 1 is nab.

f
h

18. This problem outlines yet another way to compute / x" dx; it was used by
J a

Cavalieri, one of the mathematicians working just before the invention of

calculus.

(a) Let cn = / x" dx. Use Problem 16 to show that / x" dx = cna
n+

.

Jo Jo
(b) Problem 14 shows that

p la pa

\ x"dx = (x + a)"dx.
Jo J-a

Use this formula to prove that

2"+1 c„a"+'=2a"+1 £ QW
k even

(c) Now use Problem 2-3 to prove that c„ = \/{n + 1).

19. Suppose that / is bounded on [a, b] and that / is continuous at each point

in [a,b] with the exception of .\"o in (a,b). Prove that / is integrable on

[a , b] . Hint: Imitate one of the examples in the text.

20. Suppose that / is nondecreasing on [a,fr]. Notice that / is automatically

bounded on [a, b], because f(a) < f(x) < f{b) for x in [a, b\.

(a) If P = {r , . . . , tn } is a partition of [a, b], what is L(f, P) and U(f, P)?

(b) Suppose that f, —t{-\ =8 for each i. Prove that U (f, P) — L(f, P) =
8[f(b)-f(a)].

(c) Prove that /' is integrable.

(d) Give an example of a nondecreasing function on [0, 1
]
which is discon-

tinuous at infinitely many points.
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It might be of interest to compare this problem with the following extract

from Newton's Principia*

LEMMA II

M

A B F C D E

total area b f
l

(b)

f~\b)

f-
l

(a)

area a f (a)

FIGURE 16

a = /o t] t2 ti t„ = b

If in any figure AacE, terminated by the right lines Aa, AE^ and the curve acE,

there be inscribed any number ofparallelograms Ab, Be, Cd, &c, comprehended

under equal bases AB, BC, CD, &c, and the sides, Bb, Cc, Dd, &c, parallel

to one side Aa of thefigure; and the parallelograms aKbl, bLcm, cMdn, &c, are

completed: then if the breadth of those parallelograms be supposed to be diminished,

and their number to be augmented in infinitum, / say, that the ultimate ratios

which the inscribed figure AKbLcMdD, the circumscribed figure AalbmcndoE,

and curvilinearfigure AabcdE, will have to one another, are ratios ofequality.

For the difference of the inscribed and circumscribed figures is the

sum of the parallelograms Kl, Lm, Mn, Do, that is (from the equality

of all their bases), the rectangle under one of their bases Kb and the

sum of their altitudes Aa, that is, the rectangle ABla. But this rectangle,

because its breadth AB is supposed diminished in infinitum, becomes less

than any given space. And therefore (by Lem. 1) the figures inscribed

and circumscribed become ultimately equal one to the other; and much
more will the intermediate curvilinear figure be ultimately equal to either.

QE.D.

"21. Suppose that / is increasing. Figure 16 suggests that

/'
J a

/"• =bf~\b)
ff-

l

(b)

af~\a) -

/
/.

Jf-Ha)

(a) If P = {t , t,,} is a partition of [a,b], let P' = {f~
]

(t ),

f~
l

(/„)}. Prove that, as suggested in Figure 17,

L(f~
l

, P) + U(f, P') = bf~\b) - af~\a).

(b) Now prove the formula stated above.

(c) Find [ &
J a

: dx for < a < b.

22. Suppose that / is a continuous increasing function with f(0) — 0. Prove

that for a, b > we have Youngs inequality,

ab< f
Jo

f{x)dx- I f~
l
(x)dx,

I I
i

. I K I. I 7

and that equality holds if and only if b — f{a). Hint: Draw a picture like

Figure 16!

Newton's Principia, A Revision ofMott's Translation, by Florian Cajori. University of California

Press, Berkeley, California, 1946.
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FIGURE 18

23. (a) Prove that if / is integrable on [a,b] and m < f(x) < M for all x in

[a, b], then

/"
J a

f{x)dx = (b — a)ii

for some number /i with m < i± < M.

(b) Prove that if / is continuous on [a , b] , then

/' f(x)dx = (b-a)f($)

for some £ in [a , b]

.

(c) Show by an example that continuity is essential.

(d) More generally, suppose that / is continuous on [a , b] and that

integrable and nonnegative on [a , b] . Prove that

8 is

/'
J a

f(x)g(x)dx = /($) / g(x)dxfJ a

for some £ in [a , b] . This result is called the Mean Value Theorem for

Integrals.

(e) Deduce the same result if g is integrable and nonpositive on [a , b]

.

(f

)

Show that one of these two hypotheses for g is essential.

24. In this problem we consider the graph of a function in polar coordinates

(Chapter 4, Appendix 3). Figure 18 shows a sector of a circle, with central

angle 9. When 6 is measured in radians, the area of this sector is r~ —
. Now

consider the region A shown in Figure 19, where the curve is the graph in

polar coordinates of the continuous function /. Show that

area A
1 f

Hl

= « / f(0)
2
d0.

z J0o

'IGURK 19

*25. Let / be a continuous function on [a, b]. If P — {to /„ } is a partition of

[a , b] , define

n

£(/, P) = J2 V^-f;-,) 2
+[/(*;) -/(f;_i)]

2
.
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a — to t\ h ti ?4 = b

FIGURE 20

I
!'. i RE 21

The number £(f, P) represents the length of a polygonal curve inscribed in

the graph of / (see Figure 20). We define the length of / on [a, b] to be

the least upper bound of all i(f, P) for all partitions P {provided that the set

of all such £(f, P) is bounded above).

(b)

(d)

If / is a linear function on [a , b]
,
prove that the length of / is the

distance from (a, f (a)) to (b, f(b)).

If / is not linear, prove that there is a partition P = {a,t,b} of [a, b]

such that £(/, P) is greater than the distance from (a, f{a)) to (b, f{b)).

(You will need Problem 4-9.)

Conclude that of all functions / on [a, b] with f(a) = c and f(b) = d,

the length of the linear function is less than the length of any other. (Or,

in conventional but hopelessly muddled terminology: "A straight line is

the shortest distance between two points".)

Suppose that /' is bounded on [a , b] . If P is any partition of [a , b]

show that

(e)

(f)

L(\/\ +(f)\ P) < i(f, P) < U(Vl + (f')
2

, P).

Hint: Use the Mean Value Theorem.

Why is sup{l(\/l + (/')
2

, P)} < sup{£(/, P)}? (This is easy.)

Now show that sup{£(/, P)} < inf \U (V 1 + (./")
2

, P)j, thereby proving

that the length of / on [a,b] is / v 1 + if')
2

, if vl + (f)
2

is inte-

J a

grable on [#,&]. Hint: It suffices to show that if P' and P" are any two

partitions, then £(/, P') < U{J\ + (./")
2

, P"). If P contains the points

of both P' and P", how does i(f, P') compare to €(/, P)?

(g) Let i£(x) be the length of the graph of / on [a, x], and let d(x) be the

length of the straight line segment from (a, f{a)) to (x,f(x)). Show

that if v 1 + (/') is integrable on [a, b] and /' is continuous at a (i.e.,

if lim f'{x) = f(a)), then

lim = 1.

x^a+ d{x)

Hint: It will help to use a couple of Mean Value Theorems.

(h) In Figure 21, the part of the graph of / between ^ and ^ is just half the

size of the part between 5 and 1 , the part between g and 4 is just half

the size of the part between ^ and 5, etc. Show that the conclusion of

part (g) does not hold for this /.

26. A function s defined on [a, b\ is called a step function if there is a partition

P — {/<) tn ] of \a, b] such that 5' is a constant on each (f,-_] , /, ) (the values

of .v at tj may be arbitrary).

(a) Prove that if / is integrable on [a, b], then for any £ > there is a step
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p b p b

function s\ < f with I / — / s\ < e, and also a step function S2 > f
J a J a

pb pb

with I S2 — I f < s.

Ja Ju

(b) Suppose that for all s > there are step functions s\ < f and si > f
pb pb

such that / S2 — I s\ < e. Prove that / is integrable.

Ja Ja

f"
(c) Find a function / which is not a step function, but which satisfies / / =

J a

L(f, P) for some partition P of [a, b\.

*27. Prove that if / is integrable on [a, b] , then for any e > there are continuous
pb pb

functions g < f < h with / // — / g < £ Hint: First get step functions
J a J a

with this property, and then continuous ones. A picture will help immensely.

28. (a) Show that if s\ and S2 are step functions on [a, b], then s\ + S2 is also.

pb pb pb

(b) Prove, without using Theorem 5, that / (51+52)= / s\ + I S2-

Ja Ja Ja
(c) Use part (b) (and Problem 26) to give an alternative proof ofTheorem 5.

29. Suppose that / is integrable on [a,b]. Prove that there is a number x in

[a , b] such that / / = / / Show by example that it is not always possible
«/</ J X

to choose x to be in {a, b).

*30. The purpose of this problem is to show that if / is integrable on [a , b] , then

/ must be continuous at many points in [a, b].

(a) Let P = {to tn ) be a partition of [a, b] with (/(/, P) - L(f, P) <

b — a. Prove that for some / we have M, — m, < 1.

(b) Prove that there are numbers a\ and b\ with a < a\ < b\ < b and

sup{/(A") : a\ < x < b\) — inf{/(jc) : a\ < x < b\) < 1. (You can choose

[«!,/?]] = [ti_i , ti\ from part (a) unless i = 1 or n; and in these two cases

a very simple device solves the problem.)

(c) Prove that there are numbers a2 and /?2 with a\ < 02 < ^2 < b\ and

sup{/Cv) : «2 S x < ^2} — inf [fix) : ci2 < x < ^2} < h-

(d) Continue in this way to find a sequence of intervals /„ = [a„, bn ] such

that sup{/(x) : x in /„} — inf{/(x) : x m I,,} < l/n. Apply the Nested

Intervals Theorem (Problem 8-14) to find a point x at which / is con-

tinuous.

(e) Prove that / is continuous at infinitely many points in [a , b]

.

f
b

*31. Let / be integrable on [#,&]. Recall, from Problem 13, that / / > if

J a

fix) > for all x in [a,b].

(a) Give an example where fix) > for all x, and fix) > for some .v in

[a,b], and
j f = 0.

J a
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(b) Suppose f{x) > for all x in [a, b] and / is continuous at xo in [a,b]

f"and f(xo) > 0. Prove that / j > 0. Hint: It suffices to find one lower
Ja

sum L(f, P) which is positive.

(c) Suppose f is integrable on [a, b] and f(x) > for all x in [a, b\. Prove

r b

that / / > 0. Hint: You will need Problem 30; indeed that was one
J a

reason for including Problem 30.

f
b

*32. (a) Suppose that / is continuous on [a, b] and / fg=0 for all continuous
J a

functions g on [a, b]. Prove that f —0. (This is easy; there is an obvious

g to choose.)

f
h

(b) Suppose / is continuous on [a,b] and that / fg = for those con-
J

a

tinuous functions g on [a,b] which satisfy the extra conditions g(a) =
gib) = 0. Prove that / = 0. (This innocent looking fact is an important

lemma in the calculus of variations; see reference [22] of the Suggested

Reading.) Hint: Derive a contradiction from the assumption /(xq) >

or f(xo) < 0; the g you pick will depend on the behavior of / near *o-

33. Let f(x) — x for x rational and f(x) = for x irrational.

(a) Compute L( f, P) for all partitions P of [0,1].

(b) Find inf {£/(/, P) : P a partition of [0, 1]}.

*34. Let f{x) = for irrational x, and \/q if x = p/q in lowest terms. Show

that / is integrable on [0, 1] and that / f — 0. (Every lower sum is clearly

Jo

0; you must figure out how to make upper sums small.)

*35. Find two functions / and g which are integrable, but whose composition

g o / is not. Hint: Problem 34 is relevant.

*36. Let / be a bounded function on [a,b] and let P be a partition of [a,/?].

Let Mi and m,- have their usual meanings, and let M/ and m,' have the

corresponding meanings for the function |/|.

(a) Prove that M
t

' - m,-' < M, - m,.

(b) Prove that if / is integrable on [a , b] , then so is
| / 1

.

(c) Prove that if / and g are integrable on [a, b], then so are max(/, g) and

min(/, g).

(d) Prove that / is integrable on [a , b] if and only if its "positive part"

max(/, 0) and its "negative part" min(/, 0) are integrable on [a, b].

37. Prove that if / is integrable on [a, b], then

/
f{t)dt < / \fit)\dt.

Hint: Phis follows easily from a certain string of inequalities; Problem 1-14

is relevant.



13. Integrals 281

"38. Suppose / and g are integrable on [a,b] and f(x),g(x) > for all x in

[a, b]. Let P be a partition of [a, b]. Let M,-' and m,' denote the appropriate

sup's and inf 's for /, define M," and m," similarly for g, and define M, and m,

similarly for fg.

(a) Prove that M
t
< Mi'M" and ra, > mi'm"

.

(b) Show that

tf (/*, F) - L(fg, P) < Y,[M>'M>' ~ mi'mflte - ft_i).

(c) Using the fact that / and g are bounded, so that \f(x)\, \g(x)\ < M for

x in [a , b] , show that

U(fg,P)-L(fg,P)

In
n 1

^[M/ - m/](/, - r,-_i) + ^[M," - m,"]{U - U-l)

i=\ i=\ \

(d) Prove that fg is integrable.

(e) Now eliminate the restriction that f(x),g(x) > for x in [a, b].

39. Suppose that / and g are integrable on [a, b]. The Cauchy-Schwarz inequality

states that

([>)<{>%!>
(a) Show that the Schwarz inequality is a special case ofthe Cauchy-Schwarz

inequality.

(b) Give three proofs of the Cauchy-Schwarz inequality by imitating the

proofs of the Schwarz inequality in Problem 2-2 1 . (The last one will

take some imagination.)

(c) If equality holds, is it necessarily true that / = Xg for some A.? What if

/ and g are continuous?

(d) Prove that
j

I /
J

< I / /"
I • Is this result true if and 1 are

replaced by a and b?

*40. Suppose that / is integrable on [0, x] for all x > and lim f(x) = a. Prove

that

,. i r
lim -

/ f{t)dt = a.
x^°° x Jo

Hint: The condition lim f(x) = a implies that /(/) is close to a for
x—>oo

pN+M
t > some N. This means that / f(t)dtis close to Ma. If M is large in

J

N

comparison to N, then Ma/(N + M) is close to a.
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a = to X\ t\ x2

FIGURE 1

tn =b

THEOREM 1

PROOF

APPENDIX. RIEMANN SUMS

Suppose that P = {to t„] is a partition of [a, b], and that for each i we
choose some point x, in [f,_i, t{\. Then we clearly have

n

L{f, P) <Y^f(xt){tt
- tt-i) < U(f, P).

n i=\

Any sum / ^/CxtXfr — f,-_i) is called a Riemann sum of / for P. Figure 1 shows

the geometric interpretation of a Riemann sum; it is the total area of n rectangles

that lie partly below the graph of / and partly above it. Because of the arbitrary

way in which the heights of the rectangles have been picked, we can't say for

sure whether a particular Riemann sum is less than or greater than the integral

J
f(x)dx. But it does seem that the overlaps shouldn't matter too much; if the

J CI

bases of all the rectangles are narrow enough, then the Riemann sum ought to be

close to the integral. The following theorem states this precisely.

Suppose that / is integrable on [a , b] . Then for every s > there is some 8 >

such that, if P = {to, . . . , tn } is any partition of [a, b] with all lengths /, — /,_i < 8,

then
>b

\dx

" no

^/(jC/)(ft -/,_!)- / f(x),

i=\
Ja

< B,

for any Riemann sum formed by choosing x
{
in (7,_i, /,].

Since the Riemann sum and the integral both lie between L(/, P) and U(f, P),

this amounts to showing that for any given s we can make U(f, P) — L(f, P) < e

by choosing a 8 such that U(f, P) — L(f, P) < £ for any partition with all lengths

t
t -ti-i <8.

The definition of / being integrable on [a, b] includes the condition that |/| <

M for some M. First choose some particular partition P* = [uq, , . . .,Uk) for

which

U(f,P*)-L(f,P*)<B/2,

and then choose a 8 such that

8 <
AMK

For any partition P with all t, — f,-_i < 8, we can break the sum

£/(/, P) - L(f, P) - YlS Mi ~ m,){ti " r'- l)

/=i

into two sums. The first involves those / for which the interval [/,_i,/,] is com-

pletely contained within one of the intervals \uj-\,Uj\. This sum is clearly <

U(f, P*) — L(f, P*) < s/2. For all other i we will have f,_] < Uj < tj for

some j = 1, . . . , K — 1, so there are at most K — 1 of them. Consequently, the

sum for these terms is < (A' — 1 ) • 2M • 8 < s/2. |
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The moral of this tale is that anything which looks like a good approximation

to an integral really is, provided that all the lengths /, — ?;_i of the intervals in the

partition are small enough. Some of the following problems should bring home
this message with even greater force.

PROBLEMS

1. Suppose that / and g are continuous functions on [a,b]. For a partition

P = {to tn } of [a, b] choose a set of points x, in [?,_] , /,] and another set

of points Uj in [f;_i, tf\. Consider the sum

(wfa), v(ti))

(u(t ),v(t ))

Y^f(.Xi)g(Ui)(ti -ti-l).

(=1

Notice that this is not a Riemann sum of fg for P. Nevertheless, show that

f
b

all such sums will be within e of / fg provided that the partition P has all

Ja

lengths /, — f
; _i small enough. Hint: Estimate the difference between such a

sum and a Riemann sum; you will need to use uniform continuity (Chapter

8, Appendix).

2. This problem is similar to, but somewhat harder than, the previous one.

Suppose that / and g are continuous nonnegative functions on [a , b] . For a

partition P, consider sums

n

Y2 y/f(Xi)+g(Uj) (ti - f,-_i).

i=\

Show that these sums will be within s of fVf
J a

+ g if all t, — f,-_i are small

enough. Hint: Use the fact that the square-root function is uniformly con-

tinuous on a closed interval [0, M]

.

3. Finally, we're ready to tackle something big! (Compare Problem 13-25.)

Consider a curve c given parametrically by two functions u and v on [a, b].

For a partition P = {to /„} of [a, b] we define

£(c P) = J2 \/W) - «^-i)]
2 + b>di) - wfe-i)]

2
;

i=\

IK.l'RE 2

this represents the length of an inscribed polygonal curve (Figure 2). We
define the length of c to be the least upper bound of all £(/, P), if it exists.
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Prove that if u' and v' are continuous on [a, b], then the length of c is

f
y/u' 2 + v'

2
.

4. Let /' be continuous on the interval [Go, 0\]. Show that the graph of / in

polar coordinates on this interval has the length

.ft

5. Using Theorem 1, show that the Cauchy-Schwarz inequality (Problem 13-39)

is a consequence of the Schwarz inequality.



CHAPTER
THE FUNDAMENTAL THEOREM
OF CALCULUS

THEOREM 1 (THE FIRST

FUNDAMENTAL THEOREM
OF CALCULUS)

PROOF

From the hints given in the previous chapter you may have already guessed the

first theorem of this chapter. We know that if / is integrable, then F(x) = f f is

continuous; it is only fitting that we ask what happens when the original function /
is continuous. It turns out that F is differentiable (and its derivative is especially

simple).

Let / be integrable on [a , b] , and define F on [a, b] by

F(x) =
f f.
J a

If / is continuous at c in [a, b], then F is differentiable at c, and

F'ic) = f{c).

(If c — a or b, then F'(c) is understood to mean the right- or left-hand derivative

of F.)

We will assume that c is in (a, b); the easy modifications for c = a or b may be

supplied by the reader. By definition,

F(c + h) - F(c)
F'(c) — lim

h

Suppose first that h > 0. Then

F(c + h) - F(c)

Define nth and M\
x
as follows (Figure 1):

-I.

c+h

f-

mi, = inf \f{x) : c < x < c + h},

Mi, = sup{/(x) : c < x < c + h}.

It follows from Theorem 13-7 that

>L

c+h

Therefore

nu, h < f < Mi, h

F(c + h)-F(c)
mh <

h
<Mh .

If h < 0, only a few details of the argument have to be changed. Let

mi, = inf {f(x) \ c + h < x <c},

Mh — sup{/(jc) : c + h < x < c}.

285
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FIGURE 1

Then

Since

this yields

Jc+h
mh {-h) < f <Mh - i-h).

•C+/1

F(c + h)

pc+n pc

- F(c) = f = - f
Jc Jc+h

m h -h > F(c + h)- F(c) > Mh h.

Since h < 0, dividing by h reverses the inequality again, yielding the same result

as before:

F(c + h)-F(c)
m h < < Mh .

h

This inequality is true for any integrable function, continuous or not. Since / is

continuous at c, however,

lim /»/, = lim Mi, = f(c),
h->0 h^O

and this proves that

F(c + h)-F(c)
F (c) = hm - — = /(c). |

h-*0 h

Although Theorem 1 deals only with the function obtained by varying the upper

limit of integration, a simple trick shows what happens when the lower limit is

varied. If G is defined by

G{x) = f f,
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then

G(x) =
f f~ f /•

Jd J a

Consequently, if / is continuous at c, then

G\c) = -/(c).

The minus sign appearing here is very fortunate, and allows us to extend Theo-

rem 1 to the situation where the function

(*) = fJa

f

is defined even for jc < a . In this case we can write

F(x)

so if c < a we have

-£>

F'(c)=-(-f(c)) = f(c),

exactiy as before.

Notice that in either case, differentiability of F at c is ensured by continuity of /
at c alone. Nevertheless, Theorem 1 is most interesting when / is continuous at

all points in [a , b] . In this case F is differentiable at all points in [a , b] and

F' = f.

In general, it is extremely difficult to decide whether a given function / is the

derivative of some other function; for this reason Theorem 1 1 -7 and

Problems 1 1 -60 and 11-61 are particularly interesting, since they reveal certain

properties which / must have. If / is continuous, however, there is no problem

at all—according to Theorem 1 , / is the derivative of some function, namely the

function

-rJ aFix) = / /.

Ja

Theorem 1 has a simple corollary which frequently reduces computations of

integrals to a triviality.

corollary If / is continuous on [a, b] and f = g' for some function g, then

f = g(b)-g(a).
I

proof Let

Fix) =
f

./'.

Then F' = f — g' on [a, ft]. Consequently, there is a number c such that

F = g + c.
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The number c can be evaluated easily: note that

0= F(a) = g(a) + c,

so c — —g(a); thus

Fix) = g(x) - g(a).

This is true, in particular, for x = b. Thus

f f=F(b) = g(b)-g(a).l
J a

The proofof this corollary tends, at first sight, to make the corollary seem useless:

after all, what good is it to know that

f=g(b)-g(a)
I

if g is, for example, g(x) = f f ? The point, of course, is that one might happen

to know a quite different function g with this property. For example, if

~3

*(*) = and f{x) = x ,

then g'ix) = fix) so we obtain, without ever computing lower and upper sums:

/'
J a

xz dx =

One can treat other powers similarly; if n is a natural number and gix) =
x n+] /in + 1), then g'ix) =x", so

/'
J a

,"+1 ,n+l

x" dx =
n + 1 n + 1

For any natural number n, the function fix) — x~" is not bounded on any interval

containing 0, but if a and b are both positive or both negative, then

b-n+\ a-n+\
x dx —fJ a -n +1 -n + 1

Naturally this formula is only true for n / — 1 . We do not know a simple expressionfor

I,

b
1

— dx.
x

The problem of computing this integral is discussed later, but it provides a good

opportunity to warn against a serious error. The conclusion of Corollary 1 is often

confused with the definition of integrals—many students think that f f is defined

as: "gib) — gia), where g is a function whose derivative is /." This "definition" is

not only wrong—it is useless. One reason is that a function / may be integrable

without being the derivative of another function. For example, if fix) = for

x ^ 1 and /( 1 ) = 1 , then /' is integrable, but / cannot be a derivative (why not?).

There is also another reason that is much more important: If / is continuous,
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then we know that f — g' for some function g; but we know this only because of

Theorem 1. The function f(x) = \/x provides an excellent illustration: if x > 0,

then f{x) = g'(x), where

*(*)= / -dt,
J\ t

and we know of no simpler function g with this property.

The corollary to Theorem 1 is so useful that it is frequently called the Second

Fundamental Theorem of Calculus. In this book, that name is reserved for a

somewhat stronger result (which in practice, however, is not much more useful).

As we have just mentioned, a function / might be of the form g' even if / is not

continuous. If / is integrable, then it is still true that

f f = g(b)-g{a).

The proof, however, must be entirely different—we cannot use Theorem 1 , so we
must return to the definition of integrals.

THEOREM 2 (THE SECOND FUNDA-

MENTAL THEOREM OF CALCULUS)

If / is integrable on [a, b] and / = g' for some function g, then

f = g(b)-g(a).
I

PROOF Let P = {to, . . . ,tn ) be any partition of [a, b]. By the Mean Value Theorem there

is a point x, in [/,_i , t{\ such that

g(ti )-g(ti
_

l ) = g'(x
i
)(t

i -tt-i)

= f(Xi)(ti -tt-i).

If

then clearly

that is,

mt =inf{/(.v) :/,_! < x < tt },

Mi =sup{f(x) :f,-_i < x < tt),

ntiifi - ff_i) < f(Xi)(ti - r,_i) < Mtiti - t
t-i),

mtiti - u-i) < g{tt) - gfa-i) < Mtiti - tt-i).

Adding these equations for / = 1 « we obtain

n n

^]w,(r, -/,_,) <g(b)-g(a) < ^M,(/
(
-r,_,)

i=l i=i

so that

L(f, P) <g(b)-g(a)<U(f,P)

for every partition P. But this means that

*(*)-*( /'•I
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FIGURE 2

/(*) = x^

We have already used the corollary to Theorem 1 (or, equivalently, Theorem 2)

to find the integrals of a few elementary functions:

/'
J a

x" dx =
b"~

,«+]

n + 1 n+\
, n # -1.

(a and b both positive or

both negative if n > 0).

As we pointed out in Chapter 13, this integral does not always represent the area

bounded by the graph of the function, the horizontal axis, and the vertical lines

through (a, 0) and (b, 0). For example, if a < < b, then

x 3 dx

does not represent the area of the region shown in Figure 2, which is given

instead by

-(f*H +
/o
v

Similar care must be exercised in finding the areas of regions which are bounded

by the graphs ofmore than one function—a problem which may frequentiy involve

considerable ingenuity in any case. Suppose, to take a simple example first, that

we wish to find the area of the region, shown in Figure 3, between the graphs of

the functions

f(x) = x
2 and g(x) = x 3

on the interval [0,1]. If < x < 1, then < x 3 < x 2
, so that the graph of g lies

below that of /. The area of the region of interest to us is therefore

area /?(/, 0, 1)- area R(g,0, 1),

which is

r
1

o r
l

,
I x dx — I x dx
Jo Jo

3 4

This area could have been expressed as

/'
J a

(f-8)-

K, I RJ

If g(x) < f(x) for all x in [a, b], then this integral always gives the area bounded

by / and g, even if f and g are sometimes negative. The easiest way to see this is shown

in Figure 4. If c is a number such that / +c and g +c are nonnegative on [a,&],

then thr icgion R\, bounded by /' and g, has the same area as the region #i.
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/ + cA

(b)

FIGURE 4

bounded by / + c and g + c. Consequently,

area R[ = area R
pb pb

2=
/ (f+c)- /

=
f [(f + c)

*b

(g + C)

(g + c)]

J a

(f-8).

This observation is useful in the following problem: Find the area of the region

bounded by the graphs of

fix) x — X and g(x) = x'

The first necessity is to determine this region more precisely. The graphs of /
and g intersect when

or

or

or

1 2
x - X = X ,

3 2
x — x — X 0,

jc(jc
2 -* - 1) =0,

n \ + ^5 1-75
x = 0,

2 2

On the interval ([1 — v5]/2, 0) we have x — x > x and on the interval

(0, [1 + v5]/2) we have x 2 > x 3 — x. These assertions are apparent from the

graphs (Figure 5), but they can also be checked easily, as follows. Since f(x) = g(x)

only if x — 0, [ 1 + V5 ] /2, or [ 1 — V5 ] /2, the function f — g does not change sign

on the intervals ([1 — V5]/2, 0) and (0, [1 + V5 ]/2); it is therefore only necessary

to observe, for example, that

(-^)
3 -(-^)-(-^) 2 = |>o.

I 1- 1
2 = -1 <0,

to conclude that

f-8>0 on([l-V5]/2,0),

/-g<0 on (0, [1 + V5]/2).

The area of the region in question is thus

p0 r—Z—
I (x — x — x~) dx +

I
[x — (x~ — x)] dx.

As this example reveals, one of the major problems involved in finding the areas

of a region may be the exact determination of the region. There are, however,

more substantial problems of a logical nature—we have thus far defined t he areas

of some very special regions only, which do not even include some of the regions

whose areas have just been computed! We have simply assumed that area made
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FIGURE 5

sense for these regions, and that certain reasonable properties of "area" do hold.

These remarks are not meant to suggest that you should regard exercising ingenuity

to compute areas as beneath you, but are meant to indicate that a better approach

to the definition of area is available, although its proper place is somewhere in

advanced calculus. The desire to define area was the motivation, both in this

book and historically, for the definition of the integral, but the integral does not

really provide the best method of defining areas, although it is frequently the proper

tool for computing them.

It may be discouraging to learn that integrals are not suitable for the very pur-

pose for which they were invented, but we will soon see how essential they are for

other purposes. The most important use of integrals has already been emphasized:

if / is continuous, the integral provides a function y such that

/(*) = /(*)

This equation is the simplest example of a "differential equation" (an equation

for a function y which involves derivatives of y). The Fundamental Theorem

of Calculus says that this differential equation has a solution, if / is continuous.

In succeeding chapters, and in various problems, we will solve more complicated

equations, but the solution almost always depends somehow on the integral; in

order to solve a differential equation it is necessary to construct a new function,

and the integral is one of the best ways of doing this.

Since the differentiable functions provided by the Fundamental Theorem of

Calculus will play such a prominent role in later work, it is very important to

realize that these functions may be combined, like less esoteric functions, to yield

still more functions, whose derivatives can be found by the Chain Rule.

Suppose, for example, that

fix) -[
1

1 + sin
z

t

dt.
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Although the notation tends to disguise the fact somewhat, / is the composition

of the functions

C{x)=x 3 and F(x) =
j

-^-dt.= fr-Lr-J a 1 + sin t

In fact, f(x) — F(C(x)); in other words, / = F o C. Therefore, by the Chain

Rule,

fix) = F'{Cix))-C'ix)

= F f

(x
2
) -3x

2

1

1 + sin x i
3x

2
.

If /is defined, instead, as

fix)--
r l

Jx3 1 + sin
2

t

dt,

then

fix) --

1

1 + sin x 3
3x 2

.

If /is defined as the reverse composition,

fix) =or i

—

~

f/

1 + sin r /

then

fix) == C'(F(x)) F\x)

<i.
'

'

2 *)
1 + sin" t )

2
1

1 + sin x

Similarly, if

/> sin a i

fix) = / r^T dt
>

J a 1 + sin" t

r l

s(*) = / —r dt
*

./sin.* 1 + Sin t

then

h(x) = sin 1

Ja 1 + sin
2

r 7

f'(x\ —J \X ) 2 V-U.3 A ,

1 + sin" (sin x)

-1
e'(r\ —S \X

) — 2 • '

1 + sin (sin *)

/z'OO = cos ( / -
1 \ 121 , -2+ sin / / 1 + sin x\Ja 1
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The formidable appearing function

yJ ti 1 -Hsin— i J
fix) -

J a

1

dt
1 + sin

2
t

is also a composition; in fact, / = F o F. Therefore

f'{x) = F\F{x))-F\x)

1 1

1 + sin"Of
1

dt
1 + sin x

1 + siiT t

As these examples reveal, the expression occurring above (or below) the integral

sign indicates the function which will appear on the right when / is written as a

composition. As a final example, consider the triple compositions

1 + sin f

/(*) = /Ja

which can be written

dt, g(x) =/ L

(r-^-dt)
\Ja l+sin" r /

L
1

1 +sirT t

-dt 1

1 + sin /

dt.

f = F o F o C and g = F o F o F.

Omitting the intermediate steps (which you may supply, if you still feel insecure)

we obtain

1 1

fix) =

1 + sin'
1

1 + sin t

dt

. -o-t • 3x\
1 + sin" x 3

g'ix)

1 + sin"

I
tecM 1

1 + sin t

dt
1 + sin' rJ a

1

1 + sin" t

I

dt

l+sin x

Like the simpler differentiations of Chapter 10, these manipulations should be-

come much easier after the practice provided by some of the problems, and, like

the problems of Chapter 10, these differentiations are simply a test of your under-

standing of the Chain Rule, in the somewhat unfamiliar context provided by the

Fundamental Theorem of Calculus.

The powerful uses to which the integral will be put in the following chapters

all depend on the Fundamental Theorem of Calculus, yet the proof of that the-

orem was quite easy—it seems that all the real work went into the definition of

the integral. Actually, this is not quite true. In order to apply Theorem 1 to a

continuous function we need to know that if / is continuous on [«,/?], then / is

integrable on [«, b\. Although we've already offered one proof of this result, there
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is a more elementary argument that you might prefer. Like most "elementary"

arguments, it's quite tricky, but it has the virtue that it will force a review of the

proof of Theorem 1.

If / is any bounded function on [a, b], then

sup{L(/, />)} and inf{!/(/, P)}

will both exist, even if / is not integrable. These numbers are called the lower

integral of / on [a , b] and the upper integral of / on [a , b] , respectively, and

will be denoted by
pb pb

L / and U /.

J a J a

The lower and upper integrals both have several properties which the integral

possesses. In particular, if a < c < b, then

pb pc pb pb pc pb

L
/ / = L / / + L / / and U / / = U / / + U / /,
J a J a J c Ja Ja Jc

and if m < fix) < M for all jc in [a, b], then

pb pb

m(b-a)<L f <U/ f < M{b - a).

J a J a

The proofs of these facts are left as an exercise, since they are quite similar to the

corresponding proofs for integrals. The results for integrals are actually a corollary

of the results for upper and lower integrals, because / is integrable precisely when

ff-vf /•

We will prove that a continuous function / is integrable by showing that this

equality always holds for continuous functions. It is actually easier to show that

J a J a

f

for all x in [a , b] ; the trick is to note that most of the proof of Theorem 1 didn't

even depend on the fact that / was integrable!

theorem 13-3 If / is continuous on [«,/?], then / is integrable on [a, b\.

PROOF Define functions L and U on [a , b] by

L(x) = L f f and U(x) = U f f.
J a Ja

Let x be in (a,b). If h > and

mh - inf {f{t) : x < t < x + /?},

Mh = sup{/(0 : x < t < x +h),
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then

so

or

/x+h rx+h

/<U/ f<Mh -h,

m h h < L(x + h) - L(x) < U(x + h) - U(x) < M,, h

L(x+h)-L(x) U(x+h)-U(x)
mi, <

h
<

//

<Mh .

If h < and

m h = inf{/(0 : x + h < t < x),

Mh = sup{/(f) : x + h < t < x],

one obtains the same inequality, precisely as in the proof of Theorem 1

.

Since / is continuous at x, we have

lim nih = lim Mi, = f(x),
h^O /i-vO

and this proves that

L'{x) = U'(x) = f(x) for x in (a, b).

This means that there is a number c such that

U (x ) = L(x) + c for all x in [a , b]

.

Since

U(a) = L(a) = 0,

the number c must equal 0, so

U(x)= L(x) for all x in [a,b].

In particular,

U f f = U(b) = L(b) = L f f,

and this means that / is integrable on [a ,b\. |

PROBLEMS

1 . Find the derivatives of each of the following functions.

r*
3

(i) F(x)= / sin
3
tdt.

Ja

Jf sixth dt)
J

(ii) F{x) = /

(iii) F(x)

(iv) F(x)

J15 VA

-I

+ sin
6

t + t
2

1

1 +t 2 +sinz
?

1

dt.

nrdt dy.

1 + t
2 + sin

2
/
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(v) F{x) -fJ a

dt.

la 1 + t
2 + sin" /

(vi) F(x) = sin ( / sin
(

/ sin
3

1 dt 1 c

_, f
x

1

(vii) F , where F(x) = I -dt.

-i T !
(viii) F , where FCO = / dt

Jo vT^72

[Find (F )'(;0 in terms of

F-'U).)

2. For each of the following /, if F(x) — fQ f, at which points x is F'(x) —

f{x)? (Caution: it might happen that F'(x) — fix), even if / is not contin-

uous at x.)

(i) fix) = if x < 1, f(x) = 1 if x > 1.

(ii) /(jc) = if .v < 1, /(*) = 1 if x > 1.

(iii) /(jc) = if x ^ 1, /(x) = 1 if jc = 1.

(iv) /(x) = if jc is irrational, fix) = \/q if x = p/q in lowest terms.

(v) /(jc) = if jc <0, fix) =x if x >0.

(vi) f(x) = if x < or jc> 1, fix) = l/[l/x] if < x < 1.

(vii) / is the function shown in Figure 6.

(viii) fix) = 1 if x = \/n for some n in N, fix) — otherwise.

FIGURE 6

3. Show that the values of the following expressions do not depend on x:

io 1 + t
2 °

f
h

Wx
!

(ii) /
sill I

dt.

vT

o l + r

dt, x in (0,7r/2).
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4. Find (./"-' )'(0) if

(i) f(x)= I 1 + sm(sin t)dt.
Jo

(ii) f(x ) — / cos(cosf) dt.

(Don't try to evaluate / explicitly.)

5. Find a function g such that

(i) / tg{t)dt=x + x2 .

Jo
2

(ii) / tg{t)dt = x+x 2
.

Jo

(Notice that g is not assumed continuous at 0.)

6. (a) Find all continuous functions / satisfying

/ = (/(*))" + C for some constant C //Jo
assuming that / has at most one 0.

(b) Also find a solution that is on an interval (— oo, b] with < b, but

non-zero for x > b.

(c) Finally, for C = and any interval [a, b] with a < < b, find a solution

that is on [a , b] , but non-zero elsewhere.

7. Use Problem 13-23 to prove that

Isfl Jo J\ + v2

1
1

-dx < -.

v
7
! ^ v2

3
— <
8
" i;V

'/2 /l-x
J v/3

i
^-Y - ^r-

1 +x 4

8. Find F'(x) if F(.x) = / xf{t)dt. (The answer is wo/ xf(x); you should

perform an obvious manipulation on the integral before trying to find F'
.)

9. Prove that if / is continuous, then

/ f(u)(x-u)du= I f{t)dt\du.

Hint: Differentiate both sides, making use of Problem 8.

*10. Use Problem 9 to prove that

f f(u)(x-u) 2 du = 2 f (f ' IT f(t)dt) duA du 2 .

11. Find a function / such that f'"(x) = 1 / v 1 + sin x. (This problem is

supposed to be easy; don't misinterpret the word "find.")
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FIGURE 7

12. A function / is periodic, with period a, if fix + a) = fix) for all x.

(a) If / is periodic with period a and integrable on [0, a], show that

f for all b.

13.

:

14.

15.

16.

17.

18.

19.

f'-7
(b) Find a function / such that / is not periodic, but /' is. Hint: Choose

a periodic g for which it can be guaranteed that fix) = fQ g is not

periodic.

(c) If /' is periodic with period a and f(a) = /(0), then / is also periodic

with period a.

"(d) Conversely, if /' is periodic with period a and / is periodic (with some

period not necessarily = a), then f(a) — /(0).

Find fQ l/xdx, by simply guessing a function / with fix) = y/x, and using

the Second Fundamental Theorem of Calculus. Then check with Prob-

lem 13-21.

Use the Fundamental Theorem of Calculus and Problem 13-21 to derive the

result stated in Problem 12-21.

Let C\, C and Ci be curves passing through the origin, as shown in Figure 7.

Each point on C can be joined to a point of C\ with a vertical line segment

and to a point of C^ with a horizontal line segment. We will say that C bisects

C\ and Cj if the regions A and B have equal areas for every point on C.

(a) If C\ is the graph of fix) — x 2
, x > and C is the graph of fix) = 2x 2

,

x > 0, find C2 so that C bisects C\ and Ci-

(b) More generally, find C2 if C\ is the graph of fix) = xm , and C is the

graph of fix) — ex"1

for some c > 1.

(a) Find the derivatives of Fix) = ff \/t dt and Gix) = fb
* \/t dt.

(b) Now give a new proof for Problem 13-15.

Use the Fundamental Theorem of Calculus and Darboux's Theorem (Prob-

lem 1 1-60) to give another proof of the Intermediate Value Theorem.

Prove that if h is continuous, / and g are differentiable, and

F(x) = / h(t)dt,
Jfix)

then F\x) = h(g(x)) • g'ix) - hifix)) fix). Hint: Try to reduce this to

the two cases you can already handle, with a constant either as the lower or

the upper limit of integration.

Let / be integrable on [a, b], let c be in (a, b), and let

Fix) = I f, a <x <b.
Ja

For each of the following statements, give either a proof or a counterexample.

(a) If / is differentiable at c, then F is differentiable at c.

(b) If / is differentiable at c, then F' is continuous at c.

(c) If /' is continuous at c, then F' is continuous at c.
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/(*) =

*20. Let

r 1

cos — , x^O
x

0, A" = 0.

Is the function F(x) = Jq f differentiable at 0? Hint: Stare at page 179.

21. Suppose that /' is integrable on [0, 1] and /(0) = 0. Prove that for all x in

[0, 1] we have

l/(*)l < uy-
Show also that the hypothesis /(0) = is needed. Hint: Problem 13-39.

*22. Suppose that / is a differentiable function with /(0) = and < /' < 1.

Prove that for all x > we have

/>(/,'')'

*23. (a) Suppose G' = g and F' = f. Prove that if the function y satisfies the

differential equation

(*) #(>'(-*)) • y'(x) — fix) for all x in some interval,

then there is a number c such that

(**) G{y{x)) = F(x) + c for all x in this interval.

(b) Show, conversely, that if y satisfies (**), then v is a solution of (*).

(c) Find what condition y must satisfy if

l+x 2

y\x) =
1+yU)

(In this case g(t) = 1 + 1 and f{t) = 1 + t~.) Then "solve" the resulting

equations to find all possible solutions y (no solution will have R as its

domain).

(d) Find what condition y must satisfy if

y'ix)

-1

1 +5[v(jc)]
4*

(An appeal to Problem 12-14 will show that there are functions satisfying

the resulting equation.)

(e) Find all functions y satisfying

y(x)y\x) = -x.

Find the solution y satisfying y(0) = — 1.



14. The Fundamental Theorem of Calculus 301

24. In Problem 10-19 we found that the Schwarzian derivative

f"\x) 3 (f'{x)

f'(x) 2\f'(x)

was for f(x) = (ax + b)/(cx + d). Now suppose that / is any function

whose Schwarzian derivative is 0.

(a) f"
2
/f'

3
is a constant function.

(b) / is the form f(x) = (ax + b)/(cx + d). Hint: Consider u — f and

apply the previous problem.

25. The limit lim f f, if it exists, is denoted by f f (or f f(x)dx), and

called an "improper integral."

(a) Determine
Jj

x r
dx, if r < — 1.

(b) Use Problem 13-15 to show that Jj l/x dx does not exist. Hint: What
On

can you say about Jj \/xdx?

(c) Suppose that /(jc) > for x > and that f f exists. Prove that if

< g(x) < f(x) for all x > 0, and g is integrable on each interval

[0, N], then fQ g also exists.

(d) Explain why f^° 1/(1 + x )dx exists. Hint: Split this integral up at 1.

26. Decide whether or not the following improper integrals exist.

1

IJo

LJo

v/l+.v 3

X

dx.

dx.

m

l+.t 3 / 2

f°° 1

/ —-=^ dx (this is really a type considered in Problem 28).

./0 xJ\ +x

27. The improper integral j°_ f is defined in the obvious way, as lim f° f.

But another kind of improper integral f_ f is defined in a nonobvious way:

it is Jq / + /.qo /, provided these improper integrals both exist.

(a) Explain why f_ 1/(1 + x~)dx exists.

(b) Explain why J^xdx does not exist. (But notice that lim f_N x dx does

exist.)

(c) Prove that if f™ f exists, then lim J_N f exists and equals f™ f.

Show moreover, that lim f_ N /"and lim f_ n2 f both exist and equal

J-oo /• Can you state a reasonable generalization of these facts? (If you

can't, you will have a miserable time trying to do these special cases!)
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28. There is another kind of "improper integral" in which the interval is

bounded, but the function is unbounded:

(a) If a > 0, find lim f" l/^/xdx. This limit is denoted by f^ l/^/xdx,

even though the function f(x) = \/y/x is not bounded on [0, a], no

matter how we define /(0).

(b) Find

/

(JV </* if -1 <r <0.

(c) Use Problem 13-15 to show that /q jc
_1 dx does not make sense, even as

a limit.

(d) Invent a reasonable definition of f \x\
r dx for a < and compute it for

-1 <r <0.

(e) Invent a reasonable definition of j_\(\ — x~)~ ] ^~ dx, as a sum of two

limits, and show that the limits exist. Hint: Why does /_](1 + x)~ 1
^ dx

exist? How does (1 +x) _1//2 compare with (1 —jc 2
)

_1//2
for —1 < x < 0?

/"' fit)
(a) If / is continuous on [0, 1], compute lim x I dt.

*(b) If / is integrable on [0, 1] and continuous at 0, compute

29.

lim x I —^
*^0+ Jx t

2
dt.

30. It is possible, finally, to combine the two possible extensions of the notion of

the integral.

(a) If f(x) = 1/Vjc for < x < 1 and f(x) = l/x 2
for x > 1, find

poo

I
f(x)dx (after deciding what this should mean).

Jo
poo

(b) Show that / x
r dx never makes sense. (Distinguish the cases — 1 <

r < and r < — 1 . In one case things go wrong at 0, in the other case

at oo; for r — — 1 things go wrong at both places.)



CHAPTER THE TRIGONOMETRIC FUNCTIONS

The definitions of the functions sin and cos are considerably more subtle than

one might suspect. For this reason, this chapter begins with some informal and

intuitive definitions, which should not be scrutinized too carefully, as they shall

soon be replaced by the formal definitions which we really intend to use.

In elementary geometry an angle is simply the union of two half-lines with a

common initial point (Figure 1).

FIGURE 1

More useful for trigonometry are "directed angles," which may be regarded as

pairs (l\, h) of half-lines with the same initial point, visualized as in Figure 2.

FIGURE 2

FIGURE I

If for l\ we always choose the positive half of the horizontal axis, a directed angle

is described completely by the second half-line (Figure 3).

Since each half-line intersects the unit circle precisely once, a directed angle is

described, even more simply, by a point on the unit circle (Figure 4), that is, by a

point (x, v) with x + y
2 = 1.

303
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FIGURE 4

1 K,LT RE 5

The sine and cosine of a directed angle can now be defined as follows (Figure 5):

a directed angle is determined by a point (x, y) with x + y
2 = 1; the sine of the

angle is defined as y, and the cosine as x.

Despite the aura of precision surrounding the previous paragraph, we are not

yet finished with the definitions of sin and cos. Indeed, we have barely begun.

What we have defined is the sine and cosine of a directed angle; what we want

to define is sin* and cos* for each number x. The usual procedure for doing

this depends on associating an angle to every number. The oldest method is to

"measure angles in degrees." An angle "all the way around" is associated to 360,

an angle "half-way around" is associated to 1 80, an angle "a quarter way around"

to 90, etc. (Figure 6). The angle associated, in this manner, to the number x, is

called "the angle of x degrees." The angle of degrees is the same as the angle

of 360 degrees, and this ambiguity is purposely extended further, so that an angle

of 90 degrees is also an angle of 360 + 90 degrees, etc. One can now define a

function, which we will denote by sin°, as follows:

sin°(x) = sine of the angle of x degrees.

There are two difficulties with this approach. Although it may be clear what we

mean by an angle of 90 or 45 degrees, it is not quite clear what an angle of v 2

degrees is, for example. Even if this difficulty could be circumvented, it is unlikely

that this system, depending as it does on the arbitrary choice of 360, will lead

to elegant results—it would be sheer luck if the function sin° had mathematically

pleasing properties.

"Radian measure" appears to offer a remedy for both these defects. Given any

number x , choose a point P on the unit circle such that x is the length of the

arc of the circle beginning at (1,0) and running counterclockwise to P (Figure 7).

The directed angle determined by P is called "the angle of x radians." Since the

length of the whole circle is 2tt , the angle of x radians and the angle of 2n + x

radians are identical. A function sin' can now be defined as follows:

I K. i RE 6

sin
r
(x) = sine of the angle of x radians.

This same method can easily be adopted to define sin°; since we want to have

sin° 360 = sin
r
2n, we can define

sin x = sin
2ttx

360
= sm

7TX

T80

We shall soon drop the superscript r in sin' , since sin
r
(and not sin ) is the only

function which will interest us; before we do, a few words ofwarning are advisable.

The expressions sin° x and sin
r
x are sometimes written

sinjc

sin.v radians,

but this notation is quite misleading; a number x is simply a number it does not

carry a banner indicating that ii is "in degrees" or "in radians." If the meaning
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ngth x

FIGURE 7

length x

area

FIGURE 8

of the notation "sinx" is in doubt one usually asks:

"Is x in degrees or radians?"

but what one means is:

Do you mean sin or sin r

Even for mathematicians, addicted to precision, these remarks might be dispens-

able, were it not for the fact that failure to take them into account will lead to

incorrect answers to certain problems (an example is given in Problem 19).

Although the function sin' is the function which we wish to denote simply by sin

(and use exclusively henceforth), there is a difficulty involved even in the definition

of sin' . Our proposed definition depends on the concept of the length of a curve.

Although the length of a curve has been defined in several problems, it is also easy

to reformulate the definition in terms of areas. (A treatment in terms of length is

outlined in Problem 28.)

Suppose that x is the length of the arc of the unit circle from (1, 0) to P; this arc

thus contains x/2jt of the total length 2jt of the circumference of the unit circle.

Let S denote the "sector" shown in Figure 8; 5 is bounded by the unit circle, the

horizontal axis, and the half-line through (0, 0) and P. The area of S should be

x/2jt times the area inside the unit circle, which we expect to be jt; thus S should

have area
x x

2t7
71 = 2-

We can therefore define cos x and sin x as the coordinates of the point P which

determines a sector of area x/2.

With these remarks as background, the rigorous definition of the functions sin

and cos now begins. The first definition identifies jt as the area of the unit circle-

more precisely, as twice the area of a semicircle (Figure 9).

DEFINITION

area

FIGURE 9

(This definition is not offered simply as an embellishment; to define the trig-

onometric functions it will be necessary to first define siiut and cosjc only for

< x < jr.)

The second definition is meant to describe, for —1 < x < 1, the area A(x) of

the sector bounded by the unit circle, the horizontal axis, and the half-line through

(*, V 1 — x 2
). If < * < 1, this area can be expressed (Figure 10) as the sum of

the area of a triangle and the area of a region under the unit circle:

Vl -a 2

vT t
2 dt.
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FIGURE 10

(x,Vl-x2
)

FIGURE I 1

DEFINITION

I I <
. 1 K E 12

DEFINITION

This same formula happens to work for —1 < x < also. In this case (Figure 1 1),

the term
Xyfl

is negative, and represents the area of the triangle which must be subtracted from

the term

iy\-t 2 dt.

If - 1 < x < 1 , then

A(x) =
xfT-x 2

+[^ t
2 dt.

Notice that if — 1 < x < 1 , then A is differentiable at x and (using the Funda-

mental Theorem of Calculus),

A'W =
\

-2x

2y/\-x 2

+ ^l-A- 2 -/T1^

-x
2 + (\-x 2

)

J\-x 2

2>/l -x 2

1 -2.v 2 -2(l -x 2
)

2s/\-x 2

-1

Vl-x 2

2>/1-jc 2

Notice also (Figure 12) that on the interval [— 1, 1] the function A decreases

from „
i

Al.(-1) = 0+/' 7l-f2^ =
|

to A(l) = 0. This follows directly from the definition of A, and also from the fact

that its derivative is negative on (—1, 1).

For < x < n we wish to define cos x and sin x as the coordinates of a point

P = (cosx, sin x) on the unit circle which determines a sector whose area is x/2

(Figure 13). In other words:

If < X < 7T, then cos X is the unique

A (cos A

number in

X

[--1, 1] such that

and

sin x = vl — (cosjc) 2
.



P = (cosjc, sinx)
x

area —
2

FIGURE 1 3
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This definition actually requires a few words ofjustification. In order to know
that there is a number y satisfying A(y) = x /2, we use the fact that A is continuous,

and that A takes on the values and tt/2. This tacit appeal to the Intermediate

Value Theorem is crucial, if we want to make our preliminary definition precise.

Having made, and justified, our definition, we can now proceed quite rapidly.

THEOREM l If < x < jt, then

cos'(jc) = — sinx,

sin'U) = cos*.

PROOF If B = 2A, then the definition A(cosx) = x/2 can be written

B(cosx) = x;

in other words, cos is just the inverse of B. We have already computed that

A\x) = -
1

from which we conclude that

B'(x) = -

2V\-x 2
'

1

Vl-x 2

'

Consequently,

cos'(*)= (#)'(*)

1

B'(B-Hx))

1

v^l - [^U)] 2

= — V 1 — (COSX) 2

= — sin x

.

Since

we also obtain

sin x = v 1 — (cos*) 2
,

. ,
1 —2 cos* • cos'C*)

sin (x) = - —
1 VI - (cosx) 2

cos x sin x

sinx

cosx. |

The information contained in Theorem 1 can be used to sketch the graphs of



308 Derivatives and Integrals

FIGURE 15

sin

(a)

cos

(b)

FIG! RE 16

2tt

sin and cos on the interval [0, tt] . Since

cos'(jt) = — sinjc < 0, < x < tt,

the function cos decreases from cosO = 1 to cos7r = — 1 (Figure 14). Consequently,

cosj = for a unique y in [0, tt]. To find y, we note that the definition of cos,

means that

so

A(cosx) = —

,

2

A(0) = |,

Jo
dt.

It is easy to see that

dt

so we can also write

/o r \

J\-t 2 dt = / Vi-t 2

Now we have

f
> 0, < x < tt/2

sin (x ) = cos x
\

I
< 0, tt/2 < x < TT,

so sin increases on [0, tt/2] from sinO = to sin7r/2 = 1, and then decreases on

[tt/2, tt] to sin7r =0 (Figure 15).

The values of sin x and cos x for x not in [0, tt] are most easily defined by a

two-step piecing together process:

(1) If tt < x < 27r, then

sinx = — sin(2;r — x),

cosjc — cos(2tt — x).

Figure 16 shows the graphs of sin and cos on [0, 2tt].

(2) If x — 2nk + x' for some integer k, and some x' in [0. 2tt], then

sin* = sin a',

cosjc = cosx'.

Figure 17 shows the graphs of sin and cos, now defined on all of R.

Having extended the functions sin and cos to R, we must now check that the

basic properties of these functions continue to hold. In most eases this is easy. For

example, it is clear that the equation

sin"" x + cos x = 1
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(b)

FIGURE 17

holds for all x. It is also not hard to prove that

sin' (a) = cos a,

cos' (a) = — sin A',

if x is not a multiple of tt. For example, if n < x < 2n, then

sin a = —sin (2jt —a),

so

sin'(A) = — sin'(27r — a) • (— 1

)

= COS(27T — A)

= COS A

.

If a is a multiple of n we resort to a trick; it is only necessary to apply Theo-

rem 11-7 to conclude that the same formulas are true in this case also.

I'KiURK 18
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-1 —

cos

FIGURE 19

The other standard trigonometric functions present no difficulty at all. We
define

x + kix + 7T/2,

secx =
1

COSJC

tan x =
sinx

cos*

cscx =
1

sin x
COSJC

sinx t

x ^ kir.

The graphs are sketched in Figure 18. It is a good idea to convince yourself that

the general features of these graphs can be predicted from the derivatives of these

functions, which are listed in the next theorem (there is no need to memorize the

statement of the theorem, since the results can be rederived whenever needed.)

theorem 2 If x £ kit + tt/2, then

If x ^ kjr, then

sec' (jc) = sec x tan x,

tan'(jc) = sec x.

csc'OO = — cscjc cotx,

cot'(;c) = — csCx.

PROOF Left to you (a straightforward computation). |

1

1-- y
1

-71 rt

2 .-^y-\- 2

an sin

The inverses of the trigonometric functions are also easily differentiated. The

trigonometric functions are not one-one, so it is first necessary to restrict them

to suitable intervals; the largest possible length obtainable is jt, and the intervals

usually chosen are (Figure 19)

[— 7r/2, 7r/2] for sin,

[0, 7r] for cos,

(— tt/2, tt/2) for tan.

(The inverses of the other trigonometric functions are so rarely used that they will

not even be discussed here.)

The inverse of the function

f(x) — sin x, tt/2 < x < tt/2

is denoted by arcsin (Figure 20); the domain of arcsin is
|

— 1, lj. The notation

has been avoided because arcsin is not the inverse of sin (which is not onc-sin

I M. I RE 20

one), but of the restricted function /; sometimes this function / is denoted by Sin,

and arcsin by Sin .
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The inverse of the function

FIGURE 2 1

g(x) = COS*, < X < JT

is denoted by arccos (Figure 21); the domain of arccos is [— 1, 1]. Sometimes g

is denoted by Cos, and arccos by Cos" .

The inverse of the function

h (x ) = tan x , -jr/2 < x < tt/2

is denoted by arctan (Figure 22); arctan is one of the simplest examples of a

differentiable function which is bounded even though it is one-one on all of R.

Sometimes the function h is denoted by Tan, and arctan by Tan" .

The derivatives of the inverse trigonometric functions are surprisingly simple,

and do not involve trigonometric functions at all. Finding the derivatives is a simple

matter, but to express them in a suitable form we will have to simplify expressions

like

cos(arcsinx), sec(arctan*).

FIGURE 2 3
THEOREM 3

FIGURE 2 2

A little picture is the best way to remember the correct simplifications. For exam-

ple, Figure 23 shows a directed angle whose sine is x—the angle shown is thus an

angle of (arcsinx) radians; consequently cos(arcsin x) is the length of the other

side, namely, v 1 — x 2
. However, in the proof of the next theorem we will not

resort to such pictures.

If — 1 < x < 1 , then

arcsin'U) =

arccos' (x) =

1

J\-x 2

-1

Vl-x 2
'

Moreover, for all x we have

arctan' (x) =
\+x 2



312 Derivatives and Integrals

PROOF arcsin'(x) = (/ )'{x)

1

f'if-Hx))

l

sin'(arcsin x)

Now

that is,

therefore,

cos(arcsinx)

[sin(arcsin x)\ + [cos(arcsinx)]" = 1,

x + [cos(arcsinx)] = 1;

cos(arcsin x) = v 1 — x 2
.

(The positive square root is to be taken because arcsinA' is in (—7t/2,7t/2), so

cos(arcsinx) > 0.) This proves the first formula.

The second formula has already been established (in the proof of Theorem 1).

It is also possible to imitate the proof for the first formula, a valuable exercise if

that proof presented any difficulties. The third formula is proved as follows.

arctan'(x) = (h~ )'(x)

1

h'(h- l (x))

1

tan' (arctan

1

x)

sec2 (arctan x)

Dividing both sides of the identity

sin a + cos" a = 1

by cos a yields

2
tan a + 1 = sec" a.

It follows that

or

[tan (arctan*)]" + 1 = sec (arctan .v).

x + 1 = sec (arctan x),

which proves the third formula. |

The traditional proof of the formula sin'(x) = cosx (quite different from the one

given here) is outlined in Problem 27. This proof depends upon first establishing
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LEMMA

the limit

and the "addition formula"

sin h
hm = 1.

h-+0 h

sin(x + y) = sin x cos y + cos x siny.

Both of these formulas can be derived easily now that the derivative of sin and cos
are known. The first is just the special case sin'(O) = cosO. The second depends
on a beautiful characterization of the functions sin and cos. In order to derive this

result we need a lemma whose proof involves a clever trick; a more straightforward
proof will be supplied in Part IV

Suppose / has a second derivative everywhere and that

f" + f = 0,

/(0) = 0,

/'(0) = 0.

Then / = 0.

PROOF Multiplying both sides of the first equation by /' yields

f'f" + ff' = 0.

Thus

[(/
,

)
2 + /

2
]

, = 2(/7" + //') = 0,

so (f)
2 + f

2
is a constant function. From /(0) = and /'(0) = it follows that

the constant is 0; thus

!-'/„vi2

This implies that

[f(x)Y+[f(x)] 2 = for all*.

f(x)=0 for all*. |

THEOREM 4 If / has a second derivative everywhere and

r + / = o,

/(0) = a,

./" (0) = 6,

then

/ = b sin + a cos.

(In particular, if /(0) = and /'(0) = 1, then / = sin; if /(0) = 1 and /"(0) = 0,
then / = cos.)
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proof Let

Then

Consequently,

which shows that

=

g{x) = fix) — bsinx — a cosx.

g'ix) = fix) — bcosx + a sinx,

g'ix) = f"(x) + bsinx + acosjc.

g(0) = o,

g'iO) = 0,

lix) = fix) — bsinx — a cosx, for all x. |

THEOREM 5 If x and y are any two numbers, then

sin(x + y) = sin x cos y + cos x sin y ,

cosix + y) = cos x cos y — sin jc sin y

.

PROOF For any particular number y we can define a function / by

fix) = sin(x + y).

Then

Consequently,

f'ix) = cosU +y)
fix) — -sin(x + y).

f" + / = 0,

/(0) = siny,

/'(0) = cosy.

It follows from Theorem 4 that

/ = (cos y) • sin +(sin y) • cos;

that is,

sin(x + y ) = cos y sin x + sin y cos jc , for all x

.

Since any number y could have been chosen to begin with, this proves the first

formula for all x and y.

The second formula is proved similarly. |

As a conclusion to this chapter, and as a prelude to Chapter 1 8, we will mention

an alternative approach to the definition of the function sin. Since

1

arcsin'(x)

v
/nTr

for — 1 < x < 1,
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it follows from the Second Fundamental Theorem of Calculus that

1

J\~-t 2

fX

arcsin x = arcsin x — arcsin = / -dt.
h

This equation could have been taken as the definition of arcsin. It would follow

immediately that

. ,
1

arcsin (x) =
;

Vl-x 2

the function sin could then be defined as (arcsin)
-1

and the formula for the deriva-

tive of an inverse function would show that

sin'(.v) = v 1 — sin x,

which could be defined as cosa". Eventually, one could show that A(cosx) = x/2,

recovering at the very end of the development the definition with which we started.

While much of this presentation would proceed more rapidly, the definition would

be utterly unmotivated; the reasonableness of the definitions would be known to

the author, but not to the student, for whom it was intended! Nevertheless, as

we shall see in Chapter 18, an approach of this sort is sometimes very reasonable

indeed.

PROBLEMS

1. Differentiate each of the following functions.

(i) f(x ) = arctan (arctan (arctan x ) )

.

(ii) f(x) = arcsin(arctan(arccosx)).

(iii) f(x) = arctan (tan x arctan x )

.

/ 1 \

(iv) f(x) = arcsin

v/T+^2

Find the following limits by l'Hopital's Rule.

sin.t — x + * 3
/6

lim
x 3

sin x — x + x 3
/6

n lim
.0 x 4

in
cosx — 1 + x/2

lim
x 2

cosx — 1 + x/2
(
lv

)
hm 4 .

,v^0 X*

arctan x — x + x 3
/3

(v) lim ;

x-+0 .V
3

fvi) lim [
—

\ x sin x
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3. Let f{x) =
sin a

1

, x #0

x=0.

(a) Find/'(0).

(b) Find/"(0).

At this point, you will almost certainly have to use l'Hopital's Rule, but in

Chapter 24 we will be able to find f'iO) for all k, with almost no work

at all.

4. Graph the following functions.

(a) f(x) = sin2x.

(b) f(x) = sin (a
2
). (A pretty respectable sketch of this graph can be ob-

tained using only a picture of the graph of sin. Indeed, pure thought

is your only hope in this problem, because determining the sign of the

derivative fix) = cos(a ) -2x is no easier than determining the behavior

of / directly. The formula for fix) does indicate one important fact,

however

—

f'(0) = 0, which must be true since / is even, and which

should be clear in your graph.)

(c) fix) = sin a + sin 2a. (It will probably be instructive to first draw the

graphs of gix) = sin* and /z(a) = sin 2x carefully on the same set of

axes, from to 2n, and guess what the sum will look like. You can

easily find out how many critical points / has on [0, 2n] by considering

the derivative of /. You can then determine the nature of these critical

points by finding out the sign of / at each point; your sketch will probably

suggest the answer.)

(d) fix) — tan a — x. (First determine the behavior of / in (—n/2, n/2); in

the intervals ikn — n/2, kit + n/2) the graph of / will look exactly the

same, except moved up a certain amount. Why?)

(e) fix) = sinjr — x. (The material in the Appendix to Chapter 1 1 will be

particularly helpful for this function.)

(0 fix)

(Part (d) should enable you to determine approximately where the zeros

of /' are located. Notice that / is even and continuous at 0; also consider

the size of / for large x.)

(g) f(x) = x sin .v.

The hyperbolic spiral is the graph of the function f(0) = a/0 in polar coordi-

nates (Chapter 4, Appendix 3). Sketch this curve, paying particular attention

to its behavior for close to 0.

Prove the addition formula for cos.

sin x

* = 0.

X

1,
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(a) From the addition formula for sin and cos derive formulas for sin2x,

cos2jc, sin3x, and cos3x.

(b) Use these formulas to find the following values of the trigonometric func-

tions (usually deduced by geometric arguments in elementary trigonom-

etry):

. 71 71 V2
sin — = cos — =

4 4
~2~'

re
.

tan — = 1

,

4

. 7X 1

Sm
6 = r
7X V3

COS 6=^-

8. (a) Show that A sin(x + B) can be written as a sinjc + b cos x for suitable a

and b. (One of the theorems in this chapter provides a one-line proof.

You should also be able to figure out what a and b are.)

(b) Conversely, given a and b, find numbers A and B such that a sin x +
bcosx = A sin(.x + B) for all x.

(c) Use part (b) to graph f(x) = V3 sin x + cosx.

9. (a) Prove that

tan x + tan y
tan(x + v) =

1 — tan x tan y

provided that x, y, and x + y are not of the form kit + 7r/2. (Use the

addition formulas for sin and cos.)

(b) Prove that

' x + v
arctan x + arctan y = arctan

1 — xy

indicating any necessary restrictions on x and y. Hint: Replace x by

arctan x and y by arctan y in part (a).

10. Prove that

arcsin a + arcsin fi — arcsin(av 1 — fi~ + ^v 1 — a ),

indicating any restrictions on or and /?.

11. Prove that if m and a? are any numbers, then

sin mx sin «jc = j[cos(w — ri)x — cos(w +/?)-*],

sin mx cos «jc = ^[sin(m + n)x + sin (aw — n)x],

cos mx cos a?.v = j [cos(m + n )x + cos(m — «)jc
]

.
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12. Prove that if m and n are natural numbers, then

0, m ^ n

i:
sin mx sin nx dx =

cos mx cos nx dx =

sin mx cosnx dx = 0.

n, m = n,

0, /// 7^ /;

7r, m = n.

These relations are particularly important in the theory of Fourier series. Al-

though this topic will receive serious attention only in the Suggested Reading

(see reference [26]), the next problem provides a hint as to their importance.

13. (a) If / is integrable on [—n, tt], show that the minimum value of

(f(x) — a cosnx) dx

occurs when

rJ —It

i r
a — —\

* J-TT
f(x) cosnx dx,

and the minimum value of

(f(x) — a s'mnxy dx

when

/;J —TT

* J-TT
f(x) sin nxdx.

(In each case, bring a outside the integral sign, obtaining a quadratic

expression in a.)

(b) Define

i r
an = —

/ f(x) cosnx dx, n —0, 1,2, ...

,

TT J-TT

i r
bn = — I f(x)s'mnxdx, n = 1,2,3

* J-tt

Show that if c, and d
t
are any numbers, then

-iv 2

fo + 2_. c" cos nx + d„ sin nx£ (
m

=
J

[f(x)fdx-2iz(

= j\f {x)f dx -J'^-+jr a,l+l,,r

dx

co
+ ^2 °» c» + b»d» I + n

[
~y~ + 5Z r"

2 + ^"

n=]

+ n
((vl " 7i)

+ ^ (r"

"
"" )2 + {d"

~
h"j

'
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thus showing that the first integral is smallest when a
{
= c

t
and b

{
= dj.

In other words, among all "linear combinations" of the functions sn (x) =
sinnjc and cn (x) = cosnx for 1 < n < TV, the particular function

N
ao v^

g(x ) = — + > a„ cos nx + b„ sin nx

n=\

has the "closest fit" to / on [—n, tt].

14. (a) Find a formula for sin x + sin y. (Notice that this also gives a formula for

sin x — sin v.) Hint: First find a formula for sin(a + b) + sin(a — b). What
good does that do?

(b) Also find a formula for cos x + cos y and cos x — cos v

.

15. (a) Starting from the formula for cos 2x , derive formulas for sin x and cos jc

in terms of cos2x.

(b) Prove that

x /l+cosx . x I— cos*
COS

2
= V-— and Sm

2
=
V-
—

for < x < tv/2.

(c) Use part (a) to find fa sin x dx and f cos2 x dx

.

(d) Graph f(x) = sin x.

16. Find sin(arctanx) and cos(arctanx) as expressions not involving trigono-

metric functions. Hint: y = arctanx means that x = tan v = sin v/ cos v =

sin v/v 1 — sin v.

17. If x = tanw/2, express sinw and cosw in terms of x. (Use Problem 16; the

answers should be very simple expressions.)

18. (a) Prove that sin(x + n/2) — cos*. (All along we have been drawing the

graphs of sin and cos as if this were the case.)

(b) What is arcsin(cosx) and arccos(sinx)?

19. (a) Find / ~dt. Hint: The answer is not 45.
Jo l+t 2

r°° l

(b) Find / jdt.
Jo l+f

. 1

20. Find lim x sin —

.

21. (a) Define functions sin° and cos by sin°(x) = sin(7rx/180) and cos°(x) =
cos(7rx/180). Find (sin )' and (cos )' in terms of these same functions.

(b) Find lim and lim x sin° -

.

x-s-0 X .v->-oo x

22. Prove that every point on the unit circle is of the form (cos 0, sin 0) for at

least one (and hence for infinitely many) numbers 0.
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fi = (l,0)

FIGl RI". 24

23.

24.

(a) Prove that tz is the maximum possible length of an interval on

which sin is one-one, and that such an interval must be of the form

[2kn - tt/2, 2kit + tt/2] or [2A-jr + tt/2, 2(k + 1 )n - tt/2] .

(b) Suppose we let g(x) = sin a for x in (Ikn — tt/2, 2kn + tt/2). What is

Let f{x) = sec a for < x < tt. Find the domain of /
_1 and sketch its

graph.

25. Prove that
|
sin x — sin y\ < \x — y\ for all numbers x / y. Hint: The same

statement, with < replaced by <
, is a very straightforward consequence of a

well-known theorem; simple supplementary considerations then allow < to

be improved to < .

*26. It is an excellent test of intuition to predict the value of

f"
lim / fix) sin A.jc dx

.

Continuous functions should be most accessible to intuition, but once you

get the right idea for a proof the limit can easily be established for any inte-

grate /.

(a) Show that lim f sin kx dx = 0, by computing the integral explicitly.

(b) Show that if s is a step function on [a , b] (terminology from Prob-

lem 13-26), then lim f s (jc ) sin Xx dx = 0.

(c) Finally, use Problem 13-26 to show that lim f fix)sir\Xxdx — for

any function / which is integrable on [a, b]. This result, like Problem 12,

plays an important role in the theory of Fourier series; it is known as the

Riemann-Lebesgue Lemma.

27. This problem outlines the classical approach to the trigonometric functions.

The shaded sector in Figure 24 has area a/2.

(a) By considering the triangles OAB and OCB prove that if < x < 7r/4,

then
sin a

(b) Conclude that

sin x x
< — < —

2 2 2 cos x

sin x
cosjc < < 1.

and prove that

(c) Use this limit to find

sm A
hm = 1.

*-^0 A

lim
1 — COS A
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(d) Using parts (b) and (c), and the addition formula for sin, find sin'(x),

starting from the definition of the derivative.

^28. This problem gives a treatment of the trigonometric functions in terms of

length, and uses Problem 13-25. Let f(x) = yl — x 2 for — 1 < x < 1.

Define %(x) to be the length of / on [x, 1].

Show that

££(*)= f —L=dt.

(This is an improper integral, as defined in Problem 14-28, so you must

first prove the corresponding assertion for the length on [x, 1 — s] and

then prove that i£(x) is the limit of these lengths as e -> +
.)

(b) Show that

£'{x) = -
,

for - 1 < x < 1

.

(c) Define tt as i£(— 1). For < x < tt, define cos* by i£(cosx) = x, and

define sin* = v 1 — cos2 .v. Prove that cos'(x) = — sin* and sin'C*) =
cos x for < x < tt.

^29. Yet another development of the trigonometric functions was briefly men-

tioned in the text—starting with inverse functions defined by integrals. It

is convenient to begin with arctan, since this function is defined for all x.

To do this problem, pretend that you have never heard of the trigonometric

functions.

(a) Let <x(x) = Jq{\ + f")
-1

dt. Prove that a is odd and increasing, and that

lim a(x) and lim a(x) both exist, and are negatives of each other. If
x-+oo x—*—oo

we define tt = 2 lim a(x), then oc~
l

is defined on (—tt/2, tt/2).
X—>00

(b) Show that {a~ l
)'{x) = 1 + [cy-'U)]

2
.

(c) For — tt/2 < x < tt/2, define tan.v = a~ [

(x), and then define sinx =

tan;c/\/l + tan2 x. Show that

(i) lim sin x = 1

x—>n/2-

(ii) lim sin x = — 1

X^-7t/2+

111

IV

sin'Cr) =
sin*

tan jc

1, x=0

tt/2 < x < tt/2 and x ^

sin"(x) = — sinx for — tt/2 < jc < tt2.

^30. If we are willing to assume that certain differential equations have solutions,

another approach to the trigonometric functions is possible. Suppose, in

particular, that there is some function yo which is not always and which

satisfies yo" + vo = 0.
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(a) Prove that yo°- + (joO is constant, and conclude that either yo(0) /
or yo'(0) ^ 0.

(b) Prove that there is a function s satisfying s" + s = and s(0) = and

s'(0) = 1. Hint: Try s of the form ayo + byo'.

If we define sin — s and cos — s', then almost all facts about trigono-

metric functions become trivial. There is one point which requires work,

however—producing the number tt. This is most easily done using an

exercise from the Appendix to Chapter 1 1

:

(c) Use Problem 6 of the Appendix to Chapter 1 1 to prove that cosx cannot

be positive for all x > 0. It follows that there is a smallest xo > with

cos*o = 0, and we can define tt — 2*o-
2 ?

(d) Prove that sin7r/2 = 1. (Since sin +cos = 1, we have sin7r/2 = ±1;

the problem is to decide why sin tt/2 is positive.)

(e) Find cos7r, sin7r, cos 2tt, and sin 27T. (Naturally you may use any addi-

tion formulas, since these can be derived once we know that sin' = cos

and cos' = —sin.)

(f) Prove that cos and sin are periodic with period 2tt.

31. (a) After all the work involved in the definition of sin, it would be discon-

certing to find that sin is actually a rational function. Prove that it isn't.

(There is a simple property of sin which a rational function cannot pos-

sibly have.)

(b) Prove that sin isn't even defined implicitly by an algebraic equation; that

is, there do not exist rational functions /o, . . . , /„_] such that

(sin x)" + /„_! UMsinx)"-
1 + • • • + f (x) = for all x.

Hint: Prove that /o = 5
so that sin x can be factored out. The remaining

factor is except perhaps at multiples of tt. But this implies that it is

for all x. (Why?) You are now set up for a proof by induction.

|:32. Suppose that (f>\ and (j>2 satisfy

0l" +£101 = 0'

02 " + 5202 = 0'

and that #2 > 8\-

(a) Show that

01 "02 - 02"0l - (£2 - £l)0102 = 0.

(b) Show that if (p\(x) > and 02 U) > for all x in (a, b), then

/ [0| "02 - 02"0l| > 0,

Ja

and conclude that

[4>l(b)4>2(b) - 0i
/

(a)02 (a)] - \4>\(b)<f>2 '(b) - 0,(«)02'(«)] > 0.
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(c) Show that in this case we cannot have 4>\(a) = (p\(b) = 0. Hint: Con-

sider the sign of 4>\'{a) and <p\'{b).

(d) Show that the equations 0i (a) = 0i (b) = are also impossible if 0i > 0,

02 < or 0i < 0, 02 > 0, or 0i < 0, 02 < on (a, b). (You should be

able to do this with almost no extra work.)

The net result of this problem may be stated as follows: if a and b are

consecutive zeros of 0i, then 02 must have a zero somewhere between

a and b. This result, in a slightly more general form, is known as the

Sturm Comparison Theorem. As a particular example, any solution of

the differential equation

y" + (x + l)y = Q

must have at least one zero in any interval («7r, (n + 1 )tt).

33. (a) Using the formula for sin a: — sin v derived in Problem 14, show that

sin (A' + ^)x — sin(/c — j)x = 2 sin — coskx.

(b) Conclude that

1 sin(n + l)x
— + cos x + cos 2x + • + cos nx = .

2 x
2 sin —

2

Like two other results in this problem set, this equation is very important

in the study of Fourier series, and we also make use of it in Problems 19-43

and 23-22.

(c) Similarly, derive the formula

sin I -y-A-jsin(-.rj

sin x + sin 2x + + sin nx = .

. x
sin —

2

(A more natural derivation of these formulas will be given in Prob-

lem 27-14.)
nb rb

(d) Use parts (b) and (c) to find / sin x dx and / cos x dx direcdy from
Jo Jo

the definition of the integral.



*CHAPTER I ^T 71 IS IRRATIONAL

This short chapter, diverging from the main stream of the book, is included to

demonstrate that we are already in a position to do some sophisticated mathemat-

ics. This entire chapter is devoted to an elementary proof that it is irrational. Like

many "elementary" proofs of deep theorems, the motivation for many steps in our

proof cannot be supplied; nevertheless, it is still quite possible to follow the proof

step-by-step.

Two observations must be made before the proof. The first concerns the func-

tion

MX)= -A
nl

which clearly satisfies

< f„(x) < - forO < jc < 1.

n\

An important property of the function /„ is revealed by considering the expression

obtained by actually multiplying out x"(\ —x)n
. The lowest power of jc appearing

will be n and the highest power will be 2n . Thus /„ can be written in the form

HI t—1

where the numbers c, are integers. It is clear from this expression that

/„(*)(())= it'k <nork >2n.

Moreover,

fn (x) — — [n\cn + terms involving x]
n\

/;/"
+ l|

(x) = -[(« + l)!c„+ i + terms involving x]

fn
an\x)=-

y
[(2n)\c2n].

324



16. n is Irrational 325

This means that

fn
(n) (0)=Cn ,

/n
(n+1)

(0) = (n + l)cn+1

fn
{2n)

(0) = (2n)(2n - 1) • . . .
• (n + l)c2n ,

where the numbers on the right are all integers. Thus

fn
{k)

(0) is an integer for all k.

The relation

implies that

therefore,

fn(x) =/n (l ~X)

/B
(k)

(x) = (-i)*/«w (i-*);

/« (1) is also an integer for all k.

The proof that tt is irrational requires one further observation: if a is any

positive number, and e > 0, then for sufficiently large n we will have

— <£.

To prove this, notice that if n > 2a, then

r"
+1 a a n

1 a"
<

(n + 1)! n + \ n\ 2 n\

Now let hq be any natural number with no > 2a. Then, whatever value

a r,"0

(no)!

may have, the succeeding values satisfy

fl
(«o+D

1 a »o

(no+D!
<

2" (^)!

fl
(«o+2)

J fl
(«o+D

1 1 a "o

< — • r— < — •
—

(n + 2)\ 2 (n +l)! 2 2 (n )!

<
(n + k)\

" 2* (n )!'

«"°
»

If /: is so large that < 2 , thenS
(no)! 8
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THEOREM 1

,(n +k)

(no + k)\
< e,

which is the desired result. Having made these observations, we are ready for the

one theorem in this chapter.

The number tt is irrational; in fact, jr is irrational. (Notice that the irrationality

of tt~ implies the irrationality of tt, for if tt were rational, then tt certainly would

be.)

PROOF Suppose tt~ were rational, so that

2 a
TT = -

b

for some positive integers a and b. Let

(1) G(x) = b"[TT
2
"fn (x) ~ TT

2
"-\fn "(x) + TT

2"-4
fn

{4)
(X )- + (- D" fn^ix)].

Notice that each of the factors

b"TT
2"- 2k = b"(TT

2 )"- k = b" (|V~ - a"-
k
b
k

is an integer. Since fn
(k)

(0) and fn
ik\l) are integers, this shows that

G(0) and G(l) are integers.

Differentiating G twice yields

(2) G"{X) = b"[TT
2
"fn "{x) - TT

2"- 2
fn

{4)
(X ) + + (-\Tfn

a"+ 2)
(x)].

The last term, (—l)n
fn (,x), is zero. Thus, adding (1) and (2) gives

(3) G"(x) + tt
2 G(x) = b"TT

2n+2
fn (x) = TT

2
a"f„(x).

Now let

H(x) — G'(x) sin7r.v — ttG(x) cos7r.v.

Then

H'{x) = ttG'(x) cos ttx + G"{x) sinTr.r — 7rG'U)cos7r;t + tt"G(x) sin ttx

= [G"U) + 77-
2
GU)]sin7TJc

= tt a
n
fn (x)sinTtx, by (3).

By the Second Fundamental Theorem of Calculus,

tt
2

/ a" /;, (.v ) sin ttx dx = // ( 1 ) - H (0)

Jo
= G'(l)siii7r -ttGCDcostt - G'(0) sinO + ttG(0) cosO

= 7r[G(l) + G(0)].

Thus

* f a"fn
Jo

(x) sin ttx dx is an integer.
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On the other hand, < f„(x) < \/n\ for < x < 1, so

jza"
< Tta" fn {x) sin7r.v < for < x < 1

//!

Consequently,

f
1

n 7r«"
< n I a f„(x) smTtxdx < ,

Jo n\

This reasoning was completely independent of the value of n . Now if n is large

enough, then

/* 1 tl

< 7r / fl"/„(jc)sin ixxdx < < 1.

Jo n\

But this is absurd, because the integral is an integer, and there is no integer between

and 1 . Thus our original assumption must have been incorrect: ti is irrational. |

This proof is admittedly mysterious; perhaps most mysterious of all is the way

that it enters the proof—it almost looks as if we have proved it irrational without

ever mentioning a definition of it . A close reexamination of the proof will show

that precisely one property of ti is essential

—

sin(7r) = 0.

The proof really depends on the properties of the function sin, and proves the

irrationality of the smallest positive number x with sin x — 0. In fact, very few

properties of sin are required, namely,

sin' = cos,

cos' = — sin,

sin(0) = 0,

cos(0) = 1.

Even this list could be shortened; as far as the proof is concerned, cos might just

as well be defined as sin'. The properties of sin required in the proof may then be

written

sin" + sin = 0,

sin(0) = 0.

sin'(0) = 1.

Of course, this is not really very surprising at all, since, as we have seen in the

previous chapter, these properties characterize the function sin completely.

PROBLEMS

1. (a) For the areas of triangles OAB and OAC in Figure 1, with LAOB < tt/4,

show that we have



328 Derivatives and Integrals

(x, y) = A

(1.0) = C

„ Ari 1 /l -v/l - 16(area OAB) 2

area OAC = -W .

Hint: Solve the equations xy = 2(area OAB), x 2 + y
2 = 1, for y.

(b) Let Pm be the regular polygon of m sides inscribed in the unit circle. If

Am is the area of Pm show that

FIGURE 1

A2m = y V 2 - 2v
/
l-(2A,„/m) 2

.

This result allows one to obtain (more and more complicated) expressions

for A 2«, starting with A4 — 2, and thus to compute n as accurately

as desired (according to Problem 8-11). Although better methods will

appear in Chapter 20, a slight variant of this approach yields a very

interesting expression for tt :

2. (a) Using the fact that

area(OAfl)

area(OAC)
= OB,

show that if a,„ is the distance from O to one side of P,„ , then

A 2n

= a,,

(b) Show that

L2A

CK4 • org • . . . Q?2*-i

(c) Using the fact that

7T

am = cos—,
m

yl "I
- COS X

(Problem 15-15), prove that

a4

"8
=
V2

+
2V2'

1 1 1

Of|6 =

etc

11/11
\J

2
+

2V 2
+
2V 2'
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Together with part (b), this shows that 2/tt can be written as an "infinite

product"

7T

to be precise, this equation means that the product of the first n factors

can be made as close to 2/n as desired, by choosing n sufficiently large.

This product was discovered by Francois Viete in 1579, and is only one of

many fascinating expressions for jt , some of which are mentioned later.



*CHAPTER PLANETARY MOTION

Nature and Nature's Laws lay hid in night

God said "Let Newton be," and all was light.

Alexander Pope

Unlike Chapter 16, a short chapter diverging from the main stream of the book,

this long chapter diverges from the main stream of the book to demonstrate that

we are already in a position to do some real physics.

In 1609 Kepler published his first two laws of planetary motion. The first law

describes the shape of planetary orbits:

The planets move in ellipses, with the sun at onefocus.

FIGURE 1

The second law involves the area swept out by the segment from the sun to the

planet (the 'radius vector from the sun to the planet') in various time intervals

(Figure 1):

Equal areas are swept out by the radius vector in equal times. (Equivalently, the area

swept out in time t is proportional to t
.)

Kepler's third law, published in 1619, relates the motions of different planets. If a

is the major axis of a planet's elliptical orbit and T is its period, the time it takes

the planet to return to a given position, then:

The ratio a /T is the samefor all planets.

Newton's great accomplishment was to show (using his general law that the

force on a body is its mass times its acceleration) that Kepler's laws follow from the

assumption that the planets are attracted to the sun by a force (the gravitational

force of the sun) always directed toward the sun, proportional to the mass of the

planet, and satisfying an inverse square law; that is, by a force directed toward

the sun whose magnitude varies inversely with the square of the distance from the

sun to the planet and directly with the mass of the planet. Since force is mass

times acceleration, this is equivalent simply to saying that the magnitude of the

acceleration is a constant divided by the square of the distance from the sun.

Newton's analysis actually established three results that correlate with Kepler's

individual laws. The first of Newton's results concerns Kepler's second law (which

was actually discovered first, nicely preserving the symmetry of the situation):

330
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FIGURE 2

Kepler's second law is true preciselyfor 'centralforces', i.e., ifand only theforce between

the sun and the planet always lies along the line between the sun and the planet.

Although Newton is revered as the discoverer of calculus, and indeed invented

calculus precisely in order to treat such problems, his derivation hardly seems to

use calculus at all. Instead of considering a force that varies continuously as the

planet moves, Newton first considers short equal time intervals and assumes that

a momentary force is exerted at the ends of each of these intervals.

To be specific, let us imagine that during the first time interval the planet moves

along the line P\Pi, with uniform velocity (Figure 2a). If, during the next equal

time interval, the planet continued to move along this line, it would end up at

f*3 , where the length of Pi Pi equals the length of Pj P?, This would imply that

the triangle SP\ Pj has the same area as the triangle SP1P3 (since they have equal

bases, and the same height)—this just says that Kepler's law holds in the special

case where the force is 0.

Now suppose (Figure 2b) that at the moment the planet arrives at P2 it experi-

ences a force exerted along the linefrom S to P2, which by itselfwould cause the planet

to move to the point Q. Combined with the motion that the planet already has,

this causes the planet to move to R, the vertex opposite Pj in the parallelogram

whose sides are P2P3 and P%Q.

Thus, the area swept out in the second time interval is actually the triangle

SPiR. But the area of triangle SP2R is equal to the area of triangle SP3P2, since

they have the same base SP2, and the same heights (since RP2 is parallel to SP2).

Hence, finally, the area of triangle SP2R is the same as the area of the original

triangle SP\ P2 ! Conversely, if the triangle SRP2 has the same area as SP\ Pj, and

hence the same area as SP3P2, then RP3 must be parallel to SP2, and this implies

that Q must lie along SP2.

Of course, this isn't quite the sort of argument one would expect to find in a

modern book, but in its own charming way it shows physically just why the result

should be true.

To analyze planetary motion we will be using the material in the Appendix to

Chapter 12, and the "determinant" det defined in Problem 4 of Appendix 1 to

Chapter 4. We describe the motion of the planet by the parameterized curve

c(t) = r(0 (cos 0(0, sin 0(0),

so that r always gives the length of the line from the sun to the planet, while

gives the angle, which we will assume is increasing (the case where is decreasing

then follows easily). It will be convenient to write this also as

(1) c(0 = r(0 • e(0(O),

where

e(0 = (cosf, sin t)

is just the parameterized curve that runs along the unit circle. Note that

e'(t) = (— sinf, cosO
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FIGURE 3

c(t + h)

is also a vector of unit length, but perpendicular to e(0, and that we also have

(2) det(e(f),e'(f)) = 1.

Differentiating (1), using the formulas on page 247, we obtain

(3) c'{t) = r\t) e(0(t)) + r(t)6'{t) e'(0(t)),

and combining with (1), together with the formulas in Problem 6 of Appendix 1

to Chapter 4, we get

det(c(0, c'(t)) = r(t)r'(t) det(e(0(f)), e(0(f))) + r(t)
2
0'(t) det(e(0(f)), e'(0(f)))

= r(f)
2
0'(Odet(e(0(f)),e'(0(O)),

since det(u, v) is always 0. Using (2) we then get

(4) det(c, c') = r
2 0'.

As we will see, r &' turns out to have another important interpretation.

Suppose that A{t) is the area swept out from time to t (Figure 3). We want

to get a formula for A'(t), and, in the spirit of Newton, we'll begin by making

an educated guess. Figure 4 shows A(t + h) — A(t), together with a straight line

segment between c(t ) and c(t + h). It is easy to write down a formula for the area

of the triangle A(/z) with vertices O, c(t), and c(t + h): according to Problems 4

and 5 of Appendix 1 to Chapter 4, the area is

area(A(/j)) = £det(c(f), c(t + h) - c{t)).

Since the triangle A(/z) has practically the same area as the region A(t + h) — A(t),

this shows (or practically shows) that

A'(t) = lim

= lim

A(t + h) - A(t)

area A(h)

h

= 4det c(0, lim
h-+0

c(t + h)-c(t)

= \det(c(t),c'(t)).

A rigorous derivation, establishing more in the process, can be made using Prob-

lem 13-24, which gives a formula for the area of a region determined by the graph

of a function in polar coordinates. According to this Problem, we can write

I

0(0

A(0= o / P(<P)~d<t>

if our parameterized curve c(t) — r(t) e(0(t)) is the graph of the function p in

polar coordinates (here we've used for the angular polar coordinate, to avoid

confusion with the function 9 used to describe the curve c).
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Now the function p is just

p = r

[for any particular angle </>, #
_1

(0) is the time at which the curve c has angular

polar coordinate 0, so r{0~ l

(t)) is the radius coordinate corresponding to 0].

Although the presence of the inverse function might look a bit forbidding, it's

actually quite innocent: Applying the First Fundamental Theorem of Calculus

and the Chain Rule to (*) we immediately get

A\t) = \p{e{t))
2
-0'(t)

= \r(t)
2
6'(t), since p = r o

>-l

Briefly,

A' = \r
2
e'.

Combining with (4), we thus have

(5) A'=$ det(c, c') = \r
l„2/i/

Now we're ready to consider Kepler's second law. Notice that Kepler's second law

is equivalent to saying that A' is constant, and thus it is equivalent to A" = 0. But

A" =
\ [det(c, c')]' = \ det(c', c) + \ det(c, c") (see page 248)

=
J
det(c, c").

So

Kepler's second law is equivalent to det(c, c") = 0.

Putting this all together we have:

THEOREM l Kepler's second law is true if and only if the force is central, and in this case each

planetary path c(t) — r(t) e(0(t)) satisfies the equation

(Ki)
.2/1/
r~0' = det(c, c) — constant.

PROOF Saying that the force is central just means that it always points along c(t). Since

c"(t) is in the direction of the force, that is equivalent to saying that c"(t) always

points along c{t). And this is equivalent to saying that we always have

det(c, c") = 0.

We've just seen that this is equivalent to Kepler's second law.

Moreover, this equation implies that [det(c, c')] = 0, which by (5) gives (Ki). |
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Newton next showed that if the gravitational force of the sun is a central force

and also satisfies an inverse square law, then the path of any object in it will be a

conic section having the sun at one focus. Planets, of course, correspond to the

case where the conic section is an ellipse, and this is also true for comets that visit

the sun periodically; parabolas and hyperbolas represent objects that come from

outside the solar system, and eventually continue on their merry way back outside

the system.

THEOREM 2 If the gravitational force of the sun is a central force that satisfies an inverse square

law, then the path of any body in it will be a conic section having the sun at one

focus (more precisely, either an ellipse, parabola, or one branch of an hyperbola).

FIGURE 5

PROOF Notice that our conclusion specifies the shape of the path, not a particular param-

eterization. But this parameterization is essentially determined by Theorem 1 : the

hypothesis of a central force implies that the area A{t) (Figure 5) is proportional

to t, so determining c(t) is essentially equivalent to determining A for arbitrary

points on the ellipse. Unfortunately, the areas of such segments cannot be deter-

mined explicitly* This means that we have to determine the shape of the path

c(t) = r{t) e(0(t)) without finding its parameterization! Since it is the function

r o 0~ l which actually describes the shape of the path in polar coordinates, we

shouldn't be surprised to find 6~ x entering into the proof.

By Theorem 1 , the hypothesis of a central force implies that

[K, r
20' = det(c,c') = M

for some constant M. The hypothesis of an inverse square law can be written

H
c"{t)

r(ty
e(0(t))

for some constant H . Using (K2), this can be written

c"{t) H-— = -—e(6{t)).
0'(t) M

Notice that the left-hand side of this equation is

[c'o0- x

]'{Q{t)).

So if we let

D C o

(this is the main trick
—"we consider c' as a function of 0"), then the equation can

be written as

H H
D'(0(t)) = e(0(O) = (cos 0(f), sin 0(f)),

M M v

*More prn iscly. we can't write down a solution in terms of familiar "standard functions," like sin,

an sin, etc.
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and we can write this simply as

H . ( H H .

D (u) = (cos u , sin u ) = ( cos u , sin uM \ M M
[for all u of the form 6{t) for some t], completely eliminating 0.

The equation that we have just obtained is simply a pair of equations, for the

components of D, each ofwhich we can easily solve individually; we thus find that

D(u)
H • sin u H cos w

+ A,M M B

for two constants A and B. Letting u — 9{t) again we thus have an explicit formula

for c'\

H sin 6 H cos
+ A, + Bc =

M M
[Here sin 6 really stands for sino#, etc., abbreviations that we will use throughout.]

Although we can't get an explicit formula for c itself, if we substitute this equa-

tion, together with c = r(cos6, sin#), into the equation

we get

det(c, c') = M (equation (#2)),

h
2

a
.

~>— cos + B cos 6 H sin — A sin 9M M = M,

which simplifies to

H B A .—r- H cos 6 sin 1

M 2 M M
Problem 15-8 shows that this can be written in the form

r(t) —i+CcosieiO + D) = 1,

for some constants C and D. We can let D — 0, since this simply amounts to

rotating our polar coordinate system (choosing which ray corresponds to 6 = 0),

so we can write, finally,

r\\ +ecos01 = = A.
L J H

But this is the formula for a conic section derived in Appendix 3 of Chapter 4

(together with Problems 5, 6, and 7 of that Appendix). |

In terms of the constant M in the equation

r
2
d' = M

and the constant A in the equation of the orbit

/•
I

1 + s cos 0] = A
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the last equation in our proof shows that we can rewrite (*) as

**
M-

c"(t) = -—

-

I

e(0(r)).
A r(t) 1

Recall (page 87) that the major axis a of the ellipse is given by

A
a =

\-e 2
'

while the minor axis b is given by

(b) b =

Consequently,

\

Remember that equation (5) gives

A

y/l-e2

= a.

and thus

A'{t) = \r
l9' = \M,

A(t) = \Mt.

We can therefore interpret M in terms of the period T of the orbit. This period T

is, by definition, the value of t for which we have 6{t) = 2tt, so that we obtain the

complete ellipse. Hence

area of the ellipse = A(T) = ^MT,

2(area of the ellipse) lizab

or

M =
T T

Hence the constant M"/A in (**) is

M2
4jT

2a 2b 2

by Problem 13-17.

T 2 A

cl4jT
2„3

T<
using (c)

This completes the final step of Newton's analysis:

theorem 3 Kepler's third law is true if and only ifthe accelerations c"{t) of the various planets,

moving on ellipses, satisfy

c"(f ) = _G.— e(0(O)
r~

for a constant G that does not depend on thr planet.
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THEOREM 4

PROOF

It should be mentioned that the converse of Theorem 2 is also true. To prove

this, we first want to establish one further consequence of Kepler's second law.

Recall that for

we have

Consequently,

e(t) = (cos?, sin t)

e'(/) = (— sin t, cos /).

e (t) = (—cost, — sinf) = —e(t).

Now differentiating (3) gives

c"(t) = r"{t) e(0(f)) + r'(t)6'(t) e'(6(t))

+ r\t)6'(t) • e'(0(f)) + r{t)0"{t) e'(0(f)) + r(t)9\t)G\t) e"(0(/)).

Using e"(t) = —e(t) we get

c"(t) = [r"(t) - r(t)6'(t)
2

]
e(0(O) + [2/(00' (0 + r(f)0"(*)] e'(0(f)).

Since Kepler's second law implies central forces, hence that c"(t) is always a mul-

tiple of c(t), and thus always a multiple of e(0(O), the coefficient of e'(6(t))

must be [as a matter of fact, we can see this directly by taking the derivative of

formula (A^)] • Thus Kepler's second law implies that

(6) c"{t) = [r"{t)-r(t)e'{t)
1
]-e{6{t)).

If the path of a planet moving under a central gravitational force lies on a conic

section with the sun as focus, then the force must satisfy an inverse square law.

As in Theorem 2, notice that the hypothesis on the shape of the path, together

with the hypothesis of a central force, which is equivalent to Kepler's second law,

essentially determines the parameterization. But we can't write down an explicit

solution, so we have to obtain information about the acceleration without actually

knowing what it is.

Once again, the hypothesis of a central force implies that

(K2 )
r
l
G' = M,

for some constant M, and the hypothesis that the path lies on a conic section with

the sun as focus implies that it satisfies the equation

(A) r[l +ecos0] = A,

for some s and A. For our (not especially illuminating) proof, we will keep differ-

entiating and substituting from these two equations.

First we differentiate (A) to obtain

/•'[l +ecos0] -er0'sin0 =0.

Multiplying by r this becomes

rr' \ 1 + s cos 0] - er
2 0' sin = 0.
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Using both (A) and (K2), this becomes

Ar' -eAfsinfl = 0.

Differentiating again, we get

Ar" -eMO' cos 9 = 0.

Using (K2) we get

Ar'
eM-

cos# =0,

and then using (A) we get

Ar'
M- A

r
= 0.

Substituting from (K2) yet again, we get

M-
A[r"-r(tf') 2

] + iV=(X

or

r-

r — r(6')
2 =

M2

Ar 2
"

c"(t)
M 2

Ar 2
e(0(O),

Comparing with (6), we obtain

which is precisely what we wanted to show: the force is inversely proportional to

the square of the distance from the sun to the planet. |



THE LOGARITHM AND
CHAPTER I ^^ EXPONENTIAL FUNCTIONS

In Chapter 15 the integral provided a rigorous formulation for a preliminary def-

inition of the functions sin and cos. In this chapter the integral plays a more

essential role. For certain functions even a preliminary definition presents difficul-

ties. For example, consider the function

/(*) = 10*.

This function is assumed to be defined for all x and to have an inverse function,

defined for positive x, which is the "logarithm to the base 10,"

f~
l

(x) =log10 x.

In algebra, 10* is usually defined only for rational x, while the definition for ir-

rational x is quietly ignored. A brief review of the definition for rational x will

not only explain this omission, but also recall an important principle behind the

definition of 10*.

The symbol 10" is first defined for natural numbers n. This notation turns out

to be extremely convenient, especially for multiplying very large numbers, because

10" • 10'" = 10"+'".

The extension of the definition of 1 0* to rational x is motivated by the desire

to preserve this equation; this requirement actually forces upon us the customary

definition. Since we want the equation

10° • 10" = 10
0+ " = 10"

to be true, we must define 10° = 1; since we want the equation

10-"
• 10" = 10° = 1

to be true, we must define 10
_
" = 1/10"; since we want the equation

10
1/w

• . . • 10
1/w = 10

l/,?+ +l/ " = 10
1 = 10

n times n times

to be true, we must define 10 I" = v 10 ; and since we want the equation

10
1//,!

• • 10
ly " = 10

1 /""
1

—hI /" = 10"' /
'"

m times m times

to be true, we must define 10'" 7 " = ( \/70 )'"•

Unfortunately, at this point the program comes to a dead halt. We have been

guided by the principle that 10* should be defined so as to ensure that 10*+v =
1

A
1

v
; but this principle does not suggest any simple algebraic way of defining

339
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10* for irrational x. For this reason we will try some more sophisticated ways of

finding a function / such that

(*) f{x + y) = f(x) • f(y) for all x and y.

Of course, we are interested in a function which is not always zero, so we might

add the condition /(l) / 0. If we add the more specific condition f{\) — 10,

then (*) will imply that f(x) = \0X for rational x, and 10 v could be defined as f(x)

for other x; in general f(x) will equal [/(l)]* for rational x.

One way to find such a function is suggested if we try to solve an apparently

more difficult problem: find a differentiable function / such that

fix + y) = fix) f(y) for all x and y,

f(\)= 10.

Assuming that such a function exists, we can try to find /'—knowing the derivative

of / might provide a clue to the definition of / itself. Now

fix +h)- fix)
fix) lim

= lim
fc-+0

fix) fih) - fix)

= fix) • lim
h^0

h

fih)

The answer thus depends on

f'iO) = lim
h^0

fih)- 1

h

for the moment assume this limit exists, and denote it by a. Then

fix) = a fix) for all x.

Even if a could be computed, this approach seems self-defeating. The derivative

of / has been expressed in terms of / again.

If we examine the inverse function f~
l — log

10 , the whole situation appears in

a new light:

log '»' (x) = 7(7^0)
1 J_

" of/(/-'(.r)) " Vx

The derivative of / is about as simple as one could ask! And, what is even

more interest in

J a

r
g, of all the integrals / x" dx examined previously, the integral

J a

x~ dx is the only one which we cannot evaluate. Since log
1()

1 = we should

have
1 /'

v
I

/ -dt = log
| ()
x - log

, ()
1 = log

to
x

.

oi J] t
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This suggests that we define log
10
* as (1 /or) / t dt. The difficulty is that a is

unknown. One way of evading this difficulty is to define

log*n dt,

and hope that this integral will be the logarithm to some base, which might be

determined later. In any case, the function defined in this way is surely more

reasonable, from a mathematical point of view, than logi . The usefulness of

logjQ depends on the important role of the number 10 in arabic notation (and thus

ultimately on the fact that we have ten fingers), while the function log provides a

notation for an extremely simple integral which cannot be evaluated in terms of

any functions already known to us.

DEFINITION If x > 0, then

log X = / - dt.

The graph of log is shown in Figure 1 . Notice that if x > 1 , then log x > 0,

and if < x < 1, then log* < 0, since, by our conventions,

/ -dt = - - dt < 0.

J\ t Jx t

For x < 0, a number log* cannot be defined in this way, because f(t) = \/t is

not bounded on [x, 1].

area = log x

FIGURE 1

The justification for the notation "log" comes from the following theorem.

THEOREM l If x. y > 0, then

log(.vv) = log.v + log >'.



342 Derivatives and Integrals

PROOF

COROLLARY 1

Notice first that log'(x) = l/x, by the Fundamental Theorem of Calculus. Now
choose a number y > and let

Then

f(x) = log(xy).

11
/ (x) = log (xy) y = — • y = -.

xy x

Thus /' = log'. This means that there is a number c such that

f{x) — log* + c for all x > 0,

that is,

log(;ty) = log* + c for all x > 0.

The number c can be evaluated by noting that when x = 1 we obtain

log(l • y) = log 1 +c
= c.

Thus

log(xy) = log* + logy for all x.

Since this is true for all y > 0, the theorem is proved. |

If n is a natural number and x > 0, then

log(jc") = n logx.

PROOF Let to you (use induction). |

COROLLARY 2 If x, y > 0, then

log( ~
)
=logx -logy.

PROOF This follows from the equations

log x -= log
(
— y I = log I

—
) + log y . |

Theorem 1 provides some important information about the graph of log. The

function log is clearly increasing, but since log'C*) = l/x, the derivative becomes

very small as jc becomes large, and log consequently grows more and more slowly.

It is not immediately clear whether log is bounded or unbounded on R. Observe,

however, that for a natural number n
,

log(2") = n log 2 (and log 2 > 0);

it follows that log is, in fact, not bounded above. Similarly,

/; log 2;log(-) :logl -bg 2"



18. The Logarithm and Exponential Functions 343

therefore log is not bounded below on (0, 1). Since log is continuous, it actu-

ally takes on all values. Therefore R is the domain of the function log" . This

important function has a special name, whose appropriateness will soon become

clear.

DEFINITION The "exponential function," exp, is defined as log"

The graph of exp is shown in Figure 2. Since log x is defined only for x > 0, we
always have exp(x) > 0. The derivative of the function exp is easy to determine.

THEOREM 2 For all numbers x
,

PROOF

exp'(x) = exp(x).

lv, 1

exp'(x) = (log )'U) = —

-

log (log
-1
00)

1

log-'(x)

-1= log (x) = exp(x). |

A second important property of exp is an easy consequence of Theorem 1

.

THEOREM 3 If x and v are any two numbers, then

exp(x + y) = expU) • exp(y).

PROOF Let x' = exp(x) and y' = exp(y), so that

Then

This means that

x = log*',

v = log y'.

x + y = log*' + logy' = log(x'y').

exp(x + y) = x'y' = exp(x) • exp(y). |

FIGURE 2

This theorem, and the discussion at the beginning of this chapter, suggest that

exp(l) is particularly important. There is, in fact, a special symbol for this number.

DEFINITION e = exp(l).
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FIGURE 3

This definition is equivalent to the equation

f 1

1 = loge = / - dt.

J\ t

As illustrated in Figure 3,

I — dt < 1 , since 1 • (2 — 1 ) is an upper sum for
J] %

f(t) = l/ton[l,2],

and

n
Thus

dt > 1, since \ • (2 - 1) + \ • (4 - 2) = 1 is a lower

sum for /(r) = 1/r on [1,4].

,2
j

,,
j

-4
j

/ -dt < -dt < -dt,
h t Ji t Ji t

which shows that

< e <

In Chapter 20 we will find much better approximations for e, and also prove that

e is irrational (the proof is much easier than the proof that tt is irrational!).

As we remarked at the beginning of the chapter, the equation

implies that

exp(x + v) = exp(x) • exp(v)

expU) = [exp(l)]*

= e
x

, for all rational x

.

Since exp is defined for all x and exp(x) = e
x for rational x, it is consistent with

our earlier use of the exponential notation to define ex as exp(jc) for all x.

DEFINITION For any number x,

e
x = exp(x).

The terminology "exponential function" should now be clear. We have suc-

ceeded in defining e
x for an arbitrary (even irrational) exponent x. We have not

yet defined ax
, if a ^ e, but there is a reasonable principle to guide us in the

attempt. If x is rational, then

a
x = (e

l°sa
)
x — e

x[oga
.

But the last expression is defined for all x, so we can use it to define ax
.
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DEFINITION If a > o, then, for any real number x

ax = x log a

(If a == e this definition clearly agrees with the previous one.)

f(x) = 10*

The requirement a > is necessary, in order that logo be defined. This is not

unduly restrictive since, for example, we would not even expect

<-i) 1/2 =

to be defined. (Of course, for certain rational x, the symbol ax will make sense,

according to the old definition; for example,

FIGURE 4

(_i)i/3 = ^cr = _i.)

Our definition of ax was designed to ensure that

(e*)y = e
xy

for all x and y.

As we would hope, this equation turns out to be true when e is replaced by any

number a > 0. The proof is a moderately involved unraveling of terminology. At

the same time we will prove the other important properties of ax .

THEOREM 4 If a > 0, then

1) {a
b
)
c =abc

for all ft, c.

(Notice that a b
will automatically be positive, so (a

b
)
c
will be defined);

(2) a ] = a and ax+y = a x a y for all x, y.

(Notice that (2) implies that this definition of ax agrees with the old one for all

rational x.)

PROOF (1) (a
bY = e

c]ogah — £
c

'

logOMog ") = e
c(bloga) _ e

cb\oga _ ^c

(Each of the steps in this string of equalities depends upon our last definition, or

the fact that exp = log" .)

(2) a
1 = e

ll°z a = e
l°z a = a,

f,x+y _ Ax+y)\oga __ xloga+yloga __ vloga
_ vloga _ x

_ y |

Figure 4 shows the graphs of f(x) = a x
for several different a. The behavior

of the function depends on whether a < 1, a = \, or a > 1 . If«= 1, then
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FIGURE 5

f(x)= \
x = 1. Suppose a > 1. In this case log a > 0. Thus,

if x < y,

then x log a < y log a ,

so e
xl°z a < e

ylo% a
,

i.e.,
x va < a .

Thus the function f(x) — ax
is increasing. On the other hand, if < a < 1,

so that log a < 0, the same sort of reasoning shows that the function f(x) = a x

is decreasing. In either case, if a > and a ^ 1, then f(x) — a x
is one-one.

Since exp takes on every positive value it is also easy to see that ax
takes on every

positive value. Thus the inverse function is defined for all positive numbers, and

takes on all values. If f(x) = ax , then /
_1

is the function usually denoted by log
a

(Figure 5).

Just as ax can be expressed in terms of exp, so log
a
can be expressed in terms

of log. Indeed,

if

then

so

or

y = log
a
x,

x-= ay = e
ylosa

..

log x = y log a

,

log*
y =

In other words,

log„ x =

loga

tog*

loga

The derivatives of f(x) — a x and g{x) — log
a
x are both easy to find:

f{x) = e
x[oga

, so f(x) = loga e
xlo^ a

-= loga a\

log*
g(x) so g'(x) =

1

xlogaloga

A more complicated function like

f(x)=g(x)"
(x)

is also easy to differentiate, if you remember that, by definition,

f(x ) =ehM\oS g(x).

it follows from the Chain Rule that

fix) _ e
h(x) \ogg(x)

g(x)
h(x)

h'(x)logg(x) + h(x)

h'(x)logg(x) + h(x)

8(x)j

g'(x)

g(x)j

There is no point in remembering this formula simply apply the principle behind

it in any specific case that arises; it does help, however, to remember that the first

factor in the derivative will be g(x)
h{x)

.
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There is one special case of the above formula which is worth remembering.

The function fix) = x a was previously defined only for rational a. We can now
define and find the derivative of the function fix) = x a for any number a; the

result is just what we would expect:

a _ „a\ogx
fix)

SO

fix) = -
X

a log* ax

Algebraic manipulations with the exponential functions will become second na-

ture after a little practice—just remember that all the rules which ought to work

actually do. The basic properties of exp are still those stated in Theorems 2 and 3:

exp
;

(.x) =:exp(x),

exp(x + y) — exp(x) • exp(y).

In fact, each of these properties comes close to characterizing the function exp.

Naturally, exp is not the only function / satisfying /' — f, for if / = cex , then

fix) = cex = fix); these functions -are 'the only ones with this property, however.

THEOREM 5 If / is clifTerentiable and ; .;

fix) = fa) for all x,

then there is a number c such that

fix) = ce
x

for all x.

Let

*(*) =
fix)

(This is permissible, since e
x ^ for all x.) Then

e*f'{x) - f(x)e*
8 ix) = -^- = 0.

ie
x y

Therefore there is a number c such that

gix) = = c for all x.
ex

The second basic property of exp requires a more involved discussion. The

function exp is clearly not the only function / which satisfies

fix + y) = fix)-f(y).

In fact, fix) = or any function of the form f(x) = ax also satisfies this equation.

But the true story is much more complex than this—there are infinitely many other

functions which satisfy this property, but it is impossible, without appealing to more

advanced mathematics, to prove that there is even one function other than those
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already mentioned! It is for this reason that the definition of 10x is so difficult:

there are infinitely many functions / which satisfy

f(x + y) = f{x) f(y),

/d)= 10,

but which are not the function f(x) = 10 v
! One thing is true however—any

continuous function / satisfying

f(x + y) = f(x)-f(y)

must be of the form f(x) = ax or f(x) = 0. (Problem 38 indicates the way to

prove this, and also has a few words to say about discontinuous functions with this

property.)

In addition to the two basic properties stated in Theorems 2 and 3, the function

exp has one further property which is very important—exp "grows faster than any

polynomial." In other words,

THEOREM 6 For any natural number n.

lim — = oo.
x-»oo x"

1 I ( , I R 1 . 6

proof The proof consists of several steps.

Step 1. e
x > x for all x, and consequently lim e

x = oo (this may be considered
X—>-00

to be the case n — 0).

To prove this statement (which is clear for x < 0) it suffices to show that

x > log* for all x > 0.

If jc < 1 this is clearly true, since log* < 0. If .v > 1, then (Figure 6) x — 1 is an

upper sum for f{t) = \/t on [1, jc], so log* < x — 1 < x.

e
x

Step 2. lim — = oo.
x-»oo x

To prove this, note that

er

x

e
x/2

. e
x/2

1 (ex 'r
S/2

2 21 x

2 \ 2

By Step 1 , the expression in parentheses is greater than 1 , and lim e
xl = oo; this

X—>00

shows that lim e
x /x — oo.

X—*oo

Step 3. lim —
x—*oo x n

= oo.

Note that

e
x

x"
'

(e
x/ ")"

G)"

'

1

"
n"

/gx/n
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The expression in parentheses becomes arbitrarily large, by Step 2, so the nth

power certainly becomes arbitrarily large. |

It is now possible to examine carefully the following very interesting function:

f(x) = e- { 'x\ x # 0. We have

Therefore,

X i

f'{x) < for x < 0,

f'(x)>0 forx>0.

so / is decreasing for negative x and increasing for positive x. Moreover, if |jc| is

large, then x 2
is large, so — \/x 2

is close to 0, so e~ l/x ~
is close to 1 (Figure 7).

FIGURE 7

The behavior of / near is more interesting. If x is small, then l/x is large,

so e
x,x ~

is large, so e I* = \/(e
l/x")

is small. This argument, suitably stated with

e's and <5's, shows that

\ime- l/x2 =0.

Therefore, if we define

/(*) =
r 1/*

2

, x^O
0, x = 0.

then the function / is continuous (Figure 8). In fact, / is actually differentiable

1

FIGURE 8
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at 0: Indeed

/'(0) = lim

l/h 2

= lim
\/h

and

lim —r—-y = lim
1//?

h^o+ e (X / h)1 x^°° e (x2)

We already know that

it is all the more true that

and this means that

while nm
A-0- e {] /^

t = — lim
oo ^U z

)
2^

*

lim — = oo;

,(x
l
)

lim
x-*oo x

lim
X->-0O ^(JC2 )

= OO,

= 0.

Thus

fix) =
e- l 'x -3, x#0

jc-'

0, x = 0.

We can now compute that

1/^2 2

lim
h 3

lim
2- e-lA

2

lim —

—

t- = lim

,4

an argument similar to the one above shows that f"(0) = 0. Thus

/"(*) =
.^.4 +^^.4 ,#0

X 4 *6 !

0, .v = 0.

This argument can be continued. In fact, using induction it can be shown (Prob-

lem 40) that f
{k)

(0) — for every k. The function / is extremely flat at 0, and

approaches so quickly that it can mask many irregularities of other functions.

For example (Figure 9), suppose that

/(-*)

,-l/.v 2

0,

sin — , .v 7^
x

x =0.
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It can be shown (Problem 41) that for this function it is also true that f
{k)

(0) =
for all k. This example shows, perhaps more strikingly than any other, just how
bad a function can be, and still be infinitely differentiable. In Part IV we will

investigate even more restrictive conditions on a function, which will finally rule

out behavior of this sort.

e
1/jr

sin 1/jt, x ^
x =

FIGURE 9

PROBLEMS

1. Differentiate each of the following functions (remember that a b " always de-

notes a (b'h

1)

ii)

iii)

iv)

v)

vi)

vii)

viii)

ix)

x)

xi)

f(x) = e
e°

.

fix) = log(l + log(l + log(l + e
[+e]+

'))).

fix) = (smxYm(smx) .

f(x) = (sinA-)
,smv)Mn>

.

fix) = log(£jV) sinx.

f(x) = arcsin
/ X x-ilogCsin^)

V sin x f .

f(x) = (log(3 + e
4
))e

4x + (arcsin jc)
1os 3

.

f(x) = i\ogx)
l^ x

.

fix)=x x
.

f(x) = sm(x sm^mt)

).

2. (a) Check that the derivative of logo/ is /"'//•

This expression is called the logarithmic derivative of /. It is often easier

to compute than /', since products and powers in the expression for /
become sums and products in the expression for logo/. The deriva-

tive /' can then be recovered simply by multiplying by /; this process is

called logarithmic differentiation.

(b) Use logarithmic differentiation to find fix) for each of the following.

(i) /(*) = (] +*)0 +exl
).
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f..s e (3-x) ]/3x 2

(1 — x)(3 + x) l ' i

(iii) f(x) = (sinx) C0SJC + (cosx) si

Find

/
b *i
f(t)

a fit)
(It

(for / > Oon [a,b]).

4. Graph each of the following functions.

(a) f(x) = e
x+1

.

(b) f(x) = e
sinx

.

(c) f(x) — e
x + e~ x

. l (Compare the graph with the graphs of exp and

(d) f(x) = e
x -e~x

.\ 1/exp.)

(e) f(x) =
e
lx - 1

e2x + 1

= 1
,2, + !

Find the following limits by l'Hopital's Rule.

e
x - 1 - x - x 2

/2

~x^
"'

6"
V - 1 - .v - x

2
/2 - a-

3
/6

e
v - 1 -x -x 2

/2

log(l +Jt)-;t +* 2
/2

log(l +jc)-.y+.x- 2
/2

log(l + x) - x + x2/2 - x3
/3

73 '

6. Find the following limits by l'Hopital's Rule.

(i) lim(l -x) l/x
.

(i) lim

(ii) lim

(iii) lim
x->0

(iv) lim
x->-0

(v) lim
x^O

(vi) lim
x^O

(ii) lim (tanjc)
tan 1>

(iii) Um(cosje) /*
.
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7. The functions

:x 2 + y
2 = 1]

x, sin x)

FIGURE 10

sinh .y

cosh Jt

tanh x

e
x — e

-x

e
x

2
-X

e
x

2

— e~
X

= 1

ex + e~ e2x + \

are called the hyperbolic sine, hyperbolic cosine, and hyperbolic

tangent, respectively (but usually read 'sinch,' 'cosh,' and 'tanch'). There

are many analogies between these functions and their ordinary trigonometric

counterparts. One analogy is illustrated in Figure 10; a proof that the region

shown in Figure 10(b) really has area x/2 is best deferred until the next chap-

ter, when we will develop methods of computing integrals. Other analogies

are discussed in the following three problems, but the deepest analogies must

wait until Chapter 27. If you have not already done Problem 4, graph the

functions sinh, cosh, and tanh.

8. Prove that

2 • 2
(a) cosh" — sinh" = 1

.

(b) tanh
2 +1/ cosh

2 = 1.

(c) sinh(x + y) = sinh jc cosh y + cosh x sinh y.

(d) cosh(x + y) = cosh x cosh y + sinh x sinh y.

(e) sinh' = cosh.

(f) cosh' = sinh.

(g) tanh' =
1

cosh

The functions sinh and tanh are one-one; their inverses sinh
-

and tanh
-

,

are defined on R and (— 1 , 1), respectively. These inverse functions are some-

times denoted by arg sinh and arg tanh (the "argument" of the hyperbolic

sine and tangent). If cosh is restricted to [0, oo) it has an inverse, denoted

by arg cosh, or simply cosh" , which is defined on [1, oo). Prove, using the

information in Problem 8, that

sinh (cosh x) = \fx
2 — 1.

(b) cosh (sinh
-1

jc) = Vl +x 2
.

,
1

(c) (sinh-
1

)'(x) =
yr

(d) (cosh
_1

)'(jc) =

+ .V

1

v^^T
for x > 1

.

i

(e) (tanh
-
'/(Jt) =

i-x 2
for Ul < 1.
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10. (a) Find an explicit formula for sinh , cosh , and tanh (by solving the

equation y = sinh
-

x for x in terms of y, etc.).

dx,

(b) Find

f
b

1

Ja s/\ +
rb

l

K
2

r
b

l

a 1--V 2

1

d

dx for a , b > 1 or a,b < — 1

.

fif.v for \a\, \b\ < 1.

Compare your answer for the third integral with that obtained by writing

1 1

l-x<

1 1

+
1 - x \ +x

1 1 . Show that

F(x) dt= f—
J2 logr

is not bounded on [2, oo).

12. Let / be a nondecreasing function on [1, oo), and define

)
F(x) = /

J\ t

dt. x > 1.

Prove that / is bounded on [1, oo) ifand only if F/ log is bounded on [1 , oo).

13. Find

(a) lim ax for < a < 1. (Remember the definition!)
.V—>00

(b) lim
x^oo (logJC)"

(c) lim
(log*)"

x—>oo x

(d) lim x(logx)n . Hint: x(logx)"

(e) lim x x
.

x->0+

(-l)Mlog

x

IV

14. Graph f(x) = xx for x > 0. (Use Problem 13(e).)

15. (a) Find the minimum value of fix) — ex /x" for x > 0, and conclude that

fix) > e
n /n" for x > n.

(b) Using the expression fix) = e
x
ix — n)/xn+l

,
prove that fix) >

e"
+i

/in + 1)" +1 for x > n + 1, and thus obtain another proof that

lim fix) = oo.

16. Graph /(*) = <?7*
w

.



18. The Logarithm and Exponential Functions 355

17. (a) Find lim log(l + y)/y. (You can use l'Hopital's Rule, but that would be
\—>o

silly.)

(b) Find lim jclog(l +l/x).
x—*oo

(c) Prove that e — lim (1 + \/x)
x

.

x—>oo

(d) Prove that e
a = lim (1 +a/x)x

. (It is possible to derive this from part (c)
X—»00

with just a little algebraic fiddling.)

*(e) Prove that log/? = lim x(b [ ^x — 1).

18. Graph f(x) = (1 + l/x)x for x> 0. (Use Problem 17(c).)

19. If a bank gives a percent interest per annum, then an initial investment /

yields 7(1 +cr/100) after 1 year. If the bank compounds the interest (counts

the accrued interest as part of the capital for computing interest the next

year), then the initial investment grows to 7(1 +«/100)" after n years. Now
suppose that interest is given twice a year. The final amount after n years

is, alas, not 7(1 + <r//100)
2
", but merely 7(1 + a/200) 2"—although interest is

awarded twice as often, the interest must be halved in each calculation, since

the interest is a/2 per half year. This amount is larger than 7(1 + a/ 100)",

but not that much larger. Suppose that the bank now compounds the interest

continuously, i.e., the bank considers what the investment would yield when

compounding k times a year, and then takes the least upper bound of all

these numbers. How much will an initial investment of 1 dollar yield after

1 year?

20. (a) Let f{x) = log |jc| for x # 0. Prove that f'(x) = l/x for x ^ 0.

(b) If f(x) # for all x, prove that (log |/|)' = /'//.

21. Suppose that on some interval the function / satisfies /' = cf for some

number c.

(a) Assuming that / is never 0, use Problem 20(b) to prove that |/(jc)I = le
cx

for some number / (> 0). It follows that f(x) = kecx for some k.

(b) Show that this result holds without the added assumption that / is

never 0. Hint: Show that / can't be at the endpoint of an open

interval on which it is nowhere 0.

(c) Give a simpler proof that f(x) = kecx
for some k by considering the

function g{x) — f(x)/e
cx

.

(d) Suppose that /' = fg' for some g. Show that f(x) — keK{x) for some k.

K22. A radioactive substance diminishes at a rate proportional to the amount

present (since all atoms have equal probability of disintegrating, the total

disintegration is proportional to the number of atoms remaining). If A(t)

is the amount at time t, this means that A'(t) = cA(t) for some c (which

represents the probability that an atom will disintegrate).

(a) Find A(t) in terms of the amount Aq — A(0) present at time 0.
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(b) Show that there is a number r (the "half-life" of the radioactive element)

with the property that A(t + r) = A(t)/2.

23. Newton's law of cooling states that an object cools at a rate proportional to

the difference of its temperature and the temperature of the surrounding

medium. Find the temperature T(t) of the object at time /, in terms of its

temperature 7b at time 0, assuming that the temperature of the surrounding

medium is kept at a constant, M. Hint: To solve the differential equation

expressing Newton's law, remember that T — (T — M)'.

24.

25.

26.

27.

28.

29.

Prove that if f(x)
Jo

fit) dt, then f = 0.

Find all continuous functions / satisfying

(i) ff = e
x

.

Jo

(ii) f f=\-e2x\
Jo

Find all functions / satisfying f'{t) — f(t) + / f(t)dt.
Jo

Find all continuous functions / which satisfy the equation

t

(fix))
2

=fJo fit)
l + f

(a) Let / and g be continuous functions on [a , b] with g nonnegative. Sup-

pose that for some C we have

fix) <C+ f fg, a<x<b.

Prove Gronwall's inequality:

f(x)<CeJ« g
.

Hint: Consider the derivative of the function h{x ) = (C + f* fg)e •><>
8

.

(b) Let / and g be nonnegative functions with g continuous and / differen-

tiable. Suppose that f'{x) = g(x)f(x) and /(0) = 0. Prove that / = 0.

(Compare Problem 2 1
.)

fa) Prove that

2 3X X
1+ * +

2!
+

3!
+ + <e" for x > 0.

Hint: Use induction on //, and compare derivatives.

(b) Give a new proof that lim e
x/xn = oo.

x—>oo

30. Give yet another proof of this fact, using the appropriate form of l'Hopital's

Rule. (See Problem 11-56.)



18. The Logarithm and Exponential Functions 357

31. (a) Evaluate Km e x
I e' dt. (You should be able to make an educatedf e'

2

dt. (Vc

Jo
guess before doing any calculations.)

(b) Evaluate the following limits.

rx+a/x)

(i) lim e~
x ~

/ e
r

dt.
x^oo Jx

px+ (\ogx)/x

(ii) lim e~
x

/ e'' dt.
x^oo Jx

2
/>.v+(log.v)/2x

2

lim e~ '

/ e
r

dt.

Jxx^co

32. This problem outlines the classical approach to logarithms and exponentials.

To begin with, we will simply assume that the function f(x) = ax , defined in

an elementary way for rational x , can somehow be extended to a continuous

one-one function, obeying the same algebraic rules, on the whole line. (See

Problem 22-29 for 'a direct proof of this.) The inverse of / will then be

v

denoted by log
(
,

.

(a) Show, direcdy from the definition, that

l/h

log
a

,

(x) = limlog
fl
h +

-J

\. log;(linj(l +«'/*).
X

Thus, the whole problem has been reduced to the determination of

lim(l + h)
{,h

. If we can show that this has a limit e, then log/U) =
h—»0

— • \og
e
e.— — , and consequently exp = log" has derivative exp'(x) =

exp(x).

( IV
(b) Let a„ = I 1 H— 1 for natural numbers n. Using the binomial theorem,

show that

— +Ei( 1
-i)(

l -=)....( I

A! V n I \ n
k=2 x 7 x

Conclude that a„ < all+ \.

(c) Using the fact that \/k\ < 1/2
A_1

for k > 2, show that all a„ < 3. Thus,

the set of numbers {a\, ai, «3, . .
.

} is bounded, and therefore has a least

upper bound e. Show that for any e > we have e — an < s for large

enough n.

(d) If n < x < n + 1 , then
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Conclude that lim I 1 H— I = e. Also show that lim
x—»oo \ x I x-+—oo

and conclude that lim(l + //)
1//

' = e.

h-*Q

1 + = e.

B

Q
FIGURE 1 1

*33. A point P is moving along a line segment AB of length 107 while another

point Q moves along an infinite ray (Figure 1 1). The velocity of P is always

equal to the distance from P to B (in other words, if P(t) is the position of P
at time t, then P'(t) = 107 — P(t)), while Q moves with constant velocity

Q'(t) = 10 . The distance traveled by Q after time t is defined to be the

Napierian logarithm of the distance from P to B at time t. Thus

10
7

/ =Naplog[107 -P(/)].

This was the definition of logarithms given by Napier (1550-1617) in his

publication of 1614, Mirifici logarithmonum canonis description (A Description of

the Wonderful Law of Logarithms); work which was done before the use of

exponents was invented! The number 107 was chosen because Napier's ta-

bles (intended for astronomical and navigational calculations), listed the loga-

rithms of sines of angles, for which the best possible available tables extended

to seven decimal places, and Napier wanted to avoid fractions. Prove that

Nap logx = 10 log
107

Hint: Use the same trick as in Problem 23 to solve the equation for P.

^34. (a) Sketch the graph of f{x) = (log*)/* (paying particular attention to the

behavior near and oo).

(b) Which is larger, e
n or 7r

e
?

(c) Prove that if < x < 1, or x = e, then the only number y satisfying

x y = y
x

is y = x; but if x > 1, x ^ e, then there is precisely one number

y t^ x satisfying x y — y
x

; moreover, if x < e, then y > e, and if x > e,

then y < e. (Interpret these statements in terms of the graph in part (a)!)

(d) Prove that if x and y are natural numbers and x y = y
x

, then x = y or

x = 2, y = 4, or x = 4, y — 2.

(e) Show that the set of all pairs (x, y) with x y = y
x
consists of a curve and

a straight line which intersect; find the intersection and draw a rough

sketch.

(f) For 1 < x < e let g(x) be the unique number > e with x g{x) = g(x)x .

Prove that g is differentiable. (It is a good idea to consider separate

functions.

**

f\(x) =

fl(x) =

logx

X

logx

< x < e

e < x
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and write g in terms of f\ and fa. You should be able to show that

,, ,
[g(x)]

2
1 -logx

1 -logg(x) x L

if you do this part properly.)

*35. This problem uses the material from the Appendix to Chapter 1 1.

(a) Prove that exp is convex and log is concave.
n

(b) Prove that if y_. Pi = 1 and all /?, > 0, then for all Zi > we have

i=\

Z\
Pi

...-Zn P" < PlZl + ••• + PnZn-

(Use Problem 8 from the Appendix to Chapter 11.)

(c) Deduce another proof that Gn < A n (Problem 2-22).

36. (a) Let / be a positive function on [a, b], and let Pn be the partition of [a, b]

into n equal intervals. Use Problem 2-22 to show that

L(logf, Pn ) < log (
-1— L(f, Pn )) .

b — a \b — a

(b) Use the Appendix to Chapter 13 to conclude that for all integrable / >

we have

/ log f <log( / /
-aJa \b-aJa

A more direct approach is illustrated in the next part:

(c) In Problem 35, Problem 2-22 was deduced as a special case of the in-

equality

n

for pi > 0, y. Pi = 1 and 8 convex. For g concave we have the reverse

inequality

^Pigixt) Sg l^PiXi)
i=\ \i=\ I

Apply this with g = log to prove the result of part (b) directly for any

integrable /.

(d) State a general theorem of which part (b) is just a special case.

37. Suppose / satisfies /' = / and f(x + y) = f(x)f(y) for all jc and y. Prove

that / = exp or f = 0.
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"38. Prove that if / is continuous and f(x + y) = f(x)f(y) for all x and y, then

either / = or f(x) = [f(l)]
x for all x. Hint: Show that /(*) = [f(l)]

x

for rational x, and then use Problem 8-6. This problem is closely related to

Problem 8-7, and the information mentioned at the end of Problem 8-7 can

be used to show that there are discontinuous functions / satisfying f(x + y) =
f(x)f(y).

"39. Prove that if / is a continuous function defined on the positive real numbers,

and f(xy) = f(x) + f(y) for all positive x and y, then / = or f(x) =
f(e)\ogx for all x > 0. Hint: Consider g(x) = f(e

x
).

"40. Prove that if f(x) = e~ l/x2
for x # 0, and /(0) = 0, then / (*>(0) = for

all k (you will encounter the same sort of difficulties as in Problem 10-21).

Hint: Consider functions g(x) = e~ l ^x
' P(\/x) for a polynomial function P.

"41. Prove that if f(x) = e~ l/x2
sin \/x for x / 0, and /(0) = 0, then /

,A)
(0) =

for all k.

42. (a) Prove that if a is a root of the equation

(*) anx
n + a n_ix"~

l

-\ +a\x + a = 0,

then the function y(x) = e
ax

satisfies the differential equation

(**) a„y i " ) +a„_iy
{n - ]) + + a

x
y' + a y = 0.

*(b) Prove that if a is a double root of (*), then y(x) — xeax also satisfies (**).

Hint: Remember that if a is a double root of a polynomial equation

/U) = 0, then f'{a) =0.

*(c) Prove that if a is a root of (*) of order r, then y(x) — x eax is a solution

for < k < r — 1.

If (*) has n real numbers as roots (counting multiplicities), part (c) gives

n solutions y\, ... , yn of (**).

(d) Prove that in this case the function c\ y\ + • • • + cn yn also satisfies (**).

It is a theorem that in this case these are the only solutions of (**). Prob-

lem 21 and the next two problems prove special cases of this theorem,

and the general case is considered in Problem 20-26. In Chapter 27 we

will see what to do when (*) does not have n real numbers as roots.

"43. Suppose that / satisfies /" - / = and /(0) = /'(0)

as follows.

0. Prove that / =

**

(a) Show that f
2 - if')

2 = 0.

(b) Suppose that f(x) ^ for all x in some interval (a,b). Show that either

f(x) = ce
x or else f(x) = ce~x for all x in (a,b), for some constant c.

c) If f(xo) ^ for X() > 0, say, then there would be a number a such that

< a < jco and f(a) = 0, while f(x) ^ for a < x < xq. Why? Use

this fact and part (b) to deduce a contradiction.
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*44. (a) Show that if / satisfies f" - f = 0, then f(x) = aex + be'x
for

some a and b. (First figure out what a and b should be in terms of /(0)

and /'(0), and then use Problem 43.)

(b) Show also that / = a sinh +&cosh for some (other) a and b.

45. Find all functions / satisfying

(a) f
{,,) = f

(n ~ X)
.

(b) f
(n) = f

{
"- 2)

.

*46. This problem, a companion to Problem 15-30, outlines a treatment of the ex-

ponential function starting from the assumption that the differential equation

f' = f has a nonzero solution.

(a) Suppose there is a function / / with f = f. Prove that fix) ^ for

each x by considering the function g(x) = /(xo + *)/(*0 — •*)> where

/(*o)#0.
(b) Show that there is a function / satisfying f' = f and /(0) = 1.

(c) For this / show that f(x + v) = f(x) f(y) by considering the function

g(x) = f(x + y)/f(x).

(d) Prove that / is one-one and that (f~
l
)'(x) = l/x.

47. Let / and g be continuous functions such that lim f(x) = lim g(x) = oo.
*—>-oo JC—>-oo

We say that / growsfaster than g (f ^> g) if

hm —-— = oo,

and we say that / and g grow at the same rate (f ~ g) if

lim : exists and is / 0, oo.

For example, for any polynomial function P with lim P(x) — oo (i.e., P
X—>00

is non-constant and has positive leading coefficient) we have exp S> P and

P ^> log" for any positive integer n.

(a) Given / and g, with lim f(x) = lim g(x) = oo, is it necessarily true
X—>0O .V—»oo

that one of the three conditions / » g or g S> / or / ~ g holds?

(b) BF/»g,then/+*~/.
(c) If

tog/
.

,> c > 1

logg

for sufficiently large x, then / ^> g.

(d) If / ;§> g and F(jc) = / f,G(x)= I g, does it necessarily follow

Jo JO
that F » G?



362 Derivatives and Integrals

48.

(e) Arrange each of the following sets of functions in increasing order of

growth (for convenience, we indicate each function simply by giving its

value at x):

(i) x 3
, e

x
, x

3 + log(x 3
), log4.v, (logx)*, xx

, x + e~ 5x
, x

3 logx.

(ii) x log x, e
5x

, log(x
v
), ex , xx

, x
logx

,
(logx) A'.

(iii) ex , x
e

, x
x

, e
x

, 2
X

, e
x/2

,
(\ogx) 2x

.

Suppose that g\, gi, g3, . . . are continuous functions. Show that there is a

continuous function / which grows faster than each g,

.

49. Prove that log
10

2 is irrational.



CHAPTER <%^ INTEGRATION IX ELEMENTARY TERMS

Every computation of a derivative yields, according to the Second Fundamental

Theorem of Calculus, a formula about integrals. For example,

if F(x) = x(logx) — x then F\x) = log x\

consequently,

f
b

I \ogx dx = F(b) — F(a) = b(\ogb) — b — [a(loga) — a], 0<a,b.
Ja

Formulas of this sort are simplified considerably if we adopt the notation

F(x) = Fib) - F{a).

We may then write

L

b

\ogxdx = x(logx) — x

Fix)

This evaluation of fa log x dx depended on the lucky guess that log is the deriva-

tive of the function Fix) = x(\ogx)—x. In general, a function F satisfying F' = f
is called a primitive of /. Of course, a continuous function f always has a

primitive, namely,

J a

but in this chapter we will try to find a primitive which can be written in terms of

familiar functions like sin, log, etc. A function which can be written in this way
is called an elementary function. To be precise,* an elementary function is

one which can be obtained by addition, multiplication, division, and composition

from the rational functions, the trigonometric functions and their inverses, and the

functions log and exp.

It should be stated at the very outset that elementary primitives usually cannot

be found. For example, there is no elementary function F such that

2

F'{x) = e~
x

for all x

(this is not merely a report on the present state of mathematical ignorance; it is

a (difficult) theorem that no such function exists). And, what is even worse, you

* The definition which we will give is precise, but not really accurate, or at least not quite standard.

Usually the elementary functions are defined to include "algebraic" functions, that is, functions g
satisfying an equation

(g(x))'
1 + /„_,(x)U(.v))"-

1 + • •• + f (x) = 0,

where the /, are rational functions. But for our purposes these functions can be ignored.

363
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will have no way of knowing whether or not an elementary primitive can be found

(you will just have to hope that the problems for this chapter contain no misprints).

Because the search for elementary primitives is so uncertain, finding one is often

peculiarly satisfying. If we observe that the function

log(l + x 2
)

F(x) = x arctan x

satisfies

F'{x) = arctan jc

(just how we would ever be led to such an observation is quite another matter), so

that

/'
Ja

arctan x dx — x arctan x — log(l +x 2
)

then we may feel that we have "really" evaluated f arctan x dx

.

This chapter consists of little more than methods for finding elementary prim-

itives of given elementary functions (a process known simply as "integration"),

together with some notation, abbreviations, and conventions designed to facilitate

this procedure. This preoccupation with elementary functions can be justified by

three considerations:

(1) Integration is a standard topic in calculus, and everyone should know

about it.

(2) Every once in a while you might actually need to evaluate an integral, under

conditions which do not allow you to consult any of the standard integral

tables (for example, you might take a (physics) course in which you are

expected to be able to integrate).

(3) The most useful "methods" of integration are actually very important the-

orems (that apply to all functions, not just elementary ones).

Naturally, the last reason is the crucial one. Even if you intend to forget how
to integrate (and you probably will forget some details the first time through), you

must never forget the basic methods.

These basic methods are theorems which allow us to express primitives of one

function in terms of primitives of other functions. To begin integrating we will

therefore need a list of primitives for some functions; such a list can be obtained

simply by differentiating various well-known functions. The list given below makes

use of a standard symbol which requires some explanation. The symbol

/' OT
/

f(x)dx

means "a primitive of /" or, more precisely, "the collection of all primitives of /."

The symbol f f will often by used in stating theorems, while / f(x)dx is most

useful in formulas like the following:

A

I x dx
x
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This "equation" means that the function F(x) = x 4
/4 satisfies F'(x) = x 3

. It

cannot be interpreted literally because the right side is a number, not a function,

but in this one context we will allow such discrepancies; our aim is to make the

integration process as mechanical as possible, and we will resort to any possible

device. Another feature of the equation deserves mention. Most people write

/
.3

X 4

x'dx = — +C
4

to emphasize that the primitives of f(x) — x are precisely the functions of the

form F(x) — x 4
/4 + C for some number C. Although it is possible (Problem 14)

to obtain contradictions if this point is disregarded, in practice such difficulties do

not arise, and concern for this constant is merely an annoyance.

There is one important convention accompanying this notation: the letter ap-

pearing on the right side of the equation should match with the letter appearing

after the 'W on the left side—thus

/

/

/

A function in f f(x)dx, i.e., a primitive of /, is often called an "indefinite

integral" of /, while / f(x) dx is called, by way of contrast, a "definite integral."

This suggestive notation works out quite well in practice, but it is important not to

be led astray. At the risk ofboring you, the following fact is emphasized once again:

the integral / f{x)dx is not defined as "Fib) — F(a), where F is an indefinite

integral of /" (if you do not find this statement repetitious, it is time to reread

Chapter 13).

We can verify the formulas in the following short table of indefinite integrals

simply by differentiating the functions indicated on the right side.

u du -
u
4

'

4
'

tx dx -
tx 2

= ~2~'

tx dt -
xt 2

I

I — dx = log x I / — dx is often written / — for convenience; similar

a dx = ax

x"dx = , n^-\
n + 1

abbreviations are used in the last two examples of this

table.)

/

/

e
x dx = e

x

sin x dx — — cos x
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I

I

I

I

cos x dx -= sin*

sec x dx = tanx

sec x tan x dx = sec x

dx
= arctan x

\+x 2
'

dx
— arcsin x

•A

Two general formulas of the same nature are consequences of theorems about

differentiation:

f[f(x) + g(x)]dx = j f(x)dx + j g(x)dx,

These equations should be interpreted as meaning that a primitive of / + g can

be obtained by adding a primitive of / to a primitive of g, while a primitive of

c • / can be obtained by multiplying a primitive of / by c.

Notice the consequences of these formulas for definite integrals: If / and g are

continuous, then

rb nb nb

/ [f(x)+g(x)]dx= f(x)dx+ g(x)dx,
J a J a J ci

f c f(x)dx = c f f(x)dx.

These follow from the previous formulas, since each definite integral may be writ-

ten as the difference of the values at a and b of a corresponding primitive. Con-

tinuity is required in order to know that these primitives exist. (Of course, the

formulas are also true when / and g are merely integrable, but recall how much
more difficult the proofs are in this case.)

The product formula for the derivative yields a more interesting theorem, which

will be written in several different ways.

THEOREM l (integration BY PARTS) If /' and g' are continuous, then

/ fg' = fs-f f'8>

f f{x)g\x)dx = f(x)g{x) - j f'(x)g(x)dx,

nb b /. />

/ f(x)g'(x)dx = f(x)g(x) / f'(x)g(x)dx.
J n a J a

(Notice that in the second equation f(x)g(x) denotes the Junction f g.
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PROOF The formula

can be written

Thus

(/*)' = f'g + fg'

fg' = (fg)' ~ f'g-

j fg'=f(fgy-f fg,

and fg can be chosen as one of the functions denoted by f(fg)'. This proves the

first formula.

The second formula is merely a restatement of the first, and the third formula

follows immediately from either of the first two. |

As the following examples illustrate, integration by parts is useful when the func-

tion to be integrated can be considered as a product of a function /, whose deriva-

tive is simpler than /, and another function which is obviously of the form g'.

I xex dx — xex — I 1 • e
x dx

J a 44 J
i i

fg' fg f g

= xex - e
x

I xsinx dx = x • (— cosx) — / 1 • (— cosx)dx
^ | | i i

J
4, i

f g' f g r g

= —x cos* + sin x

There are two special tricks which often work with integration by parts. The

first is to consider the function g' to be the factor 1 , which can always be written

in.

/ log -Y dx = / 1 • log x dx — x log x — I x (\/x) dx
J J

| 4, 1414
g' f g f g f

= x(\ogx) — X.

The second trick is to use integration by parts to find f h in terms of / h again,

and then solve for f h . A simple example is the calculation

/ (1 /x) - log x dx = log x log x — I (l/x) log x dx ,

-X- -X- -X- "X -X -X

g' f g f f g

which implies that

f • 2
2 / — losxdx = (logx)
J x
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or

/
1 (log*) 2

- log x ax =
x

5
2

A more complicated calculation is often required:

I
e

r
sin x dx = £

A
• (— cos x)

4- 4- 4- 4-

/ /

= — e cos

- / e
x

• (— cosa)o?a

f g

x + je<
:

8

cos a dx

I i

u v'

= - e-cosx + [,<.( 51„.v,-/^(Sin,»^];

u' V

therefore,

/
2 / e

x
sin x dx = e

x

(sin x — cos x)

or

/
e

x

sin x dx =
ex {?,mx — cosx)

Since integration by parts depends upon recognizing that a function is of the

form g', the more functions you can already integrate, the greater your chances for

success. It is frequently reasonable to do a preliminary integration before tackling

the main problem. For example, we can use parts to integrate

/ (log*) dx = I (logx)(logx) dx
3 J

I II

f g'

if we recall that /logx dx = x(logx) — x (this formula was itself derived by inte-

gration by parts); we have

/ (\ogx)(logx)dx = (\ogx)[x(\ogx) - x] - / (\/x)[x(logx)- x]dx
J

I I i i
J

I I

f g' f g f g

— (log x) [x (log x) — x] —
j

[log A" — 1] dx

= (log x)[x (log x) —a] — / \ogxdx + / 1 dx

= (log A) [A (log A) — A] — [A(logA) — A'] + A

= x (log A ) — 2a (log A ) + 2a .

The most important method of integration is a consequence of the Chain Rule.

The use of this method requires considerably more ingenuity than integrating by

parts, and even the explanation of the method is more difficult. We will therefore



19. Integration in Elementary Terms 369

THEOREM 2

(THE SUBSTITUTION FORMULA)

PROOF

develop this method in stages, stating the theorem for definite integrals first, and

saving the treatment of indefinite integrals for later.

If / and g' are continuous, then

Jg(a]

/
/= / (fog)-g'

Jg(a) J a

?(») rb

f{u)du= \ f(g(x))-g'(x)dx.
a) J a

If F is a primitive of /, then the left side is F(g(b)) — F(g(a)). On the other

hand,

(Fo gy = (F'og).g' = (fog).g>,

so F o g is a primitive of (fog) g' and the right side is

(F o g)(b) - (F o g)(a) = F(g(b)) - F(g(a)). |

The simplest uses of the substitution formula depend upon recognizing that a

given function is of the form (fog)- g'. For example, the integration of

IJ a

sin x cos x dxK (sinx) cosxdx

is facilitated by the appearance of the factor cosx, which will be the factor g'(x)

for g(x) = sinx; the remaining expression, (sin.v) , can be written as (g(x))
5 =

f(g(x)), for f(u) = u . Thus

/'
J a

sin x cos x dx

b

g(x) = sin x

f(u)=w
ro rg\o)

=
/

f(g(x))g'(x)dx= / f(u)du
Ja J via)

'g(b)

-L
sin b

u du

'g(c

sin b sin a

The integration of f tan x dx can be treated similarly if we write

f
h

f
b - sin ^

I tanxdx = — I

Jo Ja COSX
dx.

In this case the factor — sinx is g'(x), where g(x) = cosx; the remaining factor

1/cosx can then be written /(cosx) for f(u) = \/u. Hence

/'
J a

tan x dx
g(x) = cosx

1

f(u) = -

-L
'g(b)ft

f(g(x))g'(x)dx = -
/

f(u)du
Jg{a)

/•cos/j i

/ - du = log(cosa) — log(cos/?).
J i. as, i

"
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Finally, to find

/'
J a

I

dx,
Ia *log*

notice that \/x = g'(x) where g(x) = logx, and that l/logjc = f(g(x)) for

f(u) = 1/m. Thus

La x\ogX
dx

g(x) = logx

/•gtfo

= / f(u)du

f
^S b 1

<iw = log(logb) — log(loga).
'log a u

Fortunately, these uses ofthe substitution formula can be shortened considerably.

The intermediate steps, which involve writing

>b rg(b)

f f(g(x))g'(x)dx=
f

f(u)du,
Ja J g(a)

can easily be eliminated by noticing the following: To go from the left side to the

right side,

substitute
u for g{x)

du for g'(x)dx

(and change the limits of integration);

the substitutions can be performed directly on the original function (accounting

for the name of this theorem). For example,

f
b

I sin x cos x dx
J a

and similarly

substitute
u for sinx

du for cosx dx

/>sin b

= / u du,
J sin a

rbr — sin x

Ja COS X
dx substitute

u for cosx

du for — sin x dx

/•cos/? 1

= / — du
X
J Jcos a "

Usually we abbreviate this method even more, and say simply:

"Let u = g(x)

du = g'(x)dx"

Thus

L
I

a *logX
dx

let u = log ,v

1 ,

du — — dx
x

/•log*
j

= / -du.

In this chapter we are usually interested in primitives rather than definite in-

tegrals, but if we can find fa f(x)dx for all a and b, then we can certainly find
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f f(x)dx. For example, since

1.

it follows that

Similarly,

b • 6 i • 6
. 5 sin o sin a

sin x cos x ax — — -—

,

6 6

f . 5
sin

6
*

/ sm x cos jc a jc = —-

—

/ tan x dx = — log cos x ,

/ —: dx = log(logx).
J xlogx

It is quite uneconomical to obtain primitives from the substitution formula by first

finding definite integrals. Instead, the two steps can be combined, to yield the

following procedure:

(1) Let

u = g(x),

du = g'(x)dx;

(after this manipulation only the letter u should appear, not the

letter X).

(2) Find .\ primitive (as an expression involving u).

(3) Substitute g(x) back for u.

Thus, to find

1) let

/-sin jc cos x dx ,

u — sinx,

du = cosx dx

so that we obtain

(2) evaluate

/ " du;

(3) remember to substitute sin x back for u , so that

/sin5 sin x
' x cos x dx = —-

—
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Similarly, if

u = log x

,

1

du = — dx,
x

then

so that

To evaluate

let

/* 1 /" 1

/
—- dx becomes / - du = log u,

J xlogx J u

1 xlogx
dx = log(logjc).

/ l+.v 2
j dx,

u = 1 + .v
2

,

du = 2x dx;

the factor 2 which has just popped up causes no problem—the integral becomes

1 /" 1 1

/
~ du =

o
loS M -

1 j u I

so

/
1 9

f/x = -iog (i + .Al+x 2
""

2

(This result may be combined with integration by parts to yield

x

I
1 • arctan x dx = x arctan x

-I l+.v 2
dx

1 /= x arctan x — j log(l + x ),

a formula that has already been mentioned.)

These applications of the substitution formula* illustrate the most straight-

forward and least interesting types—once the suitable factor g'(x) is recognized,

the whole problem may even become simple enough to do mentally. The following

three problems require only the information provided by the short table of indefi-

nite integrals at the beginning of the chapter and, of course, the right substitution

*The substitution formula is often written in the form

I fiu)du= j f(g(x))g'(x)dx, u=g(x).

This formula cannot be taken literally (after all,
/ f(u)du should mean a primitive of / and the

symbol f f(g(x))g'(x)dx should mean a primitive of (fog)- g'\ these are certainly not equal).

However, it may be regarded as a symbolic summary of the procedure which we have developed. If

we use Leibniz's notation, and a little fudging, the formula reads particularly well:

I .
fundu =

j
f(u)-£dx.
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(the third problem has been disguised a little by some algebraic chicanery).

/

/

/

sec x tan x dx

,

(cosx)e
smx

dx.

dx.

y/\ -e 2x

If you have not succeeded in finding the right substitutions, you should be able to

guess them from the answers, which are (tan
6
x)/6, e

smx
, and arcsin e

x
. At first you

may find these problems too hard to do in your head, but at least when g is of the

very simple form g(x) — ax + b you should not have to waste time writing out the

substitution. The following integrations should all be clear. (The only worrisome

detail is the proper positioning of the constant—should the answer to the second be

e /3 or 3e3x ? I always take care of these problems as follows. Clearly f e
ix dx =

eix - (something). Now if I differentiate F(x) = e
3x

, I get F'(x) = 3e3x
, so the

"something" must be 3, to cancel the 3.)

logU+3),

/

/

/

/

.v + 3

e

"3
, e

3x
3x dx = —

,

sin 4;
cos Ax dx =

sin(2.t + 1) dx =

4 '

cos(2a' + 1

)

/

2

dx arctan 2x

l+4.r 2

More interesting uses of the substitution formula occur when the factor g'(x)

does not appear. There are two main types of substitutions where this happens.

Consider first

1 +ex

t 1 -e
dx.

The prominent appearance of the expression e
x
suggests the simplifying substitu-

tion

u = e\

du = e
x
dx.

Although the expression e
x dx does not appear, it can always be put in:

/- dx = / • — e
x dx

.

1 - ex J 1 - ex ex

We therefore obtain
L + u 1

• — du.
I 11 u
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which can be evaluated by the algebraic trick

so that

/

/

1 — u u

1+e
\-e

— du
f 2 1

= /
- + - du = -

J \ - u u
21og(l — u) + logM,

dx = -2 log(l - e
x
) + log e

x = -2 log( 1 - e
x

) + x.

There is an alternative and preferable way of handling this problem, which does

not require multiplying and dividing by e
x

. If we write

a — e x = logM,

1

dx = — du,
u

then

/
1+e
1 -e

- dx immediately becomes
J I — u u

Most substitution problems are much easier if one resorts to this trick of express-

ing x in terms of u, and dx in terms of du, instead of vice versa. It is not hard to

see why this trick always works (as long as the function expressing u in terms of x

is one-one for all x under consideration): If we apply the substitution

u =g(x),

to the integral

we obtain

/

x=g-\u)
dx = (g- l Y(u)du

f(g(x))dx,

<)(g-
l

)'(u)du.(1) f f(u]

On the other hand, if we apply the straightforward substitution

u = g(x)

du = g\x)dx

to the same integral,

j f(g(x))dx = j f (g(x))
g'(x)

g'(x)dx,

we obtain

(2) //<- )• du.
g'(g-Hu))

The integrals (1) and (2) arc identical, since (g~ [

)'(u) = \/g'(g~ '(«)).

As another concrete example, consider

dx.
1 vV+T
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In this case we will go the whole hog and replace the entire expression y/ex + 1

by one letter. Thus we choose the substitution

u = y/ex + 1

,

u
2 = e

x + 1,

u
2 -l=e\ x = log(w

2 - 1),

2w
dx = —x du.

u z — 1

The integral then becomes

f
(ir-D 2 2u

f 2 2M 3

/ • —

r

du — 1 l u — [ du — — zw.
J n « 2 -i y 3

Thus
e

t
2x 2

Vex + 1
3

Jx = -(eA" + l)
3/2 -2(e v + l)

1/2
.

Another example, which illustrates the second main type of substitution that can

occur, is the integral

/
Vl — x 2 dx.

In this case, instead of replacing a complicated expression by a simpler one, we

will replace x by sinw, because vl — sin « = cost/. This really means that we

are using the substitution u = arcsinx, but it is the expression for x in terms of u

which helps us find the expression to be substituted for dx . Thus,

let x = sin u ,
[u = arcsin x]

dx = cos udu;

then the integral becomes

/ v 1 — sin~ u cos udu — I cos u du.

The evaluation of this integral depends on the equation

2 1 + cos 1u
cos u =

2

(see the discussion of trigonometric functions below) so that

I cos u du = I

1 + cos 2u u sin 2w
du = - +

2 2 4

and

r 7 arcsin x sin (2 arcsin jc)

Vl-x' dx = 1

/
arcsin x 1 . .

h - sin(arcsinx) • cos(arcsin x)

arcsin x 1 / r—2~ + r^^7 -
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Substitution and integration by parts are the only fundamental methods which

you have to learn; with their aid primitives can be found for a large number of

functions. Nevertheless, as some of our examples reveal, success often depends

upon some additional tricks. The most important are listed below. Using these

you should be able to integrate all the functions in Problems 1 to 10 (a few other

interesting tricks are explained in some of the remaining problems).

1 . TRIGONOMETRIC FUNCTIONS

Since

1

and

we obtain

sin x + cos x

o 2 -2
cos Lx = cos x — sin x ,

cos lx — cos x — ( 1 — cos" x ) = 2 cos x — 1

,

7 .9 -9
cos 2.* = (1 — sin x) — sin"x = 1 — 2 sin x,

or

sin" x
1 — cos 2x

?

cos X
1 + cos lx

2

These formulas may be used to integrate

/
sin" x dx,

/
cos" x dx,

if n is even. Substituting

(1- cos lx )
or

( 1 + cos 2x)

2 2

for sin x or cos
2

jc yields a sum of terms involving lower powers of cos. For

example,

2

1 + cos Ax
and

/ cos" 2x dx = /

If n is odd, n = 2k + I, then

/ s'm" x dx = / sin.vd — cos x)
k
dx\

1 C
- dx / cos 2x dx H— / cos 2x dx
4 2 /
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the latter expression, multiplied out, involves terms of the form sinjccos'x, all of
which can be integrated easily. The integral for cos"x is treated similarly. An
integral

/
sin" x cos

w
jc dx

is handled the same way if n or m is odd. If n and m are both even, use the
formulas for sin

2
x and cos2 *.

A final important trigonometric integral is

/
" dx = I secxdx = log(sec;c +tanjc).

Although there are several ways of "deriving" this result, by means of the meth-
ods already at our disposal (Problem 13), it is simplest to check this formula by
differentiating the right side, and to memorize it.

2. REDUCTION FORMULAS

Integration by parts yields (Problem 21)

/ sm n xdx = --sm f'- l xcosx + ^—— f sin"-
2
xdx,

J n n J

/ cos" x dx = - cos"
-1

x sin x + ^—— / cos"
-2

x dx
J n n J

f
l

dx _ 1
x In-?, r 1

J U 2 +l)« * ~2n-2(x 2 +\r-i +
2^2j~(xTTTy^ dX

and many similar formulas. The first two, used repeatedly, give a different method
for evaluating primitives of sin" or cos" . The third is very important for integrating
a large general class of functions, which will complete our discussion.

3. RATIONAL FUNCTIONS

Consider a rational function p/q where

p(x) = anx
n + an_ix

n~ l

H y a ,

q(x) = bmx
m +bm^xm - l + ... + b .

We might as well assume that a„ =bm = \. Moreover, we can assume that n < m,
for otherwise we may express p/q as a polynomial function plus a rational function
which is of this form by dividing (the calculation

u 2
1= u+l +

u — \ u - 1

is a simple example). The integration of an arbitrary rational function depends
on two facts; the first follows from the "Fundamental Theorem of Algebra" (see
Chapter 26, Theorem 2 and Problem 26-3), but the second will not be proved in
this book.
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theorem Every polynomial function

THEOREM

q{x)=xm +bm- lx
m- l + + b

can be written as a product

q(x) = (x- a,)" • . . . • (x - ak)
rk
(x

2 + fox + ]/,)
S|

(where r\ + \- rk + 2(s\ + h Si) = m).

(x
2 + frx + yiy

-A - >/A-
2 -4y,

(In this expression, identical factors have been collected together, so that all

x — c, and x + fax + y, may be assumed distinct. Moreover, we assume that each

quadratic factor cannot be factored further. This means that

A-
2 -4y; <0,

since otherwise we can factor

-A + Va 2 -4k,

x + A a + Yi
=

into linear factors.)

If n < m and

p(x) = x" + a„_]X
n ~ l

H \-clq,

q(x) = x
m + bm _

l
x"- ] + ---+b

= {x- a,)''
1

• . . .
• (x - ak )

rk
(x

2 + fox + n )

S]
. . .

• (a
2 + A* + YiY\

then /?(a)/<7(a) can be written in the form

p(x)

q(x) . U - a
i

)

«1 n+ ••• + - —
(x -cci)'i_

+ •

+
_{x -ak ) (x -akYk

_

+
bux+c ]A

(x 2 + pix + n)s i

_

+ •••

_(a 2 + fox + yi)

+
r */ IX + C/.1

f fax + y/) u 2 + A-v + y/)".

This expression, known as the "partial fraction decomposition" of p(x)/q(x), is

so complicated that it is simpler to examine the following example, which illustrates

such an expression and shows how to find it. According to the theorem, it is

possible to write

2.v
7 + 8.v

ft + 13a 5 + 20a-
4 + 15a 3 + 16a 2 + 7a + 10

(a 2 +a + 1)
2 (a 2 + 2a + 2)(a- l) 2

a b ex + d
+ +

ex + f gx + h
+ —, —r +

A-l (a-1) 2 a 2 + 2a+2 a 2 +a+1 (a 2 +a + 1)
2



19. Integration in Elementary Terms 379

To find the numbers a, b, c, d, e, f, g, and h, write the right side as a polynomial

over the common denominator (a
2 + x + 1 )

2
(x

2 + 2.x- + 3) (a — 1 ), the numerator

becomes

a(x - 1)(a
2 + 2x + 2)(x

2 + x + 1 )

2 + b(x
2 + 2x + 2)(x

2 + x + l)
2

+ (ex + d)(x - \)
2
{x

2 + x + l)
2 + (ex + f)(x - 1)

2
(a

2 + 2x + 2)(x
2 + x + 1)

+ ( <?.v+/2)U- 1)
2
(a-

2 + 2.v + 2).

Actually multiplying this out (!) we obtain a polynomial of degree 8, whose coef-

ficients are combinations of a, . .

.

, h. Equating these coefficients with the coeffi-

cients of 2.v
7 + 8.v

6+ 1 3.r
5 + 20.x-

4+ 15.x-
3 + 16.y

2 + 7.x + 10 (the coefficient of jc
8

is 0)

we obtain 8 equations in the eight unknowns a ,...,/? . After heroic calculations

these can be solved to give

a=l, b = 2, c=l, d = 3,

e = 0, f = 0, g = 0, h = \.

Thus

dx
f 2x 7 + 5.x-

6 + 13.v
5 + 20a-

4 + 17.x-
3 + 16x 2 + 7x + 7

J (x 2 + x+\) 2 (x 2 + 2x + 2)(x-\) 2

= / 77 dx + / 77T dx + / —i T^ dx + / ~
J (X-I) J (X -l) 2 J (A-

2 +.X + 1)- J A 2

A + 3

+ 2.v + 2
dx.

(In simpler cases the requisite calculations may actually be feasible. I obtained this

particular example by starting with the partial fraction decomposition and convert-

ing it into one fraction.)

We are already in a position to find each of the integrals appearing in the above

expression; the calculations will illustrate all the difficulties which arise in integrat-

ing rational functions.

The first two integrals are simple:

/
1

/

x - 1

2

dx — log(a — 1),

-2
dx =

(X-l) 1 A-l

The third integration depends on "completing the square":

A
2 +A+l --=(X+W~ + 1

2

(If we had obtained — ^ instead of | we could not take the square root, but in this

case our original quadratic factor could have been factored into linear factors.) We
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can now write

/
1

(a 2 +a + 1)
2
dx

16
~9~h x +

+ 1

j dx.

The substitution

x +
u =

du = dx,

changes this integral to

16
~9~

J (w + D 2
du,

which can be computed using the third reduction formula given above.

Finally, to evaluate

x + 3

l (a 2 + 2x + 2)
dx

we write

/
x+3

dx
-\l

2a + 2
dx +

.v
2 + 2.t + 2 2 J x 2 + 2x + 2 J (a- + 1 )

2 + 1/
Ja.

The first integral on the right side has been purposely constructed so that we can

evaluate it by using the substitution

u = x + 2a + 2,

du = (2a + 2) dx

The second integral on the right, which is just the difference of the other two, is

simply 2arctan(A + 1). If the original integral were

a + 3 , \ f 2a + 2 f 2

J (x<

dx -i dx +
J [U

dx.
:
2 + 2x + 2)" 2 J (a 2 + 2a + 2)" J [(a + 1 )

2 + 1]"

the first integral on the right would still be evaluated by the same substitution.

The second integral would be evaluated by means of a reduction formula.

This example has probably convinced you that integration of rational functions

is a theoretical curiosity only, especially since it is necessary to find the factorization

of q{x) before you can even begin. This is only partly true. We have already seen

that simple rational functions sometimes arise, as in the integration

1 +ex

l dx;
1 -e*

another important example is the integral

J x 2 -l J x - 1 A+l 2
log(A - 1) - -log(A+ 1)
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Moreover, if a problem has been reduced to the integration of a rational function,

it is then certain that an elementary primitive exists, even when the difficulty or

impossibility of finding the factors of the denominator may preclude writing this

primitive explicitly.

PROBLEMS

1. This problem contains some integrals which require little more than alge-

braic manipulation, and consequently test your ability to discover algebraic

tricks, rather than your understanding of the integration processes. Never-

theless, any one of these tricks might be an important preliminary step in

an honest integration problem. Moreover, you want to have some feel for

which integrals are easy, so that you can see when the end of an integration

process is in sight. The answer section, if you resort to it, will only reveal

what algebra you should have used.

iin

/

/

Vx* + yz
dx.

x

dx

yjx - 1 + v
7* + 1

+ e
2x + e

3>

e4x
dx.

iv) I — dx

VI

Vll

f-
J bx

I tan" x dx . (Trigonometric integrals are always very touchy, because

there are so many trigonometric identities that an easy

problem can easily look hard.)

2 +x 2
'

dx

2 -x2

dx

1

I

J Jlx - x 2

1 + sin x

. 8jc
2 + 6.v+4

j
ix) / dx.

x+ 1

dx,

2. The following integrations involve simple substitutions, most of which you

should be able to do in your head.

. /
e
x
sin e

x dx

.
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in

iv

/
f log*

/'

x ~ dx.

dx. (In the text this was done by parts.

e
x dx

vi

vn

e2x + 2e* + 1

"

J
e
eX
e
x
dx.

I
x dx

V
7

! -a- 4

f e^*

viii) / x\J 1 — x 2
Jjc.

ix) / log(cosx) tan.vJx.

r log(iogx)
^

x\ogx

Integration by parts

(ii) /VV

(iii)
/" e

"

v

(iv) /

(v) / (log^)
3

6?JC.

/" log(logx)

J
—-

dx.

sin bx dx

.

x sin x dx

.

w

vn

Vlll

/ sec x dx . (This is a tricky and important integral that often comes

up. If you do not succeed in evaluating it, be sure to

consult the answers.)

/ cos(logx)dx.

ix) / s/x log x dx

.

x) / x(\ogx) dx.
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4. The following integrations can all be done with substitutions of the form

x = sinw, x = cosw, etc. To do some of these you will need to remember

that

/
sec x dx = log (sec x + tan x

)

as well as the following formula, which can also be checked by differentiation:

cscxdx = — log(cscx +cotx).
/

In addition, at this point the derivatives of all the trigonometric functions

should be kept handy.

dx
- (You already know this integral, but use the substitution

- x x = sin u anyway, just to see how it works out.)

dx
(Since tan 2 u + 1 = sec2 u, you want to use the substi-

v 1 + x tution x = tan u

dx
m

iv

VI

Vll

vm

/

/

J y.v 2 -
1

'

/dx—-j=^ . (The answer will be a certain inverse function that was
x\x^— 1 given short shrift in the text.)

r dx

J xs/l-x 2

'

r dx

J xVl+x 2

'

x- dx. You will need to remember the methods for

integrating powers of sin and cos.

LX

1 — .v
2 dx.

/ 71 +x 2 dx.

(x) f y/x 2 - \dx.

5. The following integrations involve substitutions of various types. There is

no substitute for cleverness, but there is a general rule to follow: substitute

for an expression which appears frequently or prominently; if two different

troublesome expressions appear, try to express them both in terms of some

new expression. And don't forget that it usually helps to express x directly

in terms of u, to find out the proper expression to substitute for dx.

f dx
(i)

/

(u) /

1 + v/.t + 1

dx

1 + ex
'
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mi

IV!

C dx

J \fx + 1/x

I
Li A.

. (The substitution u = e
x leads to an integral requir-

v 1 + e* ing yet another substitution; this is all right, but both

substitutions can be done at once.)

dx

2 + tan x

dx
VI;

Vll

Vlll

ix)

/

f-
J S7*
r 4'

J 2*

(Another place where one substitution can be made to

v y/x + do the work of two

4 V + 1

+T

dx.

Vx-
dx . (In this case two successive substitutions work out best;

there are two obvious candidates for the first substitu-

tion, and either will work.)

J V-v + 1
'

x 7
dx.

The previous problem provided gratis a haphazard selection of rational func-

tions to be integrated. Here is a more systematic selection.

2x 2 + Ix - 1

in

LV

3x 2 + 3x - 1

.v
3 + 7.v

2 - 5.v + 5

(X- 1)
2
(A- + 1)

3

2x 2 + x + 1

VI

Vll

Vlll

IX

f
2x z +

J * 3 +A-2

h
I

/

/

It,

I

x- 1

2jc -hi

dx.

dx.

dx.

(A+3)(A- l) 2

A + 4
flA.

+ 1

A 3 + A + 2

Ja.

rfjc.

A 4 + 2a 2 + 1

3a 2 + 3a + 1

+ 2a 2 + 2a + 1

dx

dx.

a 4 + 1

2a

+ A+ l) 2

3a

J (a^ + a- I)
3

dx.

dx.
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/dx
-

, which looks a little different from any of the previous

vV - x
2

problems. Hint: It helps to write (x" — x 2
)

l/2 = x(x n ~ 2 — 1)
1/2

. Extra Hint 1:

Use a substitution of the form u 2 = . . . to obtain an answer involving arctan.

Extra Hint 2: Use a substitution of the form v = x a
to obtain an answer

involving arcsin.

*8. Potpourri. (No holds barred.) The following integrations involve all the

methods of the previous problems

/

ft

arctan x

T dx.
1 +x 2

arctan x

+ *2)2
dx.

in

IV

/ logy/l+X2 dx.

I xlog v 1 + x 1 dx.

r 2
- 1 1

= dx.
+ » yr

VI / arcsin ^/x dx

.

I

f

ft'

vii) / :
dx

.

1 + sin x

sin v
x cos3 x -s'mx

viii) / e = dx

.

cos2 x

ix) / vtan x dx

.

dx

I
(To factor x b + 1, first factor v + 1, using Problem 1-1.

x 6 +l

The following two problems provide still more practice at integration, ifyou need

it (and can bear it). Problem 9 involves algebraic and trigonometric manipulations

and integration by parts, while Problem 10 involves substitutions. (Of course, in

many cases the resulting integrals will require still further manipulations.)

Find the following integrals.

log(a" + x )dx.

I
1 + cos X

dx.
. 2

sin" x

/A. T" 1

dx.
x + 1

y/4-X 2

(iv) / x arctan x dx

.
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11.

12.

(v)

VI

Vll

Vlll

/sin3

/• 3

cosz

/

/

dx.
x

.v
2
arctan * dx.

x dx

s]x 2 - 2* + 2

(ix) I sec x tanx dx.

(x) I x tan x dx

.

10. Find the following integrals.

(i) I&T&-
(ii) / v 1 — sin x dx

.

in

iv

(v)

VI

Vll

Vlll

I
arctan >fx dx

.

I sin V x + \ dx.

I log(.v + \/x 2 — 1 ) dx.

I log (x + y/x)dx.

/dx
x-x 3 /5

'

There are obvious substitutions to try,

but integration by parts is much easier.

Comparing the answers obtained is,

perhaps, instructive.

ix / (arcsin x)" dx.

(x) / x arctan (x )dx.

If you have done Problem 18-10, the integrals (ii) and (iii) in Problem 4 will

look very familiar. In general, the substitution x = cosh u often works for

integrals involving \/x 2 — 1, while x — sinhw is the thing to try for integrals

involving yi 2 + 1. Try these substitutions on the other integrals in Prob-

lem 4. (The method is not really recommended; it is easier to stick with

trigonometric substitutions.)

The world's sneakiest substitution is undoubtedly

2
t = tan — , x = 2 arctan /, dx =

\+r
dt.
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13.

As we found in Problem 15-17, this substitution leads to the expressions

It 1 -V
sinx = cos* =

1+r 2
'

l+t 2
'

This substitution thus transforms any integral which involves only sin and

cos, combined by addition, multiplication, and division, into the integral of

a rational function. Find

dx

mi

/

/

I-
J a si

1 + sin x

dx

2
sin x

dx

sin x + b cos x

Compare your answer with Problem l(viii).)

(In this case it is better to let t = tanjc. Why?)

(There is also another way to do this, using

Problem 15-8.)

IV / sin" jc dx . (An exercise to convince you that this substitution

should be used only as a last resort.)/i
—-— . (A last resort.)

3 + 5 sin x

Derive the formula for f sec x dx in the following two ways:

a) By writing

1 cos*

cos* cos2 x

COS*

1 — sin x

1

~
2

COS X cos X
: + -

:

_ 1 + sin x 1 — sin x
_

an expression obviously inspired by partial fraction decompositions. Be

sure to note that f cos x/(l — sin x ) dx = — log (1 — sin x ) ; the minus sign

is very important. And remember that ^ log a — log y/a. From there

on, keep doing algebra, and trust to luck.

(b) By using the substitution t = tanx/2. One again, quite a bit of manip-

ulation is required to put the answer in the desired form; the expression

tanx/2 can be attacked by using Problem 15-9, or both answers can

be expressed in terms of t. There is another expression for fsecxdx,

which is less cumbersome than log(secx + tan*); using Problem 15-9,

we obtain

/

/l

sec x dx = log

+ tan \

1 - tan -
J

= log (tan
( + ;))

This last expression was actually the one first discovered, and was due,

not to any mathematician's cleverness, but to a curious historical acci-
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dent: In 1599 Wright computed nautical tables that amounted to definite

integrals of sec. When the first tables for the logarithms of tangents were

produced, the correspondence between the two tables was immediately

noticed (but remained unexplained until the invention of calculus).

14. The derivation of / e
x
sin x dx given in the text seems to prove that the only

primitive of fix) = e
x sinx is F{x) — e*(sinjc — cosx)/2, whereas Fix) =

e*(sinjt — cosx)/2 + C is also a primitive for any number C. Where does C
come from? (What is the meaning of the equation

15. Suppose that /" is continuous and that

[f(x) + f"(x)]smxdx = 2.

16.

17.

18.

19.

20.

21.

22.

/Jo
Given that fin) — 1, compute /(0).

(a) Find f arcsinx dx, using the same trick that worked for log and arctan.

*(b) Generalize this trick: Find / /
_1

(x) dx in terms of f fix) dx. Compare

with Problems 12-21 and 14-14.

(a) Find f sin x dx in two different ways: first using the reduction formula,

and then using the formula for sin x

.

(b) Combine your answers to obtain an impressive trigonometric identity.

Express j \og(\ogx)dx in terms of /(log a)" 1 dx. (Neither is expressible in

terms of elementary functions.)

Express f x e~x dx in terms of f e~x dx.

Prove that the function fix) = e
x
/ie

5x +ex + 1) has an elementary primitive.

(Do not try to find it!)

Prove the reduction formulas in the text. For the third one write

dx f x~ dx/dx f dx f

(x 2 + l)»

~~=

J (x 2 +l)"- 1
"
Jix

2 + l)"- 1

J (jc
2 + 1)"

and work on the last integral. (Another possibility is to use the substitution

.v = tan u .)

Find a reduction formula for

(a

(b)
j
(log x)"dx.

<23. Prove that
/>cosh.

J]

sit
1 - 1 dt

cosh x sinh x x

2

(See Problem 1 8-7 for the significance of this computation.
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24. Prove that
pb pb

+ b — x)dx.

pb pb

/ f(x)dx= / f(a
Ja Ja

(A geometric interpretation makes this clear, but it is also a good exercise in

the handling of limits of integration during a substitution.)

25. Prove that the area of a circle of radius r is nr . (Naturally you must remem-

ber that n is defined as the area of the unit circle.)

26. Let be a nonnegative integrable function such that 4>{x) — for \x\ > 1

and such that / 0=1. For h > 0, let

4>hix) = T(j)(x/h).
h

(a) Show that 0/,(jc) = for |jc
|
> h and that / (j)h = \.

J-h
(b) Let / be integrable on [—1, 1] and continuous at 0. Show that

1 r h

h

(c) Show that

lim J cf>hf= lim f fc/ = /(O).

v f
l

h
lim / —
h-+Q+ J_ x

h 1 +x
^dx = TT.

The final part of this problem might appear, at first sight, to be an exact

analogue of part (b), but it actually requires more careful argument.

(d) Let / be integrable on [—1, 1] and continuous at 0. Show that

lim / TT-^f(x)dx = jrf(0).

Hint: If h is small, then h/(h 2 + x 2
) will be small on most of [—1, 1].

The next two problems use the formula

•0i

If
2 JOn

f(0)
2
d0,

derived in Problem 13-24, for the area of a region bounded by the graph of / in

polar coordinates.

27. For each of the following functions, find the area bounded by the graphs in

polar coordinates. (Be careful about the proper range for 0, or you will get

nonsensical results!)

(i) f(0)= a sin 9.

(ii) /(0) = 2 + cos0.

(iii) f(G)
2 = 2a 2

cos 20.

(iv) /(0)=acos20.
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r = f(0)

niU'RE I

28. Figure 1 shows the graph of / in polar coordinates; the region OAB thus

has area - / f(6) dO. Now suppose that this graph also happens to be

the ordinary graph of some function g. Then the region OAB also has area

area AOx\B + I g — area AOxqA.
JX]

Prove analytically that these two numbers are indeed the same. Hint: The
function g is determined by the equations

x = f (6) cosO, g(x) = f(0)smO.

The next four problems use the formulas, derived in Problems 3 and 4 of the

Appendix to Chapter 13, for the length of a curve represented parametrically (and,

in particular, as the graph of a function in polar coordinates).

29. Let c be a curve represented parametrically by u and v on [a, b], and let h

be an increasing function with h(a) = a and h(b) = b. Then on [a, b] the

functions u — uoh,v — voh give a parametric representation of another

curve c; intuitively, c is just the same curve c traversed at a different rate.

(a) Show, directly from the definition of length, that the length of c on [a, b]

equals the length of c on [a , b ]

.

(b) Assuming differentiability of any functions required, show that the

lengths are equal by using the integral formula for length, and the ap-

propriate substitution.

30. Find the length of the following curves, all described as the graphs of func-

tions, except for (iii), which is represented parametrically.

f(x) = -(x2 + 2)
3/2

,

fix) = x 3 +
1

12a

<x < 1.

1 < x < 2.

in x = a cos t.
3 • 3 t

V = a sin /, < t < In.

(iv) f{x) = log(cosA-), < X < 7T/6.

(v) f{x) = logx, 1 < x < e.

(vi) fix) = arcsin e
x', — log 2 < x < 0.

31. For the following functions, find the length of the graph in polar coordinates.

(i) fie) = a cose.

(ii) /(0) =a(l-cos0).

(iii) fie)=asm2
ie/2).

(iv) f(0) = 0<0<2tt.
(v) /(0) = 3sec<9 0<6>< 7r/3.



19. Integration in Elementary Terms 391

32. In Problem 8 of the Appendix to Chapter 12 we described the cycloid, which

has the parametric representation

x — u{t) = a(t — sin t), y = v(T) = a(\ — cost).

(a) Find the length of one arch of the cycloid. [Answer: 8a.]

(b) Recall that the cycloid is the graph of v o u . Find the area under

one arch of the cycloid by using the appropriate substitution in f f and

evaluating the resultant integral. [Answer: 3jza-.]

33. Use induction and integration by parts to generalize Problem 14-10:

f
za^*-jf(f(-(f «*)*)•••)*•

34. If /' is continuous on [a, b], use integration by parts to prove the Riemann-

Lebesgue Lemma for /:

lim / f(t)sm(Xt)dt = 0.

This result is just a special case of Problem 15-26, but it can be used to prove

the general case (in much the same way that the Riemann-Lebesgue Lemma
was derived in Problem 15-26 from the special case in which / is a step

function).

35. The Mean Value Theorem for Integrals was introduced in Problem 13-23.

The "Second Mean Value Theorem for Integrals" states the following. Sup-

pose that / is integrable on [a , b] and that is either nondecreasing or

nonincreasing on [a , b] . Then there is a number £ in [a , b] such that

f f(x)<j>(x)dx = <Ka) f f(x)dx + <Kb) f
f{x)dx.

In this problem, we will assume that / is continuous and that 4> is differen-

tiable, with a continuous derivative 4>'

.

(a) Prove that if the result is true for nonincreasing 0, then it is also true for

nondecreasing 0.

(b) Prove that if the result is true for nonincreasing satisfying (p(b) — 0,

then it is true for all nonincreasing 0.

Thus, we can assume that is nonincreasing and (f)(b) = 0. In this case,

we have to prove that

f f(x)<P(x)dx=(f)(a) f f(x)dx.
Ja J a

(c) Prove this by using integration by parts.

(d) Show that the hypothesis that is either nondecreasing or nonincreasing

is needed.
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From this special case of the Second Mean Value Theorem for Integrals, the

general case could be derived by some approximation arguments, just as in the case

of the Riemann-Lebesgue Lemma. But there is a more instructive way, outlined

in the next problem.

36. (a) Given a\ , ... ,an and b\, . .
. , bn , let Sk = a\ + • • + cik- Show that

(*) a\b\ H \-anbn = s\(b\ - b£i + s2 (b 2 - b?)

H h sn_\{bn-\ - bn ) + snbn

This disarmingly simple formula is sometimes called "Abel's formula for summation

by parts." It may be regarded as an analogue for sums of the integration by parts formula

rb rb

I f'(x)g(x)dx = f(b)g(b)-f(a)g(a)- f(x)g'(x)dx,
Ja J(i

especially if we use Riemann sums (Chapter 13, Appendix). In fact, for a partition

P = {to, . .

.

, tn ) of [a, b], the left side is approximately

n

(1) £ f'(tk)g ftfc_i)ftfc - fjfc_l),

k=\

while the right side is approximately

n

f(b)g(b) - f(a)g(a) - J2 f<fk)g'(?k)<!k ~ fc-l)

Jfc=l

which is approximately

f(b)g(b) - f(a)g(a) - J^ f(rk )

8W ~
8{tk~°

Uk ~ fc-l)

k=\
'k ~tk-\

= f(b)g(b) - f(a)g(a) + J2 f('k)[8('k-0- 8(tk )]

k=\
n

= f(b)g(b) - f(a)g(a) + £[/(**) - f(a)} [g(f
ft_i) - g(tk )]

k=\
n

+ f(a)J2s(tk-\)-g('k)-

k=\

Since the right-most sum is just g(a) — g(b), this works out to be

n

(2) [f(b) - f(a)]g(b) + £[/(fc) - /(«)] ' [8(fk-l) ~ *('*)]

k=\

If we choose

then

«k = /'('*)('* -**-l). h =g(fk-i)

(1) is

k=\

which is the left side of (*), while

k k

sk = ^/'(/,)(/,- - f;_i) is approximately ]T f(tj) - /(f,-_i) = f(tk )
- f(a),

( = 1 /=1

so

(2) is approximately snbn + /^k&k ~ hk-\)>

k=\

which is the right side of (*).
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This discussion is not meant to suggest that Abel's formula can actually be derived from

the formula for integration by parts, or vice versa. But, as we shall see, Abel's formula can

often be used as a substitute for integration by parts in situations where the functions in

question aren't differentiable.

(b) Suppose that {bn } is nonincreasing, with b„ > for each n, and that

m < a\ -\ \- an < M
for all n. Prove Abel's Lemma:

b\m < a\b\ + • • • + a„bn < b\M.

(And, moreover,

bkm < akbk -\ V an bn < bk M,

a formula which only looks more general, but really isn't.)

(c) Let / be integrable on [a , b] and let be nonincreasing on [a , b] with

cp(b) — 0. Let P = {to, ...,/„} be a partition of [«,&]. Show that the

sum
n

^/fe-iWfe-iXfi-fi-i)
/=1

lies between the smallest and the largest of the sums

A:

d>(a)^2f(tt.i){ti-ti i).

Conclude that

I,
f{x)(p{x)dx

lies between the minimum and the maximum of

0(a) f f(t)dt,
J a

and that it therefore equals </>(«) / f(t)dt for some § in [a, b].

J a

37. (a) Show that the following improper integrals both converge.

(i)

f
sii

Jo

(ii) ^(x + I)*,

(b) Decide which of the following improper integrals converge.

dx.

sin ( x: H— ) dx

.

(i) fsing

(ii) / sin" I - I d:
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38. (a) Compute the (improper) integral / \ogxdx.
Jo

(b) Show that the improper integral / log(sinx)Jx
Jo

converges.

(c) Use the substitution x — 2w to show that

'7t/2 '71/2

/ log(sinx) dx = 2 I \og(sinx)dx + 2 I log(cosjc) dx + tt log2.
Jo Jo Jo

nn/2

(d) Compute / log(cos.v) dx.
Jo

r
(e) Using the relation cosx = sin(7r/2 — x), compute / log(sinjt)<fo.

Jo

39. Prove the following version of integration by parts for improper integrals:

/"OO \oo /»00

/ u'(x)v(x)dx = u(x)v(x)\ — / u(x)v'(x)dx.
J a in J a

The first symbol on the right side means, of course,

lim u(x)v(x) — u(a)v(a).

*40. One of the most important functions in analysis is the gamma function,

roo= f
Jo

e~'t
x - ]

dt.

HI,

(a) Prove that the improper integral V(x) is defined if x > 0.

(b) Use integration by parts (more precisely, the improper integral version

in the previous problem) to prove that

ru+ \) = x r(x).

(c) Show that T(l) = 1, and conclude that V(n) = (n — 1)! for all natural

numbers n

.

The gamma function thus provides a simple example ofa continuous function

which "interpolates" the values of n\ for natural numbers n. Of course there

are infinitely many continuous functions / with f{n) — (n — 1)!; there are

even infinitely many continuous functions / with f(x + 1) = xf(x) for all

x > 0. However, the gamma function has the important additional property

that log o r is convex, a condition which expresses the extreme smoothness

of this function. A beautiful theorem due to Harold Bohr and Johannes

Mollerup states that V is the only function / with logo/ convex, /(l) = 1

and f(x + 1) = xf(x). See reference [43] of the Suggested Reading.

(a) Use the reduction formula for / $m
n xdx to show that

i.JT/2

Jo
sin" x dx

n-\- 1 r 12

/ Sill

" Jo

" x dx.
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(b) Now show that

/ • 2n+l ,
L ^

I sin x ax = — • — •

Jo 3 5

6

7

2n

2n + 1

'

I
71 '2

-In * i

/ sin" * dx = — •
—

Jo 2 2

3

'

4

5

6

2« - 1

2/2 '

and conclude that

7T 2 2 4 4 6 6 In
/

I
71 ' 2

In
, / sin " x dx
ln Jo

2 13 3 5 5 7 In - 1 2/i + 1 C* 12

/ sin
2"+1 x^x

Jo

(c) Show that the quotient of the two integrals in this expression is between

1 and 1 + 1 /2n , starting with the inequalities

< sin
2" +1

x < sin
2" x < sin

2" -1
x for < x < n/2.

This result, which shows that the products

2 2 4 4 6 6 2n 2n

13 3 5 5 7 In - 1 In + 1

can be made as close to 7r/2 as desired, is usually written as an infinite

product, known as Wallis' product:

n 2 2 4 4 6 6

2 ~I" 3 '3 "5 '5 '7 ' ""
"

(d) Show also that the products

1 2-4-6-...- 2n

v^ 1 • 3 • 5 . . .
• (2n - 1

)

can be made as close to y/n as desired. (This fact is used in the next

problem and in Problem 27-19.)

1 1
Wallis' procedure was quite different! He worked with the integral

/()
( 1 — x )" dx

(which appears in Problem 42), hoping to recover, from the values obtained for natural

numbers /;, a formula for

j=/"(l-.v 2 )'/-
(/,.

4 Jo

A complete account can be found in reference [49] of the Suggested Reading, but the

following summary gives the basic idea. Wallis first obtained the formula

f
1

, in 2 4 In

(2-4---2n) 2 2" (n!)
2

2-3-4---2n(2n + 1) 2n + 1 (2/i)!'

He then reasoned that n/4 should be

Jo

I ?1 (1-1)-

d-,2
)
1/2^=y^f =(^!)

2
.
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If we interpret ^! to mean T(l + \), this agrees with Problem 45, but Wallis did not

know of the gamma function (which was invented by Euler, guided principally by Wallis'

work). Since (2n)!/(n!) is the binomial coefficient I ), Wallis hoped to find \\ by

finding
( ) for p = q = 1/2. Now

r-
{p+qHp+q- \)-(p+\,

and this makes sense even if p is not a natural number. Wallis therefore decided that

With this interpretation of

'P

+ q

1

2

p + q

P

q+\
P

(*+«)' (h

for p = 1/2, it is still true that

p+q + l (p + q

P

Denoting
j + q

by W(q) this equation can be written

1 5

2 ' 4
3 5 7

2 ' 4 ' 6

7 + </ + 1 2q + 3
W(q + 1) = ^ -r—W(q) = ^—-W{q),

q + \ 2q + 2

which leads to the table

q 1 2 3

But, since W(^) should be 4/n, Wallis also constructs the table

a I I S'/ 2 2 2

wu'' tt 7T 3 ;r 3 5

Next Wallis notes that if a\, ai, 03, 04 are 4 successive values W(g), W(g + 1), W(<7 + 2),

W(q + 3), appearing in either of these tables, then

a2 rt3 a4

a\ en «3

2q + 3 2«/
since >

7

2^ + 2 z<? -t- <+ zcy + o

(this says that logo(l/W) is convex, compare the remarks before Problem 41), which

implies that

V a\ ai V a2

Wallis then argues that this should still be true when a\, a-i, 03, a$ are four successive

values in a combined table where q is given both integer and half-integer values! Thus,

taking as the four successive values W(n + \), W{n), W(n + |), W(n + 1), he obtains

4 4 6

jr
'

3
'

5

In +4
2« + 3

4 4 6

jr' 3
'

5

2n + 2

2/! + 1

4 4 6

\| ir
"

3
'

5

in

2/;+ 1

which yields simply

4

3 5 7

2
'

4
'

6

ln+ 1

2n

3 5

2
'

4

In + 3

In + 2

3 5 7

2
'

4
'

6

2/; + 1

2#i

2a; +4
2/1 + 3 7T

2-4-4-6-6---(2«)(2n)(2« + 2)

3-3-5-5---(2« + l)(2n

from which Willis" producl follows immediately.

I)

2n + 3

2n + 2

'
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/>oo

42. It is an astonishing fact that improper integrals / f(x)dx can often be
Jo

f
b

computed in cases where ordinary integrals / f(x)dx cannot. There is no
J a

f
h

_ 2 f°° _ 2

elementary formula for / e
x dx , but we can find the value of / e

x dx
Ja ... J°

precisely! There are many ways of evaluating this integral, but most require

some advanced techniques; the following method involves a fair amount of

work, but no facts that you do not already know.

(a) Show that

f (1 -x 2
)

n dx =
Jo

I,

2 4 In

3 5 2« + 1

1 7T 1 3 In
dx =

o (l+.t 2 )" 2 2 4 "" 2n-2'

(This can be done using reduction formulas, or by appropriate substitu-

tions, combined with the previous problem.)

(b) Prove, using the derivative, that

1 - x 2 < e~
x

for < x < 1.

_ 2 1

e
x < r for < x.~

1 +x 2

(c) Integrate the nth powers of these inequalities from to 1 and from to

oo, respectively. Then use the substitution y = y/nx to show that

,-2 4 In
sjn -

3 5 In + 1

< dy < / e~ :

Jo

TT n 1 3

2^2-4"

' dy

In -3

In -2

(d) Now use Problem 4 1 (d) to show that

I
e "y=

2

**43. (a) Use integration by parts to show that

f sin.v cosfl cos 6 f cosx
I dx — / —r— dx ,

Ja x a b J tl
x l

and conclude that j (sinx)/x dx exists. (Use the left side to investigate

the limit as a —> + and the right side for the limit as b —> oo.)
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(b) Use Problem 15-33 to show that

/'
Jo

T
sin(/z + A)*

dt = Ti

sin

for any natural number n.

(c) Prove that

lim
A—>-00fJo sm(X + \)t

sin
2J

rff = 0.

Hint: The term in brackets is bounded by Problem 15-2(vi); the

Riemann-Lebesgue Lemma then applies.

(d) Use the substitution u = (X + ^)t and part (b) to show that

C°° sin

JO x

X 71

/•OO

44. Given the value of / (sin x)/xdx from Problem 43, compute
./O

sin x
dx

by using integration by parts. (As in Problem 38, the formula for sin 2x will

play an important role.)

*45. (a) Use the substitution u = t
x

to show that

1
^

r(x) = - /

x Jo

-" Ux
du.

(b) Find r(i).

fix)
46. (a) Suppose that is integrable on every interval [a, b] for < a < /?,

and that lim f(x) = A and lim f(x) = B. Prove that for all a, yS >

we have

fJo dx — (A - B) log —
x ' a

Hint: To estimate /'
f(ax)-f(Bx)

dx use two different substitutions.

OO
f°° f(x)

(b) Now suppose instead that / dx converges for all a > and that

J a X
lim f{x) — A. Prove that

r fiotx

Jo

) ~ f(M 8
ax = A log —

x a
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(c) Compute the following integrals:

10

e
-<*x — e~Px

(i)

fJo *

f°° cos(ax) — cosifix)

Jo X
dx.

In Chapter 13 we said, rather blithely, that integrals may be computed to any

degree of accuracy desired by calculating lower and upper sums. But an applied

mathematician, who really has to do the calculation, rather than just talking about

doing it, may not be overjoyed at the prospect of computing lower sums to evaluate

an integral to three decimal places, say (a degree of accuracy that might easily be

needed in certain circumstances). The next three problems show how more refined

methods can make the calculations much more efficient.

We ought to mention at the outset that computing upper and lower sums might

not even be practical, since it might not be possible to compute the quantities m,

and Mi for each interval [/,-_i, ti\. It is far more reasonable simply to pick points x t

n

in [tj-\, ti\ and consider >^ /(*;) (U — ?j_i). This represents the sum of the areas

i=\

of certain rectangles which partially overlap the graph of /—see Figure 1 in the

Appendix to Chapter 13. But we will get a much better result if we instead choose

the trapezoids shown in Figure 2.

FIGURE 2

Suppose, in particular, that we divide [a,b] into n equal intervals, by means of

the points

b — a .

a + ih.tj = a + i

Then the trapezoid with base [f,_i, tj] has area

(t< -ti-l)
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FIGUR I. 3

and the sum of all these areas is simply

S„ =h f{t\ ) + f(a) f(t2 ) + f(ti) fQ>) + ./"(/„-!)

2 2

n-\

i=]

h =

2

b — a

This method of approximating an integral is called the trapezoid rule. Notice that to

obtain Yj2„ from £„ it isn't necessary to recompute the old /(?;); their contribution

to Tj2,i is just 2^«- So in practice it is best to compute Y,i, £4, £85 • • • to get
pb pb

approximations to / /.In the next problem we will estimate / / — E„.
Ja Ja

47. (a) Suppose that /" is continuous. Let P, be the linear function which agrees

with / at ti-\ and /,. Using Problem 1 1-46, show that if n, and jV, are

the minimum and maximum of /" on [f,-_i, t{\ and

/ -f (x - r,_i)(.v - tj)dx

then

ml >

(b) Evaluate / to get

nth*

l2~
>

['' Nil

[' Nik 3

(c) Conclude that there is some c in (a, b) with

1

b (b-a) 3
„

Notice that the "error term" (/? — a) 3 f"{c)/\2n
2
varies as \/n 2 (while

the error obtained using ordinary sums varies as 1/n).

We can obtain still more accurate results if we approximate / by quadratic

functions rather than by linear functions. We first consider what happens when

the interval [a, b] is divided into two equal intervals (Figure 3).

48. (a) Suppose first that a = and b = 2. Let P be the polynomial function

of degree < 2 which agrees with / at 0, 1, and 2 (Problem 3-6). Show

that

p = -[/(0) 4-4/(1) + /(2)].
/o 3

(b) Conclude that in the general case

J a

P = i^4-^)
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pb pb

(c) Naturally
J

P = j f when / is a quadratic polynomial. But, re-

Ja J ci

markably enough, this same relation holds when / is a cubic polynomial!

Prove this, using Problem 11-46; note that f" is a constant.

The previous problem shows that we do not have to do any new calculations

f
b

to compute / Q when Q is a cubic polynomial which agrees with / at a, b, and

a+b
we still have

/
b-a , a+b ,

f(a) + 4f -=-. + /(*)

But there is much more lee-way in choosing Q, which we can use to our advantage:

49. (a) Show that there is a cubic polynomial function Q satisfying

Q(a) = f(a), Q(b) = f(b), Q\
C^) = f

/

,(a+b\ ,(a-\
<2

I -r- 1
= /

Hint: Clearly Q(x) = P(x) + A(x - a)(x - b) x
a+b

for some A.

(b) Prove that if / (
' is defined on [a, b], then for every x in [a, b\ we have

/ a+b\ 2
f

{4)
(^)

f(x) - Q(x) = (x-a)(x —
) (x - by

2 ) 4!

for some ^ in (a,b). Hint: Imitate the proof of Problem 11-46.

(c) Conclude that if / (
' is continuous, then

- r /- .
i.\ n (b-a)5

fJ a

f =
b-a

f(a)+4f
a + b

fib)
H4)

2880
r\c)

for some c in (a,b).

(d) Now divide [a , b] into 2n intervals by means of the points

b — a
t; — a + ih,

Prove Simpson's rule:

h =
2n

I.

n-\b b-a "

-
( /(«) + 4£ f(to-i) + 2Y. fted + f {b)

6n

(b-a) 5

2880h 4 /
(4)

(c)

for some c in (a, b).
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APPENDIX. THE COSMOPOLITAN INTEGRAL

FIGURE 1

FIGURE 2

We originally introduced integrals in order to find the area under the graph of

a function, but the integral is considerably more versatile than that. For example,

Problem 1 3-24 used the integral to express the area of a region of quite another

sort. Moreover, Problem 13-25 showed that the integral can also be used to ex-

press the lengths of curves—though, as we've seen in Appendix to Chapter 13, a

lot of work may be necessary to consider the general case! This result was prob-

ably a little more surprising, since the integral seems, at first blush, to be a very

two-dimensional creature. Actually, the integral makes its appearance in quite a

few geometric formulas, which we will present in this Appendix. To derive these

formulas we will assume some results from elementary geometry (and allow a little

fudging).

Instead of going down to one-dimensional objects, we'll begin by tackling some

three-dimensional ones. There are some very special solids whose volumes can

be expressed by integrals. The simplest such solid V is a "solid of revolution,"

obtained by revolving the region under the graph of / > on [a . b] around

the horizontal axis, when we regard the plane as situated in space (Figure 1).

If p = {to,...,tn } is any partition of [a,&], and w, and M, have their usual

meanings, then

7tmi
2

(ti -r,_i)

is the volume of a disc that lies inside the solid V (Figure 2). Similarly,

irMi~{tj —/,_]) is the volume of a disc that contains the part of V between t(-\

and /,. Consequently,

n n

tt y^mrOi - *i-i) S volume V < n ^PM, 2
(f, - f,_i).

;=1 1=1

But the sums on the ends of this inequality are just the lower and upper sums for

f
2 on [a, b]:

7T L(f
2

, P) < volume V < n U(f
2

, P).

Consequently, the volume of V must be given by

/'
J a

FIGURE <

volume V = n I f(x)dx.
J a

This method of finding volumes is affectionately referred to as the "disc method/'

Figure 3 shows a more complicated solid V obtained by revolving the region

under the graph of / around the vertical axis (V is the solid left over when we start

with the big cylinder of radius b and take away both the small cylinder of radius a

and the solid V\ sitting right on top of it). In this case we assume a > as well
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as / > 0. Figures 4 and 5 indicate some other possible shapes for V

.

FIGURE 6

FIGURE 4

FIGURE 5

For a partition P = {to, ...,/„} we consider the "shells" obtained by rotating the

rectangle with base [f,-_i, t{\ and height m, or M-, (Figure 6). Adding the volumes

of these shells we obtain

/; n

tx y]m,-(f,-
2 - r,_i

2
) < volume V < n ^M^f, 2 - f,-_i

2
),

i=l /=i

which we can write as

/; n

7i ^mi{ti +ti-\)(tt - tt-i) < volume V < Ti^M^t, +f,-_i)(r,- -/,_i).

(=1 /=l

Now these sums are not lower or upper sums of anything. But Problem 1 of the

Appendix to Chapter 13 shows that each sum

^m,7,(f, -tt-i) and J^mjfj_i(fj -/,-i)

can be made as close as desired to / xf(x)dx by choosing the lengths f, — f,_i

J a

small enough. The same is true of the sums on the right, so we find that

f
b

volume V — 7.71 \ xf(x)dx;
Ja

this is the so-called "shell method" of finding volumes.

The surface area of certain curved regions can also be expressed in terms of inte-

grals. Before we tackle complicated regions, a little review ofelementary geometric

formulas may be appreciated here.

Figure 7 shows a right pyramid made up of triangles with bases of length / and

altitude s . The total surface area of the sides of the pyramid is thus

1

FIGURE 7 ps,

where p is the perimeter of the base. By choosing the base to be a regular polygon
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FIGURE 8

(a)

(b)

FIGURE 9

with a large number of sides we see that the area of a right circular cone (Figure 8)

must be

— (27tr)s = Ttrs,

where s is the "slant height." Finally, consider the frustum of a cone with slant

height s and radii r\ and ri shown in Figure 9(a). Completing this to a cone, as

in Figure 9(b), we have

s\ s\ + .v

r\ r?

so

s\ =
r\s

s\ + s =
r->s

>"2
_ ''1

Consequently, the surface area is

r2 ~ r
\

2 2
r2 — r\

7zri(s\ + s) — 7ir\s\ = tts = ns{r\ + ri).
r2 ~ r

\

Now consider the surface formed by revolving the graph of / around the hori-

zontal axis. For a partition P = {tQ tn \ we can inscribe a series of frustums of

cones, as in Figure 10. The total surface area of these frustums is

JT £[/ft_l) + f(ti)]y/(ti - r,-!) 2 + [f(t,) - /ft_l)]
:

* £[/fe-i) + f(U)\\ 1 + (

fit,) f{t'- l)

)

i=l
t, -t,-\

By the Mean Value Theorem, this is

n

JT £[/fe-rl) + /U/)]>/l+/'(jC ; )

2 a - fi-l)

1=1

for some x, in (f,-_i, ?j). Appealing to Problem 1 of the Appendix to Chapter 13,

we conclude that the surface area is

2n I f(x)\/\ + fix)
2
dx.

J a

PROBLEMS

iii.i i< i. in

1. (a) Find the volume of the solid obtained by revolving the region bounded

by the graphs of f(x) = x and f(x) = x around the horizontal axis.

(b) Find the volume of the solid obtained by revolving this same region

around the vertical axis.

2. Find the volume of a sphere of radius r.
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IN3. When the ellipse consisting of all points (x, y) with x l/a~ + y /b — 1 i

rotated around the horizontal axis we obtain an "ellipsoid of revolution"

(Figure 11). Find the volume of the enclosed solid.

FIGURE 1 1

4. Find the volume of the "torus" (Figure 12), obtained by rotating the circle

(x — a)
2 + y

2 = b2
(a > b) around the vertical axis.

length b

FIGURE 12

5. A cylindrical hole of radius a is bored through the center of a sphere of

radius 2a (Figure 13). Find the volume of the remaining solid.

[GURE 1

3
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6. (a) For the solid shown in Figure 14, find the volume by the shell method.

FIGURE 14

(b) This volume can also be evaluated by the disc method. Write down
the integral which must be evaluated in this case; notice that it is more

complicated. The next problem takes up a question which this might

suggest.

7. Figure 15 shows a cylinder of height b and radius f(b), divided into three

solids, one of which, V\, is a cylinder of height a and radius f(a). If /
is one-one, then a comparison of the disk method and the shell method of

computing volumes leads us to believe that

nbf{b)~ — 7zaf{a) — n
J

f(x) dx = volume Vi
J a

rfib)

Jf(a

f(b)

' I yf~
l

(y)dy.
fu>)

Prove this analytically, using the formula for / / from Problem 19-16, or

more simply by going through the steps by which this formula was derived.

I I ( , I RE I 5



9.

FIGURE 16

11.

(b)
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Figure 1 6 shows a solid with a circular base of radius a . Each plane

perpendicular to the diameter A B intersects the solid in a square. Using

arguments similar to those already used in this Appendix, express the

volume of the solid as an integral, and evaluate it.

Same problem if each plane intersects the solid in an equilateral triangle.

Find the volume of a pyramid (Figure 17) in terms of its height h and the

area A of its base.

FKiURE 17

10. Find the volume of the solid which is the intersection of the two cylinders

in Figure 18. Hint: Find the intersection of this solid with each horizontal

plane.

FIGURE 18

(a) Prove that the surface area of a sphere of radius r is Ativ .

(b) Prove, more generally, that the area of the portion of the sphere shown

in Figure 19 is 2nrh. (Notice that this depends only on h, not on the

position of the planes.)

FIGURE I

1
*
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A circular mud puddle can just be covered by a parallel collection of

boards of length at least the radius of the circle, as in Figure 20(a). Prove

that it cannot be covered by the same boards if they are arranged in any

non-parallel configuration, as in (b).

(b)

FIGURE 2

12. (a) Find the surface area of the ellipsoid of revolution in Problem 19-3.

(b) Find the surface area of the torus in Problem 19-4.

13. The graph of f(x) — l/x, x > 1 is revolved around the horizontal axis

(Figure 21).

(a) Find the volume of the enclosed "infinite trumpet."

(b) Show that the surface area is infinite.

(c) Suppose that we fill up the trumpet with the finite amount of paint found

in part (a). It would seem that we have thereby coated the infinite inside

surface area with only a finite amount of paint. How is this possible?

FIGURE 2
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One of the most remarkable series of

algebraic analysis is thefollowing:

1 +
m x+ m(m-l)„

5

1 1 -2

m(m - l)(m - 2) ^
1 -2-3

m(m - 1) • • • [m - (n - 1)] ^
1-2 n

+ • •
•

When m is a positive whole number

the sum of the series,

which is then finite, can be expressed,

as is known, by (I + x)
m

.

When m is not an integer,

the series goes on to infinity, and it will

converge or diverge according

as the quantities

m and x have this or that value.

In this case, one writes the same equality

(1 + x
)

m = 1 H x

m(m — 1) „+ —^ ' x2 + • • • etc.

1-2

. . . It is assumed that

the numerical equality will always occur

whenever the series is convergent, but

ill is has neveryet been proved.

NIELS HENRIK ABEL



APPROXIMATION BY
CHAPTER mm ^/ POLYNOMIAL FUNCTIONS

There is one sense in which the "elementary functions" are not elementary at all.

If p is a polynomial function,

p(x) =a + aix + ---+anx",

then p(x) can be computed easily for any number x. This is not at all true for
functions like sin, log, or exp. At present, to find log* = fi 1/t dt approximately,
we must compute some upper or lower sums, and make certain that the error
involved in accepting such a sum for log* is not too great. Computing e

x =
log" (x) would be even more difficult: we would have to compute log a for many
values of a until we found a number a such that log a is approximately x—then a
would be approximately e

x
.

In this chapter we will obtain important theoretical results which reduce the
computation of f(x), for many functions /, to the evaluation of polynomial func-
tions. The method depends on finding polynomial functions which are close ap-
proximations to /. In order to guess a polynomial which is appropriate, it is useful
to first examine polynomial functions themselves more thoroughly.
Suppose that

p(x) = a + a\x H \- an x".

It is interesting, and for our purposes very important, to note that the coefficients a,

can be expressed in terms of the value of p and its various derivatives at 0. To
begin with, note that

p(0) = a .

Differentiating the original expression for p(x) yields

p'(x) = a\ + 2a2x + \- nanx"~
l

.

Therefore,

p'(0) =p(»
(0)=a 1 .

Differentiating again we obtain

p"(x) = 2a2 + 3 • 2 • a 3x + + n{n - 1) • anx"-
2

.

Therefore,

p"(0) = p
a
\0) = 2a2 .

In general, we will have

P
WI (0)=*! ai. or ak =^.

k\

If we agree to define 0! = 1, and recall the notation p
(0) = p, then this formula

holds for k = also.

411
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Ifwe had begun with a function p that was written as a "polynomial in (x — a),"

p(x) = ao + a\(x - a) H h an (x -a)",

then a similar argument would show that

p
a) (a)

ak = ~kT-
Suppose now that / is a function (not necessarily a polynomial) such that

fQ\a),...,fM (a)

all exist. Let

a k:
= —7]— , 0<k<n,

and define

Pn,a(x) — «o +a\(x — a) H h fl„(.x- - a)".

The polynomial Pnfl is called the Taylor polynomial of degree n for/ at a.

(Strictly speaking, we should use an even more complicated expression, like Pn,a,f,
to indicate the dependence on /; at times this more precise notation will be useful.)

The Taylor polynomial has been defined so that

PIIM
ik)

(a) = f
{k)

(a) for < k < n\

in fact, it is clearly the only polynomial of degree < n with this properly.

Although the coefficients of Pn,a,f seem to depend upon / in a fairly compli-

cated way, the most important elementary functions have extremely simple Taylor

polynomials. Consider first the function sin. We have

sin(O) = 0,

sin'(O) =cos0= 1,

sm'(0) = -sin = 0,

sin"'(0) = -cos0 = -l,

sin
(4

'(0) = sin = 0.

From this point on, the derivatives repeat in a cycle of 4. The numbers

sin
(A)

(0)
av =

k\

are

0,1.0,-1.0.1.0.-1.0,1

Therefore the Taylor polynomial P2n+1,0 of degree 2n + 1 for sin at is

x 3 x 5 x 1
v
2"+1

P2n+i,o(*) = x -_ + ---- + •• + (- 1
)"

(2|I+1)!
-

(Of course, P2ll , i.o = P2«+2,0)-



20. Approximation by Polynomial Functions 413

The Taylor polynomial Pi n ,Q of degree 2n for cos at is (the computations are

left to you)
„2„4„6 x 2n

P2n.0(x)= 1 - — + -JT--ZT + -'- + (-1)" "

2! 4! 6! (2n)!

The Taylor polynomial for exp is especially easy to compute. Since exp(k)
(0) =

exp(0) = 1 for all k, the Taylor polynomial of degree n at is

2 3 4 nX X X X X
p„„(.v) = l + - + - + _ + _+... + -.

The Taylor polynomial for log must be computed at some point a / 0, since

log is not even defined at 0. The standard choice is a — 1. Then

log (x) = -, log'(l) = 1;

x

\og"(x) = -\, log"(l) = -l;
x z

log
/

"U) = ^, log"
#

(l) = 2;

in general

logw (jc)

(-l)*- 1 ^-!)!

x

Therefore the Taylor polynomial of degree n for log at 1 is

(x-1) 2 U-l) 3 (-\)"- l

(x - If
PnA (x) = (jc - 1) - - + , + • • • + .15 n

It is often more convenient to consider the function f(x) = log(l +jc). In this

case we can choose a = 0. We have

f
{k)

(x) = \og
{k) a+x),

so

/«(0)=tog cfc)
(l) = (-l)*-

1 (*-l)!.

Therefore the Taylor polynomial of degree n for / at is

x 2 x 3 x 4 (-l)"- 1*"
PBi0 (x) =x- — + — - — + ••• + .

2 3 4 n

There is one other elementary function whose Taylor polynomial is important—

arctan. The computations of the derivatives begin

arctan'U) = x arctan'(O) = 1;

1 + x l

-2x
arctan" (x) = — «-=-, arctan" (0) = 0;

(1 +.v 2
)

2

(\+x 2
)

2 -(-2) + 2x.2(\+x 2)-2x
arctan (x) = — ^—. , arctan (()) = —2.

(1 +x 2
)
4
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It is clear that this brute force computation will never do. However, the Taylor

polynomials of arctan will be easy to find after we have examined the properties

of Taylor polynomials more closely—although the Taylor polynomial PnM .f was

simply defined so as to have the same first n derivatives at a as /, the connection

between / and Pn,a,f WU1 actually turn out to be much deeper.

One line of evidence for a closer connection between / and the Taylor polyno-

mials for / may be uncovered by examining the Taylor polynomial of degree 1

,

which is

PLa (x) = f(a) + f(a)(x-a).

Notice that

f(x)-PlM (x) f(x)-f(a)

x — a x — a

Now, by the definition of f'{a) we have

f(x)-Pha (x)
lim = (J.

x^-a x — a

f(a).

FIGURE 1

In other words, as x approaches a the difference f(x) — P\ >a (x ) not only becomes

small, but actually becomes small even compared to x — a. Figure 1 illustrates the

graph of fix) = e
x and of

Pl,0(x) = f(0) + f(0)x= 1 +x,

which is the Taylor polynomial of degree 1 for / at 0. The diagram also shows

the graph of

ft.o(*) = /<P) + /'(0) + ^r*
2
= l + x + y •

which is the Taylor polynomial of degree 2 for / at 0. As x approaches 0, the

difference f(x) — P2,o(x) seems to be getting small even faster than the difference
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f(x) — P\o(x). As it stands, this assertion is not very precise, but we are now
prepared to give it a definite meaning. We have just noted that in general

Bm /w-ft,w =ft
x^-a x — a

For f(x) — e
x and a — this means that

|im
/U)-/YoU) = ]im

«--!-«
= Q

x-»0 x jc->-0 X

On the other hand, an easy double application of l'Hopitafs Rule shows that

,. e
x -\-x 1 nhm = - ^ 0.

x^o x l 2

Thus, although /(a) — P[,o(x) becomes small compared to x, as * approaches 0, it

does not become small compared toi". For P2.0C*) the situation is quite different;

the extra term x /2 provides just the right compensation:

e'-\-x-- e'-l-x
hm = hm
x->0 X 2 x^-0 2x

e
x - 1

= lim ^— = 0.
x^o 2

This result holds in general—if f'(a) and f"(a) exist, then

,. f(x)-P2 .a (x)hm ~ = U;
x-*a (x — a) 1

in fact, the analogous assertion for PnM is also true.

THEOREM l Suppose that / is a function for which

f'(a) f
("\a)

all exist. Let

f
(k)

(a)
n . <ai = , < k < n.

k\
~ ~

and define

Pn,a(x) — ao + a\(x - a) H \- an (x - a)".

Then

f(x)-Pn ,a (x) _
hm —— = U.
*-*•« (x — a)"
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PROOF Writing out PnM {x) explicitly, we obtain

fM-T^—^ix-ay
f(x)-P„M (x) i=0 ' f

(n)
{a)

{x - a)" (x - a) n n\

It will help to introduce the new functions

" _1
f

( ' ] (a)

Q(x ) = Y L——(x-a) 1 and g(x) = (x - a)
n

;

now we must prove that

f(x)-Q(x) /W(
fl )hm = .

x^a g(x) n\

Notice that

Q
{k\a) = f

{k
\a), k<n-\,

g
ik)

(x) =n\(x -a)"- k
/{n - k)\

.

Thus

and

lim[/U) - Q(x)] = f(a) - Q(a) = 0,
x -> a

lim[/'U) - Q'(x)] = f'ia) - Q'{a) = 0,

lim[/ (
"- 2,

(.t) - Q
(
"- 2)

(x)] = f
u'- 2)

(a) - Q
u, - 2)

(a) = 0.

Km g(x) = lim g'(x)== lim g
(
"~ 2)

(x) = 0.

We may therefore apply l'Hopital's Rule n — 1 times to obtain

,. f(x)-Q(x) f"-
l) (x)-Q u'- l)

(x)
lim = lim ; .

x^a {x — a)n x^a n\{x—a)

Since Q is a polynomial of degree n — 1, its (n — l)st derivative is a constant; in

fact, Q (n - {\x) = f
{n - {)

{a). Thus

,. f{x)-Q(x) ./•
(
"- ,,U)-/ ,

"- ,,
(«)

lim = lim
x-*a (x — a)" x-*-a n\(x—a)

and this last limit is f
un (a)/n\ by definition of f

{n)
(a). |

One simple consequence of Theorem 1 allows us to perfect the test for local

maxima and minima which was developed in Chapter 11. If a is a critical point

of /, then, according to Theorem 11-5, the function / has a local minimum

at a if /"(a) > 0, and a local maximum at a if f"(a) < 0. If f"(a) = no
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conclusion was possible, but it is conceivable that the sign of f'"{a) might give

further information; and if f"'{a) = 0, then the sign of /
(4)

(tf) = might be

significant. Even more generally, we can ask what happens when

(*) /'(a) = /» = --. = /
(M- 1)

(a) = 0,

f
{ " } (a)^0.

The situation in this case can be guessed by examining the functions

f(x) = (x-a)'\

g(x) = -(x-a)n
,

which satisfy (*). Notice (Figure 2) that if n is odd, then a is neither a local

maximum nor a local minimum point for / or g. On the other hand, if n is

even, then /, with a positive nth derivative, has a local minimum at a, while

g, with a negative nth derivative, has a local maximum at a. Of all functions

satisfying (*), these are about the simplest available; nevertheless they indicate the

general situation exactly. In fact, the whole point of the next proof is that any

function satisfying (*) looks very much like one of these functions, in a sense that

is made precise by Theorem 1

.

theorem 2 Suppose that

/» = ••• = f
(n~ l)

(a) = 0,

f
(n) (a)^0.

(1) If n is even and f
{n)

(a) > 0, then / has a local minimum at a.

(2) If n is even and f
(n\a) < 0, then / has a local maximum at a.

(3) If n is odd, then / has neither a local maximum nor a local minimum at a.

PROOF There is clearly no loss of generality in assuming that f(a) = 0, since neither the

hypotheses nor the conclusion are affected if / is replaced by / — f{a). Then,

since the first n — \ derivatives of / at a are 0, the Taylor polynomial P,ua of / is

P„ a(x ) = f(a)+ Lj^(x -«) + •••+ J—^(x - af

(a) nodd f^Ha)
'

= ;

—

(x -a) .

Thus, Theorem 1 states that

fix) _ f
(n)

{a)

(x-a)n
n\

Consequently, if x is sufficiently close to a, then

n ,. f(x)-Pn ,a (x) ,.= lim = lim
x-*-a (x — Cl)" x^t-a

(b) n even

fix) . , . f
(n\a)

has the same sign as
(x - a)"

figure 2 Suppose now that n is even. In this case (.v — a)" > for all x ^ a. Since

f(x)/(x — a)
n has the same sign as f

{n)
{a)/n\ for x sufficiendy close to a, it follows
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e~ l/x\ x#0

(b)

fix)

X >

0, x =
-e- l/x\ x<0

(c)

FIGURE 3

that f(x) itself has the same sign as f"(a)/n\ for jc sufficiently close to a. If

f
(n)

ia) > 0, this means that

/(*) > = fia)

for x close to a. Consequently, / has a local minimum at a. A similar proofworks

for the case f
{n)

ia) < 0.

Now suppose that n is odd. The same argument as before shows that if x is

sufficiently close to a, then

-™- always has the same sign.
(x-a) n y 5

But ix — a)" > for x > a and (jc — a)
n < for x < a. Therefore f{x) has different

signs for x > a and x < a. This proves that / has neither a local maximum nor

a local minimum at a. |

Although Theorem 2 will settle the question of local maxima and minima for

just about any function which arises in practice, it does have some theoretical

limitations, because f
{k)

ia) may be for all k. This happens (Figure 3(a)) for the

function

e~ [ /x\ x^O
0. jc=0,

/(*) =

e- l 'x
, x >

0,

-e~ l/x\

x =
x <0,

which has a minimum at 0, and also for the negative of this function (Figure 3(b)),

which has a maximum at 0. Moreover (Figure 3(c)), if

/(*) =

then f
{k
\0) = for all k, but / has neither a local minimum nor a local maximum

atO.

The conclusion of Theorem 1 is often expressed in terms of an important con-

cept of "order of equality." Two functions / and g are equal up to order n

at a if

iim
/(t) -* (t)

= o.
x-*a (x — a)"

In the language of this definition, Theorem 1 says that the Taylor polynomial

Pn.a.f equals / up to order n at a. The Taylor polynomial might very well have

been designed to make this fact true, because there is at most one polynomial of

degree < n with this property. This assertion is a consequence of the following

elementary theorem.

THEOREM 3 Let P and Q be two polynomials in (x — a), of degree < n, and suppose that P

and Q are equal up to order n at a. Then P = Q.

PROOl Let R = P — Q. Since R is a polynomial of degree < //, it is only necessary to
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COROLLARY

PROOF

prove that if

satisfies

R(x) = b + ... + bn(x-a)n

lim-^- =
x^a

(x - a) n

then R = 0. Now the hypothesis on R surely imply that

P(x)
hm =0 for < i < n.
*-+a (x — a)'

For i = this condition reads simply lim R(x) = 0; on the other hand
x^-a '

lim R{x) = lim [b + b
{
(x - a) + + bn (x - a)

n
]

= b .

Thus bo = and

R(x) = b
l (x - a) + + bn (.x -a)".

Therefore,

and

R(x)—— =bi + b2 (x - a) + + bn {x - a)
n - x

X CI

lim = bj.
x^a x — a

Thus Z?i = and

R(x) =b2 (x - a)
2 + • • • + bn (x - af

.

Continuing in this way, we find that

b = = bn = 0. |

Let / be n -times differentiable at a, and suppose that P is a polynomial in (x -a)
of degree < n, which equals / up to order n at a. Then P = Pnaf .

Since P and />„,«,/ both equal / up to order n at a, it is easy to see that P equals
Pn,aj up to order n at a. Consequently, P = Pnaf by the Theorem. |

At first sight this corollary appears to have unnecessarily complicated hypotheses;
it might seem that the existence of the polynomial P would automatically imply
that / is sufficiently differentiable for Pn ,aJ to exist. But in fact this is not so. For
example (Figure 4), suppose that

x"+l
, x irrational

/(*) =
0, x rational.

IfP(x) = 0, then P is certainly a polynomial of degree < n which equals / up to
order n at 0. On the other hand, f'{a) does not exist for any a # 0, so /"(0) is

undefined.
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/(*) =
0,

FIGURE 4

x irrational

x rational

When / does have n derivatives at a, however, the corollary may provide a

useful method for finding the Taylor polynomial of /. In particular, remember

that our first attempt to find the Taylor polynomial for arctan ended in failure.

The equation r* \

arctan x — I ^

Jo \+t 2

suggests a promising method of finding a polynomial close to arctan—divide 1

by 1 + t~, to obtain a polynomial plus a remainder:

dt

1

\+f
l-? 2 + /

4 -/ 6 + --- + (-l)"r" +
(-l)n+l t

/i+l, 2/1+ 2

1+r

This formula, which can be checked easily by multiplying both sides by 1 + t
,

shows that

arctan x -fJo l-t' + t'

x 3 x 5

= -v -y + y

px
{
2n+2

+ (-\)"r"dt + (-\)" +l
/
—

—

Jo 1 + {
~

x
2n+\ px

{
2n+2

2/i + 1 Jo 1 + t
l

dt

dt.

According to our corollary, the polynomial which appears here will be the Taylor

polynomial of degree In + 1 for arctan at 0, provided that

x ,2/1+2r t
zn+ -

Jo r+i
dt

Since

l + r
2

lim
x-+0

dt <

.2«+l

^0

2
dt

\2n+3

2/Z+3

this is clearly true. Thus we have found that the Taylor polynomial of degree

2«+l for arctan at is

,.2/i+l1 5X X
^2/i+i.oU) = x - — + + (-D"

2//+ I
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By the way, now that we have discovered the Taylor polynomials of arctan, it is

possible to work backwards and find arctan (/:)
(0) for all k: Since

A 3 X 5
X
2"+l

P2n+l,0(x) =X- — + — + (-1)"——,
3 5 2n + 1

and since this polynomial is, by definition,

/m,_ m ,_ arctan (2)
(0) , arctan (2"+1)

(0) 2„. ,

arctan (0)
(0) + arctan*

n
(0) + ——a 2 + + —x2n+l

,

2! (2n + 1)!

we can find arctan* (0) by simply equating the coefficients of x k
in these two

polynomials:

arctan ik)
(0)
- — (J it A: is even,

k\

arctan (2/+1)
(0) (-1)'

or arctan
(2/+1)

(0) = (-!)' -(2/)!.
(2/+1)! 2/+1

A much more interesting fact emerges if we go back to the original equation

„3 „5 x 2n+\ p\ t2n+2

arctan a- =x- — + — + (-1)
M -

r + (-1)"
3 5 2n + 1

/ *dt,
k 1 + ^

2

and remember the estimate

Jo

Un+l

dt
l+t 2

\x \2n+3

~ In + 3

When |a| < 1, this expression is at most 1/(2/7 + 3), and we can make this as

small as we like simply by choosing n large enough. In other words, for \x\ < 1

we can use the Taylor polynomialsfor arctan to compute arctan a as accurately as we like.

The most important theorems about Taylor polynomials extend this isolated result

to other functions, and the Taylor polynomials will soon play quite a new role.

The theorems proved so far have always examined the behavior of the Taylor

polynomial Pna forfixed n, as a approaches a. Henceforth we will compare Taylor

polynomials PnM forfixed a, and different n. In anticipation of the coming theorem

we introduce some new notation.

If / is a function for which Pn>a {x) exists, we define the remainder term
Rn,a(x) by

f(x) = P„,a (x) + RnAx)
f

[n)
(a)

= f(a) + f'(a)(x -«) + •••+ J—K-L(x - a)" + RnM (x).
nl

We would like to have an expression for R„, a (x) whose size is easy to estimate.

There is such an expression, involving an integral, just as in the case for arctan.

One way to guess this expression is to begin with the case n = 0:

f(x) = f(a) + RiU (x).
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The Fundamental Theorem of Calculus enables us to write

f(x) = f(a)+ f f'(t)dt,

so that

Ja

A similar expression for R\ a (x) can be derived from this formula using integra-

tion by parts in a rather tricky way: Let

u(t)-f'(t) and v(t) = t-x

(notice that x represents some fixed number in the expression for v(t), so v'(t) = 1 );

then

/ f\t)dt= f f{t)- 1 dt
J a Ja I I

u\t) v'{t)

= u(t)v(t)

X n\

a J a

f"(t){t-x)dt.

I |

u'(t) v(t)

Since v(x) = 0, we obtain

f(x) = f(a)+ f
f'(t)dt

J a

= f(a)-u(a)v(a)+ f f"(t)(x-t)dt
J a

= f(a) + f'(a)(x-a)+ f f"(t)(x - t)dt.

J a

Thus

f"(t){x-t)dt.Rl,a(x)= f J

It is hard to give any motivation for choosing v(t) — t — x, rather than v(t) — t.

It just happens to be the choice which works out, the sort of thing one might

discover after sufficiendy many similar but futile manipulations. However, it is

now easy to guess the formula for /?2, fl U). If

~(x-t) 2

u(t) = f"it) and t/(0 =
,

then v'{t) = (x - t), so

v2

f
f"(t)(x-t)dt = u(t)v(t)\ - f /'"(/)

Jo \a J<>

I.

-(x-ty
z dt

2

This shows that

f"{a){x-aV C
x

f'"(t) 2
h / —=— (.v - /) dt.

fO)(t)
-^—{x-n-dt.

J a

You should now have little difficulty giving a rigorous proof, by induction, that
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LEMMA

PROOF

if /'"+1) is continuous on [a,x], then

fx f(n+l)(f\

Rn,a (x)= /
L---^-(x-trdt.

Ja n.

This formula is called the integral form of the remainder, and we can easily esti-
mate it in terms of estimates for p^/nl on [a, *]. If m and M are the minimum
and maximum of f»^Jn\ on [a,x], then Rna (x) satisfies

///

so we can write

j (x - t)
n
dt < Rna (x)<M f (jc - t) dt,

(x -a)n+l

Rn,a(x) = a
n + 1

for some number a between m and M. Since we've assumed that / ("+1 >
is con-

tinuous, this means that for some t in {a, x) we can also write

n\ n + \ (n + iy}
a)

'

which is called the Lagrange form of the remainder (these manipulations will look
familiar to those who have done Problem 13-23).

The Lagrange form of the remainder is the one we will need in almost all
cases, and we can even give a proof that doesn't require f^"+^ to be continuous
(a refinement admittedly of little importance in most applications, where we often
assume that / has derivatives of all orders). This is the form of the remainder that
we will choose in our statement of the next theorem (Taylor's Theorem).

Suppose that the function R is (n + l)-times differentiable on [a,b], and

R {k\a) = forJfc = 0,l,2,...,ii.

Then for any x in (a, b] we have

R(x) R {"+ ]

\t)

(x-ay+i -"^nyr for some ' m («>*)•

For n = 0, this is just the Mean Value Theorem, and we will prove the theorem
for all n by induction on n. To do this we use the Cauchy Mean Value Theorem
to write

*(*)
= R'iz) 1 R'(Z)

(x - fl)«+2 " (n + 2)(z - a)»+i ~
n + 2 (z - a)»+l ^ S°me Z in (a

'
x)

'

and then apply the induction hypothesis to R' on the interval [a, z] to get

R(x) 1 (R') {"+ l

\t)

(x -a)"+2 ' n + 2 (/!+ 1)!

R {n+2)
(t)

for some t in (a, z)

(n + 2)!
I
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THEOREM 4 (TAYLOR'S THEOREM) Suppose that /' y<"+i> are denned on [a,x], and that Rn ,a (x) is defined by

f(x) = f(a) + f'(a){x - a) + • • • + ^-^-(x - a)" + Rn ,a (x)

Then
f(n+\) (t) n+\

Rn,a(x) = :

7zr(x ~ a )' f°r some t in (a, x)
(n+ 1)

(Lagrange form of the remainder).

PROOF The function Rna satisfies the conditions of the Lemma by the very definition of

the Taylor polynomial, so

Rn.a(x) Rn
(/l+l)

(0

(jr - a)"+l ' (n + 1)!

for some / in (a, x). But

Rn
(n+1) _- /•(»+D= /'

since Rna — f is a polynomial of degree /;. |

Applying Taylor's Theorem to the functions sin, cos, and exp, with a — 0, we
obtain the following formulas:

x 3 x 5

smx=x- - + -

,
x 2 x 4

cos* = l-- + -

+ (-D"
2"+1

sin
(2"+2,

(/) „2«+2

(2n + l)! (2n + 2)!

+(_ ir^l +r ,.
(0,^-

(2n)! (2n + l)!

<?
l = 1 + A" + — + • • ' + —

2' n\ (/? + !)!

-x
n+1

(of course, we could actually go one power higher in the remainder terms for sin

and cos).

Estimates for the first two are especially easy. Since

sin
(2n+2)

(0l < 1 for all f,

we have
• (2/1 + 2),. >

sin (/) 9 „ +2
x

{In + 2)!

|2/i+.

<

Similarly we can show that

COS (2"+1)
(0

(2/j + l)!

»+i <

(2n+2)\

|2/i+l

(2«+ 1)!
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These estimates are particularly interesting, because (as proved in Chapter 16) for
any s > we can make

x n

n\

by choosing n large enough (how large n must be will depend on x). This enables
us to compute sin* to any degree of accuracy desired simply by evaluating the
proper Taylor polynomial Pn

,
(*). For example, suppose we wish to compute

sin 2 with an error of less than J0~4 . Since

sin 2 = P2n+\,o{2) + 7?, where \R\ <
(2/i + 2)f

we can use P2n+l,o(2) as our answer, provided that

22«+2

(2/i + 2)!
< 10

-4

A number n with this property can be found by a straightforward search—it ob-
viously helps to have a table of values for n\ and 2" (see page 432). In this case it
happens that n = 5 works, so that

sin 2= Pu,o(2) + R

3! 5! 7!
+

91
~

U!
+ *'

where \R\ < 10~4
.

It is even easier to calculate sin 1 approximately, since

sin 1 = P2n+l (1) + r, wriere \R I < :

(2a? + 2)!'

To obtain an error less than e we need only find an n such that

1

(2/i + 2)!
< £ '

and this requires only a brief glance at a table of factorials. (Moreover the indi-
vidual terms of P2n+l,o(l) will be easier to handle.)

For very small x the estimates will be even easier. For example,

sin
To

= jP2"+1 ° ( lo )
+ R

'

where |/?l <
I

102"+2(2/2 + 2)!

To obtain \R\ < lO"^ we can clearly take n = 4 (and we could even get away
with n ==3). These methods can actually be used to compute tables of sin and
cos; a high-speed computer can compute P2„+ i.oU) for many different x in almost
no time at all. Nowadays, computers, and even cheap calculators, determine the
values of such functions "on-the-fly", though by specialized methods that arc even
I aster.
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Estimating the remainder for ex is only slightly harder. For simplicity assume

that x > (the estimates for x < are obtained in Problem 15). On the interval

[0, x] the maximum value of e' is e
x

, since exp is increasing, so

R
e
xx" +]

n.O <
(«+ D!

Since we already know that e < 4, we have

,n+. A\ n+\ex
<

(n+ 1)! * (n + 1)!'

which can be made as small as desired by choosing n sufficiently large. How large

n must be will depend on x (and the factor 4X will make things more difficult).

Once again, the estimates are easier for small x. If < x < 1, then

1+ -v + ^ + '" + ^ + *' where < R <
(/i+ D!

In particular, if n = 4, then

4 10<R<
5i

<
IO-

SO

1 1 1

1 + 1 +
2!
+

3!
+

4!
+/? - where < R < —

= 2 +
17

24

which shows that

2 < e < 3.

(This then shows that

< R <
3
x
a
»+i

(n+ D!

allowing us to improve our estimate of R slightly.) By taking n — 1 you can

compute that the first 3 decimals for e are

e = 2.718...

(you should check that n = 1 does give this degree of accuracy, but it would be

cruel to insist that you actually do the computations).

The function arctan is also important but, as you may recall, an expression for

arctan
(/r)

(x) is hopelessly complicated, so that our expressions for the remainder

are pretty useless. On the other hand, our derivation of the Taylor polynomial for

arctan automatically provided a formula for the remainder:

(_\\n v2n+\ rx /-i\n+lf2n+2

arctan x
3
+ • +

(-l)";r"

2n + l

+
./o 1+/ 2

(it.
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As we have already estimated

L

x (_ 1 \"+l +2n+2

l + v
dt < r

t

in+i
dt

Jo

|2n+3

2/2 + 3

For the moment we will consider only numbers x with \x
|

< 1 . In this case, the

remainder term can clearly be made as small as desired by choosing n sufficiently

large. In particular,

arctan 1=1 — 1 1

3 + 5" +
(-1)"

2/2 + 1

+ R, where \R\ <
1

In + 3

With this estimate it is easy to find an n which will make the remainder less than

any preassigned number; on the other hand, n will usually have to be so large as to

make computations hopelessly long. To obtain a remainder < 10~4
, for example,

we must take n > (10 — 3)/2. This is really a shame, because arctan 1 = 7r/4,

so the Taylor polynomial for arctan should allow us to compute n. Fortunately,

there are some clever tricks which enable us to surmount these difficulties. Since

|2n+3

|/?2n+l,o(*)| <
2/ ? + 3

much smaller n 's will work for only somewhat smaller x 's. The trick for computing

72" is to express arctan 1 in terms of arctan x for smaller x; Problem 6 shows how
this can be done in a convenient way.

From the calculations on page 413, we see that for x > we have

logO X = X

2 3 4X X X

T + T -4 + +
(-!)"v (-1)"

It+1

where

(-1)"
B+l

n + 1

,n+\

<
22+1

and there is a slighdy more complicated estimate when — 1 < x < (Problem 16).

For this function the remainder term can be made as small as desired by choosing

n sufficiently large, provided that — 1 < x < 1

.

The behavior of the remainder terms for arctan and f(x) = log(x + 1) is quite

another matter when \x
I
> 1 . In this case, the estimates

|2«+3

l^2«+1.0(*)l <
2/2 + 3

for arctan,

„/i+i

\R„.o(x)\ <
22+1

(x > 0) for /,

are of no use, because when \x\ > 1 the bounds x'"/m become large as m be-

comes large. This predicament is unavoidable, and is not just a deficiency of our

estimates. It is easy to get estimates in the other direction which show that the

remainders actually do remain large. To obtain such an estimate for arctan, note
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that if t is in [0, x] (or in [x, 0] if jc < 0), then

1 +r < 1+jc 2 <2x 2
, ]f\x\ > I,

so

rx
f
2n+2

Jo ITT1
dt >

l

Ix 2
r r"+2 dt
Jo

\2n+\

An + 6

'

To get a similar estimate for log(l + x), we can use the formula

I

1 +t
= 1 -t+r + (-l)"-V'- 1 +

(-l)V

\+t

to get

log(l+*)= f
Jo

1

2 1

+ (-1)n-\

+
rx t"

i-iy /
-

—

dt.

Jo 1 +t

If x > 0, then for t in [0, x] we have

1 +t < 1 +x < 2x, if x > 1,

so

/ —r dt> w~ t" dt
Jo t + 1 " 2* J 2« + 2

These estimates show that if \x\ > 1, then the remainder terms become large as

n becomes large. In other words, for \x\ > 1, the Taylor polynomials for arctan

and / are ofno use whatsoever in computing arctan x and log(.v + 1 ). This is no tragedy,

because the values of these functions can be found for any x once they are known
for all x with |jc

|
< 1

.

This same situation occurs in a spectacular way for the function

-l/x 2

fix) -
0,

.v #0
x = 0.

We have already seen that /^'(O) = for every natural number k. This means

that the Taylor polynomial Pn $ for / is

f"(0)
Pn,0(x) = /(0) + /'(0)JC + ^^X 2

0.

2!
H :

—

x

In other words, the remainder term R„q(x) always equals f(x), and the Taylor

polynomial is useless for computing f(x), except for x = 0. Eventually we will be

able to offer some explanation for the behavior of this function, which is such a

disconcerting illustration of the limitations of Taylor's Theorem.

The word "compute" has been used so often in connection with our estimates

for the remainder term, that the significance of Taylor's Theorem might be mis-

construed. It is true that Taylor's Theorem can be used as a computational aid
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(despite its ignominious failure in the previous example), but it has even more im-

portant theoretical consequences. Most of these will be developed in succeeding

chapters, but two proofs will illustrate some ways in which Taylor's Theorem may
be used. The first illustration will be particularly impressive to those who have

waded through the proof, in Chapter 16, that tt is irrational.

THEOREM 5 e is irrational.

PROOF We know that, for any n,

1 I

e = e
l = l + - + — + •••+ — + Rn , where < Rn <

1! 2! ni («+ 1)!

Suppose that e were rational, say e = a/b, where a and b are positive integers.

Choose n > b and also n > 3. Then

a
, i !

l-= 1 + 1 + rr + + - + Rn ,

b 2! n\

so

n\a n\— =»! + »! + - +
nl

n\
n\R„.

Every term in this equation other than n\Rn is an integer (the left side is an integer

because n > b). Consequently, n\Rn must be an integer also. But

<Rn <
(n + 1)!'

so

3 3
< n\R„ < T < - < 1,

n + 1 4

which is impossible for an integer. |

The second illustration is merely a straightforward demonstration of a fact

proved in Chapter 15: If

f" + / = 0,

/ (0) = o,

/'(0) = o.

then / = 0. To prove this, observe first that f
ik)

exists for every k; in fact

/(3) = {fy = _/
/

i

/(4) = (/ (3)y =
(
_ fy = _f = fi

/(5) = (/ (4)y = r>
etc.
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This shows, not only that all f
{k)

exist, but also that there are at most 4 different

ones: /, /', -/, -/'. Since /(0) = .f (0) = 0, all / (*>(0) are 0. Now Taylor's

Theorem states, for any n, that

f
( "+u

(t)

(» + 1)!

for some t in [0, x]. Each function /
(" +1)

is continuous (since f
(n+2)

exists), so for

any particular jc there is a number M such that

|/
(*+1)

(0l < m for < t < jc, and all n

(we can add the phrase "and all n" because there are only four different f
{k)

).

Thus

M|.v|"
+1

,/U)l s J^Tv:

Since this is true for every n, and since |jc|"/"! can be made as small as desired by

choosing n sufficiently large, this shows that |/(x)| < £ for any e > 0; consequently,

/(*) = 0.

The other uses to which Taylor's Theorem will be put in succeeding chapters

are closely related to the computational considerations which have concerned us

for much of this chapter. If the remainder term RnM (x) can be made as small as

desired by choosing n sufficiently large, then f(x) can be computed to any degree

of accuracy desired by using the polynomials Pna (x). As we require greater and

greater accuracy we must add on more and more terms. If we are willing to add

up infinitely many terms (in theory at least!), then we ought to be able to ignore

the remainder completely. There should be "infinite sums" like

1 "S 7
JC JC X

sin x = x — ——

I

(- • • •
,

3! 5! 7!

, JC
2

JC
4

.v
6

JC
8

COSX=1 -2! + 4!-6! + 8!-'--'

2 3 4
JC JC V

cX = 1 + A:+
2!
+

3!
+

4!
+ --

3 5 7
JC x J x 1

arctan jc = jc
—— + — — H it |jc

|
< 1

,

2 3 4

log(l +*) = *- y + y "if +
•• if-l<v<l.

We are almost completely prepared for this step. Only one obstacle remains—

we have never even defined an infinite sum. Chapters 22 and 23 contain the

necessary definitions.
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PROBLEMS

1

.

Find the Taylor polynomials (of the indicated degree, and at the indicated

point) for the following functions.

i) f(x) — e
e

*

; degree 3, at 0.

ii) f(x) = esmx degree 3, at 0.

iii) sin; degree 2/7, at —
-.

iv) cos; degree 2n, at n.

v) exp; degree n , at 1

.

vi) log; degree n, at 2.

vii) f(x) — x + x + x; degree 4, at 0.

viii) f(x) — x +jr + x\ degree 4, at 1.

ix) f(x) = r-; degree In + 1, at 0.
1 + x l

f(x) — ; degree n, at 0.
l+x s

2. Write each of the following polynomials in x as a polynomial in (x — 3). (It

is only necessary to compute the Taylor polynomial at 3, of the same degree

as the original polynomial. Why?)

(i) x 2 - Ax - 9.

(ii) x 4 - 12.Y
3 +44.r 2 + 2x + l.

(iii) x .

(iv) ax + bx + c.

3. Write down a sum (using 2, notation) which equals each of the following

numbers to within the specified accuracy. To minimize needless computa-

tion, consult the tables for 2" and n\ on the next page.

(i) sin 1; error < 10~ 17
.

(ii) sin 2; error < lO" 1 ^.

(iii) sin ~; error < 10~
.

(iv) e; error < 10~ 4
.

(v) e ; error < 10 .
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n 2" n\

1 2 1

2 4 2

3 8 6

4 16 24

5 32 120

6 64 720

7 128 5,040

8 256 40,320

9 512 362,880

10 1,024 3,628,800

11 2,048 39,916,800

12 4,096 479,001,600

13 8,192 6,227,020,800

14 16,384 87,178,291,200

15 32,768 1,307,674,368,000

16 65,536 20,922,789,888,000

17 131,072 355,687,428,096,000

18 262,144 6,402,373,705,728,000

19 524,888 121,645,100,408,832,000

20 1,048,576 2,432,902,008,176,640,000

*4.

5.

This problem is similar to the previous one, except that the errors demanded

are so small that the tables cannot be used. You will have to do a little

thinking, and in some cases it may be necessary to consult the proof, in

Chapter 16, that x n
/n\ can be made small by choosing n large—the proof

actually provides a method for finding the appropriate n. In the previous

problem it was possible to find rather short sums; in fact, it was possible

to find the smallest n which makes the estimate of the remainder given by

Taylor's Theorem less than the desired error. But in this problem, finding any

specific sum is a moral victory (provided you can demonstrate that the sum

works).

(i)

(ii)

(iii)

(iv)

(v)

sin 1; error < 10 ll0
'.

<?; error < 10" 1000
.

sin 10; error < 10~20
.

,10. error < 10
-30

I 1 r\— ( I0'°)
arctan y^; error < lU u

'.

(a) In Problem 1 1 -41 you showed that the equation x = cos* has pre-

cisely two solutions. Use the third degree Taylor polynomial of cos to

show that the solutions arc approximately ±^2/3, and find bounds on

the error. Then use the fifth degree Taylor polynomial to get a better

approximation.

(b) Similarly, estimate the solutions of the equation 1x = x sin* + cos" x.
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6. (a) Prove, using Problem 15-9, that

n 1 1— = arctan — + arctan —

,

4 2 3

71
a

] l

— 4 arctan — — arctan
4 5 239'

(b) Show that it = 3.14159 (Every budding mathematician should ver-

ify a few decimals of tt, but the purpose of this exercise is not to set you

off on an immense calculation. If the second expression in part (a) is

used, the first 5 decimals for n can be computed with remarkably little

work.)

7. Suppose that a
t
and b, are the coefficients in the Taylor polynomials at a of /

and g, respectively. In other words, a
s
= f U) (a)/il and /?, = g

u) (a)/i\ . Find

the coefficients c, of the Taylor polynomials at a of the following functions,

in terms of the a,'s and Z?,'s.

(i) f + g-

(ii) fg-

(iii) /'•

(iv) h(x)= [ f{t)dt.
J a

(v) k(x)= f f(t)dt.
Jo

8. (a) Prove that the Taylor polynomial of f(x) = sin(x
2
) of degree An + 2 at

is

v 6 „10 v4»+2

3! 5! (2« + 1)!'

Hint: If P is the Taylor polynomial of degree 2n + 1 for sin at 0, then

sinx — P(x) + R(x), where lim R(x)/x^"+ ^ — 0. What does this implv

about lim R(x 2
)/x

4n+2
?

(b) Find f
a)

(0) for all k.

(c) In general, if f(x) = g(xm ), find f
ik)

(0) in terms of the derivatives of g

atO.

The ideas in this problem can be extended significantly, in ways that are explored

in the next three problems.

9. (a) Problem 7 (i) amounts to the equation

*n,a.f+g = *n.a,f "t *n,a,g-

Give a more direct proof by writing

/(*)= Pn,a,f(x) + Rn,a,f(x)

g(x)= Pn,a,g(x) + R„M ,g(x),

and using the obvious fact about Rn ,a,f + Rn,a,g-
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(b) Similarly, Problem 7 (ii) could be used to show that

*n,a,fg — I'n.a.f ' ^n,a,g\ni

where [P] n denotes the truncation of P to degree n, the sum of all

terms of P of degree < n [with P written as a polynomial in x — a]

.

Again, give a more direct proof, using obvious facts about products in-

volving terms of the form Rn .

(c) Prove that if p and q are polynomials in x—a and lim R(x)/(x — a)" — 0,

then

p(q(x) + R(x)) = p(q(x)) + R(x)

where

lim R(x)/(x -a)" = 0.

Also note that if p is a polynomial in x — a having only terms of degree

> n, and q is a polynomial in x — a whose constant term is 0, then all

terms of p(q(x — a)) are of degree > n.

(d) If a = and b = g(a) = 0, then

'n, a, fog — Y*n,b,f ° *n,a,g\n-

(Problem 8 is a special case.)

(e) The same result actually holds for all a and any value of g(a). Hint:

Consider F(x) — f(x+g(a)), G(x) = g(x+a) and H(x) = G(x) — g(a).

(f) If g{a) = 0, then

i + p„,,., + (Pn,,. e
:'

**„.«. i = [i + fl..«.« + C*W2
+ • • • + ewr]n

.

10. For the following applications of Problem 9, we assume a = for simplicity,

and just write Pnj instead of P„,a ,f-

(a) For fix) = e
x and g(x) = sin*, find Psj+g (x).

(b) For the same / and g, find Psjg .

(c) Find /^.tanG*)- Hint: First use Problem 9 (f) and the value of Ps.cosOO to
3 9 5

find ^.l/cosU)- (Answer: * + y + y=-)

(d) Find P4;/ for /(jc) = e
2x cos*. (Answer: 1 + 2x + \x 2 + ±x 3 - ^a 4

)

(e) Find P5J for f{x) = sin;c/cos2x. (Answer: a + y.v 3 + f|^A
5

)

(f) Find P6J for /(a-) = x 3
/[0 + x2)e*]. (Answer: a 3 - a

4 - \x 5 + |a 6
)

11. Calculations of this sort may be used to evaluate limits that we might other-

wise try to find through laborious use ofl'Hopital's Rule. Find the following:

,
N ,.

e
x -\-x-\x 2

Nix)
(a) hm — = lim

X- 0 a - sin a x-»-0 D(x)

Hint: First find Pt, o,/v(a) and /^.o.oU) for the numerator and denomi-

nator Nix) and D(a).
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(b) lim
1+a

{

-x 2

2
x

(c) lim

x — sm x

Hint: For the term e
x
/(I +x), first write 1/(1 +x) — 1 —x+x~— a 3 + -

1 1

Hsin 2 * x 2

(d) lim
1 — COS(a )

r2« '

(e) lim

x^sin x

1 1

*->0 sin
2
a sin(A 2

)

(f) lim

12. Let

(sinx)(arctan.v) — x

1 — cos(a 2
)

/(*) =
sin a

1.

A" 7^0

A=0.

Starting with the Taylor polynomial of degree In + 1 for sin a , together with

the estimate for the remainder term derived on page 424, show that

'w = 1

-3T
+

3T
+ - + (

- 1)
"(25i)i

+ /?2*.0,/00

Where
|2n+l

#2«.0./'U)| <
(2n + 2)!'

and use this to conclude that

l

^0 Jo

.4 1703
1 -^ + ^j^' = .946

with an error of less than 10 3

13. Let

/(*) =
e
x - 1

, x #0

A = 0.

(a) Find the Taylor polynomial of degree n for / at 0, compute f
{k)

(0). and

give an estimate for the remainder term R„,o,f.

(b) Compute / f with an error of less than 10 .

JO

f°
A

2
14. Estimate / exp(x )dx with an error of less than 10"

Jo
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15. Prove that if x < 0, then the remainder term R„q for ex satisfies

kl"
+1

(n + 1)!

16. Prove that if —1 < x < 0, then the remainder term R„q for log(l -f a )

satisfies

\x
\n+l

l*».°l S a+xKn+1y

*17. (a) Show that if \g'(x)\ < M\x - a\" for \x - a\ < 8, then \g(x) - g(a)\ <

M\x -a\"+]
/(n + l)fbr\x-a\<8.

(b) Use part (a) to show that if lim g'(x)/(x -a)" = 0, then
x->a

gM-M =
x^a (X -a)n+]

(c) Show that if g(x) = f(x) - Pn . a ,f(x), then g'{x) = fix) - Pn_haJ,(x).

(d) Give an inductive proof of Theorem 1, without using l'Hopital's Rule.

18. Deduce Theorem 1 as a corollary7 of Taylor's Theorem, with any form of

the remainder. (The catch is that it will be necessary to assume one more

derivative than in the hypotheses for Theorem 1
.)

19. Lagrange's method for proving Taylor's Theorem used the following device.

We consider a fixed number x and write

f
{n)

(t)

(*) f{x) - f(t) + /'(*)(* - + • • • +—^-(x - t)" + Sit)
IV.

for Sit) = Rnt ix). The notation is a tip-off that we are going to consider the

right side as giving the value of some function for a given /, and then write

down the fact the derivative of this function is 0, since it equals the constant

function whose value is always fix). To make sure you understand the roles

of x and t, check that if

/w (0, -

then

git) = ^—ix-t)\

git) = £^k(x-t)k-\-l) + £-^(x-t) k

kl kl

f
{k)

(n , ,._,
, fk+])

it)_U _,)*-! + ^ ^ix-t) k
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(a) Show that

= /'(*) + f'(0 + QP-V
1!

+
no

1!

(3)

(x-t) +
/w(o

(.y - ty

+

+
(n+l),

(n - 1)

+ S'(0,

and notice that everything collapses to

-/"'<"„ _,r . + /^£) u _„.
/?!

Noting that

/(«+!)
(f )

5'(r) = -^—--(.v-/)".

S(x) = /?„,*(*) = 0,

5(a) = *„.„ CO,

apply the Cauchy Mean Value Theorem to the functions S and h{t) =
(x — /)" +1 on [a,x] to obtain the Lagrange form of the remainder

(Lagrange actually handled this part of the argument differently).

(b) Similarly, apply the regular Mean Value Theorem to S to obtain the

strange hybrid formula

Rn.a(x) = f
(n+l)

(t)

n\
(x-t)n (x-a).

This is called the Cauchy form of the remainder.

20. Deduce the Cauchy and Lagrange forms of the remainder from the integral

form on page 423, using Problem 13-23. There will be the same catch as in

Problem 18.

I know of only one situation where the Cauchy form of the remainder is used.

The next problem is preparation for that eventuality.

21. For every number a, and every natural number n, we define the "binomial

coefficient"

'a\ a (a — 1) • . . . • (a — n + l)

and we define
a

1 , as usual. If a is not an integer, then
( ) is never 0,
a

and alternates in sign for n > a. Show that the Taylor polynomial of degree n

for f{x) = (1 + x)a at is Pn,o(x )
= ^2\ , )

v^ and tnat me Cauchy and

Lagrange forms of the remainder arc the following:
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Cauchy form:

a(a — 1) •
. . .

• (a — n)
,

Rn.0(x) = — —T^ -*(* ~ tTO + O
a-"~ l

IV.

a{a- 1) ... (a -n)
, a _\ ( x - t

-x{\ +t)a

n\ \ 1 f t

l.V" +' 1
""'

(fx
1

// + 1/ VI +t
= (H

U
\x(\ + t)

a~ l
(
X
- -1

, M (0,x)or (.v,0).

Lagrange form:

(« + 1)!

" .V^Ci + O"""
-1

, Mn(0,.x)orU,0).
// + 1/

Estimates for these remainder terms are rather difficult to handle, and are

postponed to Problem 23-21.

22. (a) Suppose that / is twice differentiable on (0, oo) and that |/(x)| < Mo
for all x > 0, while \f"(x)\ — ^2 for all x > 0. Use an appropriate

Taylor polynomial to prove that for any x > we have

2 h
\f'(x)\ < -M + -Mi for all h > 0.

h 2

(b) Show that for all x > we have

L/"(.v)| <2V
/M M2 .

Hint: Consider the smallest value of the expression appearing in (a).

(c) If / is twice differentiable on (0, oo), /" is bounded, and f(x) ap-

proaches as x —> oo, then also f'(x) approaches as x — oo.

(d) If lim f(x) exists and lim f"(x) exists, then lim f"(x) — lim fix) =

0. (Compare Problem 11-34.)

23. (a) Prove that if f"(a) exists, then

f(a + h) + f(a-h)-2f(a)
f (a) = lim .

The limit on the right is called the Schwarz second derivative of / at a. Hint:

Use the Taylor polynomial P2,a (x) with x = a + h and with x = a — h.

(b) Let fix) = x 2
for x > 0, and —x 2

for x < 0. Show that

f(0 + h) + fi0-h)-2fi0)
lim =

exists, even though /"(()) does not.

(c) Prove that if / has a local maximum at a, and the Schwarz second

derivative of / at a exists, then it is < 0.
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(d) Prove that if f'"(a) exists, then

/'"(a) ,. fifl + h)- f(a-h)- 2hf'{a)—r— = hm
5 .

3 h-+Q h3

24. Use the Taylor polynomial P\ M ,f,
together with the remainder, to prove a

weak form of Theorem 2 of the Appendix to Chapter 1 1 : If f" > 0, then

the graph of / always lies above the tangent line of /, except at the point

of contact.

*25. Problem 18-43 presented a rather complicated proofthat / = if f"—f =
and /(0) = /'(0) = 0. Give another proof, using Taylor's Theorem. (This

problem is really a preliminary skirmish before doing battle with the general

case in Problem 26, and is meant to convince you that Taylor's Theorem is

a good tool for tackling such problems, even though tricks work out more

neatly for special cases.)

**26. Consider a function / which satisfies the differential equation

for certain numbers ao, . . . , fl„_i. Several special cases have already received

detailed treatment, either in the text or in other problems; in particular, we

have found all functions satisfying /' = /, or f" + f = 0, or f" — f = 0. The

trick in Problem 1 8-42 enables us to find many solutions for such equations,

but doesn't say whether these are the only solutions. This requires a uniqueness

result, which will be supplied by this problem. At the end you will find some

(necessarily sketchy) remarks about the general solution.

(a) Derive the following formula for / ("+1)
(let us agree that "a_i" will be 0):

7=0

(b) Deduce a formula for f
{n+2\

The formula in part (b) is not going to be used; it was inserted only to con-

vince you that a general formula for f
{ " +k)

is out of the question. On the

other hand, as part (c) shows, it is not very hard to obtain estimates on the

size of f
{n+k)

(x).

(c) Let /V = max(l, |oo|, l«„-il)- Then |a
/
-_j + an_ia/| < 2N 2

; this

means that

/'"+1 » = J2bj
l

fu\ where \bj
l

\

< IN2
.

,/=0
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Show that

n-\

z
( "+2) = J2 b

J

2
f

(j)
<

where
\

b/\ < 4A^
7=0

and, more generally,

f
(„+k) = J2 bj

k
fu\ where \bf\ < 2

kNk+l
.

7=0

(d) Conclude from part (c) that, for any particular number x, there is a

number M such that

\f
(n+k

\x)\ <M -2 kNk+]
for all*.

(e) Now suppose that /(0) = /'(()) = • • • = /
(n_1)

.(0) = 0. Show that

M 2*+ 1 /y*+2
|

JC
|

n+*+1 M \2Nx\"+M
l/U)l " " (n+k+l)\ " " (n+k+\)\

'

and conclude that / = 0.

(f

)

Show that if /i and /? are both solutions of the differential equation

/
(M) = X>/0)

,

and /i
y)

(0) = /2
0)

(0) for < j < n - 1, then /i = /2 .

In other words, the solutions of this differential equation are determined

by the "initial conditions" (the values / (7)
(0) for < j < n — 1). This

means that we can find all solutions once we can find enough solutions

to obtain any given set of initial conditions. If the equation

x" -an_\x
n - x

a =0

has n distinct roots o-i an , then any function of the form

is a solution, and

/(0) =ci + •••+<?„,

f'(0) =a\C] H \-a„cn ,

/(«-D(0) = a i

M- 1ci+...+an
M- 1

cn .

As a matter of fact, every solution is of this form, because we can obtain

any set of numbers on the left side by choosing the c's properly, but we

will not try to prove this last assertion. (It is a purely algebraic fact, which

you can easily check for n = 2 or 3.) These remarks are also true if some
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of the roots are multiple roots, and even in the more general situation
considered in Chapter 27.

(a) Suppose that / is a continuous function on [a,b] with f(a) = f(b)
and that for all x in (a, b) the Schwarz second derivative of / at x is
(Problem 23). Show that / is constant on [a,b]. Hint: Suppose that
fix) > f{a) for some x in {a, b). Consider the function

g(x) = f(x)-s(x - a)(b-x)

with g(a) = g(b) = f(a). For sufficiendy small e > we will have
g(x) > g(a), so g will have a maximum point y in {a, b). Now use
Problem 23(c) (the Schwarz second derivative of (x - a)(b - x) is simply
its ordinary second derivative).

(b) If/ is a continuous function on [a, b] whose Schwarz second derivative
is at all points of (a, b), then / is linear.

*28. (a) Let /(*) = x 4
sin 1 /x

2
for x # 0, and /(0) = 0. Show that / = up to

order 2 at 0, even though /"(0) does not exist.

This example is slightly more complex, but also slightly more impressive
than the example in the text, because both f'(a) and f"{a) exist for
a # 0. Thus, for each number a there is another number m(a) such that

(*) f(x) = fia) + f(a)ix -a) + ^f {x - af + j^),

, .. Ra (x)
where lim —— = O

x^a
(X - a) 2

namely, m(a) = f"{a) for a ± 0, and m(0) = 0. Notice that the functionm defined in this way is not continuous.
(b) Suppose that / is a differentiable function such that (*) holds for all a

with mia) = 0. Use Problem 27 to show that /» = m (a ) = for
all a.

c Now suppose that (*) holds for all a, and that m is continuous Prove
that for all a the second derivative f"(a) exists and equals m(a).



^chapter mm e IS TRANSCENDENTAL

The irrationality of e was so easy to prove that in this optional chapter we will

attempt a more difficult feat, and prove that the number e is not merely irrational,

but actually much worse. Just how a number might be even worse than irrational

is suggested by a slight rewording of definitions. A number x is irrational if it is

not possible to write x = a/b for any integers a and b, with b / 0. This is the

same as saying that x does not satisfy any equation

bx - a =

for integers a and b, except for a = 0, b = 0. Viewed in this light, the irrationality

of V2 does not seem to be such a terrible deficiency; rather, it appears that V2 just

barely manages to be irrational—although V2 is not the solution of an equation

C1]X + (70 = 0,

it is the solution of the equation

x
2 -2 = 0,

of one higher degree. Problem 2-18 shows how to produce many irrational num-

bers x which satisfy higher-degree equations

a„x" + an _ix"-
1 +-"+flo = 0,

where the a, are integers not all 0. A number which satisfies an "algebraic" equa-

tion of this sort is called an algebraic number, and practically every number we

have ever encountered is defined in terms of solutions of algebraic equations (tt

and e are the great exceptions in our limited mathematical experience). All roots,

such as

v/2, 73, v
7
?.

are clearly algebraic numbers, and even complicated combinations, like

P + VE+ V1 + V2+4/6

are algebraic (although we will not try to prove this). Numbers which cannot be

obtained by the process of solving algebraic equations are called transcendental;

the main result of this chapter states that e is a number of this anomalous sort.

The proof that e is transcendental is well within our grasp, and was theoretically

possible even before Chapter 20. Nevertheless, with the inclusion of this proof, we

can justifiably classify ourselves as something more than novices in the study of

higher mathematics; while many irrationality proofs depend only on elementary

properties of numbers, the proof that a number is transcendental usually involves

442
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some really high-powered mathematics. Even the dates connected with the tran-

scendence of e are impressively recent—the first proof that e is transcendental,

due to Hermite, dates from 1873. The proof that we will give is a simplification,

due to Hilbert.

Before tackling the proof itself, it is a good idea to map out the strategy, which

depends on an idea used even in the proof that e is irrational. Two features of the

expression

e= l +
Ij
+ _ + . .. + - + *„

were important for the proof that e is irrational: On the one hand, the number

1 + - + --- + -
1! nl

can be written as a fraction p/q with q < n\ (so that n\ (p/q) is an integer); on the

other hand, < Rn < 3/(« + 1)! (so n\R„ is not an integer). These two facts show

that e can be approximated particularly well by rational numbers. Of course, every

number x can be approximated arbitrarily closely by rational numbers—if s >
there is a rational number r with \x —r\ < e; the catch, however, is that it may be

necessary to allow a very large denominator for r, as large as \/e perhaps. For e

we are assured that this is not the case: there is a fraction p/q within 3/(« + 1)!

of e, whose denominator q is at most n\ . If you look carefully at the proof that e

is irrational, you will see that only this fact about e is ever used. The number e is

by no means unique in this respect: generally speaking, the better a number can be

approximated by rational numbers, the worse it is (some evidence for this assertion

is presented in Problem 3). The proofthat e is transcendental depends on a natural

extension of this idea: not only e, but any finite number of powers e, e
2

, .

.

. , e",

can be simultaneously approximated especially well by rational numbers. In our

proof we will begin by assuming that e is algebraic, so that

(*) a„e" + • • • + a\e + ciq = 0. «o ^

for some integers ciq, ... , a„. In order to reach a contradiction we will than find

certain integers M, M\, . . . , Mn and certain "small" numbers €\, . . . , €n such that

e =
M

7 M2 + €2
e" = M

c" =
M„ + €„

M
Just how small the e's must be will appear when these expressions are substituted

into the assumed equation (*). After multiplying through by M we obtain

[aoM + a\M\ H \-a„M„] + [€\a\ H \- €„an ]
= 0.
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The first term in brackets is an integer, and we will choose the M's so that it will

necessarily be a nonzero integer. We will also manage to find e's so small that

\€\a\ H \-€nan \
< \\

this will lead to the desired contradiction—the sum of a nonzero integer and a

number of absolute value less than ^ cannot be zero!

As a basic strategy this is all very reasonable and quite straightforward. The
remarkable part of the proof will be the way that the M's and e's are defined. In

order to read the proof you will need to know about the gamma function! (This

function was introduced in Problem 19-40.)

THEOREM l e is transcendental.

proof Suppose there were integers ao, . . . , a„, with «o ^ 0, such that

(*) a„e" + an -.ie"~
l + • • • + a = 0.

Define numbers M, M\, . . . , M„ and €\, . . . , €„ as follows:

" x p- l

[(x - \) . . . (x - n)]Pe~x
JM

M,

€k

-L (P- 1) I

ex xP-
- Y

[(x -0- (x -n)ye~x

(p
— D!

k
x p - '[U-- 1)-. • (.v

--n)Ye~x

(p-iy.

dx,

dx.

The unspecified number p represents a prime number* which we will choose later.

Despite the forbidding aspect of these three expressions, with a little work they will

appear much more reasonable. We concentrate on M first. If the expression in

brackets,

[(x-1).... •(*-»)],

is actually multiplied out, we obtain a polynomial

x" + ---±nl

*The term "prime number" was denned in Problem 2-17. An important fact about prime numbers

will be used in the proof, although it is not proved in this book: If p is a prime number which does

not divide the integer a, and which does not divide the integer b, then p also does not divide ab.

The Suggested Reading mentions references for this theorem (which is crucial in proving that the

factorization of an integer into primes is unique). We will also use the result of Problem 2- 17(d),

that there are infinitely many primes—the reader is asked to determine at precisely which points this

information is required.
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with integer coefficients. When raised to the pth power this becomes an even

more complicated polynomial

x
np + • • • ± {n\) p .

Thus M can be written in the form

"P 1 ,-00

a=0

where the Ca are certain integers, and Cq = ± («!)''. But

rJo x
k
e

x dx = k\

Thus

^ (P-D!

Now, for a = we obtain the term

±(n\f
iP

~
^ =±(n\) p

.

(p - 1)!

We will now consider only primes p > n; then this term is an integer which is not

divisible by p. On the other hand, if a > 0, then

(p - 1 +a)\
Ca—; r—- = Caip + a - \)(p + a - 2) • . . . • p,

which is divisible by p. Therefore M itself is an integer which is not divisible by p.

Now consider M*. We have

Mk =e k
\

, ,

- dx

-I.

(p-iy
3 xP- l[(x- 1) • . . . • (x - ri)¥e-<*-Q

dx.

This can be transformed into an expression looking very much like M by the

substitution

u = x — k

du = dx.

The limits of integration are changed to and oo, and

f°° (u+k)p- l
[(u + k- 1)....-M- ...- (u + k-n)]''e-"

Mt=
L o^ '"'•

There is one very significant difference between this expression and that for M.

The term in brackets contains the factor u in the kth place. Thus the pth power

contains the factor up . This means that the entire expression

(u+k)"- [ \(u+k- \)-...-(u+k -/?)]''
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is a polynomial with integer coefficients, every term of which has degree at least p.

Thus

"/' 1 /-00 "P

Mk = Y" Da / n p - x+a
e-" du = Y" D„

(p- 1 + <*)!

(p-l)\
m—i a=l

where the Da are certain integers. Notice that the summation begins with a = 1

;

in this case every term in the sum is divisible by p. Thus each Mk is an integer

which is divisible by p.

Now it is clear that

e
K = , k=\, n.M

Substituting into (*) and multiplying by M we obtain

[a M +a\M\ H \-anMn] + [a\€\ -\ \-

a

n en ] =0.

In addition to requiring that p > n let us also stipulate that p > |«ol- This means

that both M and flo are not divisible by p, so a$M is also not divisible by p. Since

each Mk is divisible by p, it follows that

ciqM + a\M\ H YanMn

is not divisible by p. In particular it is a nonzero integer.

In order to obtain a contradiction to the assumed equation (*), and thereby

prove that e is transcendental, it is only necessary to show that

|«iei H h«„e„|

can be made as small as desired, by choosing p large enough; it is clearly sufficient

to show that each \€k\ can be made as small as desired. This requires nothing more

than some simple estimates; for the remainder of the argument remember that n

is a certain fixed number (the degree of the assumed polynomial equation (*)). To

begin with, if 1 < k < n, then

/* \xP~ l
[(x - l)-...-(.v -n)y\e~x

(p - 1)!
l€kl - eK

i '

LV
" V-dI

'

dx

,n
np

- l
\(x - 1 )•...• (x -n)\pe-"/'

^o

-x

-dx.
(p-iy.

Now let A be the maximum of |(.v — 1) . . . (x — n)\ for x in [0, n]. Then

e
nnP~ lAP

1**1 <
(p-iy. rJo

e
nnp

~ lAp [™
r

/ e
x dx

(p-l)\ Jo

e
nn p~ lAp

(P- D!

e
nnpA p e"(nA) p

:

(p-l)\
~~ =

(p-l)\
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But n and A are fixed; thus (nA) p/(p — 1)! can be made as small as desired by

making p sufficiently large. |

This proof, like the proof that tt is irrational, deserves some philosophic af-

terthoughts. At first sight, the argument seems quite "advanced"—after all, we
use integrals, and integrals from to oo at that. Actually, as many mathemati-

cians have observed, integrals can be eliminated from the argument completely;

the only integrals essential to the proof are of the form

00
.k

/
JO

for integral k, and these integrals can be replaced by A:! whenever they occur.

Thus M, for example, could have been defined initially as

where Ca are the coefficients of the polynomial

[(X-1).... •(*->!)]'.

If this idea is developed consistently, one obtains a "completely elementary" proof

that e is transcendental, depending only on the fact that

,

] ! {e=l+
v.

+
v
+
v
+ ----

Unfortunately, this "elementary" proof is harder to understand than the original

one—the whole structure of the proof must be hidden just to eliminate a few

integral signs! This situation is by no means peculiar to this specific theorem—

"elementary" arguments are frequendy more difficult than "advanced" ones. Our
proof that n is irrational is a case in point. You probably remember nothing

about this proof except that it involves quite a few complicated functions. There is

actually a more advanced, but much more conceptual proof, which shows that it

is transcendental, a fact which is of great historical, as well as intrinsic, interest. One
of the classical problems of Greek mathematics was to construct, with compass

and straightedge alone, a square whose area is that of a circle of radius 1 . This

requires the construction of a line segment whose length is y/n, which can be

accomplished if a line segment of length n is constructible. The Greeks were

totally unable to decide whether such a line segment could be constructed, and

even the full resources of modern mathematics were unable to settle this question

until 1882. In that year Lindemann proved that n is transcendental; since the

length of any segment that can be constructed with straightedge and compass can

be written in terms of +, •, — , -=-, and y/~, and is therefore algebraic, this proves

that a line segment of length n cannot be constructed.

The proof that it is transcendental requires a sizable amount of mathematics

which is too advanced to be reached in this book. Nevertheless, the proof is not

much more difficult than the proof that e is transcendental. In fact, the proof
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for it is practically the same as the proof for e. This last statement should certainly

surprise you. The proof that e is transcendental seems to depend so thoroughly

on particular properties of e that it is almost inconceivable how any modifications

could ever be used for 7r; after all, what does e have to do with 7r? Just wait and

see!

PROBLEMS

1. (a) Prove that if a > is algebraic, then >J~a. is algebraic.

(b) Prove that if a is algebraic and r is rational, then a + r and ccr are

algebraic.

Part (b) can actually be strengthened considerably: the sum, product,

and quotient of algebraic numbers is algebraic. This fact is too difficult

for us to prove here, but some special cases can be examined:

2. Prove that V2 + V3 and v2(l + v3) are algebraic, by actually finding

algebraic equations which they satisfy. (You will need equations of degree 4.)

*3. (a) Let a. be an algebraic number which is not rational. Suppose that a

satisfies the polynomial equation

f{x) = anx
n + an _ lX

"- 1 + • + oo = 0,

and that no polynomial function of lower degree has this property. Show
that f(p/q) / for any rational number p/q. Hint: Use Prob-

lem 3-7(b).

(b) Now show that \f{p/q)\ > \/q" for all rational numbers p/q with q > 0.

Hint: Write f(p/q) as a fraction over the common denominator q"

.

(c) Let M — sup{ |/'(jc)| : \x — a\ < 1 }. Use the Mean Value Theorem

to prove that if p/q is a rational number with |a — p/q\ < 1, then

\

a ~ P/q\ > \/Mq n
. (It follows that for c = min(l, \/M) we have

\a — p/q\ > c/q" for all rational p/q.)

*4. Let

a = 0.1 10001000000000000000001000

where the 1 's occur in the n ! place, for each n . Use Problem 3 to prove that

a is transcendental. (For each n, show that a is not the root of an equation

of degree n.)

Although Problem 4 mentions only one specific transcendental number, it should

be clear that one can easily construct infinitely many other numbers a which do

not satisfy \a — p/q\ > c/q n
for any c and n. Such numbers were first considered

by Liouville (1 809 1 882), and the inequality in Problem 3 is often called Liouville's

inequality. None of the transcendental numbers constructed in this way happens to

be particularly interesting, but for a long time Liouville's transcendental numbers

were the only ones known. This situation was changed quite radically by the work

of Cantor (1845 1918), who showed, without exhibiting a single transcendental
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number, that most numbers are transcendental. The next two problems provide an

introduction to the ideas that allow us to make sense of such statements. The basic

definition with which we must work is the following: A set A is called countable

if its elements can be arranged in a sequence

a\, Q2, #3, #4, ....

The obvious example (in fact, more or less the Platonic ideal of) a countable set

is N, the set of natural numbers; clearly the set of even natural numbers is also

countable:

2,4,6,8

It is a little more surprising to learn that Z, the set of all integers (positive, negative

and 0) is also countable, but seeing is believing:

0, 1,-1,2,-2,3,-3

The next two problems, which outline the basic features of countable sets, are

really a series of examples to show that (1) a lot more sets are countable than one

might think and (2) nevertheless, some sets are not countable.

*5. (a) Show that if A and B are countable, then so is A U B =
{ x : x is in A or

x is in B }. Hint: Use the same trick that worked for Z.

(b) Show that the set of positive rational numbers is countable. (This is really

quite startling, but the figure below indicates the path to enlightenment.)

(c) Show that the set of all pairs (m,n) of integers is countable. (This is

practically the same as part (b).)

(d) If A\, A2, A3, . . . are each countable, prove that

A\ U A 2 U A 3 U ...

is also countable. (Again use the same trick as in part (b).)

(e) Prove that the set of all triples (/, m, n) of integers is countable. (A triple

(l,m,n) can be described by a pair (/, m) and a number n.)

(f) Prove that the set of all ^-tuples (a\, ai an ) is countable. (Ifyou have

done part (e), you can do this, using induction.)

(g) Prove that the set of all roots of polynomial functions of degree n with

integer coefficients is countable. (Part (f) shows that the set of all these
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polynomial functions can be arranged in a sequence, and each has at

most n roots.)

(h) Now use parts (d) and (g) to prove that the set of all algebraic numbers

is countable.

*6. Since so many sets turn out to be countable, it is important to note that the

set of all real numbers between and 1 is not countable. In other words,

there is no way of listing all these real numbers in a sequence

ct\ = O.auanauau

.

.

.

0t 2 = 0.a21fl22«23«24 • • •

«3 = 0.a3ifl32fl33fl34 . . .

(decimal notation is being used on the right). To prove that this is so, suppose

such a list were possible and consider the decimal

O.flj 1^22^33^44

where a„„ = 5 if ann / 5 and a,m = 6 if ann = 5. Show that this number

cannot possibly be in the list, thus obtaining a contradiction.

Problems 5 and 6 can be summed up as follows. The set of algebraic numbers

is countable. If the set of transcendental numbers were also countable, then the

set of all real numbers would be countable, by Problem 5(a), and consequently the

set of real numbers between and 1 would be countable. But this is false. Thus,

the set of algebraic numbers is countable and the set of transcendental numbers

is not ("there are more transcendental numbers than algebraic numbers"). The

remaining two problems illustrate further how important it can be to distinguish

between sets which are countable and sets which are not.

*7. Let / be a nondecreasing function on [0, 1]. Recall (Problem 8-8) that

lim fix) and lim fix) both exist.
x—>a+ x-*a~

(a) For any e > prove that there are only finitely many numbers a in

[0, 1] with lim fix) — lim fix) > £. Hint: There are, in fact, at most

[/(l)-/(6)]/e ofthenT"

(b) Prove that the set of points at which / is discontinuous is countable.

Hint: If lim fix) — lim fix) > 0, then it is > \/n for some natural
x—>«+ x—>a~

number n

.

This problem shows that a nondecreasing function is automatically con-

tinuous at most points. For differentiability the situation is more difficult

to analyze and also more interesting. A nondecreasing function can fail

to be differenliable at a set of points which is not countable, but it is still

true that nondecreasing functions are differentiable at most points (in a

different sense of the word "most"). Reference [38] of the Suggested

Reading gives a proof using the Rising Sun Lemma of Problem 8-20.
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For those who have done Problem 9 of the Appendix to Chapter 11, it

is possible to provide at least one application to differentiability of the

ideas already developed in this problem set: If / is convex, then / is

differentiable except at those points where its right-hand derivative /+'

is discontinuous; but the function /+' is increasing, so a convex function

is automatically differentiable except at a countable set of points.

(a) Problem 1 1 -70 showed that if every point is a local maximum point for

a continuous function /, then / is a constant function. Suppose now that

the hypothesis of continuity is dropped. Prove that / takes on only a

countable set of values. Hint: For each x choose rational numbers ax

and bx such that ax < x < bx and x is a maximum point for / on

(ax ,bx ). Then every value f{x) is the maximum value of / on some

interval (ax , bx ). How many such intervals are there?

(b) Deduce Problem 11 -70(a) as a corollary.

(c) Prove the result of Problem 1 1 -70(b) similarly.



CHAPTER INFINITE SEQUENCES

The idea of an infinite sequence is so natural a concept that it is tempting to

dispense with a definition altogether. One frequently writes simply "an infinite

sequence

«1, «2, «3, «4, «5, •• • 3

"

the three dots indicating that the numbers a, continue to the right "forever." A
rigorous definition of an infinite sequence is not hard to formulate, however; the

important point about an infinite sequence is that for each natural number, n,

there is a real number an . This sort of correspondence is precisely what functions

are meant to formalize.

DEFINITION An infinite sequence of real numbers is a function whose domain is N.

From the point of view of this definition, a sequence should be designated by a

single letter like a, and particular values by

but the subscript notation

a(l),a(2),a(3),

a\, ai, #3,

is almost always used instead, and the sequence itself is usually denoted by a symbol

like {an }. Thus {n}, {(—1)"}, and {\/n} denote the sequences or, /3, and y defined

by

otn = n,

fin = (-1)",

1

Yn = -•

A sequence, like any function, can be graphed (Figure 1) but the graph is usually

rather unrevealing, since most of the function cannot be fit on the page.

• {<*«}

(a)

FIGURE I

452

{ft;

(b)

{Yn\

(c)
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<X\ «2 <*3 0(4 0f5

• • = $5 = ^3 = £l

1

fh = At = /?6 = • •
•

K4 K2
1

K5 Yi y\

IGURE 2

A more convenient representation of a sequence is obtained by simply labeling

the points a\, ci2, «3, • • • on a line (Figure 2). This sort of picture shows where

the sequence "is going." The sequence {or,,} "goes out to infinity," the sequence

{/3„} "jumps back and forth between —1 and 1," and the sequence {y„} "converges

to 0." Of the three phrases in quotation marks, the last is the crucial concept

associated with sequences, and will be defined precisely (the definition is illustrated

in Figure 3).

• • • >

l-e

FIGURE 3

a/v+5 °/v+3 "N+ \ l + e A3 «2 <2l

DEFINITION A sequence {«„} converges to / (in symbols lim a„ = 1) if for every e > there

is a natural number Af such that , for all natural numbers n,

if n > N, then \a„ -l\ < £.

In addition to the terminology introduced in this definition, we sometimes say

that the sequence {an } approaches / or has the limit /. A sequence {an } is said

to converge if it converges to / for some /, and to diverge if it does not converge.

To show that the sequence {yn } converges to 0, it suffices to observe the following.

If s > 0, there is a natural number N such that \/N < s. Then, if n > N we

have
1 1

Yn.

= - < — < e, so \yn - 0| < £.< — < £,
N

The limit

lim yjn + 1 — yjn —

will probably seem reasonable after a little reflection (it just says that v n + 1 is

practically the same as y/n for large n), but a mathematical proof might not be so
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obvious. To estimate \Jn + 1 — \Jn we can use an algebraic trick:

(s/n+ 1 - y/n)(y/n + 1 + yfn)
yjn + 1 — \jn =

v
7
" + 1 + \fn

n + 1 — n

y/n + 1 + V
7

"

1

v
7
/? + 1 + v

7"

It is also possible to estimate y n + 1 — \Jn by applying the Mean Value Theorem

to the function f(x) = >Jx on the interval [//,/? + 1]. We obtain

: — == /'(*)

I

<
1

2V^'

for some x in (n, n + 1)

Either of these estimates may be used to prove the above limit; the detailed proof

is left to you, as a simple but valuable exercise.

The limit

3n3 + 7«2 +l 3

n-><x> 4« 3 - 8// + 63 4

should also seem reasonable, because the terms involving n are the most impor-

tant when n is large. If you remember the proof of Theorem 7-9 you will be able

to guess the trick that translates this idea into a proof—dividing top and bottom

by «3
yields

o 7 1

3n3 +7n2 + l « «3

4/7
3 -8/7 + 63

"

8 63— + "
n L n

4 "
2 3

Using this expression, the proof of the above limit is not difficult, especially if one

uses the following facts:

If lim a„ and lim bn both exist, then
n—>-oo n—+oo

lim (a„ + bn ) = lim a„ + lim b„

,

n—+ 00 «—+00 n—+ oo

lim (a„ • b„) = lim a„ • lim bn \

n—+oo /i—+oo n—>oo

moreover, if lim £„ ^ 0, then /?„ ^ for all // greater than some tV, and
n—+00

lim <:/„//?„ = lim a,,/ lim &„.
n—+00 h—+00 n—>oo
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(If we wanted to be utterly precise, the third statement would have to be even

more complicated. As it stands, we are considering the limit of the sequence

{cn } = [a„/bn }, where the numbers c„ might not even be defined for certain n < N

.

This doesn't really matter—we could define c„ any way we liked for such n—
because the limit of a sequence is not changed if we change the sequence at a

finite number of points.)

Although these facts are very useful, we will not bother stating them as a

theorem—you should have no difficulty proving these results for yourself, because

the definition of lim an = / is so similar to previous definitions of limits, especially
n-><x>

lim f{x) = /.

The similarity between the definitions of lim a„ = 1 and lim fix) = I is

n—»oo .v—>oo

actually closer than mere analogy; it is possible to define the first in terms of the

second. If / is the function whose graph (Figure 4) consists of line segments joining

(3,fl3 ) (5, a5 )

(l,«l)

FIGURE 4

the points in the graph of the sequence {a,,}, so that

f(x) = (an+ \
- an ){x - n) + a„ n < x < n + 1,

then

lim a„ = I if and only if lim fix) = /.

Conversely, if f satisfies lim fix) = /, and we set an = fin), then lim an = I.

This second observation is frequently very useful. For example, suppose that

< a < 1. Then

lim a" = 0.

To prove this we note that

lim a
x = lim e

xloz a = 0,
\ -^ x—>00

since log a < 0, so that x logfl is a negative and large in absolute value for large x.

Notice that we actually have

for if a < we can write

lim a" =0 if \a\ < 1;
n—>oo

lim a" = lim(-l)>r = 0.
n—»oo h—<-oo
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THEOREM 1

The behavior of the logarithm function also shows that if a > 1 , then a" be-

comes arbitrarily large as n becomes large. This assertion is often written

lim a" = oo, a > 1,
n—>-oo

and it is sometimes even said that {«"} approaches oo. We also write equations

like

lim —a" = — oo,
n—»oo

and say that {—a"} approaches — oo. Notice, however, that if a < —1, then lim a"
n—>oo

does not exist, even in this extended sense.

Despite this connection with a familiar concept, it is more important to visualize

convergence in terms of the picture of a sequence as points on a line (Figure 3).

There is another connection between limits of functions and limits of sequences

which is related to this picture. This connection is somewhat less obvious, but con-

siderably more interesting, than the one previously mentioned—instead ofdefining

limits of sequences in terms of limits of functions, it is possible to reverse the pro-

cedure.

Let / be a function defined in an open interval containing c, except perhaps at c

itself, with

lim /(*)=/.
x—*c

Suppose that {an } is a sequence such that

(1) each an is in the domain of /,

(2) each an ^ c,

(3) lim a„ = c.

Then the sequence {f(an )} satisfies

lim f(a„) = I.

n—>O0

Conversely, if this is true for every sequence {an } satisfying the above conditions,

then lim f(x) = I.

PROOF Suppose first that lim f(x) = I. Then for every s > there is a 8 > such that,
x—yc

for all x,

if < \x — c\ < 8, then \f(x) — 1\ < e.

If the sequence {an } satisfies lim a„ = c, then (Figure 3) there is a natural num-
n-+oc

ber N such that,

if n > N, then \a„ — c\ < 8.

By our choice of 8, this means that

\f(a„)-l\ <e,
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showing that

lim f(a„) = I.

Suppose, conversely, that lim / (a„ ) = / for every sequence {an } with lim a„ =
n—X30 n—»oo

c. If lim f(x) = / were not true, there would be some s > such that for every
x—>c

8 > there is an x with

< |.v — c\ < 8 but \f(x) —l\ > e.

In particular, for each n there would be a number xn such that

< \x„ — c\ < — but |/(jc„) — /| > s.

n

Now the sequence {.x,,} clearly converges to c but, since \f(xn )
— l\ > e for all n,

the sequence {/(-f„)} does not converge to /. This contradicts the hypothesis, so

lim f(x) — I must be true. |

-•—» » ««»»»

Cl\ 02

FIGURE 5

#3 ^4

Theorem 1 provides many examples of convergent sequences. For example, the

sequences {an } and {b,,} defined by

a„ = sin (13 +
I

b„ =cos (sin 1 + (-1)"

clearly converge to sin(13) and cos(sin(l)), respectively. It is important, however,

to have some criteria guaranteeing convergence of sequences which are not obvi-

ously of this sort. There is one important criterion which is very easy to prove, but

which is the basis for all other results. This criterion is stated in terms of concepts

defined for functions, which therefore apply also to sequences: a sequence {«„} is

increasing if an+ \ > an for all n, nondecreasing if a„+ \
> an for all n, and

bounded above if there is a number M such that a„ < M for all n ; there are sim-

ilar definitions for sequences which are decreasing, nonincreasing, and bounded

below.

THEOREM 2 If {an } is nondecreasing and bounded above, then {a,,} converges (a similar state-

ment is true if [an ] is nonincreasing and bounded below).

PROOF The set A consisting of all numbers a„ is, by assumption, bounded above, so A has

a least upper bound a. We claim that lim a„ = a (Figure 5). In fact, if e > 0,
n—>oo

there is some a^ satisfying a — a^ < £, since a is the least upper bound of A.

Then if n > N we have

a>i > tf/v, so a — a„ < a — «/v < s.

This proves that lim a„ = a. |
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The hypothesis that {an } is bounded above is clearly essential in Theorem 2: if

{an } is not bounded above, then (whether or not {a,,} is nondecreasing) {a„) clearly

diverges. Upon first consideration, it might appear that there should be little

trouble deciding whether or not a given nondecreasing sequence {«„} is bounded

above, and consequendy whether or not {a,,} converges. In the next chapter such

sequences will arise very naturally and, as we shall see, deciding whether or not

they converge is hardly a trivial matter. For the present, you might try to decide

whether or not the following (obviously increasing) sequence is bounded above:

1, \ + l 1 + 2 + j, 1 +i + i + 5< ••••

Although Theorem 2 treats only a very special class of sequences, it is more

useful than might appear at first, because it is always possible to extract from an

arbitrary sequence {a,,} another sequence which is either nonincreasing or else

nondecreasing. To be precise, let us define a subsequence of the sequence {a,,}

to be a sequence of the form

jraph of a
"71

| ) "71T ' "3 ' ' " " '

where the rij are natural numbers with

2 and 6 are peak points "I < «2 < n3 '
' "

1234 567 89 10 11
Then every sequence contains a subsequence which is either nondecreasing or

nonincreasing. It is possible to become quite befuddled trying to prove this as-

sertion, although the proof is very short if you think of the right idea; it is worth

figure 6
recording as a lemma.

LEMMA Any sequence {a„} contains a subsequence which is either nondecreasing or non-

increasing.

PROOF Call a natural number n a "peak point" of the sequence {«„} if am < a„ for all

in > n (Figure 6).

Case 1. The sequence has infinitely many peak points. In this case, if n\ < n-± <

«3 < • • • are the peak points, then a,n > a„
2
> any > • • • , so {a„

k
} is the desired

(nonincreasing) subsequence.

Case 2. The sequence has onlyfinitely many peak points. In this case, let n \ be greater

than all peak points. Since n
\

is not a peak point, there is some nj > n\ such that

a,,-, > a,n . Since 112 is not a peak point (it is greater than n\, and hence greater

than all peak points) there is some ut, > ni such that a„
3
> a„

2
. Continuing in this

way we obtain the desired (nondecreasing) subsequence. |

If we assume that our original sequence {a,,} is bounded, we can pick up an

extra corollary along the way.

COROLLARY (THE 1 acry bounded sequence has a convergent subsequence.

BOLZANO-WEIERSTRASS THEOREM)



22. Infinite Sequences 459

Without some additional assumptions this is as far as we can go: it is easy to

construct sequences having many, evenly infinitely many, subsequences converg-

ing to different numbers (see Problem 3). There is a reasonable assumption to

add, which yields a necessary and sufficient condition for convergence of any se-

quence. Although this condition will not be crucial for our work, it does simplify

many proofs. Moreover, this condition plays a fundamental role in more advanced

investigations, and for this reason alone it is worth stating now

If a sequence converges, so that the individual terms are eventually all close to

the same number, then the difference of any two such individual terms should be

very small. To be precise, if lim an — I for some /, then for any e > there is

an N such that \an —l\< e/2 for n > N; now if both n > N and m > N, then

\a„ - a r,

< \a„ - l\ + \I -a, < = E.

2 2

This final inequality, \a„ — am \
< s, which eliminates mention of the limit /, can

be used to formulate a condition (the Cauchy condition) which is clearly necessary

for convergence of a sequence.

DEFINITION A sequence {a,,} is a Cauchy sequence if for every e > there is a natural

number N such that, for all m and n,

if m, n > N, then \an — am \
< e.

(This condition is usually written lim \am — a„\ = 0.)

The beauty of the Cauchy condition is that it is also sufficient to ensure conver-

gence of a sequence. After all our preliminary work, there is very little left to do

in order to prove this.

theorem 3 A sequence {a,,} converges if and only if it is a Cauchy sequence.

PROOF We have already shown that {an } is a Cauchy sequence if it converges. The proofof

the converse assertion contains only one tricky feature: showing that every Cauchy

sequence {an } is bounded. If we take e = 1 in the definition of a Cauchy sequence

we find that there is some /V such that

\Qm Qn |
< 1

In particular, this means that

\am -aN +\\ < 1

for m, n > N

.

for all m > N.

Thus \am : m > N} is bounded; since there are only finitely many other a,'s the

whole sequence is bounded.
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The corollary to the Lemma thus implies that some subsequence of {an } con-

verges.

Only one point remains, whose proof will be left to you: if a subsequence of a

Cauchy sequence converges, then the Cauchy sequence itself converges. |

PROBLEMS

1. Verify each of the following limits.

(i) lim-^- = l.
n->oo n + 1

(ii) lim ^- = 0.
„_>oo n i _|_4

111

IV

VI

Vll

lim v n 2 + 1 — \Jn + 1=0. Hint: You should at least be able to prove
n—>oo

that lim Z/n 2 + 1 - Ifn 2 = 0.

lim — = 0.
n—>-oo n"

lim '{fa = 1

,

a > 0.
«—>oo

lim '{fn = 1

.

lim \fn
2 + n = 1.

(viii) lim Vfl" + b" = max(a, b), a, b > 0.
n—>-oo

oiifi)

(ix) lim = 0, where a(n) is the number of primes which divide n.

Hint: The fact that each prime is > 2 gives a very simple estimate of

how small a(n) must be.

n

?(x) lim j- = -.

n-+oo nP+i p + 1

Find the following limits.

fl n + 1

(i) lim .

n-+oo n + 1 n

in lim

lim n — >/« + aV" + b.

2" + (-1)"

n^-oo 2"+1 + (-1)"+1 '

(-l) n
v^sin(/i")

(iv) lim
77^-00 // -f 1

(v) lim .

/?->-oo a" + /?"

(vi) lim nc'\ \c\ < 1.
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2

(vii) lim —-.
n—»oo n\

3. (a) What can be said about the sequence {an } if it converges and each a„ is

an integer?

(b) Find all convergent subsequences of the sequence 1 ,
— 1, 1 ,

— 1, 1 ,
— 1,

.... (There are infinitely many, although there are only two limits which

such subsequences can have.)

(c) Find all convergent subsequences of the sequence 1, 2, 1, 2, 3, 1, 2,

3, 4, 1, 2, 3, 4, 5, ... . (There are infinitely many limits which such

subsequences can have.)

(d) Consider the sequence

11212312341
2

' 3 ' 3 '
4

' 4 '
4

' 5 ' 5 ' 5 ' 5 '
6

'

For which numbers a is there a subsequence converging to a ?

4. (a) Prove that if a subsequence of a Cauchy sequence converges, then so

does the original Cauchy sequence.

(b) Prove that any subsequence of a convergent sequence converges.

5. (a) Prove that if < a < 2, then a < sjla < 2.

(b) Prove that the sequence

y/2, yjlsfl, V2V2V2,

converges.

(c) Find the limit. Hint: Notice that if lim a„ — /, then lim y 1an = V2/,
n—>oo n—>oo

by Theorem 1

.

6. Let < a\ <b\ and define

I
—

—

,
an + bn

an+ \
— s/anbn ,

b„+ i
= —-—

.

(a) Prove that the sequences {an } and {bn ) each converge.

(b) Prove that they have the same limit.

7. In Problem 2-16 we saw that any rational approximation k/ 1 to V2 can be

replaced by a better approximation (k + 21) /{k + /). In particular, starting

with k — I = 1 , we obtain

i I 1
' 2' 5

(a) Prove that this sequence is given recursively by

1

a\ = 1, an+ \
= 1 + — .

1 + a„
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(b) Prove that lim a„ — V2. This gives the so-called continued fraction
n—xx

expansion

v/2= 1 + .

2 +
2 + ...

Hint: Consider separately the subsequences {ain } and {fl2«+l

(c) Prove that for any natural numbers a and b,

V a 2 + b = a H .

2a +
la H

8. Identify the function /(.v) = lim ( lim (cosrclTTjt)*-*). (It has been mentioned

many times in this book.)

9. Many impressive looking limits can be evaluated easily (especially by the

person who makes them up), because they are really lower or upper sums in

disguise. With this remark as hint, evaluate each of the following. (Warn-

ing: the list contains one red herring which can be evaluated by elementary

considerations.)

.. l/e + lfe2 + --- + Ve"
lim .

lim

( 1 1

iii) lim + ... + —
«->-oo y n + 1 In

/ 1 1

iv) lim —z H —7T H + —

—

-,

« V n 2 (n + \)
2 (2ny

n n n
lim
n-V5b \(n + ] )

2 (n + 2) 2
' (n + n) 2

n n n
vi) hm -j-— + ++

2

10. Although limits like lim '±fn and lim a" can be evaluated using facts about

the behavior of the logarithm and exponential functions, this approach is

vaguely dissatisfying, because integral roots and powers can be defined with-

out using the exponential function. Some of the standard "elementary" ar-

guments for such limits are outlined here; the basic tools are inequalities

derived from the binomial theorem, notably

(1 +/?)" > 1 +////. lor// > 0;

and, for part (e),

(1 +h)" > 1 +/;// + —-

—

-h
2 > —^--/* 2

,
for// > 0.
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(a) Prove that Km a 11 = oo if a > 1, by setting a = 1 + re, where h > 0.
n—>00

(b) Prove that Km a" = if < a < 1

.

n—*oo

(c) Prove that lim %/a = 1 if a > 1, by setting '±J~a = 1+re and estimating re.

(d) Prove that lim y/a = 1 if < a < 1

.

/;—>-oo

(e) Prove that lim "-Jn — 1

.

11. (a) Prove that a convergent sequence is always bounded.

(b) Suppose that lim a„ = 0, and that some a„ > 0. Prove that the set of
n—>oo

all numbers a„ actually has a maximum member.

12. (a) Prove that

(b) If

< log(« + 1) — log/z <
n + 1 n

1

{ l l
,

fl« = l + r +H 1 log /;

,

2 J ;?

show that the sequence {«„} is decreasing, and that each an > 0. It

follows that there is a number

y = lim I 1 + • • • H log n

This number, known as Euler's number, has proved to be quite refractory;

it is not even known whether y is rational.

13. (a) Suppose that / is increasing on [1, oo). Show that

/(l) + ••• + /(/!- 1)< f f(x)dx < /(2) + • • • + /(«).

(b) Now choose / = log and show that

(n + 1)"+1

en-\
< nl <

it follows that

,. Vn! 1

lim = -
n->-oo /; e

This result shows that V/i! is approximately n/e, in the sense that the

ratio of these two quantities is close to 1 for large n . But we cannot

conclude that n\ is close to (n/e)" in this sense; in fact, this is false. An
estimate for n\ is very desirable, even for concrete computations, because

re! cannot be calculated easily even with logarithm tables. The standard

(and difficult) theorem which provides the right information will be found

in Problem 27-19.
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14. (a) Show that the tangent line to the graph of / at (x\, f(x\)) intersects the

horizontal axis at (X2, 0), where

FIGURE 7

X\ X3 X5 X2 X4

FIGURE 8

X2= X\ —
f'(xi)

This intersection point may be regarded as a rough approximation to

the point where the graph of / intersects the horizontal axis. If we now
start at X2 and repeat the process to get #3, then use X3 to get X4, etc.,

we have a sequence {x„ } defined inductively by

f(Xn)
xn+l Xn

f'(Xn)

Figure 7 suggests that {x,,} will converge to a number c with f(c) — 0;

this is called Newton's method for finding a zero of /. In the remainder

of this problem we will establish some conditions under which Newton's

method works (Figures 8 and 9 show two cases where it doesn't). A few

facts about convexity may be found useful; see Chapter 1 1 , Appendix.

(b) Suppose that /,' /" > 0, and that we choose x\ with f(x\) > 0. Show

that x\ > xo > xt, > > c.

(c) Let 8k = Xk — c. Then

8k

f(Xk)

for some £* in (c, Xk). Show that

<$*+i =

/'(&) f'(Xk)

Conclude that

f(xk )

for some rjk in (c, Xk), and then that

f"{m)(xk-$k)

(*) sk+i < 8k
l

.

I I
(

.
1 RE 9

f'iXk)

(d) Let m = f'(c) = inf /' on [c,A|] and let M = sup/" on [c, x\]. Show

that Newton's method works if x\ — c < m/M

.

(e) What is the formula for xn+ \ when f(x) = x 2 — A?

If we take A = 2 and x\ = 1.4 we get

X] = 1.4

x2 = 1.4142857

x3
= 1.4142136

x4 = 1.4142136,

which is already correct to 7 decimals! Notice that the number of correct

decimals at least doubled each time. This is essentially guaranteed by the

inequality (*) when M/in < 1

.
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15. Use Newton's method to estimate the zeros of the following functions.

16.

17.

*18.

19.

20.

21.

(i) fix) = tanx — cos x near 0.

(ii) f{x) — cos* — x 2 near 0.

(iii) f(x) = x 3 + x - 1

(iv) /U)=x 3 -3.r 2 +l
on [0, 1].

on [0,1].

Prove that if lim an = /, then
n—»co

lim —
w—>-oo n

riiil'RE 10

= /.

Hint: This problem is very similar to (in fact, it is actually a special case of)

Problem 13-40.

(a) Prove that if lim an+ \
— a„ = /, then lim an /n = /. Hint: See the

n—>oo h—>oo
previous problem.

(b) Suppose that / is continuous and lim f(x + 1) — f(x) = I. Prove
x—*-cx>

that lim f(x)/x = I. Hint: Let a„ and b„ be the inf and sup of / on
A — CO

[n,n + 1].

Suppose that a„ > for each n and that lim an+ \/an = I. Prove that
n—>co

lim '{fa x̂
— I. Hint: This requires the same sort of argument that works in

Problem 16, except using multiplication instead of addition, together with

the fact that lim \fa = 1 , for a > 0.
n—>oo

(a) Suppose that {a,,} is a convergent sequence of points all in [0, 1]. Prove

that lim an is also in [0, 1].
n—>oo

(b) Find a convergent sequence {a,,} of points all in (0, 1) such that lim an

is not in (0, 1).

Suppose that / is continuous and that the sequence

x, fix), fif(x)), fififix))), ...

converges to /. Prove that / is a "fixed point" for /, i.e., /(/) = /. Hint: Two
special cases have occurred already.

(a) Suppose that / is continuous on [0, 1] and that < fix) < 1 for all x in

[0, 1]. Problem 7-11 shows that / has a fixed point (in the terminology

of Problem 20). If / is increasing, a much stronger statement can be made:

For any x in [0,1], the sequence

x, fix), fifix)),...

has a limit (which is necessarily a fixed point, by Problem 20). Prove this

assertion, by examining the behavior of the sequence for / (.v ) > x and

fix) < x, or by looking at Figure 10. A diagram of this sort is used

in Littlewood's Mathematician's Miscetlany to preach the value of drawing

pictures: "For the professional the only proof needed is [this Figure]
."
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*(b) Suppose that / and g are two continuous functions on [0, I], with <

f(x) < 1 and < g(x) < 1 for all x in [0, 1], which satisfy f o g =
g o /. Suppose, moreover, that / is increasing. Show that / and g have

a common fixed point; in other words, there is a number / such that

/(/) = / = g(l). Hint: Begin by choosing a fixed point for g.

For a long time mathematicians amused themselves by asking whether the

conclusion of part (b) holds without the assumption that / is increasing, but

two independent announcements in the Notices of the American Mathemati-

cal Society, Volume 14, Number 2 give counterexamples, so it was probably

a pretty silly problem all along.

The trick in Problem 20 is really much more valuable than Problem 20 might

suggest, and some of the most important "fixed point theorems" depend upon

looking at sequences of the form x, f(x), f(f(x)), .... A special, but representa-

tive, case of one such theorem is treated in Problem 23 (for which the next problem

is preparation).

22. (a) Use Problem 2-5 to show that if c ^ 1, then

c
m +cm+\ + ... +cn =

1 -C
(b) Suppose that \c\ < 1. Prove that

lim c
m + • • • + c

n = 0.
m,n—* oo

(c) Suppose that {x,,} is a sequence with \x„ — xn+ i\
< c", where < c < 1.

Prove that {x,,} is a Cauchy sequence.

23. Suppose that / is a function on R such that

(*) \f(x) — f(y)\ < c\x — y\, for all x and y,

where c < 1 . (Such a function is called a contraction.)

(a) Prove that / is continuous.

(b) Prove that / has at most one fixed point.

(c) By considering the sequence

x, f(x), /(/(*))

for any x, prove that / does have a fixed point. (This result, in a more

general setting, is known as the "contraction lemma.")

24. (a) Prove that if / is differentiable and \f'\ < 1, then / has at most one

fixed point.

(b) Prove that if \f'(x)\ <c<\ for all .v, then / has a fixed point.

(c) Give an example lo show that the hypothesis |/'0O| < 1 i-s not sufficient

to ensure that / has a fixed point.

25. This problem is a sort of converse to the previous problem. Let b„ be a

sequence defined by b\ = a, b„ + \
= f(h„). Prove that if h = lim b„ exists
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and /' is continuous at b, then \f'(b)\ < 1 (provided that we don't already

have bn = b for some n). Hint: If \f'{b)\ > 1, then |/'(jc)I > 1 for all x in

an interval around b, and bn will be in this interval for large enough n. Now
consider / on the interval [b, b,,].

26. This problem investigates for which a > the symbol

makes sense. In other words, if we define b\ — a, bn+ \
= a ", when does

b = lim b„ exist? Note that if b exists, then a b = b by Problem 20.
n—<-oo

(a) If b exists, then a can be written in the form y /y for some y. Describe

the graph of g(y) — y
1/v and conclude that < a < e

l/e
.

(b) Suppose that 1 < a < e
x ^e

. Show that {b„} is increasing and also b„ < e.

This proves that b exists (and also that b < e).

The analysis for a < 1 is more difficult.

(c) Using Problem 25, show that if b exists, then e~ l < b < e. Then show

that e~ e < a < e
]/e

.

From now on we will suppose that e~ e < a < 1.

(d) Show that the function

ax

fix) =
logjc

is decreasing on the interval (0, 1).

(e) Let b be the unique number such that a b = b. Show that a < b < 1.

Using part (e), show that if < x < b, then jc < aa < b. Conclude that

/ = lim «2»+l exists and that a° = /.

n—KX

(f) Using part (e) again, show that I = b.

(g) Finally, show that lim «2„+2 = b, so that lim bn = b.

27. Let {x„} be a sequence which is bounded, and let

yn = sup{x„,x„ +I ,.v„+ 2 }.

(a) Prove that the sequence {y,,} converges. The limit lim yn is denoted by
II—>00

lim xn or lim sup xn , and called the limit superior, or upper limit,

of the sequence {x,,}.

(b) Find lim x„ for each of the following:
n—>oo

(i) xn = -.
n

(ii) x„ = (-l)"I.
n
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(iii) *„ = (-!)"
1

1 + -
n

(ivj x„ = s/n.

(c) Define lim x„ (or liminf xn ) and prove that

lim x„ < lim xn .

II
—*oo

(d) Prove that lim x„ exists if and only if lim xn = lim xn and that in this

case lim x„ = lim xn — lim x„.
n-+oo n—*oo n—>oo

(e) Recall the definition, in Problem 8-18, of lim A for a bounded set A.

Prove that if the numbers x„ are distinct, then lim x„ = lim A, where
II—>oo

A = {*„ : n in N}.

28. In the Appendix to Chapter 8 we defined uniform continuity of a function

on an interval. If f(x) is defined only for rational x, this concept still makes

sense: we say that / is uniformly continuous on an interval if for every e >

there is some 5 > such that, if x and y are rational numbers in the interval

and \x - y\ < 8, then \f(x) - f(y)\ < e.

(a) Let x be any (rational or irrational) point in the interval, and let {xn } be

a sequence of rational points in the interval such that lim xn = x. Show

that the sequence {f(xn )} converges.

(b) Prove that the limit of the sequence {f(xn )} doesn't depend on the choice

of the sequence {x„}.

We will denote this limit by f(x), so that / is an extension of / to the

whole interval.

(c) Prove that the extended function / is uniformly continuous on the inter-

val.

29. Let a > 0, and for rational A' let f(x) = ax , as defined in the usual elementary

algebraic way. This problem shows directly that / can be extended to a

continuous function / on the whole line. Problem 28 provides the necessary

machinery.

(a) For rational x < y, show that ax < a y for a > 1 and ax > a y for a < 1.

(b) Using Problem 10, show that for any e > we have \a
x — 1| < s for

rational numbers x close enough to 0.

(c) Using the equation ax — ay = a y {a
x~y --

1 ), prove that on any closed

interval / is uniformly continuous, in the sense of Problem 28.

(d) Show that the extended function / of Problem 28 is increasing for a > 1

and decreasing for a < 1 and satisfies f(x + y) = f(.\)f(y).
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"30. The Bolzano-Weierstrass Theorem is usually stated, and also proved, quite

differently than in the text—the classical statement uses the notion of limit

points. A point x is a limit point of the set A if for every s > there is a

point a in A with |jc — a\ < s but x / a.

(a) Find all limit points of the following sets.

(i) I - : n in N
I"

—

I

: n and m in N
;/ m

iii) (-!>" 1+1
n

: n in N

(iv) Z
(v) Q

(b) Prove that * is a limit point of A if and only if for every e > there are

infinitely many points a of A satisfying |jc — a\ < e.

(c) Prove that lim A is the largest limit point of A , and lim A the smallest.

The usual form of the Bolzano-Weierstrass Theorem states that if A is

an infinite set of numbers contained in a closed interval [a, b], then some

point of [a, b] is a limit point of A. Prove this in two ways:

(d) Using the form already proved in the text. Hint: Since A is infinite, there

are distinct numbers x\, X2, *3, • • • in A.

(e) Using the Nested Intervals Theorem. Hint: If [a, b] is divided into two

intervals, at least one must contain infinitely many points of A

.

31. (a) Use the Bolzano-Weierstrass Theorem to prove that if / is continuous

on [a, b], then / is bounded above on [a, b]. Hint: If / is not bounded

above, then there are points xn in [a , b] with / (x„ ) > n

.

(b) Also use the Bolzano-Weierstrass Theorem to prove that if / is contin-

uous on [a, b], then / is uniformly continuous on [a, b] (see Chapter 8,

Appendix).

**32. (a) Let {a n } be the sequence

112123123412
2 ' 3 ' 3 ' 4 ' 4 ' 4 • 5 ' 5 ' 5 ' 5 ' 6 ' 6

Suppose that < a < b < 1. Let N{n; a, b) be the number of integers

j < n such that aj is in {a, b). (Thus N(2\ \, |) = 2, and N(4; A,
| ) = 3.)

Prove that
N(n;a,b)

lim —b — a.
n->oo n

(b) A sequence {«„} of numbers in [0, 1] is called uniformly distributed

in [0, 1] if

.. N(n;a,b)
lim = b — a
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for all a and b with < a < b < 1 . Prove that if 5 is a step function

defined on [0, 1], and {a,,} is uniformly distributed in [0, 1], then

l

/Jo
,. s(a\)-\ \-s(a„)

s = hm

Prove that if {an } is uniformly distributed in [0, 1] and / is integrable

on [0, 1], then

, .. /(«!) + + /(0.)
/ — hm

/•

**33. (a) Let / be a function defined on [0, 1] such that lim /(y) exists for all a
y—*u

'

in [0, 1]. For any e > prove that there are only finitely many points a

in [0, 1] with
|
lim f(y) — f(a)\ > s. Hint: Show that the set of such
y—>a

points cannot have a limit point x, by showing that lim f(y) could not

exist.

(b) Prove that, in the terminology of Problem 21-5, the set of points where

/ is discontinuous is countable. This finally answers the question of

Problem 6-17: If / has only removable discontinuities, then / is contin-

uous except at a countable set of points, and in particular, / cannot be

discontinuous everywhere.



CHAPTER mm ^/ [NFINITE SERIES

Infinite sequences were introduced in the previous chapter with the specific inten-

tion of considering their "sums"

a\ + ai + «3 + • •
•

in this chapter. This is not an entirely straightforward matter, for the sum of

infinitely many numbers is as yet completely undefined. What can be defined are

the "partial 8111118"

sn = a\ -\ \-an ,

and the infinite sum must presumably be defined in terms of these partial sums.

Fortunately the mechanism for formulating this definition has already been devel-

oped in the previous chapter. If there is to be any hope of computing the infinite

sum a\ + 02 + fl3 H— •
? the partial sums sn should represent closer and closer ap-

proximations as n is chosen larger and larger. This last assertion amounts to little

more than a sloppy definition of limits: the "infinite sum" a\ +0.2 + 013 H ought

to be lim s„. This approach will necessarily leave the "sum" of many sequences

undefined, since the sequence {sn } may easily fail to have a limit. For example, the

sequence

1, -1, 1, -1, ...

with a„ — (— 1)" +1 yields the new sequence

si = a\ = 1,

S2 = Cl[ + G2 = 0,

st, = a\ + 02 + a 3 = 1,

54 = Cl\ +CL2 + «3 + CI4 = 0,

for which lim sn does not exist. Although there happen to be some clever ex-
n—>oo

tensions of the definition suggested here (see Problems 12 and 24-20) it seems

unavoidable that some sequences will have no sum. For this reason, an acceptable

definition of the sum of a sequence should contain, as an essential component,

terminology which distinguishes sequences for which sums can be defined from

less fortunate sequences.

471
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DEFINITION The sequence {an } is summable if the sequence {s„ } converges, where

s„ =flH \-an .

In this case, lim sn is denoted by
n—>oo

oo

y an (or, less formally, ci\ + ai + «3 +
n=\

and is called the sum of the sequence {au ).

The terminology introduced in this definition is usually replaced by less precise

expressions; indeed the title of this chapter is derived from such everyday language.
00

An infinite sum >^ an is usually called an infinite series, the word "series" emphasiz-

n=\

ing the connection with the infinite sequence {a,,}. The statement that {a,,} is, or
oo

is not, summable is conventionally replaced by the statement that the series^ an

n=\

does, or does not, converge. This terminology is somewhat peculiar, because at

00

best the symbol \_. an denotes a number (so it can't "converge"), and it doesn't de-

n= \

note anything at all unless {an } is summable. Nevertheless, this informal language

is convenient, standard, and unlikely to yield to attacks on logical grounds.

Certain elementary arithmetical operations on infinite series are direct conse-

quences of the definition. It is a simple exercise to show that if {an } and {b„} are

summable, then

y^(a« + b„) = 2J a„ + 22 bn,

oo

y^c an =c } a„

.

n=\ n=\

As yet these equations are not very interesting, since we have no examples of

summable sequences (except for the trivial examples in which the terms are even-

tually all 0). Before we actually exhibit a summable sequence, some general con-

ditions for summability will be recorded.

There is one necessary and sufficient condition for summability which can be

stated immediately. The sequence {a„} is summable if and only if the sequence {s,,}

converges, which happens, according to Theorem 22-3, if and only if lim sm —
1

' m./i->00

s„ = 0; this condition can be rephrased in terms of the original sequence as follows.
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THE CAUCHY CRITERION

THE VANISHING CONDITION

The sequence {an } is summable if and only if

lim an+ \ + • • +am — 0.
m.n—>oo

Although the Cauchy criterion is of theoretical importance, it is not very useful

for deciding the summability of any particular sequence. However, one simple

consequence of the Cauchy criterion provides a necessary condition for summability

which is too important not to be mentioned explicitly.

If [an ] is summable, then

lim an = 0.
n—>oo

This condition follows from the Cauchy criterion by taking m = n + 1; it can also

be proved directly as follows. If lim sn —I, then

lim a,
«—>00

= lim (s„ — sn-\) = lim s„ — lim sn -\
n—»oo n—>oo n—*oo

= 1-1 = 0.

Unfortunately, this condition is far from sufficient. For example, lim \jn = 0,
n—>oo

but the sequence {l/n} is not summable; in fact, the following grouping of the

numbers l/n shows that the sequence {sn } is not bounded:

1 + ^ + 3^4 + 1

5 ^ 6 ^ 7
+ 1

8
+ 1

9 + •• + *
1

^2
1

^2
1

^2

(2 terms, (4 terms, (8 terms,

each >|) each >
g) each>^)

+ ••

The method of proof used in this example, a clever trick which one might never

see, reveals the need for some more standard methods for attacking these problems.

These methods shall be developed soon (one of them will give an alternate proof
oo

that y_\ l/n does not converge) but it will be necessary to first procure a few

examples of convergent series.

The most important of all infinite series are the "geometric series"

«=o

l+r + r
2 + r

3 +

Only the cases \r\ < 1 are interesting, since the individual terms do not approach

if \r\ > 1. These series can be managed because the partial sums

sn = 1 + r + • • • + r"

can be evaluated in simple terms. The two equations

s„ = 1 + r + r
2 + + r"

rs„ = r + r
2 + • + r" +r"+1
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THE BOUNDEDNESS CRITERION

lead to

or

s„(\-r)= l-r" +1

1 -r"+1

1 -r

(division by 1 — r is valid since we are not considering the case r = 1). Now
lim r" = 0, since \r\ < 1. It follows that

Y* r" = lim

«=0

1 -r"+]

1 -r
1

In particular,

EG) -V2
„=1 X 7 «=0

E(iy--
1-2

|r| < 1.

= 1,

that is,

an infinite sum which can always be remembered from the picture in Figure 1

.

2 + 4^8^ 16 ^ — L
>

I

FIGURE 1

Special as they are, geometric series are standard examples from which important

tests for summability will be derived.

For a while we shall consider only sequences {a,,} with each an > 0; such

sequences are called nonnegative. If [an ] is a nonnegative sequence, then the se-

quence {sn } is clearly nondecreasing. This remark, combined with Theorem 22-2,

provides a simple-minded test for summability:

A nonnegative sequence {a„} is summable if and only if the set of partial

sums sn is bounded.

By itself, this criterion is not very helpful—deciding whether or not the set of

all sn is bounded is just what we are unable to do. On the other hand, if some

convergent series are already available for comparison, this criterion can be used

to obtain a result whose simplicity belies its importance (it is the basis for almost

all other tests).

theorem i Suppose that

(THE COMPARISON TEST) < an < bn for all //

.



23. Infinite Series 475

Then if \^ b„ converges, so does >^ a„

.

n=l

PROOF If

then

sn = a\ -\ (- an ,

t„ =b\ +--- + bn ,

< sn < tn for all n.

Now {tn } is bounded, since /.^n converges. Therefore {s,,} is bounded; COnse-

oo

quently, by the boundedness criterion yj. a >\ converges. |

n=\

Quite frequently the comparison test can be used to analyze very complicated

looking series in which most of the complication is irrelevant. For example,

A2 + sin
3
(n + 1)

n=\
2" + n 2

converges because

and

2 + sin
J
(n + l) 3_

2" + n 2 * 2"

'

OO ~ 00 .

n=\

is a convergent (geometric) series.

Similarly, we would expect the series

00 >

£
n=\

2" - 1 +sin2
n 3

to converge, since the nth term of the series is practically 1/2" for large n, and we

would expect the series

£
n=\

n + 1

n 2 + \

to diverge, since (n + l)/(n + 1) is practically \/n for large n. These facts can

be derived immediately from the following theorem, another kind of "comparison

test."

THEOREM 2

(THE LIMIT COMPARISON TEST)

If a„, b„ > and lim an /bn — c / 0, then 7 an converges if and only if 7 bn
n—>oo *—^ *—'

converges. n=\ n=\
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PROOF Suppose / b„ converges. Since lim a n /bn — c, there is some N such that
*—^ n—»oc
n=\

an < 2cbn for n > N.

00

But the sequence 2c >^ b„ certainly converges. Then Theorem 1 shows that

n=N

y a„ converges, and this implies convergence of the whole series 2_] a n , which

n=N n=l

has only finitely many additional terms.

The converse follows immediately, since we also have lim bn /a„ = 1/c ^ 0. |
/I-+00

The comparison test yields other important tests when we use previously an-
00

alyzed series as catalysts. Choosing the geometric series /_VW
, the convergent

series par excellence, we obtain the most important of all tests for summability.

THEOREM 3 (THE ratio TEST) Let a„ > for all n , and suppose that

,-
an+\hm = r.

Then >^ an converges if r < 1 . On the other hand, if r > 1 , then the terms an

00

are unbounded, so >_, an diverges. (Notice that it is therefore essential to compute

n=\

lim au+ \/an and not lim a„/an+ \l)
n—>oo n—»-oo

PROOF Suppose first that r < 1. Choose any number s with r < s < 1. The hypothesis

lim = r < 1

implies that there is some N such that

< s lor n > N.

This can be written

Thus

an+ \
< san for n > N.

aN+ \ < saN ,

tf/v+2 < saN+ \ < s aN ,

c'N+k < s
k
aN .
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Since 2_. aNS = &N /_, s converges, the comparison test shows that

fc=0 A=0

00 00

~N+k

n=N k=0

converges. This implies the convergence of the whole series 2_. an

77=1

The case r > 1 is even easier. If 1 < s < r, then there is a number TV such that

a»+l c xr> s lor n > N,
an

which means that

(*N+k > QNS
k

k = 0, 1 , . . . ,

so that the terms are unbounded. |

As a simple application of the ratio test, consider the series 2, ^/n\. Letting

77=1

an = \/n\ we obtain

1

Thus

«77+l (n + 1)!

1

n\ 1

an (n + 1)1 n + 1

n\

lim
*" +1

-o,
77-*OC Q r

which shows that the series 2_. \/n\ converges. If we consider instead the series

n=\

2_\fn /n\ , where r is some fixed positive number, then

77=1

r
n+l

lim ^L +M = ,im _J_ = o.
/I—>-oo f

n n—t-oo yi -\- 1

n\

so Y^r"/n! converges. It follows that

77=1

r"
lim — = 0,
77—>O0 n\
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THEOREM 4 (THE INTEGRAL TEST)

l'K< )( )l

a result already proved in Chapter 16 (the proof given there was based on the same
00

ideas as those used in the ratio test). Finally, if we consider the series } nr" we

have
n=\

lim
n—»oo

(n + \)r"
+x

nr'
lim r
n—»oo

// + 1

since lim (// + \)/n = 1. This proves that if < r < 1, then Ynr converges,
n—>oo ^-^

n=\

and consequently

lim nr" = 0.
n—foo

(This result clearly holds for — 1 < r < 0, also.) It is a useful exercise to provide a

direct proof of this limit, without using the ratio test as an intermediary.

Although the ratio test will be of the utmost theoretical importance, as a practical

tool it will frequently be found disappointing. One drawback of the ratio test is

the fact that lim an+ \/an may be quite difficult to determine, and may not even

exist. A more serious deficiency, which appears with maddening regularity, is the

fact that the limit might equal 1. The case lim an+i/an — 1 is precisely the one
n—>oc

which is inconclusive: {a,,} might not be summable (for example, if a„ = \/n),
00

but then again it might be. In fact, our very next test will show that } {\/n)~~

n=\

converges, even though

lim
n + 1

This test provides a quite different method for determining convergence or diver-

gence of infinite series—like the ratio test, it is an immediate consequence of the

comparison test, but the series chosen for comparison is quite novel.

Suppose that / is positive and decreasing on [1, oo), and that /(//) = an for all //.

00

Then >_, an converges if and only if the limit

n=\

/»oo r A

exists.

f
A

I he existence of lim / /is equivalent to convergence ol the

jf'*jf
'£'•••

series
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n n + 1

FIGURE 2

Now, since / is decreasing we have (Figure 2)

/(n+ I) <
/ /< /(«)•

oo

The first half of this double inequality shows that the series y, a»+\ may be COm-

oo pn+\ °° °°

pared to the series 2_\ I /? proving that ^^a„+ i
(and hence 2_, an) converges

i
J a

i i

. n=\ n= \ n=[

if lim / exists.
A^oo J x

00 pn+\

The second half of the inequality shows that the series 2, I f maY De
i J n

com-

pared to the series > c/ /; ,
proving that lim / / must exist if > an converges. |

n=\

Only one example using the integral test will be given here, but it settles the

question of convergence for infinitely many series at once. If p > 0, the conver-
oo

gence of ^, \/n p
is equivalent, by the integral test, to the existence of

n=\

r°° l

J\ xP

Now

f XP
dx

1

dx.

1 I

Cp-1) ap- 1
+
p-i'

p#1

log A , /? = 1

.

r-A °°

This shows that lim / \/x p dx exists if p > 1, but not if p < 1. Thus ) 1/h p

A-^ooJ, ^—

'

ll=\

oo

converges precisely for p > 1. In particular, 2^ I/'2 diverges.

n=\

The tests considered so far apply only to nonnegative sequences, but nonpositive

sequences may be handled in precisely the same way. In fact, since

OO , OO v

n=\ \=l ;

all considerations about nonpositive sequences can be reduced to questions invok-

ing nonnegative sequences. Sequences which contain both positive and negative

terms are quite another story.

00

If
2_j

a" *s a sequence witn both positive and negative terms, one can con-

n=\
oo

sider instead the sequence 2, \

an\, all of whose terms are nonnegative. Cheerfully
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DEFINITION

THEOREM 5

ignoring the possibility that we may have thrown away all the interesting informa-

tion about the original sequence, we proceed to eulogize those sequences which

are converted by this procedure into convergent sequences.

The series /_, a " *s absolutely convergent if the series 2, \

an\ is convergent.

n=\

(In more formal language, the sequence {a,,} is absolutely summable if the

sequence {|fl„|} is summable.)

Although we have no right to expect this definition to be of any interest, it turns

out to be exceedingly important. The following theorem shows that the definition

is at least not entirely useless.

Every absolutely convergent series is convergent. Moreover, a series is absolutely

convergent if and only if the series formed from its positive terms and the series

formed from its negative terms both converge.

PROOF If 2_. \

a n\ converges, then, by the Cauchy criterion,

lim \an+ \ | -I h \am \

= 0.

n=\

m,n—>oo

Since

it follows that

\a„+i H \-a,„\ < \a„+\\ +

lim an+ \ H + am = 0,
m,n—*oo

which shows that 2, a» converges.

n=\

To prove the second part of the theorem, let

+ _ f
a„, if a„ >

0, ifa„<0,

on , if #71 S
0, ifa„>0,

a„ —

n=\

so that 2_. an^ is the series formed from the positive terms of / an , and } an

n=\

is the series formed from the negative terms.
oo oo

If 2_[l
an

+ and y an~ both converge, then

«=i n=\

oo

J2 k'»l = ]O fl"
+ ~ (a» )]

=
^L,

a»
+

' ^2 a»
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also converges, so >^ a„ converges absolutely.

n=\
OO 00

On the other hand, if >_. \

an I

converges, then, as we have just shown, 2, an

also converges. Therefore
n= \ n=\

n=\
Jl Cl"

+
= o(Z> + J2 la"

n=\ n=\

and

both converge. |

oo
1

, 00 OO

n=\ n=\ n=\

It follows from Theorem 5 that every convergent series with positive terms can

be used to obtain infinitely many other convergent series, simply by putting in

minus signs at random. Not every convergent series can be obtained in this way,

however—there are series which are convergent but not absolutely convergent

(such series are called conditionally convergent). In order to prove this state-

ment we need a test for convergence which applies specifically to series with positive

and negative terms.

THEOREM 6 (LEIBNIZ'S THEOREM) Suppose that

and that

Then the series

a\ ^ ^2 > a^ > • > 0,

lim a„ — 0.
tt—>oo

n=\

converges.

PROOF Figure 3 illustrates relationships between the partial sums which we will establish:

(1) s2 < s4 < sb <

,

(2) Si > s3 > s5 >
,

(3) Sk < si if k is even and / is odd.

Sl S4 S(, S8 -SlO S]2 .V
1

1 J9 .¥7 S5 S3 Sl

FIGURE 3
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To prove the first two inequalities, observe that

(1) S2n+2 = s2n + ain+] ~ «2«+2

> s2n ,
since a2„+\ > a2n+2

(2) S2n+3 = S2n+\ - ain+2 + «2«+3

< S2„+i, since a2ll+ 2 > «2n+3-

To prove the third inequality, notice first that

$2n = S2n-1 - tt2n

< S2n-\ since a2„ > 0.

This proves only a special case of (3), but in conjunction with (1) and (2) the general

case is easy: if k is even and / is odd, choose n such that

In > k and In - 1 > /;

then

Sk < S2n < S2n-\ < Sl,

which proves (3).

Now, the sequence {s2n } converges, because it is nondecreasing and is bounded

above (by si for any odd /). Let

a = sup{s2n } = lim S2„-
n-*oo

Similarly, let

ft
= inf{52 ,7+ i} = lim s2n+i-

n—»oo

It follows from (3) that a <
ft; since

S2n+\ — S2„ = ci2n+\ and lim an =

it is actually the case that a = ft. This proves that a =
ft
= lim s„. |

The standard example derived from Theorem 6 is the series

1 2^3 4^5
oo

which is convergent, but not absolutely convergent (since 2_, 1 /" does not con-

verge). If the sum of this series is denoted by x, the following manipulations lead

to quite a paradoxical result:

r-1_I + I_ I + I-I + ...* — J 2^3 4^5 6 ^
— 1 I I I I 1 _i_ 1 J_ J_ _u I -L I±— J " 2 4

"'"
3 6 8

t
5 10 12 W 14 16

"•"
'

(the pattern here is one positive term followed by two negative ones)

= (i ~ 2-) - i + (5 - i> - i + <i " to) " A + (7 " A) - n + •
•

—
2 4^6 8 ^ 10 12 ^ 14 16

^
—

2 U 2^3 4^5 6^7 8 ^ ;

— J,—
2
x,
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so x = x/2, implying that x = 0. On the other hand, it is easy to see that x / 0:

the partial sum si equals i, and the proofof Leibniz's Theorem shows that x > S2-

This contradiction depends on a step which takes for granted that operations

valid for finite sums necessarily have analogues for infinite sums. It is true that the

sequence

\Vnl — i,
2 ' 4' 3' 6'

contains all the numbers in the sequence

[an ) = \,
1 i
2' 3

1 1
'4' 5

1 1
6' 7'

8' 5

1 1
8' 9'

10' 12'

J_ JL
10' 11 12'

In fact, {b,,} is a rearrangement of {a,,} in the following precise sense: each

bn — fl/(„) where / is a certain function which "permutes" the natural numbers,

that is, every natural number m is f{n) for precisely one n. In our example

/(2m + 1) = 3m + 1 (the terms 1, 5, 5 go into the 1st, 4th, 7th, . .

.

places),

/(4m) = 3m (the terms — 4, — g, — -rj' • • • g° into tne 3rd, 6th, 9th,

. . . places),

/(4m + 2) = 3m + 2 (the terms -\, -\, -^ go into the 2nd, 5th, 8th,

. . . places).

Nevertheless, there is no reason to assume that /_^^n should equal ^ an : these

n=\ n=\

sums are, by definition, lim b\ + + b„ and lim a\ + +a„, so the particular
n—>oo n—xx

00

order of the terms can quite conceivably matter. The series /_\— 1)"+ /n is not

special in this regard; indeed, its behavior is typical of series which are not ab-

solutely convergent—the following result (really more of a grand counterexample

than a theorem) shows how bad conditionally convergent series are.

THEOREM 7 If Yj «» converges, but does not converge absolutely, then for any number a there

00

is a rearrangement {b„} of {a,,} such that /.&„ = a -

n=\

PROOF Let 2_. Pn denote the series formed from the positive terms of {a,,} and let /_/7„

n=\ n=\

denote the series of negative terms. It follows from Theorem 5 that at least one of

these series does not converge. As a matter of fact, both must fail to converge, for

if one had bounded partial sums, and the other had unbounded partial sums, then
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the original series >^ a„ would also have unbounded partial sums, contradicting

n=\

the assumption that it converges.

Now let a be any number. Assume, for simplicity, that a > (the proof for
oo

a < will be a simple modification). Since the series Y^ Pn is not convergent,

„=]

there is a number N such that

N

^2 Pn > a.

,1=1

We will choose N\ to be the smallest N with this property. This means that

N\-\

(i) J2 p" - a -

n=\

but (2) ^T pn > a.

n=\

Then if

we have

Si = ^Pn,
n=\

S\ -a < pi

PNi

p\ H V pn
x

-\ a P\-\ 1 pN] -i + Pn,

FIGURE 4

This relation, which is clear from Figure 4, follows immediately from equation (1):

/V,-l

Si - a < Si - ^jT p„ = p Ni .

n=\

To the sum S\ we now add on just enough negative terms to obtain a new sum T\

which is less than a. In other words, we choose the smallest integer M\ for which

T\ = S\ + ^2 Q» < a -

As before, we have

a -T\ < -qM}

We now continue this procedure indefinitely, obtaining sums alternately larger

and smaller than a, each time choosing the smallest Nk or M^ possible. The
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sequence

pi, ..., pN\, q\, . . , <?a*i, Pni + \, •• . Pm,

is a rearrangement of {a,,}. The partial sums of this rearrangement increase to S\
,

then decrease to T\, then increase to 52, then decrease to 72, etc. To complete the

proofwe simply note that
|
S* — a

|
and

1 7* — a |
are less than or equal to p^k

or —qMk ,

respectively, and that these terms, being members of the original sequence {an },

00

must decrease to 0, since y_. a n converges. |

Together with Theorem 7, the next theorem establishes conclusively the distinc-

tion between conditionally convergent and absolutely convergent series.

n=\

THEOREM 8 If \] an converges absolutely, and {bn } is any rearrangement of {an }, then \]bn

also converges (absolutely), and

00 CO

PROOF Let us denote the partial sums of {«„} by sn , and the partial sums of {bn } by tn .

00

Suppose that e > 0. Since 2, an converges, there is some TV such that

n=\

00

/
'

an - sN < £.

Moreover, since >.
\

an I

converges, we can also choose TV so that

n=l

i.e., so that

7, \a,A ~ (l«ll H h I«nI) < e,

\<*N+\\ + l«/V+2l + \ON+3\ H < £•

Now choose M so large that each of a\,

.

. . , a# appear among b\ , . .
.

, but- Then
whenever m > M, the difference tm — s^ is the sum of certain a,-, «>/^/? aj , . . . , a^

are definitely excluded. Consequently,

\t,n — Sn\ < \Qn+\ I
+ k'/V+ 2l + |«/V+ 3 1 + • • •

•
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Thus, if m > M, then

2_,
a n - tm

n=\

y^<3» - SN - (tm -Sn)

<

n=\

oo

22 a n ~ SN

n=]

< E + £.

oo

+ \t,n - SN \

Since this is true for every e > 0, the series 2. bn converges to 2, an

oo

To show that V, b„ converges absolutely, note that { \bn \
} is a rearrangement

oo

of
{
\a„\ }; since V",

\

a»\ converges absolutely, V, \bn\ converges by the first part of

the theorem. |

n=\ n=\

Absolute convergence is also important when we want to multiply two infinite

series. Unlike the situation for addition, where we have the simple formula

oo oo oo

y^Qii + ^2 b„ = y^dn+bn),
n=\ n=\ n=\

there isn't quite so obvious a candidate for the product

\Y2 a") ' (£M =(fl
i + a2 + •••)• (b\+b2 + ••)•

It would seem that we ought to sum all the products ajbj. The trouble is that these

form a two-dimensional array, rather than a sequence:

a\b\ a\bj a\b?,

aib\ ^2^2 #2^3

dT,b\ a^bi fl 3 Z?3

Nevertheless, all the elements of this array can be arranged in a sequence. The

picture below shows one way of doing this, and of course, there are (infinitely)

many other ways.

a\b\ a\b2 a\b-),

02^2 #2^3

ciT,b\ 03/^2 03 bj,
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THEOREM 9

Suppose that {c,,} is some sequence of this sort, containing each product a/bj

just once. Then we might naively expect to have

OO OO 00

£ c
» = E a»-£^-

n=\ n=\ n=\

But this isn't true (see Problem 10), nor is this really so surprising, since we've said

nothing about the specific arrangement of the terms. The next theorem shows

that the result does hold when the arrangement of terms is irrelevant.

If E fl" an<^ E^" conver§e absolutely, and {cn } is any sequence containing the

products a-
x
bj for each pair (/, j), then

OO 00 00

E c« = £ fl«£^-
n=\ n=\ n=l

<

< S.

PROOF Notice first that the sequence

L L

p L = ^\a,\-^\bj\

converges, since {a„} and {b„} are absolutely convergent, and since the limit of a

product is the product of the limits. So {/?/.} is a Cauchy sequence, which means

that for any s > 0, if L and V are large enough, then

V L' L L

It follows that

(1) £ \ai\-\bj\<
e-

i or j>L

Now suppose that TV is any number so large that the terms c„ for n < N include

every term djbj for i, j < L. Then the difference

N L L

J2 c* - J2 a'-J2 b
J

n=\ i=\ j=\

consists of terms cijbj with / > L or j > L, so

N L L

(2 ) E c" -E"'-E^ ^ E tai-w
n=\ i=\ 7=1 iovj>L

<e by(l).

But since the limit of a product is the product of the limits, we also have

L L

(3)

OO OO

E a«E^ - E a'-£^
>=1

./ = ! i=\ 7=1

< E
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for large enough L. Consequently, if we choose L, and then N, large enough, we

will have

00 00 00 oo

J2 a>-J2 b
J

-- J2 c
» - J2 a'-Jl b

J - Jl a'-J2 b
J

,=1 j=\ i=l ,=1 J=\ i=\ j=\

L L N

+ Jl a>-Jl b
J - I2 C»

i=\ 7=1 n=\

< 2s by (2) and (3),

which proves the theorem. |

Unlike our previous theorems, which were merely concerned with summability,

this result says something about the actual sums. Generally speaking, there is

no reason to presume that a given infinite sum can be "evaluated" in any simpler

terms. However, many simple expressions can be equated to infinite sums by using

Taylor's Theorem. Chapter 20 provides many examples of functions for which

f
(i)

(a)

where lim Rn , a (x) = 0. This is precisely equivalent to

f(x) = hm > —-

—

(x - a)
,

n—>oo *—-^
i

1

i=0

which means, in turn, that

/(*) =£ fn (a)

i=0
V.

(x-a) 1

,

As particular examples we have

X 2 X 4 x 6

cos* = l--+-~- + ...,

2 14X x* x J x*
e =' +

v
+

v.
+

v.
+ v

+ -

3 5 7X X X
arctan x = x —T" + "^ =- + •••

,

2 3 4 5
X X X X'

log(l+*) = ,~ T + T
.-

T + T +

\x\ < I,

- 1 < X < 1
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(Notice that the series for arctanx and log(l + x) do not even converge for \x\ > 1;

in addition, when x = — 1, the series for log(l + x) becomes

_1 - i_I_ I
1

2 3 4

which does not converge.)

Some pretty impressive results are obtained with particular values of x :

' =1 +
II
+

2i
+

3i
+ --

7T 111_ = ,__ + ___ + ...,

, „ , 1 i
1

log2 = l-- +
J
-
5
+ ....

More significant developments may be anticipated if we compare the series for

sinjc and cos* a little more carefully. The series for cosjc is just the one we would

have obtained if we had enthusiastically differentiated both sides of the equation

x x
sill X = X — —

1

3! 5!

term-by-term, ignoring the fact that we have never proved anything about the

derivatives of infinite sums. Likewise, if we differentiate both sides of the for-

mula for cosx formally (i.e., without justification) we obtain the formula cos'(x) =
— sinx, and if we differentiate the formula for e

x we obtain exp'(x) = exp(x).

In the next chapter we shall see that such term-by-term differentiation of infinite

sums is indeed valid in certain important cases.

PROBLEMS

1 . Decide whether each of the following infinite series is convergent or diver-

gent. The tools which you will need are Leibniz's Theorem and the compar-

ison, ratio, and integral tests. A few examples have been picked with malice

aforethought; two series which look quite similar may require different tests

(and then again, they may not). The hint below indicates which tests may be

used.

oo . „

SU1H0

E n2
l

iv

i-i+i-

00
Jogn

n=\
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i

(
v)

V^ . (The summation begins with n = 2 simply to avoid

n=2 ifn* - 1 the meaningless term obtained for n = 1).

OO i

-) EiVI

oo j

(v.) E^
logn

oo

(viiT E n
n= \

00 ,

IX E
i

^ *-*> (loS n) A

1

^ ^ (logn)"
n=2

M E (
- 1)"oo^r

^—
' log/?

oo

(log/?)*

oo

- (log/7)'

00

V-1V-
(log i

oo ?

EH"

oo ,

(xiv) E sin ^"

oo i

(xv) V- •

*-^ n log n
n=1

oo i

(xvi) 7 —

:

o-7 ^—
'
n(log n )

oo i

(xvii) 7 -^7;
~

^—
' /?

2 (log/?)
n=2

(
XV111)Z.^7-

n=l
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(xx) > .

Hint: Use the comparison test for (i), (v), (vi), (ix), (x), (xi), (xiii), (xiv), (xvii);

the ratio test for (vii), (xviii), (xix), (xx); the integral test for (viii), (xv), (xvi).

The next two problems examine, with hints, some infinite series that require

more delicate analysis than those in Problem 1

.

*2. (a) If you have successfully solved examples (xix) and (xx) from Problem 1,

00

it should be clear that >_. a
n
n\/n

n
converges for a < e and diverges for

oo

a > e. For a = e the ratio test fails; show that 2_, e
"
n}-/ n " actually

diverges, by using Problem 22-13.

00

(b) Decide when 2_. n
"
/a

"
n}- converges, again resorting to Problem 22-13

n-

when the ratio test fails.

oo oo

*3. Problem 1 presented the two series >_,(log«)
_A' and V\log«)~", of which

n=2 n=2

the first diverges while the second converges. The series

oo
1V -^ (log«) lo§"'

n=2

which lies between these two, is analyzed in parts (a) and (b).

oo

(a) Show that f^° ey/y
y dy exists, by considering the series \](e /n )"

(b) Show that

00 .

V !

^(logrc) log«
11=1 u

converges, by using the integral test. Hint: Use an appropriate substitu-

tion and part (a).

(c) Show that

oo .

v !

^—
' (log«) los (1°g")

diverges, by using the integral test. Hint: Use the same substitution as

in part (b), and show directly that the resulting integral diverges.
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i

4. Decide whether or not > —.—r— converges.

n=\

oo oo

5. (a) Prove that if /_]a„ converges absolutely, then so does / a,,
7,

.

n=\ n=\

*(b) Show that this does not hold for conditional convergence.

6. Let / be a continuous function on an interval around 0, and let a„ = /(1/n)

(for large enough n).

oo

(a) Prove that if } an converges, then /(0) = 0.

"=1 oo

(b) Prove that if f'(0) exists and \] a" converges, then f'(0) = 0.

n=] oo

(c) Prove that if /"(0) exists and /(0) = /'(0) = 0, then 2_] a" converges.

oo »=1

(d) Suppose
2_]

a" converges. Must f'(0) exist?

"=1 00

(e) Suppose /(O) = /'(O) = 0. Must /. a" converge?

n=\

oo

7. (a) Let {a,,} be a sequence of integers with < an < 9. Prove that 2, an
10~"

n=\

exists (and lies between and 1). (This, of course, is the number which

we usually denote by 0.a xaia^aA, . . .
.)

(b) Suppose that < x < 1. Prove that there is a sequence of integers {a,,}

00

with < a„ < 9 and /Ja„ 10~" = .v. Hint: For example, aj = [10x]

»=1

(where [j] denotes the greatest integer which is < y).

(c) Show that if {a,,} is repeating, i.e., is of the form a\, ai, • • • ,dk,
00

a
i , ai , . . • , cik:,<* l ^2 , • , then Y^ «„ 1

0~"
is a rational number (and find

n=]

it). The same result naturally holds if {an } is eventually repeating, i.e., if

the sequence {a^+k} is repeating for some N.
00

(d) Prove that if x — \_] a n 1
0~"

is rational, then {a„ } is eventually repeat-

n=\

ing. (Just look at the process of finding the decimal expansion of p/q—
dividing q into p by long division.)

8. Suppose that {an } satisfies the hypothesis of Leibniz's Theorem. Use the

proof of Leibniz's Theorem to obtain the following estimate:

Jj-1)"
+1

«„ --
[
a] -a2 + ---±a N ]

n=\

< aN+ \,
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9. (a) Prove that if an > and lim ?Jan
~ = r, then > a„ converges if r < 1,

n—»oo ^—

'

,;=1

and diverges if r > 1 . (The proof is very similar to that of the ratio test.)

oo

This result is known as the "root test." More generally, 2, an converges

n=]

if there is some s < 1 such that all but finitely many ^/a^ are < s, and
00

y a„ diverges if infinitely many aja^ are > 1 . This result is known as the

71=1

"delicate root test" (there is a similar delicate ratio test). It follows, using
oo

the notation of Problem 22-27, that > an converges if lim ^/a^ < 1
*—^ n—>00

and diverges if lim 'ifa^ > 1 ; no conclusion is possible if lim t/a^ — 1

.

n—*oo n—>oo

(b) Prove that if the ratio test works, the root test will also. Hint: Use a

problem from the previous chapter.

It is easy to construct series for which the ratio test fails, while the root

test works. For example, the root test shows that the series

i + i + a)
2 +(i) 2 +(i) 3

+(l)
3 + ---

converges, even though the ratios of successive terms do not approach a

limit. Most examples are of this rather artificial nature, but the root test

is nevertheless quite an important theoretical tool.

10. For two sequences {an ) and {bn }, let cn = 22. akbn+\-k- (Then c„ is the sum

of the terms on the nth diagonal in the picture on page 486.) The series
00 00 oo

y c„ is called the Cauchy product of /. a» ancl /^ bn • If <*n = bn =
>i=\ n=l n=\

{—\) n
/y/n, show that \cn \

> 1, so that the Cauchy product does not con-

verge.

11. (a) Consider the collection A of natural numbers that do not contain a 9 in

their usual (base 10) representation. Show that the sum of the reciprocals

of the numbers in A converges. Hint: How many numbers between 1 and

9 are in A?; how many between 10 and 99?; etc.

(b) If B is the collection of natural numbers that do not have all 1 digits

9 in their usual representation, then the sum of the reciprocals of

the numbers in B converges. (So "most" integers must have all ten digits

in their representation.)

12. A sequence {an } is called Cesaro summable, with Cesaro sum /, if

.. si -\ +s„
lim = /

7!->-0O n

(where Sk = a\ H \- a*). Problem 22-16 shows that a summable sequence
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is automatically Cesaro summable, with sum equal to its Cesaro sum. Find

a sequence which is not summable, but which is Cesaro summable.

13. Suppose that an > and {a,,} is Cesaro summable. Suppose also that the
oo

sequence {na„} is bounded. Prove that the series /_. a» converges. Hint: If

n=\
n . nEl v^ n

a, and an = — > s,, prove that sn -an is bounded.
n *-^ n + 1

/=

l

1'= 1

14. This problem outlines an alternative proof ofTheorem 8 which does not rely

on the Cauchy criterion.

(a) Suppose that an > for each n. Let {bn } be a rearrangement of {a,,},

and let s„ — a\ + • • • + a„ and t„ = b\ + • • • + bn . Show that for each n

there is some m with s„ < tm .

00 00 00

(b) Show that 2_. a" — /. ^« if /, bn exists.

n=\ n=\ n=\
00 00

(c) Show that 2, an = /_. ^" •

n=\ n=\

(d) Now replace the condition an > by the hypothesis that >^ an converges

absolutely using the second part of Theorem 5.

15. (a) Prove that if
/_,

a" converges absolutely and {bn } is any subsequence of

n=\
00

{</„}, then 2_j^" converges (absolutely).

OO

(b) Show that this is false if Y_] o-n does not converge absolutely.

n=\
00

*(c) Prove that if 2_. a» converges absolutely then

n=\

00

} an = (a\ + a-j + as H ) + («2 + «4 + «6 + • )•

n=\

00 00 00

16. Prove that if V an is absolutely convergent, then /, a" — i_, l

a"l"

«=]

00,

n=\

*17. Problem 19-43 shows that the improper integral f (sinx)/xdx converges.

Prove that / |(sin x)/x\dx diverges.

*18. Find a continuous function / with f(x) > for all x such that / f(x)dx

exists, but lim f(x) does not exist.
Jt-»-00
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19.

FIGURE 5

Let f(x) — x sin l/x for < x < 1, and let /(0) = 0. Recall the definition

of i(f, P) from Problem 13-25. Show that the set of all €(/, P) for P a

partition of [0, 1] is not bounded (thus / has "infinite length"). Hint: Try

partitions of the form

P= 0,
(2/?+ 1)tt

2 2 2 2
. 1

20. Let / be the function shown in Figure 5. Find fQ /, and also the area of the

shaded region in Figure 5.

21. In this problem we will establish the "binomial series"

22.

(!+*)« = £;
k=0

a
\x\ < 1,

for any a, by showing that lim Rn o(x) = 0. The proof is in several steps,

and uses the Cauchy and Lagrange forms as found in Problem 20-21

.

(a) Use the ratio test to show that the series 2_^ I \
r does indeed converge

for |r| < 1 (this is not to say that it necessarily converges to (1 + r)
a

). It

follows in particular that lim I \r" = for |r| < 1.

(b) Suppose first that < x < 1. Show that lim R„q(x) = 0, by using
H—>-00

Lagrange's form of the remainder, noticing that (1 + t)
a~ n ~ l < 1 for

n + \ > a.

(c) Now suppose that —1 < x < 0; the number / in Cauchy 's form of the

remainder satisfies — 1 < x < t < 0. Show that

|.v(l +t)a ~ ]

\

< \x\M,

and
x - t

TT7

where M = max (1, (1 + xf '),

1 - t/x

\+t
< x

Using Cauchy 's form of the remainder, and the fact that

(n + 1

)

a
= a

a- 1

Ji + 1

show that lim Rn o(x) = 0.
n-+oo

(a) Suppose that the partial sums of the sequence {an } are bounded and that
oo

{/?„} is a sequence with bn > bn+ \ and lim b„ = 0. Prove that Y^ an b„
II—>0O ' <

n=\

converges. This is known as Dirichlet's test. Hint: Use Abel's Lemma
(Problem 19-36) to check the Cauchy criterion.

(b) Derive Leibniz's Theorem from this result.
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(c) Prove, using Problem 15-33, that the series 2~](cosnx )/n converges if x

n=\

is not of the form Ikn for any integer k (in which case it clearly diverges).
oo

(d) Prove Abel's test: If >_, a >i converges and {bn } is a sequence which is either

n=\

nondecreasing or nonincreasing and which is bounded, then j an bn

n=\

converges. Hint: Consider b„ — b, where b — lim b„.
n—>oo

oo

*23. Suppose {an ) is decreasing and lim an — 0. Prove that if / a„ converges,
n—KX) t— 1̂

n=\
oo

then 2,^ a2n also converges (the "Cauchy Condensation Theorem"). No-

OO 00

tice that the divergence of >^ \ jn is a special case, for if 2, l/n converged,

n=\ n=\
oo

then 2; 2" (1/2") would also converge; this remark may serve as a hint.

n=\

|:24. (a) Prove that if 2_, an and 2_,^n
" converge, then 2_, anb„ converges.

»=1 /;=1 n=\

OO 00

(b) Prove that if /_, a" converges, then 2_, an/n
a
converges for any a.

n=\

^25. Suppose {a„} is decreasing and each an > 0. Prove that if j an converges,

then lim nan — 0. Hint: Write down the Cauchy criterion and be sure to
n^-oo

use the fact that [an ] is decreasing.

00

^26. If 7 a„ converges, then the partial sums s„ are bounded, and lim a„ — 0.

n=\

It is tempting to conjecture that boundedness of the partial sums, together

oo

with the condition lim a„ = 0, implies convergence of the series > a„.
H->-00 ^-^

n=\

Find a counterexample to show that this is not true. Hint: Notice that some

subsequence of the partial sums will have to converge; you must somehow allow

this to happen, without letting the sequence of partial sums itself converge.

oo oo

27. Prove that if an > and 7 a n diverges, then 7 -—-— also diverges. Hint:^ <-"
1 +a„

n=\ 11=1

Compare the partial sums. Does the converse hold:'
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28. For bn > we say that the infinite product 1 1 b„ converges if the sequence

P" = l I
hi converges, and also lim p„ =£ 0.

n=l

i=\

(a) Prove that if I bn converges, then bn approaches 1

.

n=\
OO 00

(b) Prove that 1 1 b„ converges if and only if Y^ log b„ converges.

«=]

(c) For an > 0, prove that 1

J
( 1 + a„) converges if and only if Y~, an con-

n=\ n=\

verges. Hint: Use Problem 27 for one implication, and a simple estimate

for log(l + a) for the reverse implication.

The remaining parts of this Problem show that the hypothesis an > is

needed.

(d) Use the Taylor series for log(l + x) to show that for sufficiently small x

we have

\x
2 <x -log(l + x) < \x

2
.

oo

Conclude that if all an > —1 and 2_. a" converges, then the series

n=\
00 oo

2_^log(l + a„) converges if and only if /_]a«
2

converges. Similarly,

n=l )i=l
00 oo

if all an > —1 and 2_. an converges, then V^log(l + an ) converges if

oo

and only if y, a >\ converges. Hint: Use the Cauchy criterion.

(-1)"

n=2

converges, but

n=\

{€) Show that

^ v^
n= 2

nc +
n=l

diverges.

(f) Consider the sequence

In \ — 1 -Li -L L -II -L L -L L .1 1 1

I""/ — 1
' 2 ' 3 ' 4 ' 3 ' 4 '

3
' 4; 5 ' 6 ' .V 6 ' 5 ' 6'

1 pair 3 pairs 5 pairs
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(compare Problem 26). Show that 2_, a" diverges, but

n=\

oo

Y](\+a„)=--\.
n=

29. (a) Compute f\(\ --A

B=l

n=2
oo

(b) Compute J~](l + .v
2") for |.v| < 1.

00

30. The divergence of \] \/ n i-s related to the following remarkable fact: Any
n=\

positive rational number x can be written as definite sum of distinct numbers

of the form \/n. The idea of the proof is shown by the following calculation

for j[: Since

27 _ i _ 23

31 2
—

62

23 1 _ 7

62 3
—

186

186 ^ 4' • • • ' 26

7 J_ _ _J_
186 27

—
1674

we have
27_i_|_i,J__|

1_
31
—

2
i"

3
"^ 27 "^ 1674

'

Notice that the numerators 23, 7, 1 of the differences are decreasing.

(a) Prove that if \/{n + 1) < jc < 1/rc for some n, then the numerator in this

sort of calculation must always decrease; conclude that x can be written

as a finite sum of distinct numbers \/k.
00

(b) Now prove the result for all x by using the divergence of V, 1 /«.



CHAPTER
UNIFORM CONVERGENCE AND
POWER SERIES

FIGURE

The considerations at the end of the previous chapter suggest an entirely new way
of looking at infinite series. Our attention will shift from particular infinite sums

to equations like

2X X
«• = ! + _ +_ + ...

which concern sums of quantities that depend on x. In other words, we are

interested injunctions defined by equations of the form

/ (*) = /l(*) + /2OO + /3 (*) + •• •

(in the previous example f„(x) = x"~ l

/(n — 1)!). In such a situation {/„} will be

some sequence of functions; for each x we obtain a sequence of numbers {/„(.*)},

and fix) is the sum of this sequence. In order to analyze such functions it will

certainly be necessary to remember that each sum

/1W + /2W+/3W + -

is, by definition, the limit of the sequence

/!(*), fl
(x) + f2 (x), fi(x) + f2 (x) + Mx), ....

If we define a new sequence of functions {sn } by

sn = f\ H \- fn,

then we can express this fact more succinctly by writing

f(x) = lim sn (x).

For some time we shall therefore concentrate on functions defined as limits,

f(x) = lim f„ix),
n—*oo

rather than on functions defined as infinite sums. The total body of results about

such functions can be summed up very easily: nothing one would hope to be

true actually is—instead we have a splendid collection of counterexamples. The
first of these shows that even if each /„ is continuous, the function / may not be!

Contrary to what you may expect, the functions f„ will be very simple. Figure 1

shows the graphs of the functions

fnix) =
1,

< A" < 1

X > 1.

499
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1-

FIGURE 2

FIGURE 3

These functions are all continuous, but the function f(x) — lim f„(x) is not
n—>oo

continuous; in fact,

lim fn (x)
0, < x < 1

1

,

x > 1

.

Another example of this same phenomenon is illustrated in Figure 2; the func-

tions /„ are defined by

/«(*)= '

-1, x<

1

nx,

1,

1

n

1 1

- < x < -
n n

1

- < x.
n

In this case, if x < 0, then fn (x) is eventually (i.e., for large enough n) equal to — 1,

and if x > 0, then f„{x) is eventually 1, while /„(0) = for all n. Thus

lim f„(x) =
-1, A<0
0, jc=0
1, x>0:

so, once again, the function f(x) = lim f„(x) is not continuous.

By rounding off the corners in the previous examples it is even possible to

produce a sequence of dijferentiable functions {/„} for which the function f(x) =
lim fn (x) is not continuous. One such sequence is easy to define explicitly:

fnix)

x <

1

sin

1,

/H7TX\ 1

1

1

n

< x <

< x.

These functions are differentiable (Figure 3), but we still have

-1, x<0
lim fn {x) = 0,

1,

x =
x > 0.

I I
I

, I l< 1 . 4

Continuity and differentiability are, moreover, not the only properties for which

problems arise. Another difficulty is illustrated by the sequence {/„} shown in

Figure 4; on the interval [0. 1//;] the graph of /„ forms an isosceles triangle of

altitude n, while f„(x) = for x > \/n. These functions may be defined explicitly

as follows:
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FKiURE 5

FIGURK 6

fn(x) =

2n 2
x,

2n — 2n 2
x,

0,

< a < —_ ~ In

1 1

to**' n

I

< x < 1.

Because this sequence varies so erratically near 0, our primitive mathematical

instincts might suggest that lim f„(x) does not always exist. Nevertheless, this
n—*oo

limit does exist for all x, and the function f(x) = lim f„{x) is even continuous.
n—»oo

In fact, if x > 0, then fn (x) is eventually 0, so lim f„(x) = 0; moreover, /„(0) =

for all n, so that we certainly have lim f„(0) = 0. In other words, f(x) =
n—*oo

lim f,,(x) — for all x. On the other hand, the integral quickly reveals the
n-+oo

strange behavior of this sequence; we have

but

Thus,

Jo

/'
Jo

f„(x)dx = j,

/(*)</* = 0.

lim / f,,(x)dx y£ I lim f„(x)dx.
n-*°°Jo JO "^°°

This particular sequence of functions behaves in a way that we really never

imagined when we first considered functions defined by limits. Although it is true

that

f(x) = lim f„(x) for each x in [0, 1],
n—foo

the graphs of the functions /„ do not "approach" the graph of / in the sense of

lying close to it—if, as in Figure 5, we draw a strip around / of total width 2s (al-

lowing a width of e above and below), then the graphs of /„ do not lie completely

within this strip, no matter how large an n we choose. Of course, for each jc there

is some TV such that the point (x, fn (x)) lies in this strip for n > N; this assertion

just amounts to the fact that lim f„(x) = f(x). But it is necessary to choose larger
n—>oo

and larger /V's as x is chosen closer and closer to 0, and no one Af will work for

all x at once.

The same situation actually occurs, though less blatantly, for each of the other

examples given previously. Figure 6 illustrates this point for the sequence

MX)
1.

0< x < 1

X > 1.

A strip of total width 2s has been drawn around the graph of f(x) = lim f„(x).
n—>-oo

If e < 2? this strip consists of two pieces, which contain no points with second
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FIGURE 7

coordinate equal to |; since each function f„ takes on the value j, the graph of

each /„ fails to lie within this strip. Once again, for each point x there is some N
such that (x, fn (x)) lies in the strip for n > N; but it is not possible to pick one N
which works for all x at once.

It is easy to check that precisely the same situation occurs for each of the other

examples. In each case we have a function /, and a sequence of functions {/„},

all defined on some set A, such that

/(*)= lim f„(x)
n—>oo

for all x in A

.

This means that

for all s > 0, and for all x in A, there is some N such that if n > N, then

\f(x)-fn (x)\ <£.

But in each case different TV's must be chosen for different x's, and in each case it

is not true that

for all e > there is some N such that for all x in A, if n > N, then

|/(x) -/B (x)| <e.

Although this condition differs from the first only by a minor displacement of the

phrase "for all x in A," it has a totally different significance. If a sequence {/„}

satisfies this second condition, then the graphs of /„ eventually lie close to the

graph of /, as illustrated in Figure 7. This condition turns out to be just the one

which makes the study of limit functions feasible.

DEFINITION Let {/„} be a sequence of functions defined on A, and let / be a function which

is also defined on A . Then / is called the uniform limit of
{ /„ } on A if for

every e > there is some TV such that for all x in A,

if n > yv\ then |/(jc) - fn (x)\ < s.

We also say that {/„} converges uniformly to/ on^4, or that /„ approaches

f uniformly on A.

As a contrast to this definition, if we know only that

f(x)= lim f„(x) for each x in A,
n—>oo

then we say that {/„} converges pointwise to f onA Clearly, uniform conver-

gence implies pointwise convergence (but not conversely!).

Evidence for the usefulness ofuniform convergence is not at all difficult to amass.

Integrals represent a particularly easy topic; Figure 7 makes it almost obvious that

if {/„} converges uniformly to /, then the integral of /„ can be made as close

to the integral of / as desired. Expressed more precisely, we have the following

theorem.
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THEOREM 1

PROOF

THEOREM 2

PROOF

Suppose that {/„} is a sequence of functions which are integrable on [tf,&], and

that
{ /„ } converges uniformly on [a ,b] to a function / which is integrable on

[a , b] . Then
pb pb

/ / = lim / /„.
Jit

n^°° J a

Let e > 0. There is some N such that for all n > N we have

\f(x) — fn (x)\ < £ for all x in [a, b].

Thus, if n > N we have

pb pb

I f{X )dx- I fn (x)dx
Ja J a

f [f(x)~ fn (x)]dx
Ja

4 \f(x)-fn (x)\dx

edx

= s(b — a).

Since this is true for any e > 0, it follows that

pb pb

/ /= lim / /„.|
J a J a

The treatment of continuity is only a little bit more difficult, involving an

"e/3-argument," a three-step estimate of \f(x) — f(x + /?)!• If {/„} is a sequence

of continuous functions which converges uniformly to /, then there is some n such

that

(1) \f(x)-fn (x)\ <
|,

(2) \f{x+h)- fn {x + h)\ <
|.

Moreover, since /„ is continuous, for sufficiently small h we have

s
(3) \f„(x) ~ fn(x + h)\ <

3

It will follow from (1), (2), and (3) that \f(x)- f(x+h)\ < s. In order to obtain (3),

however, we must restrict the size of \h\ in a way that cannot be predicted until n

has already been chosen; it is therefore quite essential that there be some fixed n

which makes (2) true, no matter how small \h\ may be—it is precisely at this point

that uniform convergence enters the proof.

Suppose that {/„} is a sequence of functions which are continuous on [a, b], and

that {/„} converges uniformly on [a, b] to /. Then / is also continuous on [a, b].

For each x in [a , b] we must prove that / is continuous at x . We will deal only

with x in (a, /?); the cases x — a and x — b require the usual simple modifications.
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Let £ > 0. Since {/„} converges uniformly to / on [a, b], there is some n such

that

1/00 -/»(.v)l <\ for all v in [a,b].

In particular, for all h such that x + h is in [a, b], we have

(1) |/(*) -/„(*)! < |.

(2) |/(.v+//)-./;
) U + /z)| < |.

Now /„ is continuous, so there is some 8 > such that for |/j| < <5 we have

(3) \fn(x)-Mx+h)\ <-.

Thus, if \h\ < 8, then

\f(x + h)- f(x)\

= \f(x +h)- fn (x +h) + fn (x +h)- fn (x) + fn (x) - f(x)\

< \f(X +h) - /„(X+A)| + \fn(-X+h) - fn (x)\ + \f„(x) - f (x)\

SEE
"3+3+3
= £.

This proves that / is continuous at x. |

f(x) = \x\

FIGURE S

After the two noteworthy successes provided by Theorem 1 and Theorem 2,

the situation for differentiability turns out to be very disappointing. If each /„ is

differentiable, and if {/„} converges uniformly to /, it is still not necessarily true

that / is differentiable. For example, Figure 8 shows that there is a sequence of

differentiable functions
{ f„ } which converges uniformly to the function f(x) = \x\.
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Even if / is differentiable, it may not be true that

fix) = lim fn'{x);
n-»oo

this is not at all surprising ifwe reflect that a smooth function can be approximated

by very rapidly oscillating functions. For example (Figure 9), if

1 2
fn (x) = -sin(n x),

n

then {/„} converges uniformly to the function f(x) = 0, but

f„'{x) — n cos(n x),

and lim n cos(h 2
*) does not always exist (for example, it does not exist if x = 0).

fn

FIGURE 9
-1-

Despite such examples, the Fundamental Theorem of Calculus practically guar-

antees that some sort oftheorem about derivatives will be a consequence ofTheo-

rem 1; the crucial hypothesis is that {/,/} converges uniformly (to some continuous

function).

Suppose that {/„} is a sequence of functions which are differentiable on [a,£],

with integrable derivatives /„', and that {/„} converges (pointwise) to /. Suppose,

moreover, that {/„'} converges uniformly on [a, b] to some continuous function g.

Then / is differentiable and

f'{x) = lim /„'(*)

PROOF Applying Theorem 1 to the interval [a, x], we see that for each x we have

/ g = lim / /„'

= lim [/„(*)- f„(a)]
n-»-oo

= f(x)-f(a).
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DEFINITION

Since g is continuous, it follows that f'(x) = g(x) = lim f„'(x) for all x in the
n—>oo

interval [a, b\. |

Now that the basic facts about uniform limits have been established, it is clear

how to treat functions defined as infinite sums,

/(x) = /l(*) + /2(*) + /3 (*) + •• •

This equation means that

f(x)= lim /iOO + ••• + /„(*);

our previous theorems apply when the new sequence

/l, /l + /2, /1+/2 + /3, •••

converges uniformly to /. Since this is the only case we shall ever be interested

in, we single it out with a definition.

The series / fn converges uniformly (more formally: the sequence {/„} is

uniformly summable) to/ on A, if the sequence

h, /1 + /2, /1 + /2 + /3, ...

converges uniformly to / on A

.

We can now apply each ofTheorems 1, 2, and 3 to uniformly convergent series;

the results may be stated in one common corollary.

00

COROLLARY Let 2. fn converge uniformly to / on [a, b\.

n=\

(1) If each /„ is continuous on [a, b], then / is continuous on [a, b].

(2) If / and each /„ is integrable on [a, b], then

J a 1 J a

00

Moreover, if \] fn converges (pointwise) to / on [a , b] , each /„ has an integrable

n=\

derivative /„' and 2_. fn' converges uniformly on [a, b] to some continuous func-

n=\

tion, then

00

(3) f'{x) = ^2ft,'(x) for all x in [a.b\.

n=\
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PROOF (1) If each /„ is continuous, then so is each f\-\ \-fn , and / is the uniform limit

of the sequence f\ , f\ + fj, f\ + fi + /3, . . . , so / is continuous by Theorem 2.

(2) Since f\, f\ + fn, f\ + fi + f3, • • • converges uniformly to /, it follows from

Theorem 1 that

f f= lim f (/,+•• + /„)

= lim
rt—>00 tf /i+ - +r /"

E/ /»

(3) Each function /i + • • • 4- /« is differentiable, with derivative /V + • • • + /,/,

and f\ ', f\' + f2, f\ ' + fi + yV , • converges uniformly to a continuous function,

by hypothesis. It follows from Theorem 3 that

/'(*)= lim [fi'(x) + + /„'(*)]

00

n=l

At the moment this corollary is not very useful, since it seems quite difficult to

predict when the sequence f\ , f\ +/2, /1+/2+/3, • • • will converge uniformly The
most important condition which ensures such uniform convergence is provided by

the following theorem; the proof is almost a triviality because of the cleverness

with which the very simple hypotheses have been chosen.

THEOREM 4

(THE WEIERSTRASS M-TEST)

Let {/„} be a sequence of functions defined on A, and suppose that {M„} is a

sequence of numbers such that

\fn(x)\ < M„ for all x in A.

00 00

Suppose moreover that \_. M„ converges. Then for each A' in A the series Y_] fn U"

)

00

converges (in fact, it converges absolutely), and 2_. fn converges uniformly on A

to the function

00

/(*) =2 /»(*)

n=\

n=\
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PROOF For each x in A the series /J|/n (jc)| converges, by the comparison test; COnse-

oo

quently /_/«(*) converges (absolutely). Moreover, for all x in A we have

n=\

/U)-[/lOO + ••• + /*(*)]! =

oo

n= /V+l

oo

< £ M-
n=W+l

Since 2_. M„ converges, the number \_. Mn can be made as small as desired,

n=\ n=N+\
by choosing N sufficiendy large. |

1 fx
(x) = \{2x)A/V

r T T
1

(a)

f2 (x) = \{Ax)

(b)

FIGURE 10

The following sequence {/„} illustrates a simple application of the Weierstrass

M-test. Let {x} denote the distance from x to the nearest integer (the graph of

f{x) = {x} is illustrated in Figure 10). Now define

The functions f\ and fj are shown in Figure 1 1 (but to make the drawings simpler,

10" has been replaced by 2"). This sequence of functions has been defined so that

the Weierstrass M-test automatically applies: clearly

l/«(*)| <
FIG UK I. I I

for all x ,
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and y^ 1/10" converges. Thus /_,f" converges uniformly; since each /„ is con-

tinuous, the corollary implies that the function

00 oo
i

/(*) = £/»<*> =E lo^lO"*}
n=\ n=\

is also continuous. Figure 12 shows the graph of the first few partial sums f\ +
• • • + /„ . As n increases, the graphs become harder and harder to draw, and

oo

the infinite sum N /„ is quite undrawable, as shown by the following theorem

n=\

(included mainly as an interesting sidelight, to be skipped ifyou find the going too

rough).

THEOREM 5 The function

/^» = ET7^l | 0".v|

n=\
10"

is continuous everywhere and differentiable nowhere!

PROOF We have just shown that / is continuous; this is the only part of the proof which

uses uniform convergence. We will prove that / is not differentiable at a, for

any a, by the straightforward method of exhibiting a particular sequence {h,„}

approaching for which

.. f(a + hm)-f(a)
lim
m-KX> hm

does not exist. It obviously suffices to consider only those numbers a satisfying

0<a< 1.

Suppose that the decimal expansion of a is

a = {).a\a2CiT,a$ ....

Let hm = 10
-

'" if am / 4 or 9, but let hm = - 10"'" if am - 4 or 9 (the reason for

these two exceptions will appear soon). Then

f(a+hm)-f(a)

km
~ ^ 10"

'

±10"'"
n=l

oo

= ^±10m-M
[{10"(a +hm )} - {10"«}],

This infinite series is really a finite sum, because if n > m, then 10"/?,,, is an integer,

so

{\0"(a+h„,)}-{\0"a} = 0.

On the other hand, for n < m we can write

10"<7 = integer + 0.an+ ian+2an+2 . . . am . .

.

\0"(a + hm ) = integer + 0.an+\an+2an+3 (a,„ ± 1) • • •
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fi + f2 + h

(in order for the second equation to be true it is essential that we choose hm =
— 10-m when a,„ = 9). Now suppose that

0.an+ \an+2an+ 3 . . .a h si-

Then we also have

0.a„+ \an+2an +3 iflm ± 1) • • • < i

(in the special case m = n + 1 the second equation is true because we chose

hm = — 10~m when am = 4). This means that

{10
n(a+hm)}-{\0n

a} = ±l(yi
-m

,

and exactly the same equation can be derived when 0.an+ [Citl+2an+ T, • • • > \- Thus,

for n < m we have

In other words,

10
m
-"[{10"(fl + //„,)} -{10"«}] = ±1.

f(a+hm )-f(a)

is the sum of m — 1 numbers, each of which is ± 1 . Now adding +1 or — 1 to a

number changes it from odd to even, and vice versa. The sum of m — 1 numbers

each ±1 is therefore an even integer if m is odd, and an odd integer if m is even.

Consequently the sequence of ratios

f(a + hm )-f{a)

hm

cannot possibly converge, since it is a sequence of integers which are alternately

odd and even. |

A + fi + h + h

FIGURE 12

In addition to its role in the previous theorem, the Weierstrass M-test is an ideal

tool for analyzing functions which are very well behaved. We will give special

attention to functions of the form

oo

f(x) = J2 an(x-a)'\

n=0

which can also be described by the equation

00

«=0

for f„(x) = a„(.x — a)". Such an infinite sum, of functions which depend only

on powers of (x —a), is called a power series centered at a. For the sake of

simplicity, we will usually concentrate on power series centered at 0,

00

f(x) = y\/„.v".

n=0
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One especially important group of power series are those of the form

where / is some function which has derivatives of all orders at a; this series is

called the Taylor series for/ at a. Of course, it is not necessarily true that

ft , Y;/<
"
,(fl)

r Vf(x) = ) -

—

(x -a) ;

this equation holds only when the remainder terms satisfy lim R„M (x) = 0.
n—>oo

00

We already know that a power series >_^ anx" does not necessarily converge for

all x. For example, the power series

x 3 x 5 x 1

converges only for \x\ < 1 , while the power series

2 3 4 5X X X X

converges only for — 1 < jc < 1 . It is even possible to produce a power series which

converges only for x — 0. For example, the power series

E»
n=0

Ix"

does not converge for x / 0; indeed, the ratios

(n+ l)!(.t"
+1

)

I Y nn ! x
= (n + l)x

are unbounded for any x ^ 0. If a power series V,a„x" does converge for

00

some xq 7^ however, then a great deal can be said about the series 2, an*
n
for

\x\ < |x 1

•

theorem 6 Suppose that the series

oo

/(.to) = ^2a„x "

«=0

converges, and let a be any number with < a < \xq\. Then on [—«,«] the series

00

n=0
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converges uniformly (and absolutely). Moreover, the same is true for the series

oo

g(x) = }nanx
n~ l

.

Finally, / is differentiable and
oo

for all x with |.v| < \xq\.

n=\

PROOF Since Yja„*o" converges, the terms anXQ
n approach 0. Hence they are surely

,i=0

bounded: there is some number M such that

|<z„jco
n

|
= \a„\ \xq"\ < M for all n.

Now if x is in [—a, a], then \x\ < \a\, so

\anx
n

\
= \an \ . \x

n
\

< \a n \

• \a"\

KM • 1*0

1

a

XQ
(this is the clever step)

< M a

XQ

But |«/jcq| < 1, so the (geometric) series

«=o
E M f = ME

n=0

a

*o

converges. Choosing M \a/xo\" as the number M„ in the Weierstrass M-test, it

00

follows that j>a„x" converges uniformly on [—a, a].

n=0

To prove the same assertion for g(x) — >/2a„jc" notice that

\nanx
n

|

= n\an \
\x"

< n\a„\ \a"- 1

M
\x

\

n
n

a

\a\ XQ

M a
,1

< — n —
' \a\ *0

Since \q/xq\ < 1, the series

Am
n=\

a

XQ

M y-^

rr / n
a

XQ

converges (this fact was proved in Chapter 23 as an application of the ratio test)
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Another appeal to the Weierstrass M-test proves that 2_, nanx " converges uni-

n=\

formly on [—a, a].

Finally, our corollary proves, first that g is continuous, and then that

oo

/"(a) = g(x) — 2_, nanX
n~

for A" in [—a, a].

n=\

Since we could have chosen any number a with < a < \xo\, this result holds for

all x with
|
a

|
< |ao|. |

We are now in a position to manipulate power series with ease. Most algebraic

manipulations are fairly straightforward consequences of general theorems about
OO 00

infinite series. For example, suppose that f(x) —
2_. a»x " and g(x) = y^b„x n

,

„=0 n=0
where the two power series both converge for some ao. Then for |a| < |ao| we

have
OO OO 00 00

J2 "nx
n

+ J2 b»x " = J2 {a"x
" + b»x") = J2 {a " + b"

)xn
-

n=0 n=0 n=0 ,1=0

oo

So the series h(x) = /,(«« + bn )x" also converges for |a| < |ao|, and h = f + g

for these a .

The treatment of products is just a little more involved. If |a| < |ao|, then we
oo OO

know that the series \^a„x n and 2_,bnx
n
converge absolutely. So it follows from

m=0 n=0
OO 00

Theorem 23-9 that the product V^ anx" \\ bnx " 1S given by

/i=0 /;=0

oo oo

1=0 7=0

where the elements djX'bjXJ are arranged in any order. In particular, we can

choose the arrangement

aobo + (aob\ + a\bo)x + (ao^2 + a\b\ + a2bo)x
L

-\

which can be written as

oo n

/ \cnx
n

for cn = ^Y\a k b„- k .

n=0 k=0

This is the "Cauchy product" that was introduced in Problem 23-10. Thus, the
00

Cauchy product h(x) = / j
Cnx

n
also converges for |a| < |aq| and // = fg for

»=o

these a.
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Finally, suppose that f{x) — y^

a

nx
n

, where ciq ¥" 0, so that /(0) = ao ^ 0.

„=0
oo

Then we can try to find a power series >^ bnx" which represents \/f. This means

„=0

that we want to have

oo oo

J2 anX* J2 b"X " = 1 = 1 + • .V + • A"
2 + • • • .

,i=0 „=0

Since the left side of this equation will be given by the Cauchy product, we want

to have

a b = 1

aob\ + a\bo =
«0^2 + a\b\ + aibQ =

Since «o 7^ 0, we can solve the first of these equations for bo. Then we can solve
oo

the second for b\ , etc. Of course, we still have to prove that the new series >^ b„x"

„=o

does converge for some x ^ 0. This is left as an exercise (Problem 18).

For derivatives, Theorem 6 gives us all the information we need. In particular,

when we apply Theorem 6 to the infinite series

3 5 7 9X X X X
sin*= J:-- + --- + --...,

x 1 x 4
.V
6

.V
8

cosjr = 1 -a + 4!-& + ^-"-'
? 3 4A A A A

e ={+
v
+

v.
+

y.
+

v.
+ ---<

we get precisely the results which are expected. Each of these converges for any ao,

hence the conclusions of Theorem 6 apply for any a :

, 3a 2 5a 4

sin (a) = 1 — + — = cos a,

2a 4a 3 6a 5

cos(A) = -- + ^r — + ... = -smA,

2a 3a~
exp (x) = 1 + — + -^- H = exp(A).

For the functions arctan and f(x) = log(l +a) the situation is only slightly more

complicated. Since the series

3 5 7A A A
arctan a = a—— + — — -\
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converges for xq = 1 , it also converges for |jc
|
< 1 , and

arctan'(jc) = 1 — x + x — x + • • • = x for \x \ < 1

.

1 + x z

In this case, the series happens to converge forx = -1 also. However, the formula

for the derivative is not correct for x = 1 or x = —
1 ; indeed the series

l-x 2 +x 4 -x 6 + ...

diverges for x — 1 and x = — 1 . Notice that this does not contradict Theorem 6,

which proves that the derivative is given by the expected formula only for \x\ < |*o|.

Since the series "•345
X X X X

log(l+ ,)=x __ + ___+__...

converges for xq — 1 , it also converges for \x
\
< 1 , and

= log'( 1 + x ) = 1 — x + x — x' + • • • for
|

jc
|
< 1

.

1+*
In this case, the original series does not converge for x = — 1; moreover, the

differentiated series does not converge for x = 1

.

All the considerations which apply to a power series will automatically apply to

its derivative, at the points where the derivative is represented by a power series.

If
00

converges for all x in some interval (— R, R), then Theorem 6 implies that

/"(a) = ^nanx
n 'i-i

nunx

n= \

for all x in (
— R. R). Applying Theorem 6 once again we find that

f"{x) = ^n{n- \)anx"-
2

,

n=2

and proceeding by induction we find that

oo

Thus, a function defined by a power series which converges in some interval

(— R, R) is automatically infinitely differentiable in that interval. Moreover, the

previous equation implies that

f«\0)=k\ak ,

so that

/w (0)
ai = .
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In other words, a convergent power series centered at is always the Taylor series at of the

function which it defines.

On this happy note we could easily end our study of power series and Taylor

series. A careful assessment of our situation will reveal some unexplained facts,

however.

The Taylor series of sin, cos, and exp are as satisfactory as we could desire;

they converge for all x, and can be differentiated term-by-term for all x. The
Taylor series of the function f(x) — log(l + x) is slightly less pleasing, because it

converges only for — 1 < x < 1 , but this deficiency is a necessary consequence of

the basic nature of power series. If the Taylor series for / converged for any xo

with |xo I > 1? then it would converge on the interval (— |jto|, |*ol), and on this

interval the function which it defines would be differentiable, and thus continuous.

But this is impossible, since it is unbounded on the interval (— 1 , 1 ), where it equals

log(l+*).

The Taylor series for arctan is more difficult to comprehend—there seems to

be no possible excuse for the refusal of this series to converge when |jc| > 1. This

mysterious behavior is exemplified even more strikingly by the function f(x) =
1/(1 + x ), an infinitely differentiable function which is the next best thing to a

polynomial function. The Taylor series of / is given by

f(x) = = = 1 - .v
2 + .v

4 - .v
6 + .r

8
.

1 + x 2

If \x
I

> 1 the Taylor series does not converge at all. Why? What unseen obstacle

prevents the Taylor series from extending past 1 and —1? Asking this sort of

question is always dangerous, since we may have to settle for an unsympathetic

answer: it happens because it happens—that's the way things are! In this case

there does happen to be an explanation, but this explanation is impossible to give

at the present time; although the question is about real numbers, it can be answered

intelligently only when placed in a broader context. It will therefore be necessary

to devote two chapters to quite new material before completing our discussion of

Taylor series in Chapter 27.

PROBLEMS

1. For each of the following sequences {,/*„}, determine the pointwise limit of

{/„} (if it exists) on the indicated interval, and decide whether {/„} converges

uniformly to this function.

(i) fn (x)=yx~, on [0.1].

(ii) fn (x) — I on \a,b], and on R.
\ x — n, x > ii.
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(iii) fn (x) = — , on (l,oo).
x n

(iv) fn {x) = e~nx\ on [-1,1].

(v) /„(*) = ^, onR.

2. This problem asks for the same information as in Problem 1 , but the functions

are not so easy to analyze. Some hints are given at the end.

(i) fn (x) = x"-x 2n on [0,1].

nx
(ii) /„(*)= on [0, oo).

1 +n + x

(iii) fn (x) = Jx 2 + -ron [a, oo), a > 0.
n 2

(iv) /„(*) = Jx2 +~2 onR -

(v) fn (x) = Jx H y/x on [a, oo), a > 0.
V h

(vi) /„(x) = Jx -\ yfx on [0, oo).
V n

(vii) /„(x) = « Jx H v^ pn[a, oo), a > 0.

(viii) fn (x) - nlJx A Jx
J

on [0, oo) and on (0, oo).

Hints: (i) For each n, find the maximum of \f - f„\ on [0, 1]. (ii) For each n,

consider \f(x) - fn (x)\ for x large, (iii) Mean Value Theorem, (iv) Give a

separate estimate of \f(x) — fn (x)\ for small |jc|. (vii) Use (v).

3. Find the Taylor series at for each of the following functions.

(i) /(*)= , a^0.
x — a

(ii) f(x) = log(* - a), a < 0.

(iii) f(x) = -== = (1 - x)~ x '2
. (Use Problem 20-21.)

V 1 — x

(iv) fix)
Vl-x 2

'

v) fix) = arcsinx.
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4. Find each of the following infinite sums.

(i) l -' + i-
x

i + i--
(ii) 1 - x 3 + x 6 -x 9 + --- for \x

|
< 1.

Hint: What is 1 - x + x 2 - x 3
H ?

2 3 4 5
..... X X J X* X J

(111) y-r^ + 4T3-5^ + "' lor|x!<1 -

Hint: Differentiate.

5. Evaluate the following infinite sums. (In most cases they are f(a) where a

is some obvious number and f(x) is given by some power series. To evalu-

ate the various power series, manipulate them until some well-known power

series emerge.)

,.x A (-1)"22
"tt

2"

in

iv

VI

^ (2n)!

oo -,

y

y, 1 /l\ 2"+l

^2,, + lUJ
OO

n=0

oo ,

^3»(»+l)

A 2n + 1

^ 2»n!

If f{x) = (smx)/x for x ^ and /(0) = 1, find /w (0). Hint: Find the

power series for /.

In this problem we deduce the binomial series (1 +x)a = / (
l.v". \x\ < l

without all the work of Problem 23-2
1

, although we will use a fact established

in part (a) of that problem—the series f(x) = Vj
I

)
x " does converge for

«=0
^"'

\x\ < 1.



24. Uniform Convergence and Power Series 519

(a) Prove that (1 +x)f'(x) = oef(x) for |x| < 1.

(b) Now show that any function / satisfying part (a) is of the form f(x) =
c(l + x)a for some constant c, and use this fact to establish the binomial

series. Hint: Consider g(x) = /(jc)/(1 + x)a .

8. Suppose that /„ are nonnegative bounded functions on A and let M„ =
OO 00

sup/,,. If 2_jf" converSes uniformly on A, does it follow that \] M„ con-

verges (a converse to the Weierstrass M-test)?

9. Prove that the series

00

y x
-^ n(\ +nx 2

)

converges uniformly on R.

10. (a) Prove that the series

00 ,

^ 3 nx
n=0

converges uniformly on [a, oo) for a > 0. Hint: \im(smh)/h = 1.

(b) By considering the sum from N to oo for x = 2/(n3N ), show that the

series does not converge uniformly on (0, oo).

11. (a) Prove that the series

oo
nx

, , 4
>

1 + rrx-

converges uniformly on [a, oo) for a > 0. Hint: First find the maximum
of nx/(l + n

4x 2
) on [0, oo).

(b) Show that

' \NJ ~ 2 L «3«

n>VN

and by using an integral to estimate the sum, show that f(\/N~) > 1/4.

Conclude that the series does not converge uniformly on R.

(c) What about the series

oo
nx

;>E
n=U
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12. (a) Use Problem 15-33 and Abel's Lemma (Problem 19-36) to obtain a "uni-

form Cauchy condition", showing that for any e > 0,

sin/cx

E
k=m

can be made arbitrarily small on the whole interval [e, In - e] by choos-

ing m (and n) large enough. Conclude that the series

sin nx
00

E
converges uniformly on [e, 27T — e] for s > 0.

(b) For jc = 7r/N, with TV large, show that

Conclude that

IN

k=N

2N

N

Vj sin kx

fc=0

>
yv

7T

E
k=N

sin A:x
>

27r'

and that the series does not converge uniformly on [0, 2n\.

oo

13. (a) Suppose that /(*) = ^anx
n converges for all x in some interval

(-R, R) and that f(x) = for all x in (-/?, /?). Prove that each a„ = 0.

(If you remember the formula for a„ this is easy.)

(b) Suppose we know only that /(*„) = for some sequence {xn }
with

lim x„ = 0. Prove again that each a„ = 0. Hint: First show that

n—>oo

/(0) = fl = 0; then that /
;

(0) = a\ =0, etc.

This result shows that if /(*) = e~
l/x2

sin l/x for x / 0, then / cannot

possibly be written as a power series. It also shows that a function defined

by a power series cannot be for x < but nonzero for x > —thus a

power series cannot describe the motion of a particle which has remained

at rest until time 0, and then begins to move!

oo oo

(c) Suppose that /(*) = £>„*" and g{x) = ^bnx" converge for all x

in some interval containing and that /(/,„) = g(tm ) for some sequence

{tm } converging to 0. Show that a„ = bn for each n.

00

14. Prove that if f(x) - ^an x
n

is an even function, then a„ = for n odd,

and if / is an odd function, then a„ = for n even.
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15. Show that the power series for fix) — log(l — x) converges only for —1 <

x < 1, and that the power series for g(x) = log[(l + x)/(\ — x)] converges

only for x in (— 1, 1).

*16. Recall that the Fibonacci sequence {an } is defined by a\ — ai = \, an+ \
=

(a) Show that an+ \/an < 2.

(b) Let

f(x) = J2 a nx"-
] = 1 + a- + 2.x-

2 + 3.v
3 +

n=\

Use the ratio test to prove that f(x) converges if |jc
|
< 1/2.

(c) Prove that if \x\ < 1/2, then

-1
/(*) =

x 2 + x — 1

Hint: This equation can be written f(x)—xf(x) — xf(x)= 1.

(d) Use the partial fraction decomposition for i/(x + x — 1 ), and the power

series for \/(x —a), to obtain another power series for /.

(e) Since the two power series obtained for / must be the same (they are

both the Taylor series of the function), conclude that

an — .

—

V5

17. Let f(x) =
2_, anx" and g(x) = / bnx

n
. Suppose we merely knew that

n={) n=0
oo

f(x)g(x) — } ]cnx
n
for some cn , but we didn't know how to multiply series

n=0
in general. Use Leibniz's formula (Problem 10-20) to show directly that this

series for fg must indeed be the Cauchy product of the series for / and g.

18. Suppose that f(x) = 2_.°nx" converges for some A'o, and that «o 7^ 0;

n=0

for simplicity, we'll assume that ciq = 1. Let {b„} be the sequence defined

recursively by

b = 1

n-\

b„ = -}bkan-k-

k=0
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The aim of this problem is to show that y^bnx" also converges for some

c 7^ 0, so that it represents 1 // fc

a) If all |a„.vo"| < M, show that

«=0

x 7^ 0, so that it represents \/f for small enough \x

n-\

|/WI<M^|W|-
k=0

(b) Choose M so that |c/„.v ()
"| < M, and also so that M/(M2 - 1) < 1. Show

that

|/WI<M 2".

oo

(c) Conclude that \]b„x n
converges for |x| sufficiently small.

n=0

oo oo

s

19. Suppose that
/_,

a " converges - We know that the series f(x) = >_^a„jc"

n=0 n=0
must converge uniformly on [—«,«] for < a < 1, but it may not converge

uniformly on [—1,1]; in fact, it may not even converge at the point —1

(for example, if f(x) = log(l + x)). However, a beautiful theorem of Abel

shows that the series does converge uniformly on [0, 1]. Consequently, / is

oo oo

continuous on [0, 1] and, in particular, /_, an ~ ^m /. a»x
'" Prove Abel's

n=0 n=0

Theorem by noticing that if \am + -+a„\ < s, then \amx
m + + a„x"\ < s,

by Abel's Lemma (Problem 19-36).

00

20. A sequence {a,,} is called Abel summable if lim \] anx " exists; Prob-

n=0

lem 19 shows that a summable sequence is necessarily Abel summable. Find

a sequence which is Abel summable, but which is not summable. Hint: Look

over the list of Taylor series until you find one which does not converge at 1,

even though the function it represents is continuous at 1

.

21. (a) Using Problem 19, find the following infinite sums.1111
W

2 • 1
"

3 • 2
+

4 3 5 • 4
+ " '

'

OO 00

(b) Let 2_. cn be the Cauchy product of two convergent power series 2_^ a >,

n=0 «=0
oo oo

and y_\ b>n ancl suppose merely that y. cn converges. Prove that, in fact,

n=0 „=o
00 00

it converges to the product 2, an ' /^ bn .

n=0 «=0
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22. (a) Show that the series

x
2n+\ x n+\

E In + 1 In + 2
71=0

converges uniformly to A log(A' + 1) on [—a, a] for < a < 1, but that

at 1 it converges to log 2. (Why doesn't this contradict Abel's Theorem

(Problem 19)?)

23. (a) Suppose that {/„} is a sequence of bounded (not necessarily continuous)

functions on [a, b] which converge uniformly to / on [a, b]. Prove that

/ is bounded on [a, b].

(b) Find a sequence of continuous functions on [a, b] which converge point-

wise to an unbounded function on [a , b]

.

24. Suppose that / is differentiable. Prove that the function /' is the pointwise

limit of a sequence of continuous functions. (Since we already know exam-

ples of discontinuous derivatives, this provides another example where the

pointwise limit of continuous functions is not continuous.)

25. Find a sequence of integrable functions {/„} which converges to the (nonin-

tegrable) function / that is 1 on the rationals and on the irrationals. Hint:

Each /„ will be except at a few points.

26. (a) Prove that if / is the uniform limit of {/„} on [a,b] and each /„ is

integrable on [a, b], then so is /. (So one of the hypotheses in Theorem 1

was unnecessary.)

(b) In Theorem 3 we assumed only that {/„} converges pointwise to /. Show-

that the remaining hypotheses ensure that {/„} actually converges uni-

formly to /.

(c) Suppose that in Theorem 3 we do not assume {/„} converges to a func-

tion /, but instead assume only that f„(xo) converges for some xo in

[a, b]. Show that /„ does converge (uniformly) to some / (with /' = g).

(d) Prove that the series

(-D"E
,
x +n

converges uniformly on [0, oo).

27. Suppose that /„ are continuous functions on [0, 1] that converge uniformly

to /. Prove that

l//i /•!

Km / ./"„ =
/ /.

"^°° Jo Jo

Is this true if the convergence isn't uniform?
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28. (a) Suppose that {/„} is a sequence of continuous functions on [a, b] which

approaches pointwise. Suppose moreover that we have fn (x) > fn+ \(x)

> for all n and all x in [a,/?]. Prove that {/„} actually approaches

uniformly on [a, b]. Hint: Suppose not, choose an appropriate sequence

of points x„ in [a, b], and apply the Bolzano-Weierstrass theorem.

(b) Prove Dini's Theorem: If {/„} is a nonincreasing sequence of continuous

functions on [a,b] which approaches the continuous function / point-

wise, then {/„} also approaches / uniformly on [a, b]. (The same result

holds if {/„} is a nondecreasing sequence.)

(c) Does Dini's Theorem hold if /' isn't continuous? How about if [a, b] is

replaced by the open interval (a, b)?

29. (a) Suppose that {/„} is a sequence of continuous functions on [a,b] that

converges uniformly to /. Prove that if xn approaches x, then fn (xn )

approaches f{x).

(b) Is this statement true without assuming that the /„ are continuous?

(c) Prove the converse of part (a): If / is continuous on [a,b] and {/„} is

a sequence with the property that fn (xn ) approaches f(x) whenever xn

approaches x, then /„ converges uniformly to / on [a,/?]. Hint: If not,

there is an s > and a sequence xn with \fn (xn )
— f(x„)\ > s for infinitely

many distinct xn . Then use the Bolzano-Weierstrass theorem.

30. This problem outlines a completely different approach to the integral; con-

sequently, it is unfair to use any facts about integrals learned previously.

(a) Let s be a step function on [a,fr], so that s is constant on (/,_i,r,) for

pb "

some partition {to, . .
. , tn } of [a , b] . Define / s as V_, s i (U — ?,•_

i ) where

i= l

Si is the (constant) value of s on (f,-_i, U). Show that this definition does

not depend on the partition {to, . .
. , tn ).

(b) A function / is called a regulated function on [a , b] if it is the uniform

limit of a sequence of step functions {sn } on [a,b]. Show that in this

case there is, for every s > 0, some /V such that for m , n > jV we have

|^m (jc) — sm (x)\ < £ for all .v in [a, b].

(c) Show that the sequence ofnumbers \ I s„\ will be a Cauchy sequence.

(d) Suppose that {t„} is another sequence of step functions on [a,b] which

converges uniformly to /. Show that for every e > there is an N such

that for n > N we have \sn (x) — t„(x)\ < s for x in [a, b}.

k'hneConclude that lim / s„ = lim / tn . This means that we can
n—*oo I /;—oo / .J a J a

f
b

I f to be lim s„ for any sequence of step functions {s,,} converging
J (I

uniformly to /. The only remaining question is: Which functions are

regulated?
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*(f) Prove that a continuous function is regulated. Hint: To find a step func-

tion s on [a, b] with \f(x) — s(x)\ < e for all x in [a, b], consider all v

for which there is such a step function on [a , v]

.

(g) Every step function s has the property that lim s(x) and lim s(x) exist
x—>a+ x—*-a~

for all a. Conclude that every regulated function has the same property,

and find an integrable function that is not regulated. (It is also true

that, conversely, every function / with the property that lim f(x) and
x—>a+

lim f(x) exist for all a is regulated.)
x—>a~

*31. Find a sequence {/„} approaching / uniformly on [0, 1] for which we have

lim (length of /„ on [0, 1]) / length of / on [0, 1]. (Length is defined in
n—»oo

Problem 13-25, but the simplest example will involve functions the length of

whose graphs will be obvious.)



CHAPTER #VV COMPLEX NUMBERS

With the exception of the last few paragraphs of the previous chapter, this book

has presented unremitting propaganda for the real numbers. Nevertheless, the

real numbers do have a great deficiency—not every polynomial function has a

root. The simplest and most notable example is the fact that no number x can

satisfy x 2 + 1 =0. This deficiency is so severe that long ago mathematicians

felt the need to "invent" a number / with the property that /" + 1 =0. For a

long time the status of the "number" i was quite mysterious: since there is no

number x satisfying x + 1 = 0, it is nonsensical to say "let / be the number

satisfying i
2 + 1 = 0." Nevertheless, admission of the "imaginary" number i to

the family of numbers seemed to simplify greatly many algebraic computations,

especially when "complex numbers" a + bi (for a and b in R) were allowed, and

all the laws of arithmetical computation enumerated in Chapter 1 were assumed

to be valid. For example, every quadratic equation

ax 2 + bx + c = (a / 0)

can be solved formally to give

-b + \Jb
2 - 4ac -b - v'

b

2 - 4a c
x = or x = .

La La

If b2 — 4ac > 0, these formulas give correct solutions; when complex numbers are

allowed the formulas seem to make sense in all cases. For example, the equation

x
2 + x + 1 =

has no real root, since

x
2 + x + 1 = (.v + \)

2 + \ > 0, for all .v.

But the formula for the roots of a quadratic equation suggest the "solutions"

-l + V-3
,

-l-V-3
x — and x = ;

2 2

ifwe understand y — 3 to mean y/3 ( — 1) = v 3-y — 1 = v3 i, then these numbers

would be

1 73 1 V3-- + —-/ and — — i.

2 2 2 2

It is not hard to check that these, as yet purely formal, numbers do indeed satisfy

the equation

x
2 +x+ 1 =0.

526
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It is even possible to "solve" quadratic equations whose coefficients are themselves

complex numbers. For example, the equation

x
2 +x + 1 + / =0

ought to have the solutions

1 ±71-4(1+/) -1 ±7-3-4/

where the symbol v — 3 — 4/ means a complex number a + fti whose square is

— 3 — 4/. In order to have

(a + pi)
2 = a 2 - p

2 + lafii = -3 - 4/

we need

a 2 - p
2 = -3,

2oeP = -4.

These two equations can easily be solved for real a and fi\ in fact, there are two

possible solutions:

a = 1 a = — 1

= -2
and

= 2.

Thus the two "square roots" of —3 — 4/ are 1 — 2/ and — 1 + 2/. There is no

reasonable way to decide which one of these should be called V — 3 — 4/, and which

- v— 3 — 4/; the conventional usage of y/x makes sense only for real x > 0, in

which case y/x denotes the (real) nonnegative root. For this reason, the solution

x =
1 ± 7-3 - 4/

2

must be understood as an abbreviation for:

-1 +r
x = —-— , where r is one of the square roots of —3 — 4/.

With this understanding we arrive at the solutions

-1 + 1 -2/

2

-1-1+2/
, .x= ^ = - 1+ ' ;

as you can easily check, these numbers do provide formal solutions for the equation

x 2 + x + 1 + i = 0.

For cubic equations complex numbers are equally useful. Every cubic equation

ax 3 + bx 2 + ex + d = (a # 0)

with real coefficients a, b, c, and d, has, as we know, a real root a, and ifwe divide

ax~ + bx + ex + d by .v — a we obtain a second-degree polynomial whose roots are

the other roots of ax +bx -\-cx+d = 0; the roots of this second-degree polynomial
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may be complex numbers. Thus a cubic equation will have either three real roots

or one real root and 2 complex roots. The existence of the real root is guaranteed

by our theorem that every odd degree equation has a real root, but it is not really

necessary to appeal to this theorem (which is of no use at all if the coefficients

are complex); in the case of a cubic equation we can, with sufficient cleverness,

actually find a formula for all the roots. The following derivation is presented not

only as an interesting illustration of the ingenuity of early mathematicians, but as

further evidence for the importance of complex numbers (whatever they may be).

To solve the most general cubic equation, it obviously suffices to consider only

equations of the form

x
3 + bx 2 + ex + d = 0.

It is even possible to eliminate the term involving x , by a fairly straight-forward

manipulation. If we let

b

then

, o 2 b2
v b 3

SO

= x 3 + bx 2 + cx + d

T. 1
(b 2 2b2

v
3 + ~T

-
J

\ i 3

The right-hand side now contains no term with y . If we can solve the equation

for y we can find x\ this shows that it suffices to consider in the first place only

equations of the form

x + px + q = 0.

In the special case p = we obtain the equation x 3 = —q. We shall see later on

that every complex number does have a cube root, in fact it has three, so that this

equation has three solutions. The case p ^ 0, on the other hand, requires quite

an ingenious step. Let

(*) x = w - —
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Then

= x
3 + px + q = ( w - —

) + p (w - —
) + q

= u;

-2 2 a 2 3
3 5w p 3wp~ p~

3w
,2

3
+ pw -— + 4

3 P

This equation can be written

27(u;
3

)

2 + 27^(w 3 )-/? 3 = 0,

which is a quadratic equation in w (!!).

Thus

3
-21q ± y(27)V + 4-27/i 3

u; =
2-27

2 V 4 27

Remember that this really means:

2 3
3 9 , • r q Pw = — — + r, where r is a square root ol — + —

We can therefore write

If = 3

N

this equation means that if is some cube root of —q/2 + r, where r is some square

root of q~/4 + p jll. This allows six possibilities for w, but when these are

substituted into (*), yielding

x = 3

N 2 V 4
+

27

?*y3- 3

\

/«! +£
/ 4 27

it turns out that only 3 different values for x will be obtained! An even more

surprising feature of this solution arises when we consider a cubic equation all of

whose roots are real; the formula derived above may still involve complex numbers

in an essential way. For example, the roots of

15jc-4 =
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are 4, —2 + V3, and —2 — V3. On the other hand, the formula derived above

(with p — — 15, q = —4) gives as one solution

= ^/2 + V4" 125
15

y/2 + V43- V2 + V4- 125

V/2TT17 +
3- ^2 + 11/

Now,

15

6 + 3/

15 6--3/

6 + 3/ 6 --3/

90 - 45/

(2 + /)
3 = 2

3 + 3-22
/ + 3-2-/ 2 +/ 3

= 8+ 12/ -6-i
-2+ 11/,

so one of the cube roots of 2+ 11/ is 2 + r. Thus, for one solution of the equation

we obtain

x = 2 + i +

= 2 + i +

= 2 + /+
36 + 9

= 4(!).

The other roots can also be found if the other cube roots of 2 + 11/ are known.

The fact that even one of these real roots is obtained from an expression which

depends on complex numbers is impressive enough to suggest that the use of

complex numbers cannot be entirely nonsense. As a matter of fact, the formulas

for the solutions of the quadratic and cubic equations can be interpreted entirely

in terms of real numbers.

Suppose we agree, for the moment, to write all complex numbers as a + bi,

writing the real number a as a + 0/ and the number / as + 1 / . The laws of

ordinary arithmetic and the relation i
2 = —1 show that

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) (c + di) = (ac - bd) + (ad + bc)i.

Thus, an equation like

(1 +2/) .(3 + 1/) = 1 +7/

may be regarded simply as an abbreviation for the two equations

1-3-2-1 = 1.

1-1+2-3 = 7.
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The solution of the quadratic equation ax + bx + c = with real coefficients

could be paraphrased as follows:

II
u — v = b — 4ac,

uv = 0,

i.e., if (u + vi) = b — 4a c)

then

u

2a J V 2a

-b + u

2a

+ b

v

L2^J

2a

= 0,

+ c = 0,

, —b + u + vi\ , / —b + u + vi .

i.e., then a [
-

| +b\ + c =
2a 2a

It is not very hard to check this assertion about real numbers without writing-

down a single "/," but the complications of the statement itself should convince

you that equations about complex numbers are worthwhile as abbreviations for

pairs of equations about real numbers. (If you are still not convinced, try para-

phrasing the solution of the cubic equation.) If we really intend to use complex

numbers consistently, however, it is going to be necessary to present some reason-

able definition.

One possibility has been implicit in this whole discussion. All mathematical

properties of a complex number a + bi are determined completely by the real

numbers a and b\ any mathematical object with this same property may reasonably

be used to define a complex number. The obvious candidate is the ordered pair

(a, b) of real numbers; we shall accordingly define a complex number to be a pair

of real numbers, and likewise define what addition and multiplication of complex

numbers is to mean.

DEFINITION A complex number is an ordered pair of real numbers; if z = (a, b) is a com-

plex number, then a is called the real part of z, and b is called the imaginary

part of z. The set of all complex numbers is denoted by C. If (a, b) and (c, d)

are two complex numbers we define

(a,b) + (c,d)

(a,b)-(c,d)

(a + c,b + d)

(a c — b d,a d + b-c).

(The + and • appearing on the left side are new symbols being defined, while the

+ and • appearing on the right side are the familiar addition and multiplication

for real numbers.)

When complex numbers were first introduced, it was understood that real num-

bers were, in particular, complex numbers; if our definition is taken seriously this

is not true a real number is not a pair of real numbers, after all. This difficulty
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is only a minor annoyance, however. Notice that

(a, 0) + (b, 0) = (a + b,0 + 0) = (a + b, 0),

(a, 0) • (b, 0) = (a • b - • 0, a + • b) = {a b, 0);

this shows that the complex numbers of the form {a , 0) behave precisely the same

with respect to addition and multiplication of complex numbers as real numbers

do with their own addition and multiplication. For this reason we will adopt the

convention that (a , 0) will be denoted simply by a . The familiar a + bi notation

for complex numbers can now be recovered if one more definition is made.

DEFINITION i = (0,1).

Notice that i

2 = (0, 1) • (0, 1)

on our convention). Moreover

(—1,0) = —1 (the last equality sign depends

(a,b) = {a,0) + (0,b)

= (a,0) + (b,0)-(0, 1)

— a -\- bi.

You may feel that our definition was merely an elaborate device for defining

complex numbers as "expressions of the form a +/?/." That is essentially correct;

it is a firmly established prejudice of modern mathematics that new objects must

be defined as something specific, not as "expressions." Nevertheless, it is inter-

esting to note that mathematicians were sincerely worried about using complex

numbers until the modern definition was proposed. Moreover, the precise defini-

tion emphasizes one important point. Our aim in introducing complex numbers

was to avoid the necessity of paraphrasing statements about complex numbers in

terms of their real and imaginary parts. This means that we wish to work with

complex numbers in the same way that we worked with rational or real numbers.

For example, the solution of the cubic equation required writing x = w — p/3w,

so we want to know that l/w makes sense. Moreover, w was found by solving a

quadratic equation, which requires numerous other algebraic manipulations. In

short, we are likely to use, at some time or other, any manipulations performed on

real numbers. We certainly do not want to stop each time and justify every step.

Fortunately this is not necessary. Since all algebraic manipulations performed on

real numbers can be justified by the properties listed in Chapter 1, it is only nec-

essary to check that these properties are also true for complex numbers. In most

cases this is quite easy, and these facts will not be listed as formal theorems. For

example, the proof of PI,

|
(a, b) + (c, d)] + (e, f) = (a, b) + [

(c, d) + {e, /)]

requires only the application of the definition of addition for complex numbers.

The left side becomes

(\a +c] +e, [b + d\ + ./').
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and the right side becomes

{a + [c + e\,b+\d + f\)\

these two are equal because PI is true for real numbers. It is a good idea to

check P2-P6 and P8 and P9. Notice that the complex numbers playing the role

of and 1 in P2 and P6 are (0, 0) and (1, 0), respectively. It is not hard to figure

out what — (a,b) is, but the multiplicative inverse for (a, b) required in P7 is a little

trickier: if (a,b) ^ (0, 0), then a
2 + b 2 ^0 and

(a,fc). ^——,^—- =(1,0).
\a- + b- a- + b-

J

This fact could have been guessed in two ways. To find (x, y) with

(a,b)- (x,y) = (1,0)

it is only necessary to solve the equations

ax — by = 1

,

bx + ay = 0.

The solutions are x = a/(a~ + b~), y — —bj(cr + b~). It is also possible to reason

that if \/(a + bi) means anything, then it should be true that

1 1 a — bi a — bi

a + bi a + bi a — bi a 2 + b2

Once the existence of inverses has actually been proved (after guessing the inverse

by some method), it follows that this manipulation is really valid; it is the easiest one

to remember when the inverse of a complex number is actually being sought—it

was precisely this trick which we used to evaluate

15 15 6-3/

6 + 3/ 6 + 3/ 6

90 - 45/

36 + 9

Unlike P1-P9, the rules P10 PI 2 do not have analogues: it is easy to prove that

there is no set P of complex numbers such that PI PI 2 are satisfied for all complex

numbers. In fact, if there were, then P would have to contain 1 (since 1 = 1 ) and

also —1 (since —1 = i ), and this would contradict P10. The absence of P10-P12

will not have disastrous consequences, but it does mean that we cannot define

z < w for complex z and w. Also, you may remember that for the real numbers,

P10 PI 2 were used to prove that 1 + 1 ^ 0. Fortunately, the corresponding fact

for complex numbers can be reduced to this one: clearly (1, 0) + (1 , 0) ^ (0, 0).

Although we will usually write complex numbers in the form a + bi, it is worth

remembering that the set of all complex numbers C is just the collection of all

pairs of real numbers. Long ago this collection was identified with the plane, and

for this reason the plane is often called the "complex plane." The horizontal axis,

which consists of all points (a, 0) for a in R, is often called the real axis, and the
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DEFINITION

length

z\^»z = (x,y) = x + iy

•z = x — ly

FIGURE 1

THEOREM 1

vertical axis is called the imaginary axis. Two important definitions are also related

to this geometric picture.

If z = x + iy is a complex number (with x and y real), then the conjugate

of z is defined as

z = x — iy ,

and the absolute value or modulus \z\ of z is defined as

(Notice that x + y > 0, so that \ x + y is defined unambiguously; it denotes

the nonnegative real square root of x^ + y .)

Geometrically, z is simply the reflection of z in the real axis, while |z| is the

distance from z to (0,0) (Figure 1). Notice that the absolute value notation for

complex numbers is consistent with that for real numbers. The distance between

two complex numbers z and w can be defined quite easily as \z— w\. The following

theorem lists all the important properties of conjugates and absolute values.

Let z and w be complex numbers. Then

(1) l = z.

(2) z = z if and only if z is real (i.e., is of the form a + 0/', for some real

number a).

(3) z + w — z + w.

(4) =£=-*.

(5) z • w = z w.

(6) Fy = (=r
1

,if c#o.

(8) \z • w\ = \z\ • \w\.

(9) \z + w\ < \z\ + \w\.

PRCJOF Assertions (1) and (2) are obvious. Equations (3) and (5) may be checked by straight-

forward calculations and (4) and (6) may then be proved by a trick:

= =

1 = 1 =

+ (-*) = + -z,

.
7^\

so — c = z,

so = (z)"

Equations (7) and (8) may also be proved by a straightforward calculation. The

only difficult part of the theorem is (9). This inequality has, in fact, already oc-

curred (Problem 4-9), but the proof will be repeated here, using slightly different

terminology.

It is clear that equality holds in (9) if z = or w = 0. It is also easy to see that (9)

is true if z = ^-W for any real number X (consider separately the cases X > and

X < 0). Suppose, on the other hand, that :. ^ Xw for any real number k, and that
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w ^ 0. Then, for all real numbers k,

,2< kw\ = (z — kw) (z — kw)

= (z — kw) (z — kw)
_ 9 _ _ _

- zz + k ww — k(wz + zw)

k(wz + zw).= k \w\ + \z\

Notice that wz + zw is real, since

wz + zw = wz + zw = wz + zw = wz + zw.

Thus the right side of (*) is a quadratic equation in k with real coefficients and no

real solutions; its discriminant must therefore be negative. Thus

(wz + zw)
2 - 4\w\

2
\z\

2 < 0;

it follows, since wz + zw and \w\ \z\ are real numbers, and |it;|

(wz + zw) < 2\w\ \z\.

From this inequality it follows that

\z + w\ = (z + w) (z + w)

= \z\
2 + \w\

2 + (wz + zw)

> 0, that

< + \w\~ + 2\w\

= (\z\ + \w\r,

which implies that

\z + w\ < + \w\. I

+ w

a a + c

FIGURE 2

The operations of addition and multiplication of complex numbers both have

important geometric interpretations. The picture for addition is very simple (Fig-

ure 2). Two complex numbers z — (a,b) and w = (c, d) determine a paral-

lelogram having for two of its sides the line segment from (0, 0) to z, and the

line segment from (0, 0) to w; the vertex opposite (0, 0) is z + w (a proof of this

geometric fact is left to you [compare Appendix 1 to Chapter 4]).

The interpretation of multiplication is more involved. If z = or w = 0,

then z • w = (a one-line computational proof can be given, but even this is

unnecessary—the assertion has already been shown to follow from P1-P9), so we

may restrict our attention to nonzero complex numbers. We begin by putting every

nonzero complex number into a special form (compare Appendix 3 to Chapter 4).

For any complex number ;^0we can write

in this expression, |z| is a positive real number, while



536 Infinite Sequences and Infinite Series

angle of radians

FIGURE 3

so that z/\z\ is a complex number of absolute value 1. Now any complex number

a = x + iy with 1 = \a\ = x + y can be written in the form

a = (cos 9, sin 9) = cos 9 + i sin 9

for some number 9. Thus every nonzero complex number z can be written

Z = r(cos9 + i sin#)

for some r > and some number 9. The number r is unique (it equals |z|), but 9

is not unique; if 9q is one possibility, then the others are 9q + 2&?r for k in Z—any

one of these numbers is called an argument of z. Figure 3 shows z in terms of r

and 9. (To find an argument 9 for z = x + iy we may note that the equation

means that

x + iy = z = |z|(cos 9 + i sin 9)

x = |z| cos#,

v = |z| s\n9.

So, for example, if x > we can take 9 = arctany/jt; if x = 0, we can take

9 = 7r/2 when y > and # = 37r/2 when y < 0.)

Now the product of two nonzero complex numbers

Z = r(cos# + i sin^),

w = s{cos(p + i sin0),

is

z w — rs (cos 9 + i sin 9) (cos + i sin </>)

= rs [(cos cos — sin 9 sin </>) + /' (sin cos + cos sin 0)]

= rs [cos(6> + 0) + / sin(<9 + 0)]

.

Thus, the absolute value of a product is the product of the absolute values of the

factors, while the sum of any argument for each of the factors will be an argument

for the product. For a nonzero complex number

Z = r(cos9 + i sin 9)

it is now an easy matter to prove by induction the following very important formula

(sometimes known as De Moivre's Theorem):

z" = \z\" (cosn9 + i sin«#), for any argument 9 of z.

This formula describes z" so explicitly that it is easy to decide just when z" — w:

THEOREM 2 Every nonzero complex number has exactly n complex nth roots.

More precisely, for any complex number w / 0, and any natural number n,

there are precisely n different complex numbers z satisfying z" = w.

I'R( )( )F Let

w = ,9(cos0 + i sin 0)
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FIGURE 4

for s = \w\ and some number 0. Then a complex number

Z — r(cosO + i sinO)

satisfies z" = w if and only if

r" (cos nO + i sin nO) = s(cos0 + i sin0),

which happens if and only if

r" = s,

cos nO + / sin nO = cos + i sin 0.

From the first equation it follows that

r — V?,

where t/s denotes the positive real nth root of s. From the second equation it

follows that for some integer k we have

Ikn

n n

Conversely, if we choose r = ^/s and — 9k for some k, then the number z =
r(cos8 + i sin^) will satisfy z" = w. To determine the number of nth. roots of w,

it is therefore only necessary to determine which such z are distinct. Now any

integer k can be written

k — nq -\- k'

for some integer q , and some integer k' between and n — 1 . Then

cos Ok + i sin Ok = cos 0k> + i sin Ot

.

This shows that every z satisfying z" = w can be written

Z = >/s (cos Ok + i sin Ok) k = 0, . .
. , n — 1

.

Moreover, it is easy to see that these numbers are all different, since any two Ok for

k = 0, . .
.

, n — 1 differ by less than 2tt. |

In the course of proving Theorem 2, we have actually developed a method for

finding the «th roots of a complex number. For example, to find the cube roots

of i (Figure 4) note that |/| = 1 and that tt/2 is an argument for i. The cube roots

of i are therefore

1

r
n

•

n
^

[cos - + i sin -
j

[
(n It2tt\ ( tc 2tt

it An jt 4tt

6
+ T

57T . 57T
= COS —:—h / sin ——

6 6

3tt . 3jt
= cos ——h / sin —

—

2 2
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Since

71 x/3 IT 1

cos —
6 2

? Sm 6=2'

5tt V3 5jt 1

cos—
6 2

' Sm "6- = 2'

3tt 37T
cos —

—

2
= 0, sin —— = —

1

,

2

the cube roots of / are

\/3 + / -s/3 + i—-— ,

, —i.

In general, we cannot expect to obtain such simple results. For example, to find

the cube roots of 2 + Hi, note that |2 + 1 1/| = y/2
2 + ll 2 = ^125 and that

arctan -y is an argument for 2+11/. One of the cube roots of 2 + 1 1/ is therefore

(arctan U- \ I arctan -y

/ arctan -y-

cos
'

VT25

(arctan ^ \ / arctan

Previously we noted that 2 + / is also a cube root of 2 + 11/. Since |2 + /|

V22 + l
2 = V5, and since arctan ^ is an argument of 2 + /, we can write this

cube root as

2 + / = v 5 (cos arctan A + / sin arctan 5 ) •

These two cube roots are actually the same number, because

arctan — 1

= arctan -
3 2

(you can check this by using the formula in Problem 15-9), but this is hardly the

sort of thing one might notice!

The fact that every complex number has an «th root for all n is just a special

case of a very important theorem. The number / was originally introduced in

order to provide a solution for the equation x + 1 =0. The Fundamental Theorem

ofAlgebra states the remarkable fact that this one addition automatically provides

solutions for all other polynomial equations: every equation

z" +an-iz
n~ ]

H hflo = ao fl„_i in C

has a complex root!

In the next chapter we shall give an almost complete proof of the Fundamental

Theorem of Algebra; the slight gap left in the text can be filled in as an exercise

(Problem 26-5). The proof of the theorem will rely on several new concepts which

come up quite naturally in a more thorough investigation of complex numbers.
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PROBLEMS

1

.

Find the absolute value and argument(s) of each of the following.

(i) 3 + 4/.

(ii) (3 + 4/r 1

.

(iii) d+/) 5
.

(iv) ^3 + 4/.

(v) |3+4/|.

2. Solve the following equations.

(i) x 2 + ix + I = 0.

(ii) x 4 +x 2 +\=0.
(iii) x 2 + 2ix - 1 = 0.

ix - (1 + i)y = 3,

1 (2 + i)x+iy=4

(v) x 3 - x2 - x - 2 = 0.

3. Describe the set of all complex numbers z such that

}) z = -z.

ii) z = z~
l

.

"i) \z—a\ = \z — b\.

;iv) \z — a\ + \z — b\ = c.

y) \z\ < 1 — real part of z

4. Prove that |z| = \z\, and that the real part of z is (z+z)/2, while the imaginary

part is (z — z)/2i.

5. Prove that \z + w| 2 + \z — w\ 2 = 2{\z\
2 + \w\

2
), and interpret this statement

geometrically.

6. What is the pictorial relation between z and V / • zv—i ? (Note that there

may be more than one answer, because v/ and V—7 both have two different

possible values.) Hint: Which line goes into the real axis under multiplic <ui< ui

by

7. (a) Prove that if ao, . . . , a„_i are real and a + bi (for a and £> real satisfies

the equation z" + a„_iz"
_1 + • • • + ao = 0, then a — bi also satisfies this

equation. (Thus the nonreal roots of such an equation always occur in

pairs, and the number of such roots is even.)

(b) Conclude that z" +an_\z"~
l

-\ hflo is divisible by z
2 — 2az + (a

2 + b2
)

(whose coefficients are real).

'8. (a) Let c be an integer which is not the square of another integer. If a and b

are integers we define the conjugate of a + b^/c, denoted by a + by/c,

as a — b<J~c. Show that the conjugate is well defined In showing thai a

number can be written a + b*Jc, for integers a and b, in onh one way.
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(b) Show that for all a and /3 of the form a + b-Jc, we have a = a; a = a if

and only if a is an integer; a + /3 = a + /3; —a — —a; a ft
= a • /3; and

arr = (a)~
}

if a ^0.
(c) Prove that if ao, . . . , a„_i are integers and z = a + £>\/c satisfies the

equation z" + a„_iz"
_1 + • • • + gq = 0, then z = a — b-Jc also satisfies

this equation.

9. Find all the 4th roots of i; express the one having smallest argument in a

form that does not involve any trigonometric functions.

*10. (a) Prove that if co is an nth root of 1, then so is or.

(b) A number a> is called a primitive nth root of 1 if [l,eo,co , ..., co"~
l

}

is the set of all /7th roots of 1. How many primitive nth roots of 1 are

there for n = 3, 4, 5, 9?
n-l

(c) Let co be an «th root of 1, with w^ 1. Prove that /^oo = 0.

k=0

*11. (a) Prove that if z\, ... , Zk he on one side of some straight line through 0,

then z\ + + Zk / 0. Hint: This is obvious from the geometric inter-

pretation of addition, but an analytic proof is also easy: the assertion is

clear if the line is the real axis, and a trick will reduce the general case

to this one.

(b) Show further that z\~\ ... , Zk~
{

all lie on one side of a straight line

through 0, so that z\~
x

H h Zk~
l # 0.

*12. Prove that if |zi |

= \zi\ — \zs\ and zi + Z2 + Z3 = 0, then zi, Zi, and Z3 are

the vertices of an equilateral triangle. Hint: It will help to assume that z\ is

real, and this can be done with no loss of generality. Why?



CHAPTER mm ^^ COMPLEX FUNCTIONS

You will probably not be surprised to learn that a deeper investigation of complex

numbers depends on the notion of functions. Until now a function was (intuitively)

a rule which assigned real numbers to certain other real numbers. But there is no

reason why this concept should not be extended; we might just as well consider a

rule which assigns complex numbers to certain other complex numbers. A rigorous

definition presents no problems (we will not even accord it the full honors of a

formal definition): a function is a collection of pairs of complex numbers which

does not contain two distinct pairs with the same first element. Since we consider

real numbers to be certain complex numbers, the old definition is really a special

case of the new one. Nevertheless, we will sometimes resort to special terminology

in order to clarify the context in which a function is being considered. A function

/ is called real-valued if f(z) is a real number for all z in the domain of /, and

complex-valued to emphasize that it is not necessarily real-valued. Similarly,

we will usually state explicitly that a function / is defined on [a subset of] R in

those cases where the domain of / is [a subset of] R; in other cases we sometimes

mention that / is defined on [a subset of] C to emphasize that f(z) is defined for

complex z as well as real z.

Among the multitude of functions defined on C, certain ones are particularly

important. Foremost among these are the functions of the form

f(z)=an z" +a„_ l z"~
l +--- + ao.

where ao, ... , an are complex numbers. These functions are called, as in the

real case, polynomial functions; they include the function f(z) — z (the "identity

function") and functions of the form f(z) —a for some complex number a ("con-

stant functions"). Another important generalization of a familiar function is the

"absolute value function" f(z) — \z\ for all z in C.

Two functions of particular importance for complex numbers are Re (the "real

part function") and Im (the "imaginary part function"), defined by

Re(.r + />) — x,
,

.

T . . tor x and y real.
lm(x + iy) = y,

The "conjugate function" is defined by

f(z) = l = Re(z) - i Im(z).

Familiar real-valued functions defined on R may be combined in many ways to

produce new complex-valued functions defined on C—an example is the function

fix + iy) = ey s'm(x — y) + ix cos v.

541
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The formula for this particular function illustrates a decomposition which is always

possible. Any complex-valued function / can be written in the form

f = u + iv

for some real-valued functions u and v—simply define u{z) as the real part of f(z),

and v(z) as the imaginary part. This decomposition is often very useful, but not

always; for example, it would be inconvenient to describe a polynomial function

in this way.

One other function will play an important role in this chapter. Recall that an

argument of a nonzero complex number z is a (real) number such that

Z = |z|(cos# + i sin (9).

There are infinitely many arguments for z, but just one which satisfies < <

In. If we call this unique argument 0(z), then is a (real-valued) function (the

"argument function") on [z in C : z ^ 0}.

"Graphs" of complex-valued functions defined on C, since they lie in 4-dimen-

sional space, are presumably not very useful for visualization. The alternative

picture of a function mentioned in Chapter 4 can be used instead: we draw two

copies of C, and arrows from z in one copy, to f(z) in the other (Figure 1).

FIGURE 1

The most common pictorial representation of a complex-valued function is pro-

duced by labeling a point in the plane with the value f(z), instead of with z (which

can be estimated from the position of the point in the picture). Figure 2 shows this

sort of picture for several different functions. Certain features of the function are

illustrated very clearly by such a "graph." For example, the absolute value function

is constant on concentric circles around 0, the functions Re and Im are constant

on the vertical and horizontal lines, respectively, and the function f(z) = z wraps

the circle of radius r twice around the circle of radius r .

Despite the problems involved in visualizing complex-valued functions in gen-

eral, it is still possible to define analogues ofimportant properties previously defined

lor real-valued functions on R, and in some cases these properties may be easier

to visualize in the complex case. For example, the notion of limit can be defined

as follows:

lim f(z) = I means that for every (real) number s > there is a (real) number
z—*a

8 >() such that, lor all z, if < \z - u\ < 8, then \f(z) -l\ <S.
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THEOREM 1

Although the definition reads precisely as before, the interpretation is slightly dif-

ferent. Since \z — w\ is the distance between the complex numbers z and w, the

equation \imf(z) = / means that the values of f(z) can be made to lie inside
z—>a

any given circle around /, provided that z is restricted to lie inside a sufficiently

small circle around a . This assertion is particularly easy to visualize using the "two

copy" picture of a function (Figure 3).

©
FIGURE 3

Certain facts about limits can be proved exactly as in the real case. In particular,

lim c = c,

lim z — a,
z.^>-a

lim[/(z) + g(z)] = lim f(z) + limg(z),
Z—>a z—>a £—>a

lim f(z) g(z) = lim f(z) lim g(z),

lim
1 1

a g(z) lim g(z)
'

if limg(z) 7^0.

The essential property of absolute values upon which these results are based is the

inequality \z + w\ < \z\ + \w\, and this inequality holds for complex numbers as

well as for real numbers. These facts already provide quite a few limits, but many

more can be obtained from the following theorem.

Let f(z) = u(z) + iv(z) for real-valued functions u and v, and let / = a + ifi for

real numbers a and )3. Then lim f(z) = I if and only if
z->«

lim u{z) = a,
Z—>C1

lim v(z) = (3.
Z->a

PROOF Suppose first that lim /(-) = /. If e > 0, there is 8 > such that, for all z,
z->a

'

if < \z — a\ < 8. then \f(z) — I\ < £

The second inequality can be written

\[u(z)-a\ +i[v(z)~P]\ <£,
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or

[u(z) - a]
2 + [v(z) - P]

2 <e 2
.

Since u(z) —a. and v(z) — /3 are both real numbers, their squares are positive; this

inequality therefore implies that

[m(z) —or] < £~ and [u(z) — {5\~ < s ,

which implies that

\u(z) — a\ < 8 and \v(z) — >3 1 < s.

Since this is true for all s > 0, it follows that

\imu(z)=a and limu(z) = /J.

Z—>a z-*a

Now suppose that these two equations hold. If e > 0, there is a 8 > such that,

for all z, if < \z — a\ < 8, then

£ S
\u(z) — a\ < — and \v{z) — a\ < —

,

which implies that

\f(z)-l\ = \[u(z)-a] + i[v(z)-P\\

< |«(z)- a
| + |i|. \V(Z)-P\

£ £

This proves that lim f(z) = I. |

In order to apply Theorem 1 fruitfully, notice that since we already know the

limit lim z = a, we can conclude that

lim Re (z) = Re(a).
Z—*a

lim Im(z) = Irn(a).
Z-*a

A limit like

lim sin (Re (z)) = sin(Re(a))
Z—*a

follows easily, using continuity of sin. Many applications of these principles prove

such limits as the following:

lim z = a
,

Z->tf

lim |z| = \a\,
z-*a

lim ey sin x + ix cos y = e sin a + ia~ cos b.
(x+iy)—*a+bi

Now that the notion of limit has been extended to complex functions, the notion

of continuity can also be extended: / is continuous at a if lim f(z) = /(«), and
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f is continuous if / is continuous at a for all a in the domain of /. The previous

work on limits shows that all the following functions are continuous:

l

f(z) = anz +an-iz

f(z) = z,

f(z) = \z\,

fix + iy)

^ h«0,

v • ,-3
ey sinx + ix cosy.

Examples of discontinuous functions are easy to produce, and certain ones come

up very naturally One particularly frustrating example is the "argument func-

tion" 9, which is discontinuous at all nonnegative real numbers (see the "graph"

in Figure 2). By suitably redefining 9 it is possible to change the discontinu-

ities; for example (Figure 4), if 9'(z) denotes the unique argument of z with

tt/2 < 0'(z) < 5tt/2, then 9' is discontinuous at ai for every nonnegative real

number a. But, no matter how 9 is redefined, some discontinuities will always

occur.
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FIGURE 4 f(z) = 0'{Z)

The discontinuity of 9 has an important bearing on the problem of defining a

"square-root function," that is, a function / such that (f(z))~ = z for all -. For real

numbers the function \/~ had as domain only the nonnegative real numbers. If

complex numbers arc allowed, then every number has two square roots (except 0,

which has only one). Although this situation may seem better, it is in some ways

worse; since the square roots of z are complex numbers, there is no clear criterion

for selecting one root to be f(z), in preference to the other.
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One way to define / is the following. We set /(0) = 0, and for z # we set

/TiY 9& &
j(z) = \/\z\[ cos — h / sin —

—

[a, b] x [c, d]

Clearly (f(z))~ = Z, but the function / is discontinuous, since is discontinuous.

As a matter of fact, it is impossible to find a continuous / such that (/(z)) = Z for

all z. In fact, it is even impossible for f(z) to be defined for all z with |z| — 1 . To

prove this by contradiction, we can assume that f{\) — 1 (since we could always

replace / by — /). Then we claim that for all 6 with < 9 < Itc we have

9 9
(*) /(cos 9 + / sin 9) = cos — + i sin —

.

The argument for this is left to you (it is a standard type of least upper bound

argument). But (*) implies that

lim /(cos 9 + i sin 9) = cos n + i sin n
0-^2tt

= -l

even though cos # + / sin ^ —> 1 as — 2^ . Thus, we have our contradic-

tion. A similar argument shows that it is impossible to define continuous "nth-root

d— functions
1
' for any n > 2.

For continuous complex functions there are important analogues of certain the-

orems which describe the behavior of real-valued functions on closed intervals. A
natural analogue of the interval [a, b] is the set of all complex numbers z = x + iy

with a < x < b and c < y < d (Figure 5). This set is called a closed rectangle,

and is denoted by [a, b] x [c, d].

figure 5
If / is a continuous complex-valued function whose domain is [a, b] x [c, d],

then it seems reasonable, and is indeed true, that / is bounded on [a, b] x [c, d].

That is, there is some real number M such that

|/(z)| < M for all z in [a, b] x [c, d].

It does not make sense to say that / has a maximum and a minimum value on

[a,b] x [c, d], since there is no notion of order for complex numbers. If / is a

real-valued function, however, then this assertion does make sense, and is true. In

particular, if / is any complex-valued continuous function on [a, b] x [c, d], then

|/| is also continuous, so there is some zo in [a, b] x [c, d] such that

|/(zo)l <l/(z)l for all -in [a,b] x [c,d];

a similar statement is true with the inequality reversed. It is sometimes said that

"/ attains its maximum and minimum modulus on [a, b\ x [c, d~\."

The various facts listed in the previous paragraph will not be proved here, al-

though proofs are outlined in Problem 5. Assuming these facts, however, we can
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now give a proof of the Fundamental Theorem of Algebra, which is really quite

surprising, since we have not yet said much to distinguish polynomial functions

from other continuous functions.

THEOREM 2 (THE fundamental Let ao, . . . , fl„_i be any complex numbers. Then there is a complex number z

THEOREM OF ALGEBRA) such that

Z
n + an- lZ

n- ] + a„_2Z
n - 2 + • + fl = 0.

PROOF Let
,«-!

f(z)=z" +an _ lZ
"- 1 +---+O0.

Then / is continuous, and so is the function \f\ defined by

\f\(z) = \f{z)\ = \z"+an^z"-
l +---+a \.

Our proof is based on the observation that a point zo with f(zo) = would clearly

be a minimum point for
| / 1 . To prove the theorem we will first show that

| / 1 does

indeed have a smallest value on the whole complex plane. The proof will be almost

identical to the proof, in Chapter 7, that a polynomial function of even degree

(with real coefficients) has a smallest value on all of R; both proofs depend on the

fact that if |z| is large, then |/(z)| is large.

We begin by writing, for z ^0,

f(z) = z
n

1 + + ••• +
a

so that

l/(z)l = |z| 1 + ^1 +

Let

M = max(l, 2«|a„_i |, . . . , 2n\ao\).

Then for all z with |z| > M, we have \z
k

\

> |z| and

\an -k\ J_
2n

'

\a„-k\ \a„-k\
< <

7k\ — 2n\an .

so

a n -\ «0

Z z"

< 0-n-\

z
+ ••• +

-11

<
1

2'

which implies that

i +
fl»-' +... + ""

7 ~n
> 1

- a„-\ clq

Z z"

1

> —
- 2

This means that
1 ~l"

l/(z)l > ^
In particular, if |z| > M and also \z\ >

for |z| > M.

(/2|/(0)|, then

\.f (z)l >l/ [0)\.
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Now let [a, b] x [c, d] be a closed rectangle (Figure 6) which contains {z : |z| <

max(M, y2|/(0)| )}, and suppose that the minimum of |/| on [a, b] x [c, d] is

attained at zo, so that

(1) |/(zo)l < l/(z)l for z in [a,b] x [c,d].

It follows, in particular, that |/(zo)l < 1/(0)1- Thus

(2) if \z\ > max(M, ^21/(0)1), then |/(z)| > |/(0)| > |/Uo)l-

Combining (1) and (2) we see that |/(zo)l S \f(z)\ for all z, so that |/| attains its

minimum value on the whole complex plane at zq-

max(M, ^21/(0)1)

l/(z)l > 1/(0)1

for z here

FIGURE 6

To complete the proof of the theorem we now show that /(zo) = 0. It is

convenient to introduce the function g defined by

g(z) = f(z + zo).

Then g is a polynomial function of degree n, whose minimum absolute value

occurs at 0. We want to show that g(0) = 0.

Suppose instead that g(0) = a / 0. If m is the smallest positive power of z

which occurs in the expression for g, we can write

g(z)=a + Pz
m +cm+l z

m+l + --- + f„;

where ft ^ 0. Now, according to Theorem 25-2 there is a complex number y
such that

m _ _ «
y

~ fi'
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Then, setting dk = Cky
k

, we have

\g(yz)\ = \c* + Py
m
z
m + dm+[Z

'" +l + + dn z"\

= \a-az'"+dm+] z"
1+l +]

d„

a
a[ l-,'" + ^±l -'"+'+.

a I 1 - z
m + z

m

= a 1
i Z

lm+\

a

dm A

+

+
a

This expression, so tortuously arrived at, will enable us to reach a quick contra-

diction. Notice first that if \z\ is chosen small enough, we will have

lm + \

a
z + < 1.

Ifwe choose, from among all z for which this inequality holds, some z which is real

and positive, then

dm+ \

z +
a

< jn
i

_'"

Consequently, if < z < 1 we have

1 - z
m + :." -z +

a
'II- z"' I +

= 1 - z
m +

< 1 - z
m + z

m

d„ + 1

z +
a

dm +\

a
z +

This is the desired contradiction: for such a number z we have

\g(yz)\ < |a|,

contradicting the fact that |a| is the minimum of \g\ on the whole plane. Hence,

the original assumption must be incorrect, and g(0) = 0. This implies, finally, that

/(zo) - 0. |

Even taking into account our omission of the proofs for the basic facts about

continuous complex functions, this proof verified a deep fact with surprisingly

little work. It is only natural to hope that other interesting developments will arise

ifwe pursue further the analogues of properties of real functions. The next obvious

step is to define derivatives: a function / is differentiable at a if

.. f(a+z)-f(a)
lim exists,

z-»0 z
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in which case the limit is denoted by f'{a). It is easy to prove that

f(a) = if/(z)=c,

f(a)=\ i£f(z)=Z,

(f+g)\a) = f{a) + g'(a),

{f - g)'(a) = f\a)gia) + f{a)g'(a),

1\' -g'(a)

J (fl) =
Mtf(«)-t4^ if*(«)^0.

the proofs of all these formulas are exactly the same as before. It follows, in

particular, that if f(z) = z" , then f'(z) = nzn ~ x

. These formulas only prove the

differentiability of rational functions however. Many other obvious candidates are

not differentiate. Suppose, for example, that

fix + iy) = x - iy (i.e., f{z) = z).

If / is to be differentiable at 0, then the limit

f(x+iy)-f(0) x-iy
lim = lim

(x+iy)-*-0 x + iy (x+iy)^0 x + iy

must exist. Notice however, that

~ , x — iy
if j = 0, then = 1,

x + iy

and

x — iy
if x = 0, then = — 1

;

x + iy

therefore this limit cannot possibly exist, since the quotient has both the values 1

and — 1 for x + iy arbitrarily close to 0.

In view of this example, it is not at all clear where other differentiable functions

are to come from. If you recall the definitions of sin and exp, you will sec that

there is no hope at all of generalizing these definitions to complex numbers. At

the moment the outlook is bleak, but all our problems will soon be solved.

PROBLEMS

1. (a) For any real number v, define a(x) = x + iy (so that or is a complex-

valued function defined on R). Show that a is continuous. (This follows

immediately from a theorem in this chapter.) Show similarly that fi( v) =
x + iy is continuous.

(b) Let / be a continuous function defined on C. For fixed v. let g(x) =

f(x + iy). Show that g is a continuous function (defined on R). Show

similarly that hiy) = fix + iy) is continuous. Hint: Use part (a).

2. (a) Suppose that / is a continuous real-valued function defined on a closed

rectangle [a, b] x [c, d]. Prove that if / takes on the values f(z) and f(w)
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(a)

"(b)

3.

5.

(b)

FIGURE 7

for z and w in [a, /?] x [c, d], then / also takes all values between f(z)

and f(w). Hint: Consider g(t) = /(rz + (1 - r)w) for t in [0, 1].

If / is a continuous complex-valued function defined on [a, b] x [c, o"],

the assertion in part (a) no longer makes any sense, since we cannot talk

of complex numbers between f(z) and f(w). We might conjecture that

/ takes on all values on the line segment between f(z) and f{w), but

even this is false. Find an example which shows this.

Prove that if «o, •

complex numbers

1 are any complex numbers, then there are

Zn (not necessarily distinct) such that

z" + a,^ ]Z
n - ] +...+ao = Y\(z ~ zi).

i=\

(b) Prove that if oo, . . . , on_i are real, then z" + an_\z
n ~ { + • • • + «o can be

written as a product of linear factors z+a and quadratic factors z
2 +az+b

all of whose coefficients are real. (Use Problem 25-7.)

In this problem we will consider only polynomials with real coefficients. Such

a polynomial is called a sum ofsquares if it can be written as /?i~ + - • +^, ;

2

for polynomials //, with real coefficients.

(a) Prove that if / is a sum of squares, then f(x) > for all x.

(b) Prove that if / and g are sums of squares, then so is f • g.

(c) Suppose that f(x) > for all x. Show that / is a sum of squares. Hint:

k

First write f(x) = I \(x — a{) g(x), where g(x) > for all x. Then use

i=]

Problem 3(b).

(a) Let A be a set of complex numbers. A number z is called, as in the

real case, a limit point of the set A if for every (real) s > 0, there is

a point a in A with \z — a\ < e but z ^ a. Prove the two-dimensional

version of the Bolzano-Weierstrass Theorem: If A is an infinite subset

of [a, b] x [c, d], then A has a limit point in [a, b] x [c, d]. Hint: First

divide [a, b] x [c, d] in half by a vertical line as in Figure 7(a). Since A

is infinite, at least one half contains infinitely many points of A. Divide

this in half by a horizontal line, as in Figure 7(b). Continue in this way,

alternately dividing by vertical and horizontal lines.

(The two-dimensional bisection argument outlined in this hint is so stan-

dard that the title "Bolzano-Weierstrass" often serves to describe the

method of proof, in addition to the theorem itself. See, for example,

H. Petard, "A Contribution to the Mathematical Theory of Big Game
Hunting," Amer. Math. Monthly, 45 (1938), 446-447.)

(b) Prove that a continuous (complex-valued) function on [a,b] x \c\d] is

bounded on [a,b\ x [c, d\. (Imitate Problem 22-31.)

(c) Prove that if / is a real-valued continuous function on \a,b\ x [c, d],

then / takes on a maximum and minimum value on [a, b\ x [c, d\. (You

can use the same trick that works for Theorem 7-3.)



(a) a convex subset of the plane

(b) a noneonvex subset of the plane

FIGURE 8
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*6. The proof of Theorem 2 cannot be considered to be completely elementary

because the possibility of choosing y with y
1" = —a/fi depends on Theo-

rem 25-2, and thus on the trigonometric functions. It is therefore of some

interest to provide an elementary proof that there is a solution for the equa-

tion z" — c — 0.

(a) Make an explicit computation to show that solutions of z — c = can

be found for any complex number c.

(b) Explain why the solution of z" — c = can be reduced to the case where

n is odd.

(c) Let zo be the point where the function f(z) — z" — c has its minimum
absolute value. If zo / 0, show that the integer m in the proof of Theo-

rem 2 is equal to 1; since we can certainly find y with y
1 = — ar/)6, the

remainder of the proof works for /. It therefore suffices to show that the

minimum absolute value of / does not occur at 0.

(d) Suppose instead that / has its minimum absolute value at 0. Since n is

odd, the points ±<5, ±8i go under / into — c±<5", —c±5"i. Show that for

small 8 at least one of these points has smaller absolute value than — c,

thereby obtaining a contradiction.

7. Let/(z) = (z-zi)
mj C :)'"< for mi, mk > 0.

k

Show that /'(z) = (z - zi)"" • . .
.

• (z - Zk)
m

J2 nia{z ~ Za)
~

l

-

a=\

(b) Let g(z) — }^ma (z — za ) . Show that if g(z) = 0, then z\, ..., Zk

cannot all lie on the same side of a straight line through z. Hint: Use

Problem 25-11.

A subset K of the plane is convex if K contains the line segment joining

any two points in it (Figure 8). For any set A, there is a smallest convex

set containing it, which is called the convex hull of A (Figure 9); if a

FIGURE 9
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point P is not in the convex hull of A, then all of A is contained on one

side of some straight line through P. Using this information, prove that

the roots of f'(z) = lie within the convex hull of the set {z\, . .
. , Zk}-

Further information on convex sets will be found in reference [18] of the

Suggested Reading.

8. Prove that if / is differentiable at z, then / is continuous at z.

*9. Suppose that / = u + iv where u and v are real-valued functions.

(a) For fixed yo let g(x) = u(x + iyo) and h(x) = v(x + iyo). Show that if

f'{xQ + /yo) = a + ifi for real a and /3, then g'(xo) = a and h'(xo) = fi.

(b) On the other hand, suppose that k(y) = u(xo+ iy) and /(y) = v(xo+ iy).

Show that /'(yo) = a and k'(yo) = —fi.

(c) Suppose that f'(z) — for all z. Show that / is a constant function.

10. (a) Using the expression

1 1/1 1

1 + jc
z Zi

find /w (Jc) for all*.

(b) Use this result to find arctan (A)
(0) for all k.
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If you have not already guessed where differentiable complex functions are going

to come from, the title of this chapter should give the secret away: we intend to

define functions by means of infinite series. This will necessitate a discussion of

infinite sequences of complex numbers, and sums of such sequences, but (as was

the case with limits and continuity) the basic definitions are almost exacdy the

same as for real sequences and series.

An infinite sequence ofcomplex numbers is, formally, a complex-valued func-

tion whose domain is N; the convenient subscript notation for sequences of real

numbers will also be used for sequences of complex numbers. A sequence {a„ } of

complex numbers is most conveniently pictured by labeling the points a„ in the

plane (Figure 1).

The sequence shown in Figure 1 converges to 0, "convergence" of complex

sequences being defined precisely as for real sequences: the sequence {an }

converges to /, in symbols

lim a„ = I,

if for every e > there is a natural number N such that, for all n
,

if n > N, then \a„ — l\ < e.

This condition means that any circle drawn around / will contain an for all suffi-

ciently large n (Figure 2); expressed more colloquially, the sequence is eventually

inside any circle drawn around /.

Convergence of complex sequences is not only defined precisely as for real

sequences, but can even be reduced to this familiar case.

THEOREM 1 Let

a„ = b>i + icn for real b„ and cn ,

and let

I = fi + iy for real /3 and y

.

Then lim a„ = / if and only if
n—>oc

lim bn = /3 and lim c„ = y.
n—»oo n—>oo

PROOF The proof is left as an easy exercise. If there is any doubt as to how to proceed,

consult the similar Theorem 1 of Chapter 26. |

The sum of a sequence \an ) is defined, once again, as lim sn , where
n—>oo

s„ = a
i H h an .

555
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PROOF

Sequences for which this limit exists are summable; alternatively, we may say that
00

the infinite series 2_. an converges if this limit exists, and diverges otherwise. It

»=i

is unnecessary to develop any new tests for convergence of infinite series, because

of the following theorem.

THEOREM 2 Let

an = b„ + ic„ for real bn and cn .

00 oo oo

Then 2, an converges if and only if 2, bn and 2, cn both converge, and in this

n=\
case

n=\

OO

J2 a
' i

=
J2 h

" + i \Jl c"

n=\

oo

n=\

PROOF This is an immediate consequence ofTheorem 1 applied to the sequence of partial

sums of {a,,}. |

There is also a notion of absolute convergence for complex series: the series

oo oo

2> an converges absolutely if the series 2^ \an \
converges (this is a series of real

n=\ n=[

numbers, and consequently one to which our earlier tests may be applied). The

following theorem is not quite so easy as the preceding two.

THEOREM 3 Let

a„ = b„ + ic„ for real b„ and cn .

00 oo oo

Then >, an converges absolutely if and only if 2, bn and 2, cn both converge

n=\

absolutely.

71=1 n=\

Suppose first that /_]bn and /£„ both converge absolutely, i.e., that 2_. \b,i\ and

,;=1 z,= l ;;=1

oo oo

2_] \cn \
both converge. It follows that 2, \bn\ + \cn \

converges. Now,

n=\ n=\

\an \

= \b„ +icn \

< \bn \ + \c„\.

00

It follows from the comparison test that 2_. \

an\ converges (the numbers |<7„| and

,;=1

oo

\b„\ + \cn \
are real and nonnegative). Thus /^an converges absolutely.
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Now suppose that 2, \

a»\ converges. Since

n=\

|0b I

= \/^ 2 + Cn
2

,

it is clear that

\bn \

< \an \

and \c„\ < \an \.

oo oo

Once again, the comparison test shows that 2_. \b„\ and \] \

cn\ converge. |

n=\ n=\

oo

Two consequences of Theorem 3 are particularly noteworthy. If \_. a" con"

n=\
OO 00

verges absolutely, then /_]£« and /Jc„ also converge absolutely; consequently

n=\ n=\
00 OO 00

2_\b„ and /_/'„ converge, by Theorem 23-5, so
2_,

a" converges by Theorem 2.

n=\ n=\ it =1

In other words, absolute convergence implies convergence. Similar reasoning

shows that any rearrangement of an absolutely convergent series has the same

sum. These facts can also be proved directly, without using the corresponding the-

orems for real numbers, by first establishing an analogue of the Cauchy criterion

(see Problem 13).

With these preliminaries safely disposed of, we can now consider complex
power series, that is, functions of the form

oo

f(z) — ^2a„(z - a)
n — a + a\(z - a) + a2(z - a)

2
-\ .

n=0

Here the numbers a and a„ are allowed to be complex, and we are naturally

interested in the behavior of / for complex z. As in the real case, we shall usually

consider power series centered at 0,

oo

f( Z ) = J2 a >i?
n

'

n=0

in this case, if f(zo) converges, then f(z) will also converge for \z\ < \zo\. The
proof of this fact will be similar to the proof of Theorem 24-6, but, for reasons

that will soon become clear, we will not use all the paraphernalia of uniform con-

vergence and the Weierstrass M-test, even though they have complex analogues.

Our next theorem consequently generalizes only a small part of Theorem 24-6.

theorem 4 Suppose that

oo

/,

a

nZQ
n = ao + a\zo + a 2 zo

2
H
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ikuri; i

PROOF

converges for some zo 7^ 0. Then if |z| < \zo\, the two series

00

^ anz
n = a + a\ z + aiz

2
H

n=0
oo

} j
na,,z" — a\ + 2a2Z + 3«3Z

2 +
n=\

both converge absolutely.

As in the proof ofTheorem 24-6, we will need only the fact that the set ofnumbers

an zo
n

is bounded: there is a number M such that

We then have

and, for z^O,

\an Zo"\ < M for all n.

\a„z
I

— \a„zo

< M

\nan z
I

= —-n\a„zo
\z\

M
< — n

Since the series \_. \z/zo\" and
/_]

n l-/"ol" converge, this shows that both \] anz"

n=0 n=\ n=0
OO 00

and \_. nanZ"~ converge absolutely (the argument for 2_\ nanZ
n ~ assumed that

n=\ n=\

; 7^0, but this series certainly converges for z = also). |

Theorem 4 evidently restricts greatly the possibilities for the set

| z '.

2_. a"Z" converges
|

.

oo

For example, the shaded set A in Figure 3 cannot be the set of all z where / au z"

n=0

converges, since it contains z, but not the number w satisfying \w\ < \z\.

It seems quite unlikely that the set of points where a power series converges

could be anything except the set of points inside a circle. If we allow "circles of

radius 0" (when the power series converges only at 0) and "circles of radius oo"

(when the power series converges at all points), then this assertion is true (with one

complication which we will soon mention); the proof requires only Theorem 4 and

a knack for good organization.
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theorem 5 For any power series

00

^ a„z" = ao+a\z + aiz
2 + a^z

3 +
n=0

one of the following three possibilities must be true:

00

(1) 2_. anZ
n
converges only for z — 0.

oo

(2) 2_. anZ" converges absolutely for all z in C.

«=o

(3) There is a number R > such that 2_, anZ
n
converges absolutely if |z| < R

,i=0

and diverges if \z\ > R. (Notice that we do not mention what happens

when Id = R.)

PROOF Let

S = I x in R : 2, an wn
converges for some w with \w\ = x \

.

Suppose first that S is unbounded. Then for any complex number z, there is

oo

a number x in S such that |z| < x. By definition of S, this means that /^ a„
w"

n=0
00

converges for some w with w\ X > It follows from Theorem 4 that 2, anZ
n

converges absolutely. Thus, in this case possibility (2) is true.

Now suppose that S is bounded, and let R be the least upper bound of S. If

R — 0, then 2_\ anZ
n
converges only for z = 0, so possibility (1) is true. Suppose,

n=0
on the other hand, that R > 0. Then if z is a complex number with |z| < R, there

IS a number x in S with \z\ < x. Once again, this means that 2_, anW
n
converges

n=0

for some w with < \w\ so that 2_, an z
" converges absolutely. Moreover, if

7!=

|z| > R, then 2_, anZ
n
does not converge, since |z| is not in S. |

The number R which occurs in case (3) is called the radius ofconvergence of
oo

V a„z" . In cases (1) and (2) it is customary to say that the radius of convergence

is and oo, respectively. When < R < oo, the circle {z : \z\ = R} is called
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the circle of convergence of /]anz
n

. If Z is outside the circle, then, of course,

the terms a„z" are not bounded

circle of

convergence

FIGURE 4

n=0Eri—Kj
an z' does not converge, but actually a much stronger statement can be made:

n=0
the terms an z" are not even bounded. To prove this, let w be any number with

|z| > \w\ > R; if the terms an z" were bounded, then the proof ofTheorem 4 would

show that 2_, anW
n
converges, which is false. Thus (Figure 4), inside the circle of

11=0
_ ^—

v

convergence the series y. anZ
n
converges in the best possible way (absolutely) and

n=0
outside the circle the series diverges in the worst possible way (the terms a„z" are

not bounded).

What happens on the circle of convergence is a much more difficult question.

We will not consider that question at all, except to mention that there are power

series which converge everywhere on the circle of convergence, power series which

converge nowhere on the circle of convergence, and power series that do just about

anything in between. (See Problem 5.)

Algebraic manipulations on complex power series can be justified just as in the
oo oo

real case. Thus, if f(z) — 2_, a" z" an<^ S(z) = 2-,^" z " k° tri nave racnus °f

n=0 n=0
oo

convergence > R, then h(z) = /](fl« + bn )z" also has radius of convergence

> R and h = f + g inside the circle of radius R. Similarly, the Cauchy product
oo n

h(z) = 2_, cnz!\ for c„ — / akbn-k, has radius of convergence > R and h = fg
«=0 k=0

oo

inside the circle of radius R. And if f(z) — 2~]a„z" has radius of convergence >

n=0
oo

and «o ¥" 0, then we can find a power series /_\b„z
n
with radius of convergence

n=0
> which represents 1 // inside its circle of convergence.

But our real goal in this chapter is to produce differentiable functions. We
therefore want to generalize the result proved for real power series in Chapter 24,

that a function defined by a power series can be differentiated term-by-term in-

side the circle of convergence. At this point we can no longer imitate the proof of

Chapter 24, even ifwe were willing to introduce uniform convergence, because no

analogue of Theorem 24-3 seems available. Instead we will use a direct argument

(which could also have been used in Chapter 24). Before beginning the proof,

we notice that at least there is no problem about the convergence of the series

produced by term-by-term differentiation. If the series /^ctnz" has radius of con-

n=0 oo

vergence R, then Theorem 4 immediately implies that the series / nanz
n~ also

converges for < R. Moreover, if |z| > R, so that the terms a„z
n arc unbounded,
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PROOF

then the terms nan z"
l are surely unbounded, so y. nanZ

n
does not converge.

oo

This shows that the radius of convergence of 2_, nanl
n~

is also exactly R.

n=\

theorem 6 If the power series

f(z) = J^anz
n

n=0

has radius of convergence R > 0, then / is differentiable at z for all z with \z\ < R,

and

f {z) = Yj
nan z

n -

n=\

We will use another "e/3 argument." The fact that the theorem is clearly true for

polynomial functions suggests writing

f(z + h)-f(z)

h
- }nanz

n ~ A dz + hr-z") A
2 an / nanz

n=0 n= \

<
A ((z + h)"-z") A «z + h)"-z")
l^ a»

1 l^ a "
1

n=0 „=0

+
A dz + hy-z") A
l^ a » 7 2^nan z

n=0 n= \

+ / j
nanz

n l - }jian z
n ~

n=\ n=\

We will show that for any s > 0, each absolute value on the right side can be made

< e/3 by choosing N sufficiently large and h sufficiently small. This will clearly

prove the theorem.

Only the first term in the right side of (*) will present any difficulties. To begin

with, choose some zo with |z| < \zo\ < R; henceforth we will consider only h

with \z + h\ <
| co I- The expression ((z + h)

n — z")/ h can be written in a more

convenient way if we remember that

-n _ v"
}— = x

"- ] + x
n ~ 2

v + x"" 3
v
2 + • • + y"" 1

.

x-y
Applying this to

(z + h)n
(z + h)"

h (z + h)-z
'

we obtain

<- _i_ iiV1 _ -"

^-^ = (z + hf- 1 + z(z + h)"-
2 + + z

n~\
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Since

we have

\(z + h)"-
1 + z(z +h)'-

2 + + z"-
l

\

< n\zo\"~
]

,

((z + h)n -zn
]

a„ < n\a„\ \zo
,/j-l

But the series Y_]n|a„| • \zq\" converges, so if N is sufficiently large, then

n=\

This means that

2 ,

n
\

a n\ \Z0\"~

n=N+1

<

A {{z + hT-z") A ((z + h)"-zn
)

71=0
/;

n=0
//

J2 an

n=N+\

((z + h)" -z")

h
* E

n=N+\

«z + h)
n -z")

h

In short, if N is sufficiently large, then

s
< —

.

3

1;

A «z + h)n -zn
) A ((z + h)"-zn

)A a»
1 L fl"-

n=0 n=0

for all h with \z + h\ < \zq\.

h

£

n=\

It is easy to deal with the third term on the right side of (*): Since y. nanZ'

converges, it follows that if N is sufficiently large, then

oo N

Y,nanz
n~ l - J2 na" z

"~ <
n=\ n=\

Finally, choosing an N such that (1) and (2) are true, we note that

.. A Hz + hr-z") A „_!
hm ) an

- = > nan z

n=0 n=\

since the polynomial function g(z) = 2_\ anZ" is certainly differentiable. Therefore

n=0

(3)

N^an ((z + h)" -z") ^
n=0 n=\

for sufficientlv small h.

-1 £
<

3'

As we have already indicated, (1), (2), and (3) prove the theorem. |
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FIGURE 5

Theorem 6 has an obvious corollary: a function represented by a power series is

infinitely differentiable inside the circle of convergence, and the power series is its

Taylor series at 0. It follows, in particular, that / is continuous inside the circle of

convergence, since a function differentiable at z is continuous at z (Problem 26-8).

The continuity of a power series inside its circle of convergence helps explain the

behavior ofcertain Taylor series obtained for real functions, and gives the promised

answers to the questions raised at the end of Chapter 24. We have already seen

that the Taylor series for the function f(z) — 1/(1 + z
2
), namely,

l-z2 + z
4 -z6 + ---,

converges for real z only when \z\ < 1, and consequently has radius of conver-

gence 1 . It is no accident that the circle of convergence contains the two points

i and —i at which / is undefined. If this power series converged in a circle of

radius greater than 1, then (Figure 5) it would represent a function which was

continuous in that circle, in particular at i and —i. But this is impossible, since it

equals 1/(1 + z
2
) inside the unit circle, and 1/(1 + z

2
) does not approach a limit

as z s approaches / or —i from inside the unit circle.

The use of complex numbers also sheds some light on the strange behavior of

the Taylor series for the function

-l/.x
2

fix)
e

0, x = 0.

Although we have not yet defined e z for complex z, it will presumably be true that

if y is real and unequal to 0, then

f (iy) = e-Wy)
2

=e l/.v
2

The interesting fact about this expression is that it becomes large as y becomes

small. Thus / will not even be continuous at when defined for complex numbers,

so it is hardly surprising that it is equal to its Taylor series only for z = 0.

The method by which we will actually define e z
(as well as sin z and cos z) for

complex z should by now be clear. For real x we know that

For complex z we therefore define

x 3 x 5

sin x = x —
V
+

5!

x 4

—

x 2

cosx = 1
—

2!
+

4!

"

e
x = 1 +

X

V.
+

x 2

2!
+

e define

sinz — z -
3

3!
+

5

~5\

—

cose = 1
-

2

2
- +

74

4!
+

exp(z) = e
z = 1 +

yi
+ ^— +
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Then sin'(z) = cosz, cos'(z) = — sinz, and exp'(z) = exp(z) by Theorem 6.

Moreover, if we replace z by iz in the series for e z
, and make a rearrangement

of the terms (justified by absolute convergence), something particularly interesting

happens:

(iz)
3

,

(iz)
4

.
(iz)

5

so

e'
z = cosz + i sinz.

It is clear from the definitions (i.e., the power series) that

sin(— z) = — sin z,

cos(— z) = cosz,

so we also have

e
u — cosz — i sin

From the equations for e'
z and e

' c we can derive the formulas

sin

cosz

2/

2

The development of complex power series thus places the exponential function at

the very core of the development of the elementary functions—it reveals a con-

nection between the trigonometric and exponential functions which was never

imagined when these functions were first defined, and which could never have

been discovered without the use of complex numbers. As a by-product of this

relationship, we obtain a hitherto unsuspected connection between the numbers e

and it: if in the formula

e'
z = cosz + i sinz

we take z = tt, we obtain the remarkable result

e
in =-1.

(More generally, e^'^" is an «th root of 1.)

With these remarks we will bring to a close our investigation of complex func-

tions. And yet there are still several basic facts about power series which have not

been mentioned. Thus far, we have seldom considered power series centered at a.

f(z) = J^an(z-a)
n

,
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FIGURE 6

except for a — 0. This omission was adopted partly to simplify the exposition.

For power series centered at a there are obvious versions of all the theorems in

this chapter (the proofs require only trivial modifications): there is a number R
oo

(possibly or "oo") such that the series 2_, an(z
— a)

n
converges absolutely for z

n=0
with \z — a\ < R, and has unbounded terms for z with \z — a\ > R; moreover, for

all z with \z — a\ < R the function

00

f(z)=Y
/
an(z-a)

n

has derivative

f\z) = J^nan(z-a)
n- 1

.

It is less straightforward to investigate the possibility of representing a function

as a power series centered at b, if it is already written as a power series centered

at a. If
oo

f(z) = J2a„(z-a)"
,<=o

has radius of convergence /?, and b is a point with \b — a\ < R (Figure 6), then it

is true that f(z) can also be written as a power series centered at b,

f iz) = J2b„(:
n=0

bf

(the numbers bn are necessarily f
(n)

{b)/n\)\ moreover, this series has radius of

convergence at least R — \b — a\ [it may be larger).

We will not prove the facts mentioned in the previous paragraph, and there are

several other important facts we shall not prove. For example, if

f{z)=Y, aniz-a)
n

n=0

and <Xz)=YJ bn(Z-b)\

and g(b) = a, then we would expect that fog can be written as a power series

centered at b. All such facts could be proved now without introducing any basic

new ideas, but the proofs would not be as easy as the proofs about sums, products

and reciprocals ofpower series. The possibility of changing a power series centered

at a into one centered at b is quite a bit more involved, and the treatment of

fog requires still more skill. Rather than end this section with a tour deforce

of computations, we will instead give a preview of "complex analysis," one of

the most beautiful branches of mathematics, where all these facts are derived as

straightforward consequences of some fundamental results.

Power series were introduced in this chapter in order to provide complex func-

tions which are differentiable. Since these functions are actually infinitely differ-

entiable, it is natural to suppose that we have therefore selected only a very special
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a\

a-)

FIGURE 7

collection of differentiable complex functions. The basic theorems of complex

analysis show that this is not at all true:

If a complexfunction is defined in some region A of the plane and is differentiable in A,

then it is automatically infinitely differentiable in A . Moreover, for each point a in A the

Taylor seriesfor f at a will converge to f in any circle contained in A (Figure 7).

These facts are among the first to be proved in complex analysis. It is impossible

to give any idea of the proofs themselves—the methods used are quite different

from anything in elementary calculus. If these facts are granted, however, then

the facts mentioned before can be proved very easily.

Suppose, for example, that / and g are functions which can be written as power

series. Then, as we have shown, / and g are differentiable—it then follows from

easy general theorems that f + g, f • g, 1/g and fog are also differentiable.

Appealing to the results from complex analysis, it follows that they can be written

as power series.

We already know how to compute the power series for f + g, f g and \/g from

those for / and g. It is also easy to guess how one would compute an expression

for fog as a power series in (z — b) when we are given the power series expansions

oo

f(z) = J2 an(z-a)n

n=0

g(z) = YJ
bk(z-b) k

,

k=0

with a = g{b) = bo, so that

g(z)-a = YJ
h(z-b) k

.

k=\

First of all, we know how to compute the power series

(g(z)-a) l = r£
f
bk(z-b)

k
\ .

and this power series will begin with (z — b)
1

. Consequently, the coefficient of z"

in

f(g(z)) = J2cii(g(z)-a)
1

1=0

can be calculated as a finite sum, involving only coefficients arising from the first n

powers of g(z) — a.

Similarly, if

oo

f(z) = J^an(z-a)
n

has radius of convergence /?, then / is differentiable in the region A = {z : \z—a\ <

R). Thus, if b is in A, it is possible to write / as a power series centered at b,
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FIGURE 8

which will converge in the circle of radius R — \b — a\. The coefficient of z
n

will be f
(,1) {b)/n\ . This series may actually converge in a larger circle, because

00

2^ an(z — a)" may be the series for a function differentiable in a larger region

than A. For example, suppose that f(z) — 1/(1 + Z ). Then / is differentiable,

except at i and —i, where it is not defined. Thus f(z) can be written as a power
00

series 2_, anZ
n
with radius of convergence 1 (as a matter of fact, we know that

ain — (—1)" and cik = if k is odd). It is also possible to write

oo

f {z) = Y^b lr (Z-\)\
n=0

where bn = f
{n) (^)/n\ . We can easily predict the radius of convergence of this

series: it is VI + (^)
2

, the distance from ^ to i or — i (Figure 8).

As an added incentive to investigate complex analysis further, one more result

will be mentioned, which lies quite near the surface, and which will be found in

any treatment of the subject.

For real z the values of sin z always lie between — 1 and 1 , but for complex z

this is not at all true. In fact, if z = iy, for y real, then

gi(iy) _ g—i(iy)

sin zy
2/ 2/

If y is large, then sin iy is also large in absolute value. This behavior of sin is typical

of functions which are defined and differentiable on the whole complex plane (such

functions are called entire). A result which comes quite early in complex analysis is

the following:

Liouville's Theorem: The only bounded entirefunctions are the constantjunctions.

As a simple application of Liouville's Theorem, consider a polynomial function

f(z) = z"+an _ lZ
"~ l +---+a ,

where n > 1, so that / is not a constant. We already know that f(z) is large for

large z, so Liouville's Theorem tells us nothing interesting about /. But consider

the function

g(z) =
1

f(z)

If f(z) were never 0, then g would be entire; since f(z) becomes large for large z,

the function g would also be bounded, contradicting Liouville's Theorem. Thus

f(z) = for some z, and we have proved the Fundamental Theorem of Algebra.

PROBLEMS

1 . Decide whether each of the following series converges, and whether it con-

verges absolutely.
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n=\

y, 1 + 2/

E
oo

iv
) E ( 5 + 2'')"'

Alogw .„log«
v 2^— +

*

n n
n=2

Use the ratio test to show that the radius of convergence of each of the

following power series is 1 . (In each case the ratios of successive terms will

approach a limit < 1 if |z| < 1, but for |z| > 1 the ratios will tend to oo or

to a limit > 1.)

in

iv

n=\

n=\
oo

n=\
oo

oo

(v) E 2"—

3. Use the root test (Problem 23-9) to find the radius of convergence of each of

the following power series. (In some cases, you will need limits derived in the

problems to Chapter 22.)

z z
2

z
3

z
4

?
5

z
6

(i)

2
+ y +2^ +

23
+

3^
+ "-

oo
n

in

iv

Y-zn
.

n=\

Z^ nn

n=\
oo 9

T-zn

»=]
oo

E 2V ' !

-

n=l
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The root test can always be used, in theory at least, to find the radius of

convergence of a power series; in fact, a close analysis of the situation leads

to a formula for the radius of convergence, known as the "Cauchy-Hadamard

formula." Suppose first that the set of numbers \f\an \
is bounded.

00

(a) Use Problem 23-9 to show that if lim ^/\a„\ \z\ < 1, then } an z" con-
H—>0O *-^

«=0
verges.

OO

(b) Also show that if lim >/|an |
\z\ > 1, then /a„z" has unbounded terms.

n—*oo *—~'

n=0
00

(c) Parts (a) and (b) show that the radius of convergence of >_,a„z" is

#1=0

1/ lim vjflj (where "1/0" means "oo"). To complete the formula, de-
II—>oo

fine lim ^/\a„
\
= oo if the set of all ^/\a„\ is unbounded. Prove that in

n—>-oo
oo

this case, 2_, anZ
n
diverges for z ^ 0, so that the radius of convergence

is (which may be considered as "l/oo").

5. Consider the following three series from Problem 2:

00 „ 00 „ 00

£%• E-. E-"-
n=l n=\ n=\

Prove that the first series converges everywhere on the unit circle; that the

third series converges nowhere on the unit circle; and that the second series

converges for at least one point on the unit circle and diverges for at least

one point on the unit circle.

6. (a) Prove that e z e
w — e

z+w
for all complex numbers z and w by showing

that the infinite series for e
z+w

is the Cauchy product of the series for ez

and e
w

.

(b) Show that sin(z + w) = sin z cos w + cos z sin w and cos(z + w) =
cos z cos w — sin z sin w for all complex z and w.

7. (a) Prove that every complex number of absolute value 1 can be written eiy

for some real number y.

(b) Prove that |e
x+iy

|
= e

x
for real jc and y.

8. (a) Prove that exp takes on every complex value except 0.

(b) Prove that sin takes on every complex value.

9. For each of the following functions, compute the first three nonzero terms of

the Taylor series centered at by manipulating power series.

(i) f(z) = tan z.

(ii) f(z) = z(\ -z)- ]/2
.
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,sin z

10.

11.

iii) f(z) =

iv) /(z)=log(l -z2
).

sin
v) f(z) =

sin(r)
vi) f(z) = y~

z cosz z

vii) f(z) =
:
4 -2z2 + 3'

viii) /(7) = l[^<V^I-l)_
!j

Suppose that we write a differentiable complex function / as / = u +
/u, where u and u are real-valued. Let u and D denote the restrictions

of u and v to the real numbers. In other words, u{x) = u{x) for real

numbers x (but it is not defined for other x). Using Problem 26-9, show

that for real x we have

f'(x) = u'(x) + iv'ix),

where /' denotes the complex derivative, while u' and v' denote the

ordinary derivatives of these real-valued functions on R.

(b) Show, more generally, that

f
(k\x) u

{k)
(x) + iv

a)
(x).

(c) Suppose that / satisfies the equation

(*) /w +fl»-l/ w|
- 1, + -" + flO/ = I

where the a, are real numbers, and where the f
[k) denote higher-order

complex derivatives. Show that u and v satisfy the same equation, where

u (k) and v
(k) now denote higher-order derivatives of real-valued functions

onR.

(d) Show that if a =b-\- ci is a complex root of the equation z" + an- \ z."~
l +

...-(- aq — 0, then f(x) = e
bx

sin ex and f(x) = ebx coscx are both

solutions of (*).

(a) Show that exp is not one-one on C.

(b) Given w ^ 0, show that e z = w if and only if z = x + iy with x = log
|
w

\

(here log denotes the real logarithm function), and y an argument of w.

'(c) Show that there does not exist a continuous function log defined for

nonzero complex numbers, such that exp(log(z)) = Z for all j / 0.

(Show that log cannot even be defined continuously for |z| = 1
.)

Since there is no way to define a continuous logarithm function we can-

not speak of the logarithm of a complex number, but only of"a logarithm

for w," meaning one of the infinitely many numbers z with e z = w. And
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for complex numbers a and b we define a b
to be a set of complex num-

bers, namely the set of all numbers e
bl°sa or, more precisely, the set of

all numbers ebz where z is a logarithm for a

.

(d) If m is an integer, then a
m

consists of only one number, the one given by

the usual elementary definition of a'" .

(e) If m and n are integers, then the set am ' n coincides with the set ofvalues

given by the usual elementary definition, namely the set of all bm where b

is an nth root of a.

(f) If a and b are real and b is irrational, then a b contains infinitely many
members, even for a > 0.

(g) Find all logarithms of /, and find all values of /'.

(h) By (a
b
)
c we mean the set of all numbers of the form z

c
for some number z

in the set a b
. Show that (1')' has infinitely many values, while 1'

' has

only one.

(i) Show that all values of a bc are also values of (a
b
)
c

. Is a bc = (a
b
)
cn(a c

)
b
?

12. (a) For real x show that we can choose log(x + i) and log(x — /) to be

log(.t + / ) = log( v 1 + x 2
)
+ i I— — arctan x )

,

logU' — i) = log(\/l + x 2
)
—

i

:

I — — arctan x 1 .

(It will help to note that tt/2 — arctan x = arctan \/x for x > 0.)

(b) The expression

1 1/1 1

1 + x 2 2/ \x — i x + i

yields, formally,

/
= ^IJogC* -0 - log(* +i)J.

1 + x 2 2/

Use part (a) to check that this answer agrees with the usual one.

13. (a) A sequence {a„} of complex numbers is called a Cauchy sequence if

lim \a„, — a„\ = 0. Suppose that an — bn + icn , where bn and c„ are

real. Prove that {a„} is a Cauchy sequence if and only if {bn } and {c„}

are Cauchy sequences.

(b) Prove that every Cauchy sequence of complex numbers converges.

(c) Give direct proofs, without using theorems about real series, that an

absolutely convergent series is convergent and that any rearrangement

has the same sum. (It is permitted, and in fact advisable, to use the proofs

of the corresponding theorems for real series.)

14. (a) Prove that

"
1 - e

inx

1 - eix x

2

sin ( -a )

X^ e
ikx = J*- - - V2 / J(n+l)x/2

A=1
sin
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(b) Deduce the formulas for \ cos kx and 2_\

*

m kx that are given in

k=\ k=\

Problem 15-33.

15. Let {a„} be the Fibonacci sequence, a\ = a2 = 1, a„+2 — a„ + an+ \.

(a) If r„ = an+i/an , show that rn+\ = 1 + l/r„.

(b) Show that if r = lim r„ exists, then r = 1 + 1 /r, so that r = (l + v5 )/2.

(c) Prove that the limit does exist. Hint: If r„ < (1 + v5 )/2, then r,,
2 —

r„ - 1 < and r„ < r„+2 .

oo

(d) Show that 2_, anZ" has radius of convergence 2/(1 + V5). (Using

n=\
oo

the unproved theorems in this chapter and the fact that 2_, an z
" =

n=\

— l/(z +z — 1) from Problem 24-16 we could have predicted that the

radius of convergence is the smallest absolute value of the roots of z +
Z — 1 = 0; since the roots are (—1 ± v5)/2, the radius of convergence

should be (— 1 + v5)/2. Notice that this number is indeed equal to

2/(1 + 75).)

16. Since (e
z — \)/z can be written as the power series 1 + z/2! + z /3! + • •

•

which is nonzero at 0, it follows that there is a power series

n=0

with nonzero radius of convergence. Using the unproved theorems in this

chapter, we can even predict the radius of convergence; it is 2tt, since this is

the smallest absolute value of the non-zero numbers z = 2kni for which

e z — 1 =0. The numbers b„ appearing here are called the Bernoulli

numbers.*

(a) Clearly bo — 1 . Now show that

ez - 1

e~ z +\

z

2

z
+

2

e :

e z

+ 1

- 1

ez + 1

e-z-\ ez-\

and deduce that

b
|
= — ^ , b„ = if n is odd and n > 1

.

*Sometimes the numbers Bn = (
— 1)"

_
»2« arc called the Bernoulli numbers, because />„ = if n

is odd and > 1 (see part (a)) and because the numbers bin alternate in sign, although we will not

prove this. ( )ihei modifications of this nomenclature are also in use.
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(b) By finding the coefficient of z" in the right side of the equation

oo
,1 ,3H £ £-•% + £ + fr

+

show that

This formula allows us to compute any bk in terms of previous ones, and

shows that each is rational. Calculate two or three of the following:

i>2 = \, *4 = ~^J. ^6 = 43. ^8 = -^

*(c) Part (a) shows that

y- b2n „2n z e'+l z e"2 + e~^2

2-* (2n)!* "2 ^ - 1

""
2 e*/2 - ^/2

Replace z by 2/z and show that

oo ,— £^<-'>" 22"; 2"-

n=0

*(d) Show that

tan z = cot z — 2 cot 2z.

*(e) Show that

oo ,

tanz = Y '"( 1)- 1

2
2"(22" l);

2"" 1

.

a- \

(This series converges for \z\ < tc/2.)

17. The Bernoulli numbers play an important role in a theorem which is best

introduced by some notational nonsense. Let us use D to denote the "differ-

entiation operator," so that Df denotes /'. Then D k
f will mean f

(k) and
oo

e
D
f will mean /_\f

( '!l
/n\ (of course this series makes no sense in general,

n=0
but it will make sense if / is a polynomial function, for example). Finally,

let A denote the "difference operator" for which Af(x) = f(x + 1) — f(x).

Now Taylor's Theorem implies, disregarding questions of convergence, that

f(x+\) = J2
fw (x)

n=0

or

(*) f(x+\)-f(x) = J2
fW (x)

n=\
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we may write this symbolically as Af = (e
D — 1) /', where 1 stands for the

"identity operator." Even more symbolically this can be written A = e
D —

1

,

which suggests that

D

Thus we obviously ought to have

oo ,

D = Y^Dk
A.

i.e.

fc=0

oo .

bi

k=0

The beautiful thine" about all this nonsense is that it works!'.->

(a) Prove that (**) is literally true if / is a polynomial function (in which case

the infinite sum is really a finite sum). Hint: By applying (*) to f
(k
\ find

a formula for f
(k\x + 1 ) — f (x); then use the formula in Problem 16(b)

to find the coefficient of f {^{x) in the right side of (**).

(b) Deduce from (**) that

00 u

/'(O) + • • + f{n) = ]T -£U
(k)

(n + 1 )
- /w (0)].

k=0

(c) Show that for any polynomial function g we have

g(0) + ... + g(n)= ['
g (t)dt +Y [

^[g
{k - ])

(n + \) - g
(k - ])

(0)\.

(d) Apply this to g(x) = x p to show that

p-k+]Tk' =—+ ir^( p
£-*> P + \ ^ k\k-\
k=\ ' k=\

v

Using the fact that b\ = — i, show that

The first ten instances of this formula were written out in Problem 2-7,

which offered as a challenge the discovery of the general pattern. This

may now seem to be a preposterous suggestion, but the Bernoulli num-

bers were actually discovered in precisely this way! After writing out

these 10 formulas, Bernoulli claims (in his posthumously printed work

Ars Conjectandi, 1713): "Whoever will examine the series as to their regu-

larity may be able to continue the table." He then writes down the above
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formula, offering no proof at all, merely noting that the coefficients bk

(which he denoted simply by A, B, C, .

.

. ) satisfy the equation in Prob-

lem 16(b). The relation between these numbers and the coefficients in

the power series for z/(e z — 1) was discovered by Euler.

*18. The formula in Problem 17(c) can be generalized to the case where g is not a

polynomial function; the infinite sum must be replaced by a finite sum plus a

remainder term. In order to find an expression for the remainder, it is useful

to introduce some new functions.

(a) The Bernoulli polynomials <pn are defined by

<Pn(x) =^\V) bn-kX
k

.

fc=0 ^ '

The first three are

1

cpi(x) =x - -,

2
!

(p~>(x) = x~ — x + -,
o

, 3x x
(p} (x) =x :

--rT+y-

Show that

(p„(0) =bn ,

<pn (\) = bn if // > 1

.

(pn '{x) =n<p„-i(x),

<pn (x) = (-l)n
<pn -x).

Hint: Prove the last equation by induction on n.

(b) Let Ru k
{x) be the remainder term in Taylor's Theorem for f

(k
\ on the

interval [x , x + 1 ] , so that

(*) f«\x + i) - fk\x) = Y l—r^ + R»
k

(-X) -

n=\

Prove that

k=0 ' k=0

Hint: Imitate Problem 17(a). Notice the subscript N — k on R.

(c) Use the integral form of the remainder to show that

££*»VM = /'
+1

^±f^/<-'>«*.
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(d) Deduce the "Euler-Maclaurin Summation Formula":

g(x) + g(x+ \) + --- + g(x+n)

= f g(t)dt + J2^[g
lk - l) (x+n + 1) - g

{k - ]]
(x)] + SN (x,n),

Jx
k=\

'

where

. A J X

+ ; +1
<pN (X +j+\ -{)

*x+j
';,' •

"
g
iN)

(ndt.

(e) Let \jjn be the periodic function, with period 1, which satisfies \[/„(t) =
^(f)forO<? < 1. (Part (a) implies that if n > 1, then %//„ is continuous,

since <p„(l) = ^,,(0), and also that \(/n is even if n is even and odd if n is

odd.) Show that

SN (x,n) = - —
g
{N)

{t)dt

r.x+n-

( = (-l) N+l r
+ "+l

"^~-g^ N)
{t)dt if x is an integer!

N\

c+fl+l

Unlike the remainder in Taylor's Theorem, the remainder Sn(x,h) usually

does not satisfy lim Sn(x,h) = 0, because the Bernoulli numbers and functions

become large very rapidly (although the first few examples do not suggest this).

Nevertheless, important information can often be obtained from the summation

formula. The general situation is best discussed within the context of a specialized

study ("asymptotic series"), but the next problem shows one particularly important

example.

**19. (a) Use the Euler-Maclaurin Formula, with N = 2, to show that

log 1 + • • • + log(n — 1

)

f\ 1 1/1 \ /*" \lr2 (t)

= /
U«""-2 l08 " +

12U-
1

j
+

y. "2^

(b) Show that

i0Sy
nn+l/2e-n+l/a2n)J- \2

+
J]

It 2

(c) Explain why the improper integral ft
= I xj/2(t)/2t dt exists, and show

that if a = exp(fi + 1 1/12), then

n\ \ r init)
ttts -rrr^r-r = - / _ , at .

a nn+l/2e-n+l/a2n) J J 2t
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(d) Problem 19-4 1(d) shows that

V^= i

{n\)
222n

n^-oc (ln)\y/n

Use part (c) to show that

s/tt = lim
a 2n 2n+\ e-2n22n

n^°° a(2n) 2n+l /2e- 2n s/n
'

and conclude that a = \J1ti .

(e) Show that

1/2

/ <f>2(t)dt = / (p2(t)dt = 0.

Jo Jo

(You can do the computations explicitly, but the result also follows im-

mediately from Problem 18(a).) Conclude that

> forO <x < 1/2

<0 for 1/2<jc< 1,

\J/(x) fJo i/2(t)dt

with tfr(n) — for all n. Hint: Graph \js on [0, 1], paying particular

attention to its values at xq, I, and x\, where xq and x\ are the roots

of <p2 (Figure 9).

(f) Noting that i}/{x) = —\j/{\ — x), show that

f(x) = / f(f)dt > on [0, 1],

Jo

and hence everywhere, with \[r(n) = for all n

.

(g) Finally, use this information and integration by parts to show that

t2it)

fJ n 2t 2
dt > 0.

(h) Using the fact that the maximum value of |<^2U)I for x in [0, 1] is g,

conclude that

o<rm«< '

/J n It 2 \2n

(i) Finally, conclude that

^n" +l/2
e-" < n\ < >/2^/i"

+,/V" + 1/,l2 " )

.
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The final result of Problem 19, a strong form of Stirling's Formula, shows that

n\ is approximately s/lix n"
+ / e~", in the sense that this expression differs from n\

by an amount which is small compared to n when n is large. For example, for

n = 10 we obtain 3598696 instead of 3628800, with an error < 1%.

A more general form of Stirling's Formula illustrates the "asymptotic" nature of

the summation formula. The same argument which was used in Problem 19 can

now be used to show that for N > 2 we have

iogY -' )=r b
\ +r

^k(k-\)n k- 1 Jn Nt N

Since i/f/v is bounded, we can obtain estimates of the form

,
rr dt

Nt N ~ nN~v

If A^ is large, the constant Mm will also be large; but for very large n the factor

77
1_/v

will make the product very small. Thus, the expression

^n"+l /2e- expfV ^-— )

may be a very bad approximation for n\ when n is small, but for large n (how large

depends on N) it will be an extremely good one (how good depends on N).
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There was a most ingenious Architect

who had contrived a new Method

for building Houses,

by beginning at the Roof, and working

downwards to the Foundation.

JONATHAN SWIFT



CHAPTER AiV FIELDS

Throughout this book a conscientious attempt has been made to define all im-

portant concepts, even terms like "function," for which an intuitive definition is

often considered sufficient. But Q and R, the two main protagonists of this story,

have only been named, never defined. What has never been defined can never be

analyzed thoroughly, and "properties" P1-P13 must be considered assumptions,

not theorems, about numbers. Nevertheless, the term "axiom" has been purposely

avoided, and in this chapter the logical status of P1-P13 will be scrutinized more

carefully.

Like Q and R, the sets N and Z have also remained undefined. True, some

talk about all four was inserted in Chapter 2, but those rough descriptions are far

from a definition. To say, for example, that N consists of 1, 2, 3, etc., merely

names some elements of N without identifying them (and the "etc." is useless).

The natural numbers can be defined, but the procedure is involved and not quite

pertinent to the rest of the book. The Suggested Reading list contains references

to this problem, as well as to the other steps that are required if one wishes to

develop calculus from its basic logical starting point. The further development

of this program would proceed with the definition of Z, in terms of N, and the

definition of Q in terms of Z. This program results in a certain well-defined

set Q_, certain explicitly defined operations + and •, and properties P1-P12 as

theorems. The final step in this program is the construction of R, in terms of Q

.

It is this last construction which concerns us. Assuming that Q_ has been defined,

and that PI-PI 2 have been proved for Q, we shall ultimately define R and prove all

ofP1-P13 for R.

Our intention of proving PI -PI 3 means that we must define not only real num-

bers, but also addition and multiplication of real numbers. Indeed, the real num-

bers are of interest only as a set together with these operations: how the real

numbers behave with respect to addition and multiplication is crucial; what the

real numbers may actually be is quite irrelevant. This assertion can be expressed in

a meaningful mathematical way, by using the concept of a "field," which includes

as special cases the three important number systems of this book. This extraordi-

narily important abstraction of modern mathematics incorporates the properties

P1-P9 common to Q_, R, and C. A field is a set F (of objects of any sort what-

soever), together with two "binary operations" + and • defined on F (that is, two

rules which associate to elements a and b in F, other elements a + b and a • b

in F) for which the following conditions are satisfied:

(1) (a + b) + c — a + (b + c) for all a, b, and c in F.

(2) There is some element in F such that

(i) a + = a for all a in F,

(ii) for every a in F, there is some element b in F such that a + b — 0.

581
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(3) a + b = b + a for all a and b in F.

(4) (a • b) • c = a • (b • c) for all a, b, and c in F.

(5) There is some element 1 in F such that 1^0 and

(i) a* 1 = a for all a in F,

(ii) For every a in F with a / 0, there is some element b in F such that

a.fc= 1.

(6) a * b = b » a for all a and b in F.

(7) a • (/? + c) — a • b + a • c for all a, b, and c in F.

The familiar examples of fields are, as already indicated, Q, R, and C, with

+ and • being the familiar operations of + and •
. It is probably unnecessary to

explain why these are fields, but the explanation is, at any rate, quite brief. When
+ and • are understood to mean the ordinary + and • , the rules (1), (3), (4), (6), (7)

are simply restatements of PI , P4, P5, P8, P9; the elements which play the role of

and 1 are the numbers and 1 (which accounts for the choice of the symbols 0, 1);

and the number b in (2) or (5) is —a or a , respectively. (For this reason, in an

arbitrary field F we denote by —a the element such that a + (—a) — 0, and by

a the element such that a • a
-1 = 1, for a ^ 0.)

In addition to Q_, R, and C, there are several other fields which can be described

easily. One example is the collection F\ of all numbers a + b\2 for a, b in Q.
The operations + and • will, once again, be the usual + and • for real numbers.

It is necessary to point out that these operations really do produce new elements

of Fi:

(a + bV2) + (c + dV2) = (a + c) + (b + d)\fl, which is in F\\

(a + bVl)- (c + dy/2) = (ac + 2bd) + (bc + ad)V2, which is in F\.

Conditions (1), (3), (4), (6), (7) for a field are obvious for F\: since these hold for

all real numbers, they certainly hold for all real numbers of the form a + b\2.

Condition (2) holds because the number = 0+0v 2 is in F\ and, for a = a + b\2
in F\ the number fi = (—a) + (—b)w2 in F\ satisfies a + ji = 0. Similarly,

1 = 1 +0v2 is in F\, so (5i) is satisfied. The verification of (5ii) is the only slighdy

difficult point. If a + b\f2 / 0, then

a + bV2
X—== 1;

a+b^/2

it is therefore necessary to show that \/{a + bv2 ) is in F\. This is true because

1 _ a-bs/2 _ a (-b) r-

a+bV2 (a-bV2)(a+bV2) a 2 -2b 2 a 2 -2b2

(The division by a — b\2 is valid because the relation a — by/2 = could be true

only if a = b — (since v 2 is irrational) which is ruled out by the hypothesis

a + by/l^ 0.)

The next example of a field, Fj, is considerably simpler in one respect: it con-

tains only two elements, which we might as well denote by and 1. The operations
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+ and • are described by the following tables.

+ 01 .01

1

1

1 1 1

The verification of conditions (1) (7) are straightforward, case-by-case checks. For

example, condition (1) may be proved by checking the 8 equations obtained by

setting a, b, c — or 1. Notice that in this field 1 + 1 = 0; this equation may also

be written 1 = — 1.

Our final example of a field is rather silly: Ft, consists of all pairs (a, a) for a

in R, and + and • are defined by

(a, a) + (b, b) = (a + b,a + b),

(a, a) • (b, b) = (a • b,a • b).

(The + and • appearing on the right side are ordinary addition and multiplication

for R.) The verification that F3 is a field is left to you as a simple exercise.

A detailed investigation of the properties of fields is a study in itself, but for our

purposes, fields provide an ideal framework in which to discuss the properties of

numbers in the most economical way. For example, the consequences of P1-P9

which were derived for "numbers" in Chapter 1 actually hold for any field; in

particular, they are true for the fields Q, R, and C.

Notice that certain common properties of Q, R, and C do not hold for all fields.

For example, it is possible for the equation 1 + 1 = to hold in some fields, and

consequently a — b — b — a does not necessarily imply that a = b. For the field

C the assertion 1 + 1/0 was derived from the explicit description of C; for the

fields Q and R, however, this assertion was derived from further properties which

do not have analogues in the conditions for a field. There is a related concept

which does use these properties. An ordered field is a field F (with operations +
and •) together with a certain subset P of F (the "positive" elements) with the

following properties:

(8) For all a in F, one and only one of the following is true:

(i) a = 0,

(ii) a is in P,

(iii) —a is in P.

(9) If a and b are in P, then a + b is in P.

(10) If a and b are in P, then a • b is in P.

We have already seen that the field G cannot be made into an ordered field.

The field F2, with only two elements, likewise cannot be made into an ordered

field: in fact, condition (8), applied to 1 — — 1, shows that 1 must be in P; then (9)

implies that 1 + 1 = is in P, contradicting (8). On the other hand, the field F\ ,

consisting of all numbers a + /?v2 with a,b in Q, certainly can be made into
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an ordered field: let P be the set of all a + b\/7. which are positive real numbers

(in the ordinary sense). The field Ft, can also be made into an ordered field; the

description of P is left to you.

It is natural to introduce notation for an arbitrary ordered field which corre-

sponds to that used for Q and R: we define

a > b if a — b is in P,

a < b if b > a,

a < b if a < b or a = b,

a > b if a > b or a = b.

Using these definitions we can reproduce, for an arbitrary ordered field F, the

definitions of Chapter 7:

A set A of elements of F is bounded above if there is some x in F such

that x > a for all a in A . Any such x is called an upper bound for A . An
element x of F is a least upper bound for A if x is an upper bound for A
and x < y for every y in F which is an upper bound for A

.

Finally, it is possible to state an analogue of property PI 3 for R; this leads to the

last abstraction of this chapter:

A complete ordered field is an ordered field in which every nonempty set

which is bounded above has a least upper bound.

The consideration of fields may seem to have taken us far from the goal of

constructing the real numbers. However, we are now provided with an intelligible

means of formulating this goal. There are two questions which will be answered

in the remaining two chapters:

1

.

Is there a complete ordered field?

2. Is there only one complete ordered field?

Our starting point for these considerations will be Q, assumed to be an or-

dered field, containing N and Z as certain subsets. At one crucial point it will be

necessary to assume another fact about Q:

Let x be an element of Q with x > 0. Then for any y in Q_ there is some n

in N such that nx > y.

This assumption, which asserts that the rational numbers have the Archimedean

property of the real numbers, does not follow from the other properties of an

ordered field (for the example that demonstrates this conclusively see reference [14]

of the Suggested Reading). The important point for us is that when Q is explicitly

constructed, properties PI -PI 2 appear as theorems, and so does this additional
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assumption; ifwe really began from the beginning, no assumptions about Q_ would

be necessary.

PROBLEMS

1. Let F be the set {0, 1, 2} and define operations + and • on F by the following

tables. (The rule for constructing these tables is as follows: add or multiply

in the usual way, and then subtract the highest possible multiple of 3; thus

2-2 = 4 = 3+1, so 2-2=1.)

1 1

1 2

1 2

2 1

1 2

2 1

Show that F is a field, and prove that it cannot be made into an ordered

field.

2. Suppose now that we try to construct a field F having elements 0, 1,

2, 3 with operations + and • defined as in the previous example, by adding

or multiplying in the usual way, and then subtracting the highest possible

multiple of 4. Show that F will not be a field.

3. Let F = {0, 1, a, ft} and define operations + and • on F by the following

tables.

I a 1 a ft

a

ft

1 a ft

1 ft a

a ft 1

ft a 1

a

P

1 a ft

a ft 1

ft 1 a

Show that F is a field.

4. (a) Let F be a field in which 1 + 1=0. Show that a + a = for all a (this

can also be written a = —a).

(b) Suppose that a + a = for some a ^0. Show that 1 + 1=0 (and

consequendy b + b = for all b).
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5. (a) Show that in any field we have

(1 + •• + !)•(!+ +D = 1+ +1
111 [lilies mn limes

for all natural numbers m and n

.

(b) Suppose that in the field F we have

1+ +1=0

for some natural number m. Show that the smallest m with this property

must be a prime number (this prime number is called the characteristic

of F).

6. Let F be any field with only finitely many elements.

(a) Show that there must be distinct natural numbers m and n with

l + ... + l = l + ... + l.

in times n limes

(b) Conclude that there is some natural number k with

1 + + 1 = 0.

A times

7. Let a, b, c, and d be elements of a field F with a * d — b » c ^ 0. Show that

for any a and fi in F the equations

a • x + b » y = a,

c»x+d»y = fi,

can be solved for x and v in F.

8. Let a be an element of a field F. A "square root" of a is an element b of F
with b" b » b = a.

(a) How many square roots does have?

(b) Suppose a / 0. Show that if a has a square root, then it has two square

roots, unless 1 + 1 = 0, in which case a has only one.

9. (a) Consider an equation x~ + b • x + c = 0, where b and c are elements of

a field F. Suppose that b" — 4 • c has a square root r in F. Show that

(—b + r)l2 is a solution of this equation. (Here 2=1 + 1 and 4 = 2 + 2.)

(b) In the field Fj of the text, both elements clearly have a square root.

On the other hand, it is easy to check that neither element satisfies the

equation x +jc + 1 = 0. Thus some detail in part (a) must be incorrect.

What is it?

10. Let F be a field and a an element of F which does not have a square root.

This problem shows how to construct a bigger field F', containing F, in

which a does have a square root. (This construction has already been carried
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through in a special case, namely, F — R and a = — 1 ; this special case should

guide you through this example.)

Let F' consist of all pairs (x, y) with x and y in F. If the operations on F
are + and • , define operations and O on F' as follows:

(x, y) (z, w) = (x + z, y + w),

(x, y) O (z, w) = (x 'Z + a* y • w, y • z + x »w).

(a) Prove that F', with the operations and O, is a field.

(b) Prove that

(x,O)0(v,O) = (.Y + y,O),

U,0)O(y,0) = (.v.y.O),

so that we may agree to abbreviate (x , 0) by x

.

(c) Find a square root of a — (a, 0) in F'

.

11. Let F be the set of all four-tuples (w,x,y,z) of real numbers. Define +
and • by

(.v, /, //, v) + (w, x, y, z) = (s + w,t +x,u + y,v + z),

(s, t, u, v) • (w, x, y, z) = (sw — tx — uy — vz, sx + tw + uz — vy,

sy + uw + vx — tz, sz + vw + ty — ux).

(a) Show that F satisfies all conditions for a field, except (6). At times the

algebra will become quite ornate, but the existence of multiplicative in-

verses is the only point requiring any thought.

(b) It is customary to denote

(0, 1,0,0) by/,

(0,0, 1,0) by j,

(0,0,0, 1) by A:.

Find all 9 products ofpairs i, j, and k. The results will show in particular

that condition (6) is definitely false. This "skew field" F is known as the

quaternions.



CONSTRUCTION OF THE
CHAPTER * M ^^ REAL NUMBERS

The mass of drudgery which this chapter necessarily contains is relieved by one

truly first-rate idea. In order to prove that a complete ordered field exists we will

have to explicitly describe one in detail; verifying conditions ( 1)—(10) for an ordered

field will be a straightforward ordeal, but the description of the field itself, of the

elements in it, is ingenious indeed.

At our disposal is the set of rational numbers, and from this raw material it is

necessary to produce the field which will ultimately be called the real numbers.

To the uninitiated this must seem utterly hopeless—if only the rational numbers

are known, where are the others to come from? By now we have had enough

experience to realize that the situation may not be quite so hopeless as that casual

consideration suggests. The strategy to be adopted in our construction has already

been used effectively for defining functions and complex numbers. Instead of

trying to determine the "real nature" of these concepts, we settled for a definition

that described enough about them to determine their mathematical properties

completely.

A similar proposal for defining real numbers requires a description of real num-

bers in terms of rational numbers. The observation, that a real number ought to

be determined completely by the set of rational numbers less than it, suggests a

strikingly simple and quite attractive possibility: a real number might (and in fact

eventually will) be described as a collection of rational numbers. In order to make

this proposal effective, however, some means must be found for describing "the

set of rational numbers less than a real number" without mentioning real num-

bers, which are still nothing more than heuristic figments of our mathematical

imagination.

If A is to be regarded as the set of rational numbers which are less than the

real number a, then A ought to have the following property: If x is in A and y

is a rational number satisfying v < x, then y is in A. In addition to this property,

the set A should have a few others. Since there should be some rational number

x < a, the set A should not be empty. Likewise, since there should be some

rational number x > a, the set A should not be all of Q,. Finally, if x < a, then

there should be another rational number y with x < y < a, so A should not

contain a greatest member.

If we temporarily regard the real numbers as known, then it is not hard to

check (Problem 8-17) that a set A with these properties is indeed the set of rational

numbers less than some real number a. Since the real numbers are presently

in limbo, your proof, if you supply one, must be regarded only as an unofficial

comment on these proceedings. It will serve to convince you, however, that we

have not failed to notice any crucial property of the set A. There appears to be

no reason for hesitating any longer.

588
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DEFINITION A real number is a set a, of rational numbers, with the following four proper-

ties:

(1) If x is in a and y is a rational number with y < x, then y is also in a.

(2) a # 0.

(3) or ^ Q
(4) There is no greatest element in or; in other words, if x is in a, then there

is some y in a with y > x.

The set of all real numbers is denoted by R.

Just to remind you of the philosophy behind our definition, here is an explicit

example of a real number:

a = {.v in Q : x < or x" < 2}.

It should be clear that a is the real number which will eventually be known as V 2,

but it is not an entirely trivial exercise to show that a actually is a real number.

The whole point of such an exercise is to prove this using only facts about Q;
the hard part will be checking condition (4), but this has already appeared as a

problem in a previous chapter (finding out which one is up to you). Notice that

condition (4), although quite bothersome here, is really essential in order to avoid

ambiguity; without it both

{jcinQ:* < 1}

and

a inQ,:.v < 1}

would be candidates for the "real number 1
."

The shift from A to a in our definition indicates both a conceptual and a no-

tational concern. Henceforth, a real number is, by definition, a set of rational

numbers. This means, in particular, that a rational number (a member of Q,)

is not a real number; instead every rational number x has a natural counterpart

which is a real number, namely, {y in Q_ : y < x}. After completing the construc-

tion of the real numbers, we can mentally throw away the elements of Q_ and

agree that Q, will henceforth denote these special sets. For the moment, however,

it will be necessary to work at the same time with rational numbers, real numbers

(sets of rational numbers) and even sets of real numbers (sets of sets of rational

numbers). Some confusion is perhaps inevitable, but proper notation should keep

this to a minimum. Rational numbers will be denoted by lower case Roman letters

(x, y, z, a, b, c) and real numbers by lower case Greek letters (a, /3, y); capital

Roman letters (A, B, C) will be used to denote sets of real numbers.

The remainder of this chapter is devoted to the definition of +, • , and P for R,

and a proof that with these structures R is indeed a complete ordered field.

We shall actually begin with the definition of P, and even here we shall work

backwards. We first define a < fi; later, when +, • , and are available, we shall

define P as the set of all a with < a , and prove the necessary properties for P.
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The reason for beginning with the definition of < is the simplicity of this concept

in our present setup:

Definition. If a and ft are real numbers, then a < ft means that a is contained in

ft (that is, every element of a is also an element of ft), but a =£ ft.

A repetition of the definitions of <, >, > would be stultifying, but it is interesting

to note that < can now be expressed more simply than < ; if a and ft are real

numbers, then a <
ft if and only if a is contained in ft.

If A is a bounded collection of real numbers, it is almost obvious that A should

have a least upper bound. Each a in A is a collection of rational numbers; if these

rational numbers are all put in one collection ft, then ft is presumably sup A. In

the proof of the following theorem we check all the little details which have not

been mentioned, not least of which is the assertion that ft is a real number. (We

will not bother numbering theorems in this chapter, since they all add up to one

big Theorem: There is a complete ordered field.)

THEOREM If A is a set of real numbers and A / and A is bounded above, then A has a

least upper bound.

PROOF Let ft
= {x : x is in some a in A}. Then ft is certainly a collection of rational

numbers; the proof that ft is a real number requires checking four facts.

(1) Suppose that x is in ft and y < x. The first condition means that x is in a

for some a in A. Since a is a real number, the assumption y < x implies

that y is in a. Therefore it is certainly true that y is in ft.

(2) Since A^0, there is some a in A. Since a is a real number, there is some

x in a. This means that x is in ft, so ft / 0.

(3) Since A is bounded above, there is some real number y such that a < y
for every a in A. Since y is a real number, there is some rational number

x which is not in y. Now a < y means that a is contained in y, so it is

also true that x is not in a. for any a in A. This means that x is not in ft;

soft^Q,.

(4) Suppose that x is in ft. Then x is in a for some or in A. Since a does not

have a greatest member, there is some rational number y with x < y and y

in a. But this means that y is in ft; thus ft does not have a greatest member.

These four observations prove that ft is a real number. The proof that ft is the

least upper bound of A is easier. If a is in A, then clearly a is contained in ft\ this

means that a <
ft, so ft is an upper bound for A. On the other hand, if y is an

upper bound for A, then a < y for every a in A; this means that a is contained

in y, for every a in A, and this surely implies that ft is contained in y. 'I Ins. in

turn, means that ft
< y; thus ft is the least upper bound of A. |

The definition of + is both obvious and easy, but is must be complemented with

,i proof thai this "obvious" definition makes any sense at all.
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Definition. If a and ft are real numbers, then

a + ft
= {x:x = y+z for some y in a and some z in /3}.

theorem If a and /? are real numbers, then a + /3 is a real number.

PROOF Once again four facts must be verified.

(1) Suppose w < x for some x in a + /?. Then a = y + z for some v in a and

some z in /J, which means that w < y + z, and consequently, w — y < z.

This shows that w — y is in ft (since z is in /?, and ft is a real number). Since

w = y + (w — y), it follows that w is in cc + ft.

(2) It is clear that a + ft ^ 0, since a ^ and /? 7^ 0.

(3) Since a ^ Q and /3 / Q, there are rational numbers a and Z? with a

not in cc and b not in /3. Any x in a satisfies x < a (for if a < a, then

condition (1) for a real number would imply that a is in a); similarly any y

in ft satisfies y < b. Thus x + y < a + b for any a in a and y in ft. This

shows that a + b is not in a + ft, so a + /? ^ Q.

(4) If a is in a + /3, then x = y + z for y in cc and z in /3. There are y' in a

and z' in /? with y < y' and z < z'\ then a < y' + z! and y' + z' is in cc + ft.

Thus a + ft has no greatest member. |

By now you can see how tiresome this whole procedure is going to be. Every time

we mention a new real number, we must prove that it is a real number; this requires

checking four conditions, and even when trivial they require concentration. There

is really no help for this (except that it will be less boring if you check the four

conditions for yourself). Fortunately, however, a few points of interest will arise

now and then, and some of our theorems will be easy. In particular, two properties

of + present no problems.

theorem If a, ft, and y are real numbers, then (a + ft) + y = a + (ft + y).

PROOF Since (a + y) + z = a + (y + z) for all rational numbers a, y , and z, every member
of (cc + ft) + y is also a member of a + (ft + y), and vice versa. |

THEOREM If cc and ft are real numbers, then cc + ft
=

ft + cc

.

PROOF Left to you (even easier). |

To prove the other properties of + we first define 0.

Definition. = {a in Q : a < 0}.

It is, thank goodness, obvious that is a real number, and the following theorem

is also simple.
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THEOREM If a is a real number, then a + = a.

PROOF If a
-

is in a and y is in 0, then y < 0, so a + y < x . This implies that x + y is in a

.

Thus every member of a + is also a member of a

.

On the other hand, if x is in a, then there is a rational number v in a such that

y > x. Since x — y + {x — y), where y is in a, and x — y < (so that x — y is

in 0), this shows that x is in a + 0. Thus every member of a is also a member
of a + 0. |

The reasonable candidate for —a would seem to be the set

{a in Q: —x is not in a}

(since —a not in a means, intuitively, that —a > a, so that a < —or). But in certain

cases this set will not even be a real number. Although a real number a does not

have a greatest member, the set

Q — a = {a in Q : a is not in a}

may have a least element aq; when a is a real number of this kind, the set

{a : —a is not in a} will have a greatest element —ao. It is therefore necessary to

introduce a slight modification into the definition of —a, which comes equipped

with a theorem.

Definition. If a is a real number, then

—a = {a in Q : —a is not in a, but — a is not the least element ofQ — a}.

THEOREM If a is a real number, then —or is a real number.

PROOF (1) Suppose that a is in —a and y < a. Then — y > —a. Since —a is not in a,

it is also true that —y is not in a. Moreover, it is clear that —y is not the

smallest element of Q_ — or, since —a is a smaller element. This shows that

y is in —a.

(2) Since a ^ Q_, there is some rational number y which is not in a. We can

assume that v is not the smallest rational number in Q — a (since y can

always be replaced by any y' > y). Then — y is in —a. Thus —a / 0.

(3) Since a/0, there is some a in o\ Then —x cannot possibly be in —a7

, so

-« /a
(4) If a is in —a, then —a is not in a, and there is a rational number y < —a

which is also not in a. Let z be a rational number with y < z < —a. Then

Z is also not in a, and z is clearly not the smallest element of Q_ — a. So
— z is in —a. Since — ^ > x, this shows that —a does not have a greatest

element. |

The proof that a + (—a) = is not entirely straightforward. The difficulties

are not caused, as you might presume, by the finicky details in the definition
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of —or . Rather, at this point we require the Archimedean property of Q stated on

page 584, which does not follow from PI—P12. This property is needed to prove

the following lemma, which plays a crucial role in the next theorem.

LEMMA Let a be a real number, and z a positive rational number. Then there are (Figure 1)

rational numbers x in a, and y not in or, such that y — x = z. Moreover, we may
assume that y is not the smallest element of Q — or.

PROOF Suppose first that z is in a . If the numbers

z,2z,3z,...

were all in a, then every rational number would be in a, since every rational num-

ber w satisfies w < nz for some n, by the additional assumption on page 584. This

contradicts the fact that a is a real number, so there is some k such that x = kz is

in a and y = (k + \)z is not in or. Clearly y — x — z.

Moreover, if y happens to be the smallest element of Q_ — or, let x' > x be an

element of a, and replace x by x', and y by y + (x' — x).

If z is not in or, there is a similar proof, based on the fact that the numbers (—n)z

cannot all fail to be in a. |

a

FIGURE 1

THEOREM If a is a real number, then

a + (-a) = 0.

PROOF Suppose x is in a and y is in —a. Then —y is not in a, so —y > x. Hence

x + y < 0, so x + y is in 0. Thus every member of a + (—a) is in 0.

It is a little more difficult to go in the other direction. If z is in 0, then — z > 0.

According" to the lemma, there is some a: in or, and some y not in or, with y not the

smallest element of Q, — or, such that y — x = —z. This equation can be written

x + (— y) = z. Since x is in or, and —y is in —a, this proves that z is in or + (—a). |

Before proceeding with multiplication, we define the "positive elements" and

prove a basic property:

Definition. P = [a in R : a > 0}.

Notice that or + fi is clearly in P if a and /} are.
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THEOREM If a is a real number, then one and only one of the following conditions holds:

(i) a = 0,

(ii) a is in P,

(in) —a is in P.

PROOF If a contains any positive rational number, then a certainly contains all negative

rational numbers, so a contains and a ^ 0, i.e., a is in P. If or contains no

positive rational numbers, then one of two possibilities must hold:

(1) a contains all negative rational numbers; then a = 0.

(2) there is some negative rational number x which is not in a-; it can be as-

sumed that x is not the least element of Q, - a (since x could be replaced

by x/2 > x); then -a contains the positive rational number -x, so, as we

have just proved, —a is in P.

This shows that at least one of (i)-(iii) must hold. If a = 0, it is clearly impossible

for condition (ii) or (iii) to hold. Moreover, it is impossible that a > and —a >

both hold, since this would imply that = a + (—a) > 0. |

Recall that a > P was defined to mean that a contains p, but is unequal to p.

This definition was fine for proving completeness, but now we have to show that

it is equivalent to the definition which would be made in terms of P. Thus, we

must show that a - P > is equivalent to a > p. This is clearly a consequence

of the next theorem.

THEOREM If a, P, and y are real numbers and a > p, then a + y > P + y.

PROOF The hypothesis a > p implies that p is contained in a; it follows immediately from

the definition of + that p+ y is contained ina+ y. This shows that a+ y > p+ y.

We can easily rule out the possibility of equality, for if

a + y = P + y.

then

THEOREM

a = (a + y) + (-y) = (P + y) + (~Y) = P,

which is false. Thus a + y>p + y.f

Multiplication presents difficulties of its own. If a.p > 0, then a • P can be

defined as follows.

Definition. If a and p are real numbers and or, P > 0, then

a . p = {z : z < or z = x y for some x in a and y in p with x, y > 0}.

If a and p are real numbers with a, p > 0, then a • P is a real number.
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PROOF As usual, we must check four conditions.

(1) Suppose w < z, where z is in a • p. If w < 0, then w is automatically

in a • p. Suppose that w > 0. Then z > 0, so z = x y for some positive x

in a and positive y in p. Now

wz u; A" v
u> =

w

Since < w < z, we have w/z < 1, so (w/z) • x is in a. Thus u; is in a • /J.

(2) Clearly a • # 0.

(3) If a is not in a, and y is not in /?, then x > x' for all x' in a, and y > y'

for all y' in /S. Hence xy > x'y' for all such positive x' and y'. So xy is not

in o- • /?; thus a » ^ ^ Q.

(4) Suppose w is in a •
fi, and u» < 0. There is some x in a with x > and

some y in /? with y > 0. Then z = xy is in a. • ^S and z > w. Now suppose

w > 0. Then w — xy for some positive x in a and some positive y in /3.

Moreover, a contains some x' > x\ if z = x'y, then z > xy = w, and z is

in a • fl. Thus a • /3 does not have a greatest element. |

Notice that a • /6 is clearly in P if a and /3 are. This completes the verification

of all properties of P. To complete the definition of • we first define \a\.

Definition. If a is a real number, then

\a\ =
cc, if a >
—a, if a < 0.

Definition. If a and )3 are real numbers, then

a -p =
0, ifor = 0or£ =
|ah|j8|, if a > 0. > oi-a < 0. $ <0
-(|a|.|)S|), if a > 0. fi < or a < 0. p > 0.

As one might suspect, the proofs of the properties of multiplication usually in-

volve reduction to the case of positive numbers.

theorem II a, P, and y are real numbers, then a • (P • y) = (a • p) • y.

PROOF This is clear if a, p, y > 0. The proof for the general case requires considering

separate cases (and is simplified slightly if one uses the following theorem). |

THEOREM 11 a and P arc real numbers, then a • p = p • a.
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PROOF This is clear if a, j3 > 0, and the other cases are easily checked. |

Definition. 1 = {x in Q_ : x < 1 }.

(It is clear that 1 is a real number.)

THEOREM If a is a real number, then a • 1 — a.

PROOF Let a > 0. It is easy to see that every member of a • 1 is also a member of a.

On the other hand, suppose x is in a. If x < 0, then x is automatically in a • 1.

If x > 0, then there is some rational number y in a such that x < y. Then

x = v • (x/y), and x/y is in 1, so x is in a • 1. This proves that a • 1 = a if a > 0.

If a < 0, then, applying the result just proved, we have

a*l = -(|a|*|l|) = -(|a|) = a.

Finally, the theorem is obvious when a = 0. |

Definition. If a is a real number and a > 0, then

a = [x in Q : x < 0, or x > and \/x is not in a, but \/x is not the smallest

member of Q-a};

if a < 0, then o-
-1 = — (|a|)

-1
.

THEOREM If or is a real number unequal to 0, then a x
is a real number.

PROOF Clearly it suffices to consider only a > 0. Four conditions must be checked.

(1) Suppose v < x, and x is in or
-1

. If y < 0, then y is in or
-1

. If y > 0, then

x > 0, so 1/jc is not in a. Since 1/y > l/.v, it follows that 1/y is not in a,

and 1 /y is clearly not the smallest element of Q_

Clearly a" 1 # 0.

a, so v is in a -l

(3) Since a > 0, there is some positive rational number x inof. Then l/x is

* / Q.
-i

(4) Suppose x is in a~ . If x < 0, there is clearly some y in a~ with y > .v

because a~ l contains some positive rationals. If x > 0, then \/x is not in a.

Since l/.r is not the smallest member of Q — a, there is a rational number

y not in a, with y < l/.v. Choose a rational number z with y < z < 1/*.

Then \/z is in a , and \/z > x. Thus a~ l does not contain a largest

member. |

LEMMA

In order to prove that a !
is really the multiplicative inverse of or, it helps to

have another lemma, which is the multiplicative analogue of our first lemma.

Let a be a real number with a > 0, and z a rational number with z > 1. Then

there are rational numbers x in a, and y not in a, such that y/x = z. Moreover,

we can assume that y is not the least element of Q — a.
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PROOF Suppose first that z is in a. Since z — 1 > and

z" = (1 + (z - 1))" > \+n(:

it follows that the numbers
2 3

z, z , z , ...

1),

cannot all be in a. So there is some k such that jc = z
k

is in a, and y = z
k+

is not

in a. Clearly y/x = z. Moreover, if y happens to be the least element of Q — a,

let x' > x be an element of a, and replace x byx' and v by yx'/x.

If z is not in a, there is a similar proof, based on the fact that the numbers \/z
k

cannot all fail to be in a. |

THEOREM If a is a real number and a ^ 0, then c • a -1 = 1.

PROOF It obviously suffices to consider only a > 0, in which case a -1 > 0. Suppose that

x is a positive rational number in a, and y is a positive rational number in a~ l
.

Then 1 / v is not in a , so 1 /y > .v ; consequently jcy < 1 , which means that jcv is

in 1 . Since all rational numbers x < are also in 1 , this shows that every member
of a • a~ l

is in 1.

To prove the converse assertion, let z be in 1. If z < 0, then clearly z is in

< Z < 1. According to the lemma, there are positive rationala • o/~ . Suppose

numbers x in or, and y not in a, such that y/x = \/z\ and we can assume that y

is not the smallest element of Q — a. But this means that z = x (1/y), where x

is in a, and 1/y is in a -1
. Consequently, z is in a • a~ l

. |

We are almost done! Only the proof of the distributive law remains. Once again

we must consider many cases, but do not despair. The case when all numbers are

positive contains an interesting point, and the other cases can all be taken care of

very neatly.

theorem If a, fi, and y are real numbers, then a-ifi + y)— a*^+o/-y.

PROOF Assume first that «,/i,/ > 0. Then both numbers in the equation contain all

rational numbers < 0. A positive rational number in a • (/3 + y) is of the form

x (y + z.) for positive x in a, y in ft, and z in y. Since x • (y + z) = x • y + x z,

where x y is a positive element of a • /3, and x z is a positive element of a • y,

this number is also in a •
ft + a • y . Thus, every element of a •

(ft + y ) is also in

a •
ft + a • y

.

On the other hand, a positive rational number in a •
ft + a • y is of the form

x\ y + X2 z for positive x\,X2 in a, y in /?, and z in y.

U1A2) ' y — y> so C*i A2) • y is in ^- Thus

.Yi • y + X2 z = *2[U"i/-Y2)y + z]

If x\ < X2, then

is in a •
(ft + y). Of course, the same trick works if xi <x\.

To complete the proof it is necessary to consider the cases when a, ft, and y
are not all > 0. If any one of the three equals 0, the proof is easy and the cases
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involving a < can be derived immediately once all the possibilities for /3 and

y have been accounted for. Thus we assume a > and consider three cases:

fi, y < 0, and /3 < 0, y > 0, and /3 > 0, y < 0. The first follows immediately from

the case already proved, and the third follows from the second by interchanging /3

and y. Therefore we concentrate on the case ft < 0, y > 0. There are then two

possibilities:

(l)£ + y >0. Then

a • y = a • ([0 + y] + |/3|) = a . (0 + y ) + a • |/*|,

so

so

0f(j8 + y) = -(af.|j8|)+afy

= ar»/J+a«y.

(2) + y < 0. Then

of • |j8| =a.(|£ + y| + y)=<*.|£ + y|+c*.y,

a-(j8 + y) = -(a.|)8 + y|) = -(a.|)8|) + a.y =a.^ + a.y. |

This proof completes the work of the chapter. Although long and frequently

tedious, this chapter contains results sufficiently important to be read in detail at

least once (and preferably not more than once!). For the first time we know that we
have not been operating in a vacuum—there is indeed a complete ordered field, the

theorems of this book are not based on assumptions which can never be realized.

One interesting and horrid possibility remains: there may be several complete

ordered fields. If this is true, then the theorems of calculus are unexpectedly rich

in content, but the properties PI PI 3 are disappointingly incomplete. The last

chapter disposes of this possibility; properties PI-PI 3 completely characterize the

real numbers—anything that can be proved about real numbers can be proved on

the basis of these properties alone.

PROBLEMS
There are only two problems in this set, but each asks for an entirely different

construction of the real numbers! The detailed examination of another construc-

tion is recommended only for masochists, but the main idea behind these other

constructions is worth knowing. The real numbers constructed in this chapter

might be called "the algebraist's real numbers," since they were purposely defined

so as to guarantee the least upper bound property, which involves the ordering <,

an algebraic notion. The real number system constructed in the next problem

mighl be called "the analyst's real numbers," since they are devised so that Cauchy

sequences will always converge.

1. Since every real number ought to be the limit of some Cauchy sequence

of rational numbers, we might try to define a real number to be a Cauchy
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sequence of rational numbers. Since two Cauchy sequences might converge

to the same real number, however, this proposal requires some modifications.

(a) Define two Cauchy sequences of rational numbers {a,,} and \bn ) to be

equivalent (denoted by {a,,} ~ {b,,}) if lim (a„ — bn ) = 0. Prove that

{an }
>> {an }, that {bn }

" {a,,} if {a,,} ~ [b„], and that {a»} ~ {cn } if

{an }
~ {bn} and {£„} - {c,,}.

(b) Suppose that a is the set of all sequences equivalent to {an }, and ft is the

set of all sequences equivalent to {/?„}• Prove that either a D ^ = or

cr = yS. (If a fl/? / 0, then there is some {c„} in both a and /?. Show that

in this case a and ft both consist precisely of those sequences equivalent

to {cn }.)

Part (b) shows that the collection of all Cauchy sequences can be split up

into disjoint sets, each set consisting of all sequences equivalent to some

fixed sequence. We define a real number to be such a collection, and

denote the set of all real numbers by R.

(c) If a and ft are real numbers, let {a,,} be a sequence in a, and {bn } a

sequence in ft. Define a + ft to be the collection of all sequences equiva-

lent to the sequence {an +bn }. Show that {a„ +bn } is a Cauchy sequence

and also show that this definition does not depend on the particular se-

quences {a,,} and {bn } chosen for a and ft. Check also that the analogous

definition of multiplication is well defined.

(d) Show that R is a field with these operations; existence of a multiplicative

inverse is the only interesting point to check.

(e) Define the positive real numbers P so that R will be an ordered field.

(f) Prove that every Cauchy sequence of real numbers converges. Remem-
ber that if {an } is a sequence of real numbers, then each a„ is itself a

collection of Cauchy sequences of rational numbers.

2. This problem outlines a construction of "the high-school student's real num-

bers." We define a real number to be a pair (a, {bn }), where a is an inte-

ger and {bn } is a sequence of natural numbers from to 9, with the pro-

viso that the sequence is not eventually 9; intuitively, this pair represents
oo

a + >.fr„10~". With this definition, a real number is a very concrete ob-

ject, but the difficulties involved in defining addition and multiplication are

formidable (how do you add infinite decimals without worrying about car-

rying digits infinitely far out?). A reasonable approach is outlined below; the

trick is to use least upper bounds right from the start.

(a) Define (a. {b„}) < (c, {c/„}) if a < c, or if a = c and for some // we have

bn < dn but bj = dj for 1 < j < n. Using this definition, prove the least

upper bound property.

k

(b) Given a = (<r/, {/?„}), define oik = a + VJ /?„ 10 "; intuitively, c^ is the
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rational number obtained by changing all decimal places after the fcth

k

to 0. Conversely, given a rational number r of the form a + }^ b„\0~",

n=\

let r' denote the real number {a, {&,/}), where b„' = b„ for 1 < n < k

and bn ' = for n > k. Now for a — {a, {bn }) and /? = (c, {d„}) define

a + fi = sup{(a* + fiicY • k a natural number}

(the least upper bound exists by part (a)). If multiplication is defined

similarly, then the verification of all conditions for a field is a straight-

forward task, not highly recommended. Once more, however, existence

of multiplicative inverses will be the hardest.
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We shall now revert to the usual notation for real numbers, reserving boldface

symbols for other fields which may turn up. Moreover, we will regard integers and

rational numbers as special kinds of real numbers, and forget about the specific

way in which real numbers were defined. In this chapter we are interested in only

one question: are there any complete ordered fields other than R? The answer

to this question, if taken literally, is "yes." For example, the field Ft, introduced in

Chapter 28 is a complete ordered field, and it is certainly not R. This field is a

"silly" example because the pair (a, a) can be regarded as just another name for

the real number a; the operations

(a, a) + (b, b) = (a +b,a + b),

{a, a) • {b, b) = (a b,a • b),

are consistent with this renaming. This sort of example shows that any intelligent

consideration of the question requires some mathematical means ofdiscussing such

renaming procedures.

If the elements of a field F are going to be used to rename elements of R, then

for each a in R there should correspond a "name" f(a) in F. The notation f(a)

suggests that renaming can be formulated in terms of functions. In order to do

this we will need a concept of function much more general than any which has

occurred until now; in fact, we will require the most general notion of "function"

used in mathematics. A function, in this general sense, is simply a rule which

assigns to some things, other things. To be formal, a function is a collection of

ordered pairs (of objects of any sort) which does not contain two distinct pairs with

the same first element. The domain of a function / is the set A of all objects a

such that {a, b) is in / for some b\ this (unique) b is denoted by f{a). If f(a) is

in the set B for all a in A, then / is called a function from A to B. For example,

if f(x) = sin x for all x in R (and / is defined only for x in R), then / is a

function from R to R; it is also a function from R to [— 1, 1];

if f(z) = sinz for all z in C, then / is a function from C to C;

if f(z) — e
z for all z in C, then / is a function from C to C; it is also a

function from C to {z in C : z / 0};

6 is a function from {z in C : z / 0} to {x in R : < x < 2tt};

if / is the collection of all pairs (a, (a, a)) for a in R, then / is a function

from R to Ft,.

601
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Suppose that F\ and Fj are two fields; we will denote the operations in F\ by

©, O, etc., and the operations in F? by +, • , etc. If F2 is going to be considered

as a collection of new names for elements of F\ , then there should be a function

from F\ to F2 with the following properties:

(1) The function / should be one-one, that is, if x / y, then we should have

/(x) # f(y)'> this means that no two elements of F\ have the same name.

(2) The function / should be "onto," that is, for every element z in F2 there

should be some x in F\ such that z = f(x); this means that every element

of F2 is used to name some element of F[

.

(3) For all x and y in F\ we should have

/(x ©>) = /(*) + /GO,
/(x©y) = /(*)• /GO;

this means that the renaming procedure is consistent with the operations of

the field.

If we are also considering F\ and F2 as ordered fields, we add one more re-

quirement:

(4) Ifx@y,then/(jc)</(y).

A function with these properties is called an isomorphism from F\ to Fj. This

definition is so important that we restate it formally.

DEFINITION If F\ and F2 are two fields, an isomorphism from F\ to F? is a function /
from F\ to F2 with the following properties:

(1) If x # y, then /(*) # /(y).

(2) If z is in F2, then z — f(x) for some x in F\.

(3) If Jt and y are in Fi , then

/(*©>) = /(*) + /GO.
/(xOy) = /(*)• /00-

If Fi and F> are ordered fields we also require:

(4) If x@y,then/UX/(y).

The fields F\ and Fi are called isomorphic if there is an isomorphism between

them. Isomorphic fields may be regarded as essentially the same—any important

property of one will automatically hold for the other. Therefore, we can, and

should, reformulate the question asked at the beginning of the chapter; if F is a

complete ordered field it is silly to expect F to equal R rather, we would like to

know if F is isomorphic to R. In the following theorem, F will be a field, with

operations + and • , and "positive elements" P; we write a < b to mean that b— a

is in P, and so forth.
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THEOREM If F is a complete ordered field, then F is isomorphic to R.

proof Since two fields are defined to be isomorphic if there is an isomorphism between

them, we must actually construct a function / from R to F which is an isomor-

phism. We begin by defining / on the integers as follows:

/(0) = 0,

fin) = 1 + + 1 for n > 0,

fin)

n times

-(1 + .. + D for n < 0.

|«| times

It is easy to check that

f(m + n)

f(m n)

f(m) + f{n),

fim) 'fin),

for all integers m and n, and it is convenient to denote fin) by n. We then

define / on the rational numbers by

-l
fim/n) = m/n = m »

n

(notice that the /?-fold sum l + --- + 1^0ifn>0, since F is an ordered field).

This definition makes sense because if m/n = k/l, then ml = nk, so m»/ = k»n, so
»-im • n — k • I . It is easy to check that

/(n + r2) = /(n) + /(r2),

/Ovrz) = /(/!)• /to),

for all rational numbers r\ and r2 , and that f(r\) < /(r2 ) if r\ < r2 .

The definition of fix) for arbitrary x is based on the now familiar idea that

any real number is determined by the rational numbers less than it. For any x

in R, let Ax be the subset of F consisting of all fir), for all rational numbers

r < x. The set A x is certainly not empty, and it is also bounded above, for if ro

is a rational number with ro > x, then /(ro) > fir) for all fir) in A x . Since F
is a complete ordered field, the set Ax has a least upper bound; we define fix) as

sup.A*.

We now have fix) defined in two different ways, first for rational x, and then for

any x . Before proceeding further, it is necessary to show that these two definitions

agree for rational x. In other words, if x is a rational number, we want to show

that

sup A* = fix),

where fix) here denotes m/n, for x — m/n. This is not automatic, but depends

on the completeness of F; a slight digression is thus required.

Since F is complete, the elements

l+.+l for natural numbers n
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form a set which is not bounded above; the proof is exactly the same as the proof

for R (Theorem 8-2). The consequences of this fact for R have exact analogues

in F: in particular, if a and b are elements of F with a < b, then there is a rational

number r such that

a < fir) < b.

Having made this observation, we return to the proof that the two definitions

of fix) agree for rational x. If y is a rational number with y < x, then we

have already seen that fiy) < fix). Thus every element of Ax is < f(x).

Consequently,

supA v < fix).

On the other hand, suppose that we had

sup Ax < f{x).

Then there would be a rational number r such that

supA v < f(r) < fix).

But the condition fir) < fix) means that r < x, which means that fir) is in the

set Ax \ this clearly contradicts the condition supA Y < fir). This shows that the

original assumption is false, so

supA.v
= fix).

We thus have a certain well-defined function / from R to F. In order to show

that / is an isomorphism we must verify conditions (1)—(4) of the definition. We
will begin with (4).

If x and y are real numbers with x < y, then clearly A x is contained in Ay .

Thus

f(x) = sup A x < sup Ay
= fiy).

To rule out the possibility of equality, notice that there are rational numbers r

and s with

x < r < s < y.

We know that f(r) < fis). It follows that

fix) < fir) < f(s) < f{y).

This proves (4).

Condition (1) follows immediately from (4): If x / y, then either x < y or

y < x; in the first case fix) < fiy), and in the second case fiy) < fix); in

either case fix) / fiy)-

To prove (2), let a be an element of F, and let B be the set of all rational

numbers r with fir) < a. The set B is not empty, and it is also bounded above,

because there is a rational number s with fis) > a, so that fis) > fir) for r

in B, which implies that s > r. Let x be the least upper bound of B\ we claim

that fix) = a. In order to prove this it suffices to eliminate the alternatives

fix) < a,

a < fix).
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In the first case there would be a rational number r with

fix) < fir) <a.

But this means that x < r and that r is in B, which contradicts the fact that

x — sup B. In the second case there would be a rational number r with

a < f{r) < f{x).

This implies that r < x. Since x — sup B, this means that r < s for some s in B.

Hence

f(r)< f(s) <a,

again a contradiction. Thus f(x) = a, proving (2).

To check (3), let x and y be real numbers and suppose that f(x + y) ^
f(x) + /(.v). Then either

f(x + y) < f(x) + /(y) or /(jc) + /(y) < /(* + y).

In the first case there would be a rational number r such that

fix+y)<fir) <fix) + fiy).

But this would mean that

x + y < r.

Therefore r could be written as the sum of two rational numbers

r = r\ + rj, where x < r\ and y < rj.

Then, using the facts checked about / for rational numbers, it would follow that

fir) = fin +r2 ) = fir\ ) + fin) > f(x) + /(y),

a contradiction. The other case is handled similarly.

Finally, if x and y are positive real numbers, the same sort of reasoning shows

that

f{x y) = fix) • /ft);

the general case is then a simple consequence. |

This theorem brings to an end our investigation ofthe real numbers, and resolves

any doubts about them: There is a complete ordered field and, up to isomorphism,

only one complete ordered field. It is an important part of a mathematical educa-

tion to follow a construction of the real numbers in detail, but it is not necessary

to refer ever again to this particular construction. It is utterly irrelevant that a real

number happens to be a collection of rational numbers, and such a fact should

never enter the proof of any important theorem about the real numbers. Reason-

able proofs should use only the fact that the real numbers are a complete ordered

field, because this property of the real numbers characterizes them up to isomor-

phism, and any significant mathematical property of the real numbers will be true

for all isomorphic fields. To be candid I should admit that this last assertion is just

a prejudice of the author, but it is one shared by almost all other mathematicians.
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PROBLEMS

1. Let / be an isomorphism from F\ to F^.

(a) Show that /(0) = and /(l) = 1. (Here and 1 on the left denote

elements in F\, while and 1 on the right denote elements of Fj.)

(b) Show that /(-«) = -f{a) and /(a-1 ) = /(a)
-1

, for a ^ 0.

2. Here is an opportunity to convince yourself that any significant property of

a field is shared by any field isomorphic to it. The point of this problem is

to write out very formal proofs until you are certain that all statements of

this sort are obvious. F\ and Fj will be two fields which are isomorphic; for

simplicity we will denote the operations in both by + and • . Show that:

(a) If the equation x + 1 =0 has a solution in F\, then it has a solution

in Ft.

(b) If every polynomial equation x" + «„_i • x + • • • + «o = with

cto an-i in F\, has a root in F\, then every polynomial equation

x" + &„_[ • .x:"
-1 + • • + /?o = with bo, . .

.

, bn _\ in Fi has a root in Fi.

(c) If 1 + • • + 1 (summed m times) = in F\ , then the same is true in Fj.

(d) If F\ and f? are ordered fields (and the isomorphism / satisfies f(x) <

f(y) for x < y) and F\ is complete, then Fi is complete.

3. Let / be an isomorphism from F\ to Fj and g an isomorphism from Fj

to Ft,. Define the function go/ from F\ to Ft, by (g o f)(x) = g(f{x)).

Show that g o / is an isomorphism.

4. Suppose that F is a complete ordered field, so that there is an isomorphism /
from R to F. Show that there is actually only one isomorphism from R
to F. Hint: In case F = R, this is Problem 3-17. Now if / and g are two

isomorphisms from R to F consider g
_1

of.

5. Find an isomorphism from C to C other than the identity function.
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One purpose of this bibliography is to guide the reader to other sources, but the

most important function it can serve is to indicate the variety of mathematical

reading available. Consequently, there is an attempt to achieve diversity, but no

pretense of being complete. The present plethora of mathematics books would

make such an undertaking almost hopeless in any case, and since I have tried to

encourage independent reading, the more standard a text, the less likely it is to

appear here. In some cases, this philosophy may seem to have been carried to

extremes, as some entries in the list cannot be read by a student just finishing a

first course of calculus until several years have elapsed. Nevertheless, there are

many selections which can be read now, and I can't believe that it hurts to have

some idea of what lies ahead.

For most references, only the title and author have been given, since so many of

these books have gone through numerous editions and printings, often having gone

out of print at some point only to be resurrected later on by a different publisher

(often as an inexpensive paperback by the redoubtable Dover Publications or by

the Mathematical Association of America). More exact information really isn't

necessary, since it is now so easy to search for books on-line at Amazon.com and

other sites.

"j" is used to indicate books whose availability, either new or used, is problematical.

Author and title searches may turn up other intriguing books by the same author,

or other books with similar titles. In addition, many of these books will still be

found in well-stocked academic libraries, perhaps the best place of all to search;

despite the convenience of the internet, nothing matches the experience of an

actual (as opposed to a virtual) library, with books stacked according to subject,

awaiting serendipitous discovery.

One of the most elementary unproved theorems mentioned in this book is the

"Fundamental Theorem ofArithmetic", that every natural number can be written

as a product of primes in only one way. This follows from the basic fact alluded

to on page 444, a proof of which will be found near the beginning of almost

any book on elementary number theory. Few books have won so enthusiastic an

audience as

[1] An Introduction to the Theory ofNumbers, by G. H. Hardy and E. M. Wright.

Two other recommended books are

| [2] A Selection ofProblems in the Theory ofNumbers, by W. Sierpinski.

[3] Three Pearls ofNumber Theory, by A. Khinchin.

The Fundamental Theorem also applies in more general algebraic settings, see

references [33] and [34].

The subject of irrational numbers straddles the fields of number theory and

analysis. An excellent introduction will be found in

[4] Irrational Numbers, by I. M. Niven.

609
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Together with many historical notes, there are references to some fairly elementary

articles in journals. There is also a proof that tt is transcendental (see also [59])

and, finally, a proof of the "Gelfond-Schneider theorem": If a and b are algebraic,

with a^Oor 1, and b is irrational, then a b
is transcendental.

All the books listed so far begin with natural numbers, but whenever necessary

take for granted the irrational numbers, not to mention the integers and rational

numbers. Several books present a construction of the rational numbers from the

natural numbers, but one of the most lucid treatments is still to be found in

[5] Foundations ofAnalysis, by E. Landau.

While many mathematicians are content to accept the natural numbers as a nat-

ural starting point, numbers can be defined in terms of sets, the most basic starting

point of all. A charming exposition of set theory can be found in a sophisticated

little book called

[6] Naive Set Theory, by P. R. Halmos.

Another very good introduction is

[7] Theory ofSets, by E. Kamke.

Perhaps it is necessary to assure some victims of the "new math" that set theory

does have some mathematical content (in fact, some very deep theorems). Using

these deep results, Kamke proves that there is a discontinuous function / such

that fix + y) = f(x) + f(y) for all x and v.

Inequalities, which were treated as an elementary topic in Chapters 1 and 2,

actually form a specialized field. A good elementary introduction is provided by

[8] Analytic Inequalities, by N. Kazarinoff.

Twelve different proofs that the geometric mean is less than or equal to the arith-

metic mean, each based on a different principle, can be found in the beginning of

the more advanced book

[9] An Introduction to Inequalities, by E. Beckenbach and R. Bellman.

The classic work on inequalities is

[10] Inequalities, by G. H. Hardy, J. E. Littlewood, and G. Polya.

Each of the authors of this triple collaboration has provided his own contribution

to the sparse literature about the nature of mathematical thinking, written from a

mathematician's point of view. My favorite is

[11] A Mathematician's Apology, by G. H. Hardy.

Little-wood's anecdotal selections arc entitled

| [12] .1 Mathematician's Miscellany, by J. E. Littlewood.
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Polya's contribution is pedagogy at the highest level:

[1 3] Mathematics and Plausible Reasoning (Vol. I: Induction andAnalogy in Mathematics;

| Vol. II: Patterns ofPlausible Inference), by G. Polya.

Geometry is the other main field which can be considered as background for

calculus. Though Euclid's Elements is still a masterful mathematical work, greater

perspective is supplied by some more modern texts, which examine foundational

questions, non-Euclidean geometry, the role of the "Archimedean axiom" in geom-

etry, and further results from "classical geometry". Of the following three books,

the first, listed in previous editions of this book, has probably been supplanted by

the later ones, which cover some more advanced material, and perhaps require a

little more sophistication on the part of the reader.

| [14] Elementary Geometryfrom an Advanced Standpoint, by E. Moise.

[ 1 5] Euclidean and Non-Euclidean Geometries, by M. J. Greenberg.

[ 1 6] Geometry: Euclid and Beyond, by R. Hartshorne.

In addition, all sorts of fascinating geometric things can be found in

[17] Introduction to Geometry, by H. S. Coxeter.

Almost all treatments of geometry at least mention convexity, which forms an-

other specialized topic. I cannot imagine a better introduction to convexity, or a

better mathematical experience in general, than reading and working through

| [18] Convex Figures, by I. M. Yaglom and W. G. Boltyanskii.

This book contains a carefully arranged sequence of definitions and statements of

theorems, whose proofs are to be supplied by the reader (worked-out proofs are

supplied in the back of the book). Its current unavailability is perhaps a testament

to the lack of interest in working through exercises, which might also apply to

another geometry book modeled on the same principle:

| [19] Combinatorial Geometry in the Plane, by H. Hadwiger and H. Debrunner.

Along with these two out-of-the-ordinary books, I might mention an extremely

valuable little book, also of a specialized sort,

[20] Counterexamples in Analysis, by B. Gelbaum and J. Olmsted.

Many of the example in this book come from more advanced topics in analysis,

but quite a few can be appreciated by someone who knows calculus.

Of the infinitude of calculus books, two are considered classics:

[21] A Course ofPure Mathematics, by G. H. Hardy.

[22] Differential and Integral Calculus (two volumes), by R. Courant.
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Courant is especially strong on applications to physics. There is also a more mod-

ern update

[23] Introduction to Calculus and Analysis, by R. Courant and F.John.

Speaking of applications to physics, an elegant exposition of the material in

Chapter 17, together with much further discussion, can be found in the article

[24] On the geometry of the Kepler problem, byJohn Milnor; in The American Mathe-

matical Monthly, Volume 90 (1983), pp. 353-365.

(In this paper the curve c' of Chapter 17 is denoted by v, and the derivative of

the important composition v o 9 (page 334) is introduced quite off-handedly as

dx/dO.) A "straight-forward" derivation of Kepler's laws, together with numerous

references, can be found in another article in this same journal,

[25] The mathematical relationship between Kepler's laws and Newton's laws, by

Andrew T. Hyman; in The American Mathematical Monthly, Volume 100

(1993), pp. 932-936.

The later parts of Volume I of Courant contain material usually found in ad-

vanced calculus, including differential equations and Fourier series. An introduc-

tion to Fourier series (requiring a little advanced calculus) will also be found in

[26] An Introduction to Fourier Series and Integrals, by R. Seeley.

The second volume of Courant (advanced calculus in earnest) contains addi-

tional material on differential equations, as well as an introduction to the calculus

of variations. A widely admired book on differential equations is

[27] Lectures on Ordinary Differential Equations, by W. Hurewicz.

A good example of new approaches and new topics is provided by

[28] Differential Equations, Dynamical Systems, and An Introduction to Chaos,

by M. Hirsch, S. Smale, and R. L. Devaney.

I will bypass the more or less standard advanced calculus books (which can easily

be found by the reader) since nowadays the presentation of advanced calculus for

mathematics students is based upon linear algebra. One of the first treatments of

advanced calculus using linear algebra is the very nice book

f [29] Calculus of Vector Functions, by R. H. Crowell and R. E. Williamson.

More recent books to be recommended are

[30] Advanced Calculus ofSeveral Variables, by C. H. Edwards, Jr.

[31] Mullivariable Mathematics, by T. Shifrin.

And of course I am still partial to an older text

[32] Calculus on Manifolds, by M. Spivak.
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There are three other topics which are somewhat out of place in this bibli-

ography because they are gradually becoming established as part of a standard

undergraduate curriculum. The purposeful study of fields and related systems is

the domain of "algebra." Two excellent texts are

[33] Algebra, by Michael Artin.

[34] Abstract Algebra, by D. Dummit and R. Foote.

For "complex analysis", the promised land of Chapter 27, the classical text is

[35] Complex Analysis, by L. Ahlfors.

Rather revolutionary when it was first published, it might now be considered some-

what old-fashioned, and you might prefer the second in a series of books (3 and

counting) that have appeared more recently:

[36] Fourier Analysis: An Introduction, by E. Stein and R. Shakarchi.

[37] Complex Analysis, by E. Stein and R. Shakarchi.

[38] Real Analysis, by E. Stein and R. Shakarchi.

And, since the topic of "real analysis" [high-octane Calculus] has been broached,

two classics should be mentioned. The first, affectionately known as "baby Rudin",

was the source of several problems that appear in this book.

[39] Principles ojMathematical Analysis, by W. Rudin.

[40] Functional Analysis, by W. Rudin.

The subject of "topology" has not been mentioned before, but it has really been

in the background of many discussions, since it is the natural generalization of the

ideas about limits and continuity which play such a prominent role in Part II of

this book. The standard text is now

[41] Topology, by J. R. Munkres.

For the related field of "differential topology", see

[42] Differential Topology, by V Guillemin and A. Pollack.

The next few topics, ranging from elementary to very difficult, are included

in this bibliography because they have been alluded to in the text. The gamma
function has an elegant little book devoted entirely to its properties, most of them

proved by using the theorem of Bohr and Mollerup which was mentioned in Prob-

lem 19-40:

| [43] The Gamma Function, by E. Artin

The gamma function is only one of several important improper integrals in math-

ematics. In particular, the calculation of /
°° e~x ~ dx (see Problem 1 9-42) is impor-
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tant in probability theory, where the "normal distribution function"

<D(jc) = —= / e~l y dy
slLTZ J -co

plays a fundamental role. A classic book on probability theory is

[44] An Introduction to Probability Theory and Its Applications, by W. Feller.

The impossibility of integrating certain functions in elementary terms (among
2 . . . .

them f(x) = e~x
) is a fairly esoteric topic. A discussion of the possibilities of

integrating in elementary terms, with an outline of the impossibility proofs, and

references to the original papers of Liouville, will be found in

[45] The Integration ofFunctions ofa Single Variable, by G. H. Hardy.

The basically algebraic ideas behind the arguments were made much clearer over

a hundred years after Liouville 's work, in the paper

[46] On Liousville's Theorem onfunctions with elementary integrals, by M. Rosenlicht; in

Pacific Journal of Mathematics, Volume 24, No. 1 (1968), pp. 153-161. (Also

available on-line: go to projecteuclid.org and search for Rosenlicht.)

For a good overview of the subject, and some more recent developments, see

[47] Integration infinite terms: the Liousville theory, by T Kasper; in Mathematics

Magazine, Volume 53, No. 4 (1980), pp. 195 201.

Reference [46] makes use of the notions of "differential algebra", a field in which

a related but seemingly more difficult problem had been solved earlier: There are

simple differential equations (y" + xy = is a specific example) whose solutions

cannot be expressed even in terms of indefinite integrals of elementary functions.

This fact is proved on page 43 of the (60-page) book:

| [48] An Introduction to Differential Algebra, by I. Kaplansky

A few words should also be said in defense of the process of integrating in

elementary terms, which many mathematicians look upon as an art (unlike differ-

entiation, which is merely a skill). You are probably already aware that the process

of integration can be expedited by tables of indefinite integrals. There are several

books containing extensive tables of integrals (and also tables of series and prod-

ucts), but for most integrations it suffices to consult one of the fairly extensive tables

of indefinite integrals that are available on-line, for example, at sosmath. com, and

at wikipedia. org, with its ever-expanding source of generally definitive entries for

mathematics and physics.

The remaining references are of a somewhat different sort. They fall into three

categories, of which the first is historical.

For the history of calculus itself, an excellent comprehensive source, filled with
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detailed explicit examples, rather than generalized descriptions, is

[49] The Historical Development of Calculus, by C. H. Edwards, Jr.

Some historical remarks, and an attempt to incorporate them into the teaching of

calculus, will be found in

[50] The Calculus: A Genetic Approach, by O. Toeplitz.

An admirable textbook on the history of mathematics in general is

[51] An Introduction to the History ofMathematics, by H. Eves.

As might be inferred from the quotation on page 39, the basic idea for constructing

the real numbers is derived from Dedekind, whose contributions can be found in

[52] Essays on the Theory ofNumbers, by R. Dedekind.

The most important notions of set theory, especially the proper treatment of infinite

numbers, were first introduced by Cantor, whose work is reproduced in

[53] Contributions to the Founding of the Theory of Transfinite Numbers, by G. Cantor.

The letter of H. A. Schwarz referred to in Problem 1 1-69 will be found in

f [54] Ways of Thought of Great Mathematicians, by H. Meschkowski.

Finally, a great deal of interesting historical material may also be found on-line at

the site www-groups.dcs.st-and.ac.uk/~history/

The second category in this final group of books might be described as "pop-

ularizations." There are a surprisingly large number of first-rate ones by real

mathematicians:

[55] What is Mathematics?, by R. Courant and H. Robbins.

[56] Geometry and the Imagination, by D. Hilbert and S. Cohn-Vossen.

[57] The Enjoyment ofMathematics, by H. Rademacher and O. Toeplitz.

| [58] Famous Problems ofMathematics, by H. Tietze; Graylock Press, 1965.

One of the most renowned "popularizations" is especially concerned with the

teaching of mathematics:

[59] Elementary Mathematicsfrom an Advanced Standpoint, by F. Klein (vol. 1: Arith-

metic, Algebra, Analysis; vol. 2: Geometry); Dover, 1948.

Volume 1 contains a proof of the transcendence of tt which, although not so ele-

mentary as the one in [4], is a direct analogue of the proof that e is transcendental,

replacing integrals with complex line integrals. It can be read as soon as the basic

facts about complex analysis are known.

The third category is the very opposite extreme—original papers. The diffi-

culties encountered here are formidable, and I have only had the courage to list



616 Suggested Reading

one such paper, the source of the quotation for Part IV. It is not even in English,

although you do have a choice of foreign languages. The article in the original

French is in

[60] Oeuvres Completes d'Abel.

It first appeared in a German translation in the Journalfur die reine und angewandte

Mathematik, Volume 1, 1826. To compound the difficulties, these references will

usually be available only in university libraries. Yet the study of this paper will

probably be as valuable as any other reading mentioned here. The reason is

suggested by a remark of Abel himself, who attributed his profound knowledge of

mathematics to the fact that he read the masters, rather than the pupils.
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chapter l 1. (i) 1 = a~ x a = a~ l (ax) — (a~ x a)x = 1 x = x.

(iii) If x 2 — y
2

, then — x 2 — y
2 = (x — y)(x + y), so either x — y — or

x + v = 0, that is, either x = —y or x = y.

(vi) Replace y by —y in (iv).

2. One step requires dividing by x — y = 0.

3. (i) a/b = ab~ l = (ac)(fe
_1

c
_1

) = (ac)(bc)~
l

(by (iii)) = ac/bc.

(ii) (ad + bc)/(bd) = (ad + bc)(bd)~ l = (ad + bc)(b- ld~ l

) (by (iii)) =
ab~ x +cd~ l = a/b + c/d.

(iii) ab(a- l b~ l

) = (a a~ l

)(b b~ x

) = 1, so a
-1

• b~ l = (ab)~K

(v) (a/b)/(c/d) = (a/b)(c/d)~ l = (a • b~ l
)(c • d~ l)~ l = (a b' l

)(c~
l

d) =
ad(b~ l c~ l

) = ad(bc)~ l = (ad)/(bc).

4. (i) jc<-1.

(iii) x > V7 or x < — V7.

(v) All x, since x" — 2x + 2 — (x — l)
- + 1.

(vii) x > 3 or x < —2, since 3 and —2 are the roots of x 2 — x — 6 = 0.

(ix) x > rt or — 5 < x < 3.

(xi) x < 3.

(xiii) < x < 1.

5. (i) b — a and J — c are in P, so (Z? — a) + (d — c) = (b + d) — (a + c) is

in P. Thus, b + d > a + c.

(iii) Using (ii), —c < —d; then (i) implies that a + (— c) < b + (—d).

(v) (b — a) and — c are in P, so —c(b — a) — ac — bc is in P, that is, ac > be.

(vii) Using (iv), a > and a < 1, so a~ < a.

(ix) Substitute a for c and b for d in (viii).

9. (i) V2+V3-V5 + V1.

(iii) |a + b\ + \c\ — \a + b + c\.

(v) V2+ v
/
3 + V5- sfl.

10. (i) a if a > —b and b > 0;

—a if a < —b and b < 0;

a + 2btf a > -b and /? < 0;

—a — 2b if a < —b and b > 0.

(iii) x — x if x > 0;

-jc - x 2
if x < 0.

11. (i) x = 11, -5.

(iii) —6 < jc < —2.

(v) No jc (the distance from x to 1 plus the distance from x to —1 is at

least 2).

(vii) x= 1,-1.

12. (i) (|a'v|)
2 = (xy)

2 = x 2
y
2 = |.v|

2
|y|

2 = (\x\ |y|)~; since \xy\ and |x| •

\y\

are both > 0, this proves that \xy\ = |.i| • \y\.

(iii) \x\/\y\ = \x\ lyl"
1 = \x\ Iv"

1

]

(by (ii)) = Ixy"
1

!

(by (i)) = \x/y\.

(v) It follows from (iv) that \x\ = \y — (y — x)\ < \y \ + \y — x
\

, so \x \
— \y \

<

\* — y\-

(vii) \x + y + z\ < \x + y\ + \z\ < \x\ + \y\ + \z\. If equality holds, then

\x + y\ = |.v| + |y|, so x and y have the same sign. Moreover, z must

619
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CHAPTER 2

have the same sign as x + y, so x, y, and z must all have the same sign

(unless one is 0).

Since l
2 = 1 • (2) • (2 • 1 + 1 )/6, the formula is true for n = 1. Suppose

that the formula is true for k. Then

i i ,9 k(k+ 1)(2A-+ 1) , 7
\
2 + ...+k 2 + (k + \)

2 = }

i + (k + 1 )

2

6

(*+0
6

(A+l)

[yt(2A+l) + 6(A-+l)]

[a- + 2)(2A- + 3)]

(k+\)(k + 2)(2[k+ 1] + 1)

2.

so the formula is true for k + 1

.

]T)(2z- 1) = l+3 + 5 + -.- + (2n-l)
/=!

= 1 +2 + 3 + ••• + 2»-2(l +•• + «)

(2/7) (2/7+ 1)

= //'

5. (a) Since

l+r =

-n(n+ 1)

1-r 2

1 -r

the formula is true for n = 1 . Suppose that

1 -r"+1

1 + r H h r" =
1 -r

Then

1 + r + • • + >-" + r
n+1 I

,-n+l
.»+!

1 -r
1 -r"+1 +r" +l

(1 -/-)

1 -r
I

,«+^

1 -r

(b)

Thus

S = 1 + r + • • • + /-"

rS= r + ... + r» + r
»+l.

S(l-r) = S-rS=l -rn+l
,
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so
1 -r"+1

S =
\-r

6. (i) From

(k + l)
4 -k4 = 4k 3 +6k2 +4k+l, k = 1, . .

.
, /z

we obtain

/; n /i

(n + if -
1
= 4j2 k3 + 6 J2 k2 +

4

J2 k

+

n <

k=\ k=\ k=\

so

< iv4 1 a'7(" + 0(2n + l) .«(« + l)
" (« + lr — l — 6 4— /?

YV = 6 2

,
4

4 3 2
/7 h j n

= 4
+ T +

T-
From

1 1 1

m

k fc + 1 lfc(*+l)'

we obtain

fc = l,...,/i

k=i

8. 1 is either even or odd, in fact it is odd. Suppose n is either even or odd;

then n can be written either as Ik or Ik + 1 . In the first case n + 1 = 2k + 1

is odd; in the second case n + 1 = 2k + \ + I = 2(k + 1) is even. In either

case, n + 1 is either even or odd. (Admittedly, this looks fishy, but it is really

correct.)

9. Let B be the set of all natural numbers / such that n$ — 1 + / is in A. Then
1 is in B, and / + 1 is in B if / is in B, so B contains all natural numbers,

which means that A contains all natural numbers > hq.

12. (a) Yes, for if a + b were rational, then b — {a + b) — a would be rational. If

a and b are irrational, then a + b could be rational, for b could be r — a

for some rational number r.

(b) If a — 0, then ab is rational. But if a / 0, then ab could not be rational,

for then b = (ab) a~ would be rational.

(c) Yes; for example, v 2.

(d) Yes; for example, V2 and — V2.
13. (a) Since

On + l)
2 = 9n

2 + 6w + 1 = 3(3«
2 + 2n) + 1,

(3/i + 2)
2 =9n 2 +\2n + 4 = 3(3n

2 + 4n + 1 ) + 1

,

it follows that if Ar is divisible by 3, then k must also be divisible by 3.

Now suppose that V3 were rational, and let v3 = p/q where /; and
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q have no common factor. Then p
2 = 3q

2
, so p

2
is divisible by 3, so

p must be. Thus, p = 3p' for some natural number p'
, and conse-

quently Op')
2 = 3q

2
, or 3(p')

2 = q
2

. Thus, q is also divisible by 3, a

contradiction.

The same proofs work for v 5 and V6, because the equations

(5/7 + l)
2 = 25«

2 + 10// + 1 =5(5/z
2 + 2//)+ 1,

(5// + 2)
2 = 25/r + 20// + 4 = 5(5//

2 + 4//) + 4,

(5// + 3)
2 = 25/r + 30// + 9 = 5(5//

2 + 6// + 1 ) + 4,

(5// + 4)
2 = 25//

2 + 40/7 + 16 = 5(5//
2 + 8// + 3) + 1,

and the corresponding equations for numbers of the form 6/7 + ra, show

that if k is divisible by 5 or 6, then k must be. The proof fails for V4,

because (An + 2)
2

is divisible by 4. (For precisely this reason this proof

cannot be used to show that in general -Ja is irrational if a is not a

perfect square—we have no guarantee that (an + m) 2 might not be a

multiple of a for some /// < a. Actually, this assertion is true, but the

proof requires the information in Problem 17.)

(b) Since

(2n + l)
3 - 8//

3 + 12/z
2 + 6// + 1 - 2(4/i

3 + 6//
2 + 3//) + 1,

it follows that if k~ is even, then k is even. If v 2 = p/q where p and

q have no common factors, then p
3 = 2g

3
, so p

3
is divisible by 2, so p

must be. Thus, p = 2p' for some natural number p', and consequendy

(2p
r
) = 2q , or A(p') = q- . Thus, q is also even, a contradiction.

The proof for v3 is similar, using the equations

(3// + l)
3 = 27/z

3 + 27//
2 + 9// + 1 = 3(9//

3 + 9//
2 + 3//) + 1.

(3// + 2)
3 = 27//

3 + 54/z
2 + 36// + 8 = 3(9//

3 + 18/z
2 + 12// + 2) + 2.

19. If // = 1, then (1 + //)" = 1 + nh. Suppose that (1 + //)" > 1 + ///?. Then

(1 +/7)" +1 = (1 +//)(1 +//)" > (1 +//)(1 +nh), since 1 + h >

= 1 + (// + 1)// +nlr > 1 + (/? + 1)//.

For h > 0, the inequality follows directiy from the binomial theorem, since

all the other terms appearing in the expansion of (1 + h)n are positive.

CHAPTER 3 (i) (x + \)/(x + 2); the expression f(f(x)) makes sense only when jc^-1
and x ^ —2.

(iii) 1/(1 + ex) (for x ^ - 1 /c if c # 0).

(v) (x + v + 2)/(x + 1 )(y + 1 ) (for x, y # - 1).

(vii) Only c = 1, since f(x) = f(cx) implies that x = ex, and this must be

true for at least one x / 0.

(i) y > and rational, or y > 1

.

(iii) 0.

(v) -1,0,1.
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3. (i) {x : -1 <x < 1}.

(iii) {x : x / 1 and x / 2}.

(v) 0.

4. (i) 22
-
v

.

(iii) 22sinr +sin(2 f

).

5. (i) P os.

(iii) S o S.

(v) Po P.

(vii) SososoPoPoPoS
1. (a) y-

(b) H(y).

(c) H(y).

2. (a)

even

odd

even odd

even neither

neither odd

(b)

even

odd

even odd

even odd

odd even

g even

g odd

/ even / odd

even even

even odd

(d) Let g(x) = f{x) for x > and define g arbitrarily for x < 0.

21. (a) Let g(x) = h(x) — 1 and let / be a function for which /(2) ^ f(\) +
/(l). Thenfo(g + h)^fog + foh.

(b) [(g + h)o f](x) = (g + h)(f(x)) = g{f(x)) + h(f(x)) = (go f)(X ) + (ho

f)(x)=[(gof) + (hof)](x).

1 11 (\ \
(*) = = -rigix)) = [-og) (x).fog— f(g(x)) f—' \f

(d) Let g(x) = 2 and let / be a function for which /(j) 7^ l//(2). Then

l/(fog)^fo(l/g).
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CHAPTER 4 1. (i) (2,4).

(iii) (a — e,a + e).

(v) [-2,2].

(vii) (-oo, 1] U [l,oo).

3. (i) All points below the graph of f(x) = x.

(iii) All points below the graph of f(x) — x .

(v) All points between the graphs of f(x) = x + 1 and f(x) = x — 1.

(vii) A collection of straight lines parallel to the graph of f(x) = —x, inter-

secting the horizontal axis at the points (/?, 0) for integers //.

(ix) All points inside the circle of radius 1 and around (1, 2).

4. (i) A square with vertices (1, 0), (0, 1), (-1, 0), and (0,-1).

(iii) The union of the graph of f{x) = x and of f(x) = 2 — x.

(v) The point (0, 0).

(vii) The circle of radius v5 around (1,0), since x~ — 2x + y = (x — l)
2 +

6. (a) Simply observe that the graph of f(x) = m(x — a) + b = mx + (b — ma)

is a straight line with slope m, which goes through the point (a,b). (The

important point about this exercise is simply to remember the point slope

form.)

(b) The straight line through (a, b) and (c, d) has slope (d — b)/(c — a), so

the equation follows from part (a).

(c) When m = m! and b / b'. In that case, there is clearly no number x with

f(x) = g(x), while such a number x always exists if m ^ m', namely,

x — ib' - b)/(m - m').

7. (a) If B = and A ^ 0, then the set is the vertical straight line formed

by all points (x, y) with x = —C/A. If B ^ 0, the set is the graph of

f(x) = (-A/B)x + (-C/A).

(b) The points {x, y) on the vertical line with x = a are precisely the ones

which satisfy 1 x + • y + (—a) = 0. The points (x, y) on the graph of

f(x) = mx + b are precisely the ones which satisfy (—m)x + 1 • y + (—b) =
0.

11. (i) The graph of / is symmetric with respect to the vertical axis.

(ii) The graph of / is symmetric with respect to the origin. Equivalently,

the part of the graph to the left of the vertical axis is obtained by re-

flecting first through the vertical axis, and then through the horizontal

axis.

(iii) The graph of / lies above or on the horizontal axis.

(iv) The graph of / repeats the part between and a over and over.

(a) The square of the distance from (x,x 2
) to (0, ^) is21

x
2 + + x

2
+

16

= U 2 +i) 2
,
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which is the square of the distance from (x, x 2
) to the graph of g.

(b) The point (x, y) satisfies this condition if and only if

(x-a) 2 + (y-l3)
2 = (y-y) 2

.

or

or

1 7
x
L - lax + cr + r - 2ftv + $

l = y~ - 2yy + y\

J^\^ + (^J\ x +
(^+^-y2

2fi -2y Y-P 2p-2y

1. (ii)

(iv)

If f3
= y, so that P is on the line L, then the solution is the vertical line

through P.

x 3 -8
lim - = lim(x

2 + 2x+4) = 12. .

x-*2 X — 2 x^2

x" — v"
lim — = lim x"~ l + x"~ 2

y H h xy"
x-*y x — y x-+V

- 2 + v- 1

= y
n~ l +yn~ l + --. + y

n~ l =nyn-\

(vi)

-Ja + h — yfa (y/a + h — s/a)(\/a + h + Va )

lim = lim

— lim
1

''-0 s/a Jr h +^
1

3.

in

2yfa

I — 0. For all x we have
|
cos(x

2
)| < 1, so |3 — cos(jt

2
)| < 4, and thus

\f(x) - 0| = |jc| • |3 - cos(x
2
)| < 4 • jjc|.

So we can take <5 = e/4.

/ = 100. We have

100
- 100 = 100 1 = 100 |.r-l

\x\

The initial stipulation \x — 1| < j makes x > j, so l/|.v| < 2, so we

then have

\f(x)- 100| <200-|jc- 1|.

So we can take 8 = min(l/2, f/200).
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(v) 1 = 2. The same sort of argument that was used in the text and in

number (iii) shows that

x

so that

I-i
x

< s for < |.v — 1 1 < 8\ = min(l/2, e/2),

<
e
- for < \x - 1| < 8~i

= min(l/2, e/4).

Similarly, the solution to number (iv) gives a #2 such that

\x —
1 1 < £ for < \x — 1 1 < <5t,

and we have a corresponding 8j- Then we can take 8 = min(<5j, <$2).

(vii) / =0. Let 8 =£ 2
.

(i) We need \f(x) — 2| < e/2 and \g(x) — 4| < e/2, so we need

(iii) We need

so we need

\g(x) — 4| < min
|4| s\4\

2

2 ' 2

< \x -2| < [min (2, 8e)]
2 = <5.

9. Let / = lim f(x) and define g{h) = f(a + /?). Then for every s > there is

a 8 > such that, for all x, if < |jc — a\ < 8, then \f(x) —I < s\. Now, if

< |/?| < 5, then < \{h +a) — a\<8, so \f(a + h) — 1\ < e. This inequality

can be written \g{h) — l\ < e. Thus, lim g(h) = I, which can also be written

lim f(a+h) = I. The same sort of argument shows that if lim f(a+h) = m,

then lim f(x) = m. So either limit exists if the other does, and in this case
x—*a

they are equal.

10. (a) Intuitively, we can get f(x) as close to / as we like if and only if we can

get f(x) — l as close to as we like. The formal proof is so trivial that it

takes a bit of work to make it look like a proof at all. To be very precise,

suppose lim f(x) = / and let g(x) = f(x) — I. Then for all s > there

is a 8 > such that, for all x, if < \x — a\ < 8, then \f(x) — l\ < s.

This last inequality can be written \g(x) — 0| < e, so lim g(x) = 0. The
x—>a

argument in the other direction is similarly uninteresting.

(b) Intuitively, making x close to a is the same as making x — a close to 0.

Formally: Suppose that lim f(x) = /, and let g(x) = f{x — a). Then
x—*a

for all e > there is a 8 > such that, for all x, if < \x — a\ < 5,

then |/U) — /| < s. Now, if < |v| < <5, then < |(y + a) — a\ < 8, so
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|/(v + a) — 1\ < s. But this last inequality can be written \g(y) — l\ < s.

So lim g(y) = I. The argument in the reverse direction is similar.

(c) Intuitively, x is close to if and only if x is. Formally: Let lim fix) =
x—>0

I. For every e > there is a 8 > such that if < |.v| < 8, then

\f(x) — l\ < £. Then if < |x| < min(l,<5), we have < |x
3

|
< 8, so

l/C* ) — /| < e. Thus, lim f(x) = /. On the other hand, if we assume
x—*0

that lim fix ) exists, say lim fix ) = m, then for all s > there is a 8
x—»0 x—>0

such that if < \x\ < 8, then \f(x
3

) — m\ < s. Then if < \x\ < <5
3

,

we have <
| lfx\ < 8, so |/([\/x] ) — m\ < s, or \f(x) — m\ < s. Thus

lim f(x) = m.
x—>0

(d) Let f{x) = 1 for a- > 0, and f(x) = -1 for x < 0. Then lim f(x
2

) = 1,
x-^-0

but lim f(x) does not exist.
x->0

17. (a) The function f(x) = l/x cannot approach a limit at 0, since it becomes

arbitrarily large near 0. In fact, no matter what 8 > may be, there

is some x satisfying < |x| < 8, but l/x > \I\ + e, namely, any x <

min(5. 1/(|/| + £)). Any such x does not satisfy
|

( 1 /jc ) — /)| < e.

(b) No matter what 8 > may be, there is some x satisfying < \x — 1 1 < 8,

but l/(x — 1) > |/| + s, namely, any x < min(l + 8, 1 + 1/(|/| + £)).

Such an x does not satisfy
|
l/(x — 1) — 1\ < s. (It is also possible to apply

Problem 10(b): lim l/x = lim l/(x — 1) if the latter exists, so this limit
X^0 ^ X->1

does not exist, because of part (a).)

25. (i) This is the usual definition, simply calling the numbers 8 and s, instead

of s and 8.

(ii) This is a minor modification of (i): if the condition is true for all 8 > 0,

then it applies to 8/2, so there is an s > such that if < \x — a\ < £,

then \f(x) -l\< 8/2 < 8.

(iii) This is a similar modification: apply it to 8/5 to obtain (i).

(iv) This is also a modification: it says the same thing as (i), since s/10 > 0,

and it is only the existence of some s > that is in question.

29. If lim f(x) — lim f(x) = I, then for every s > there are 8\, 82 > such
x—>a + x—>a~

that, for all x
,

if a < x < a + 8\, then \f(x) — l\ < s,

if a — 82 < x < a, then \f(x) — l\ < e.

Let <5 = min(<$i, 82). If < \x — a\ < 8, then either a — 82 < a — 8 < x < a

or else a < x < a + 8 < a + <$i, so \f(x) — l\ < s.

30. (i) If/— lim f(x), then for all e > there is a 8 > Osuch that \f(x)— 1\ <

s for < x < 8. If — 8 < x < 0, then < —x < 8, so |/(—x) — l\ < s.

Thus lim f(—x) = I. Similarly, if lim fix) exists, then lim fix)
x—>0~ x-±0~ x-+0+

exists and has the same value. (Intuitively, x is close to and positive if

and only if —x is close to and negative.)
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(ii) If / = lim /(a), then for all s > there is a 8 > such that \f(x)—l\ <
A—>0+

s for < a < <5. So if < \x\ < 8, then \f(\x\) — l\ < e. Thus

lim /(|a|) = /. The reverse direction is similar. (Intuitively, if x is close

to 0, then jjc
|
is close to and positive.)

(iii) If / = lim /'(a), then for all s > there is a 8 > such that \f(x)—l\ <
x—>0+

e for < x < 8. If < |x| < Vd, then < x 2 < 8, so \f(x
2

) -l\<s.
Thus lim f(x") = I. The reverse direction is similar. (Intuitively, if x

is close to 0, then x is close to and positive.)

34. If / = lim f(x), then for every e > there is some N such that \f(x) — l\ < e
X—f-OO

'

for x > N, and we can clearly assume that A/ > 0. Now, if < x < l/N,

then i/x > N, so \f(\/x) — l\ < e. Thus lim f(\/x) = I. The reverse
x^0+

direction is similar.

CHAPTER 6 1. (i) F(jc) = jc+2forallx.

(iii) F(x) = for all x.

CHAPTER 7 1

.

(i) Bounded above and below; minimum value 0; no maximum value.

(iii) Bounded below but not above; minimum value 0.

(v) Bounded above and below. If a < —1/2, then a < —a — 1, so f(x) =
a + 2 for all x in (—a — 1 , a + 1 ), so a + 2 is the maximum and minimum
value. If — 1/2 < a < 0, then / has the minimum value a , and if

a > 0, then / has the minimum value 0. Since a + 2 > (a + 1 )

2 only

for (-1- V5)/2 <a < (-1 + V5)/2, when a > -1/2 the function /

has a maximum value only for a < (— 1 + V 5 )/2 (the maximum value

being a + 2).

(vii) Bounded above and below; maximum value 1 ; minimum value 0.

(ix) Bounded above and below; maximum value 1 ; minimum value — 1

.

(xi) / has a maximum and minimum value, since / is continuous.

2. (i) n = -2, since /(-2) < < /(-l).

(iii) n = -l, since /(-l) = -1 < < /(0).

3. (i) If /(*) = a-
179 + 163/(1 +.v 2 + sin

2
a) - 1 19, then / is continuous on

R and f(2) > 0, while /(-2) < 0, so fix) = for some a in (-2, 2).

5. /is constant, for if / took on two different values, then / would take on all

values in between, which would include irrational values.

7. (1) /(a) = a;

(2) /(*) = -*;

(3) f(x) = \x\;

(4) /(a) = -|a|.

10. Apply Theorem 1 to/ — g.
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11. If /(O) = or /(l) = 1, choose x = or 1. If /(0) > = 7(0) and

f{\) < 1 = 7(1), then Problem 10 applied to / and / implies that f(x) = x

for some x.

CHAPTER 8 1 . (i) 1 is the greatest element, and the greatest lower bound is 0, which is

not in the set.

(iii) 1 is the greatest element, and is the least element.

(v) Since {x : x 2+ x + 1 > 0} = R, there is no least upper bound or greatest

lower bound.

(vii) Since {x : x < and x 2 + x - 1 < 0} = ([-1 - \0]/2, 0), the greatest

lower bound is [—1 — V5J/2, and the least upper bound is 0; neither

belongs to the set.

2. (a) Since A / 0, there is some x in A. Then —x is in —A, so —A / 0.

Since A is bounded below, there is some y such that y < x for all x in

A. Then — y > —x for all x in A, so —y > z for all z in —A, so —A is

bounded above. Let a = sup(— A). Then a is an upper bound for —A,

so, reversing the argument just given, —a is a lower bound for A.

Moreover, if /3 is any lower bound for A, then — /3 is an upper bound for

— A, so — /3 > a, so /3 < —a. Thus —a is the greatest lower bound for A.

5. (a) If / is the largest integer with I < x, then / + 1 > x, but / + 1 < x + 1 < y.

So we can let A' = / + 1 . (Proof that a largest such integer / exists:

Since N is not bounded above, there is some natural number n with

—n < x < n . There are consequently only a finite number of integers /

with —n < I < x. Pick the largest.)

(b) Since y — x > 0, there is some natural number n with \/n < y — x.

Since ny — nx > 1, there is, by part (a), an integer k with nx < k < ny,

which means that x < k/n < y.

(c) Choose r + V 2{s — r)/2.

(d) By part (b), there is a rational number r with x < r < y, and therefore

a rational number s with x < r < s < y. Apply part (c) to a
- < s

.

10. Let k be the largest integer < x/a (the solution to Problem 5 shows that such

a k exists), and let x' = x — ka > 0. If x — ka = x' > a, then x > (k + l)a,

so k + 1 < x/a, contradicting the choice of k. So < x' < a.

12. (a) Since any y in B satisfies y > x for all x in A, any y in B is an upper

bound for A, so y > sup A.

(b) Part (a) shows that sup A is a lower bound for B, so sup A < inf B.

13. Since x < sup A and y < sup B for every x in A, and y in B, it follows that

x + y < sup A + sup fi. Thus, sup A + sup Z? is an upper bound for A + B, so

sup(A + 5) < sup A + sup B. If * and y are chosen in A and B, respectively,

so that sup A— x < e/2 and sup/i — y < e/2, then sup A +sup 5 — (jc+ v) < s.

Hence,

sup( A + B) > x + y > sup A + sup B — e.
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CHAPTER 9

1 1

,/, v ,. f(fl + h) - f(a) a+h ~
a

f (a) = hm = hm —!

fe— h /i->0 h

= lim
1 1

h^O a (a + h)

(b) The tangent line through (a, \/a) is the graph of

-1
g(x) = -^-(x -a) +

-x 2

(i-

If f{x) = g(x), then

a

x 2

a z a

or

so x — a.

2 - lax + a
1 = 0,

f'(a) = lim
h-+0

= lim

f(a+h)-f(a) (a + h) 2 a 2

= lim
h h^O h

{-lah - h 2
) 2

h-+b ha 2 (a + h) 2 a 3

(b) The tangent line through (a, I /a") is the graph of

2 1

g(x) = t(* -a)+ -t
a J a L

If f(x) = g(x), then

a 3 a L

-2x 3

"T + -2

or

2* 3 - 3ax2 + a3 = 0,

or

= (x — a)(2x — ax — a ) = (x — «)(2.v + a)(.v — <:/).

So jc = a or x = —a/2; the point (—a/2, A/a 2
) lies on the opposite side

of the vertical axis from (a, \/a ).
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fl( , r f(a + h)-f(a) .. sja +h-^
j (a) = lim = lim

/i—o h h^O h

.. (Va + h -y/a)(Va + h + y/a) ,. h
— lim

.

— = lim
h-0 h(s/a + h + y/a) h^Oh(Va+~h + Va)

1

2y/a

4. Conjecture: Sn'(x) = nx . Proof:

S„(.v + h) - Sn (x) (x + h)
n - xn

Sn (x) = lim = lim
h^o h /i->o h

,. y=o V7/
= lim

'-/'/i./' _ x
"

n

= limV
(

n
)x

n- jh j
-

7 =

" Vx""
1 = w"" 1

,
since lim A-'

-1 = for / > 1.

5. /'(jc) = for x not an integer, and f'(x) is not defined if x is an integer.

6. (a)

g(.v+/i)-g(x) [/(.x + /2) + c]-[/U) + c]
p (jt) = lim = lim

h^O h h^O h

y f(X +h)~ f(x)=
te h

= /U'

} -

(b)

v gix + h)-gix) cfix+h) -cfix)
g ix) = lim = lim

h-+0 h h^o h

= c • lim = cf (jc).

h^O h

7. (a) /
,

(9) = 3-92 ;/'(25) = 3-(25) 2
;/

/

(36) = 3-(36) 2
.

(b) /'(3
2
) - /'(9) = 3 • 92

;
/' (5

2
) = f'{25) = 3 • (25)

2
: /'(6

2
) = /'(36) =

3 • (36)
2

.

(c) f'(a
2
) = 3ia

2
)
2 = 3a 4

; fix 2
) = 3(x 2

)

2 = 3x4
.

(d) fix 2
) = 3x 4

; but gix) = x 6
, so g'O) = 6x 5

.

8. (a)

gU+/7)-gU) /(.V+/7+C)-/(.V+c)
g (a:) = lim = lim

h^O h h-+0 h

y
fi[x+c]+h)-fjX+C)= lim = / (x + c).

h->() h
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(b)

9.

10.

11.

21.

26.

30.

g\x) lim
h-+0

gix + h) g(x) f(cx + ch)= lim
fc->0

Hex)

h

lim

c • lim
fe->0

c[f(cx + ch)

ch

ficx+k)

f(cx)] c[f(cx + k)= lim
*^o k

f(cx)]

f(cx) = c f'(cx).

<,r:

!iii

(Compare the manipulations in this calculation with Problem 5-14.)

If g(x) — f(x + a), then g'(x) = f'(x + a), by part (a). But g = f, so

fix) = g'(x) = f'(x + a) for all x, which means that /' is periodic, with

period a.

If g(x ) = a
5

, then g'(x) = 5x 4
. Now f(x) = g(x + 3), so by Prob-

lem 8(a), /'(*) = g'(x + 3) = 5(x + 3)
4

. And f'(x + 3) = 5(.v + 6)
4

.

f(x) = (x-3)5
,sof'(x) = 5(jc-3) 4

, as in part (i). And /'(jc+3) = 5x 4
.

fix) = (x + 2)\ so fix) = l(x + 2)
6

, as in part (i). And /'(* + 3) =
7U + 5)

6
.

If fix) = git+x), then fix) = g
L{t+x), by Problem 8(a). If fit) = git+x),

then f(t) = g'it +A-), by Problem 8(a), so /'(*) = g'Qx).

(a) If sit) = ct , then s'it) = let, and there is no number k such that

s'(t) = ksit) [that is, 2c/ = kct 2
] for all t.

(By the way, at this point we do not know any nonzero function / for

which /' is proportional to /. After Chapter 18 it might be amusing to

determine what the world would be like if Galileo were correct.)

(i) If sit) = ia/2)t
2

, then s'it) = at, so s"(t) = a.

(ii) [s'it)]
2 = iat)

2 = 2a ia/2)t
2 = 2as(t).

The chandelier falls sit) = I6t
2

feet in t seconds, so it falls 400 feet in

t seconds, if 400 = 16/ , or / = 5. After 5 seconds the velocity will

be s'i5) = 5a = 5 32 = 160 feet per second. The speed was half this

amount when 80 = s'it) = 32/, or / = |.

This is another way of writing the definition (see Problem 5-9).

This follows from Problem 5-11, applied to the functions aih) =

[fia + h) - f(a)]/h and 0(h) = [g(a + h) - gia)]/h.

f"{x) = 6x.

f"ix)=4x 3
.

means that fia) = na"~ l

if fix) = x".

means that g'ia) = fia) if gix) = fix) + c.

means the same as (iii).

means that g'ib) = fib + a) if g(x) = fix + a).

means that g'ib) = cf'(cb) if gix) = f(cx).

(b)

(a

(b

(iii)

(i)

(iii)

(v)

(vii)

(ix)

CHAPTER 10 i) (\+2x) -cos(jc+.v :
).

iii) (— sin x) • cos(cosx).

x sin x — cos x
v

/COS X \
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(vii)

2. (i)

(iii)

(v)

(vii)

(ix)

(xi)

(xiii)

(XV)

(cos(x + sinx)) • (1 + cosx).

(cos((x + l)
2
(x + 2))) • [2(x + l)(x + 2) + (x + l)

2
].

[2 sin((x + sin jc)
2
) cos((x + sin x)

2
)] 2(x + sin x)(\ + cosx).

(cos(xsinx)) • (sinx + xcosx) + (cos(sinx 2)(cosx 2
)) • 2x.

(2 sin x cos x sin x 2
sin

2
x 2

) + (2x cos x 2
sin

2
jc sin

2
x 2

)

+ (4x sin jc
2 cos x 2

sin
2
x sinx 2

).

6(x + sin
5
x) 5

(l + 5 sin
4
x cosx).

cos(sin
7
x 7 + l)

7
• 7(sinV + l)

6
• (7sin

6
x 7

• cosx 7
• 7x 6

).

cos(x 2 + sin(x
2 + sinx 2

)) • [(2x + cos(x
2 + sinx 2

) • (2x + 2x cosx 2
))].

(1 + sinx)(2x cosx 2
- sin

2
x + sinx 2

• 2 sinx cosx) - cosx sinx 2 sinx

/

(xvii) cos

sin

\

sinx

(1 + sinx) 2

3x 2
sin

sinx
— x cos

sinx

3x 2 sinx — x 3 cosx

sin x

sin

4.

5.

6.

sinx

(iii) 2x 2
.

(i) "*
2

-

(iii) 17.

(i) f(x) = g'(x+g(a)).

(iii) /'(x) = g'(x+g(x))-(l+g'(x)).

(v) /'(*) = g(a).

(a) A'(t) = 27ir(t)r'(t). Since r'(t) = 4 for that t with r(f) = 6, it follows

that A'{t) = 2n 6 • 4 = 48tt when r(f) = 6.

(b) If V(f) is the volume at time t, then V(t) = 47rr(t)
3
/3, so V'(t) =

47rr(t)
2
r'(t) = 4tt • 62

• 4 = 576tt when r(f) = 6.

(c) First method: Since A'(t) = 2nr(t)r'(t), and A'(t) = 5 for r(t) = 3, it

follows that

A'{t) 5
r\t) =

2^-r(f) 67T
when r{t) = 3.

Thus

2„/>
V'(t) = 47tr{tYr\t)

4tt 9 —
30 when r(t) = 3.



634 Answers to Selected Problems

To apply the second method, we first note that if

CHAPTER 11

f(t) = A(03/2 = \/A(0 3
,

then, using Problem 9-3 and the Chain Rule,

1

fit)
2xM(7P

3A(tfA'(t)

2A{t) 3 '2
,-3A(t) 2

A'(t)

— -A(t) ' A\t) (just as we might have guessed).

Now

V(t) =

So

4jrr(t)
3 47r[r(/) 2

]

3 /2

4[nr(t) 2
]

3/2

3tt!/2

4A(t) 3/2

3ir 1 ' 2
'

37T 1 /- 2

iT
l/2

r(t)A'(t)
7T

1 /2

= 2 • 3 • 5 = 30.

10. (i) (/ o fc)'(0) = /'(/i(0)) • /i'(0) = /'(3) • sin
2
(sin 1) =

1 1 *

[6 sin j — cos j] sin" (sin 1).

(iii) a'(x
2

) = h'(x
4
) 2x 2 = sin

2
(sin(*

4 + 1 )) • 2.x
2

.

12. The Chain Rule implies that

(-\ (x) = (fo gy(x) = f(g(.x))-g
,

(x)

= --TT2 -S\x).
g(xr

35. (i) _£ = -£. -2 = (cosy) (1 + 2*) = (cos(* +* 2
)) • (1+2*).

ax ay ax

dz dz du
(m) — = — • — = (cost/) • (cos*) = (cos(sin*)) • (cos*).

dx du dx

1 . (i) = fix) = 3* 2 — 2* — 8 for * = 2 and * = — i, both of which are in

[-2,2];

/(-2) = 5,/(2) = -ll
5 /(-f) =

2
f;

203 • • I,maximum =
*£f,

minimum = — 11.
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= /'(*) = \2x 3 - 2\x 2 + \2x = \2.x(x
2 - 2x + 1) for x = and

x — 1, of which only is in [— A, A];

/(4) =
ll, /(j) - 15, /(0) = 0;

maximum
= /'(*)

43maximum = jz, minimum =

x 2 +\-(x + \)2x \-2x-x 2

U 2 + l)
2

(.v
2 +l) 2

for x = — 1 + v 2 and x = — 1 — V2, of which only — 1 + v 2 is in

[-1,2];

/(-l) = 0,
/(i) =

f,
/(-l + Jl) = (1 + V2)/2;

maximum = (1 + v2)/2, minimum = 0.

2. (i) — 3 is a local maximum point, and 2 is a local minimum point.

(iii) is a local minimum point, and there are no local maximum points,

(v) — 1 + v 2 is a local maximum point, and — 1 — v 2 is a local minimum
point.

4. (a) Notice that / actually has a minimum value, since / is a polynomial

function of even degree. The minimum occurs at a point x with

= /'(*) = 2 ]T(x- flf ),

so x = (a\ H 1- an)/n.

5. (i) 3 and 7 are local maximum points, and 5 and 9 are local minimum
points.

(iii) All irrational x > are local minimum points, and all irrational x <

are local maximum points.

(v) x is a local minimum point if its decimal expansion does not contain a 5.

It is a local maximum point if its decimal expansion contains exactly

one 5 that is followed by an infinite string of 9's. In all other cases, x is

both a local maximum point and a local minimum point.

7. If f(x) is the total length of the path, then

fix) = /t 2 + a 2 + 7(1 -a-) 2 + £2
.

The positive function / clearly has a minimum, since lim f(x) — lim f{x)
x—>oo jr—>—oo

= oo, and / is differentiable everywhere, so the minimum occurs at a point

x with fix) = 0. Now, /'(*) = when

x (l-x)

Vx 2 +a 2 V(\-x) 2 + b2

= 0.

This equation says that cos a = cos/?.

It is also possible to notice that f(x) is equal to the sum of the lengths of the

dashed line segment and the line segment from (x, 0) to (1, b). This is short-

est when the two line segments lie along a line (because of Problem 4-9(b), if
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a rigorous reason is required); a little plane geometry shows that this happens

when a = ft.

10. If x is the length of one side of a rectangle of perimeter P, then the length

of the other side is (P — 2jr)/2, so the area is

x(P-2x)
A(x)= .

So the rectangle with greatest area occurs when x is the maximum point for /
on (0, P/2). Since A is continuous on [0, P/2], and A(0) = A(P/2) = 0,

and A(x) > for x in (0, P/2), the maximum exists. Since A is differentiable

on (0, P/2), the minimum point x satisfies

P — 2x
= A'(jc) =— x

P -Ax

so x = P/4.

11. Let S(r) be the surface area of the right circular cylinder of volume V with

radius r. Since

V = tt r h where h is the height,

we have h = V/nr2
, so

S(r) = 2nr 2 + 2nrh

= 2jir
2 +
2 2V

r

We want the minimum point of S on (0, oo); this exists, since lim S(r) =

lim S(r) = oo. Since S is differentiable on (0, oo), the minimum point r
r-+oo

satisfies

2V
= S'(r) =Anr =-

r1

4nr 3 - 2V

or

21. 1 is a local maximum point, and 3 is a local minimum point.

28. (a) We have

fib) - f(a) = / {x) tor some x in (a, b)
b — a

.

> M,

so f(b)-f(a)> M(b- a).
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(b) We have

f(b)-f(a) — f'{x) for some x in (a, b)

< m,

so f(b) - f(a) < ra(fr - a).

(c) If l/'OOl < M for all .v in [a, b], then -M < f{x) < M, so

/(a) - M(fc - a) < f{b) < /(a) + M(b - a),

or

!/(*>)- /(a)| <M(b-a).

31. (a) f(x) = — cos* +a for some number a (because f(x) = — cosx is one

such function, and any two such functions differ by a constant function).

(b) f'(x) — x 4
/4 + a for some number a, so f(x) = x 5/20 + ax + b for some

numbers a and b.

(c) f"(x) = x 2 + x 3
/3 + a for some a, so /'(*) = x 3

/6 + .v
4/12 + a.r + b

for some a and b, so /(*) = x 4/24 + x 5 /60 + ax 2
/2 + bx + c for some

numbers a, b, and c. Equivalently, and more simply, f(x) = x 4/24 +
.v

5/60 + ax 2 + bx + c for some numbers a, b, and c.

32. (a) Since s"(t) = —32, we have s'(t) = — 32r + a for some a, so 5(0 =
— \6t

2 + af + j3 for some a and f5.

(b) Clearly, 5(0) = + + and s'(0) = + a. Thus, a = v and = s .

(c) In this case, so — and vo = v, so 5(r) = —16/" + vt. The maximum
value of s occurs when = s'(t) = — 32f + v, or t = i>/32, so the

maximum value is

'(s)-w (s)

2

+-(s)
2 2— ir u
+

64 32

~ 64'

At that moment the velocity is clearly 0, but the acceleration is —32 (as

at any time). The weight hits the ground at time t > when

= s(/) = — 16r
2 + vt,

or / = u/16 (it takes as long to fall back down as it took to reach the top).

The velocity is then

j'(v/16) = -32(^)+i;

= — v

(the same velocity with which it was initially moving upward).
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CHAPTER 12

47. Apply the Mean Value Theorem to f(x) = y/x on [64, 66]:

66 64
/'(*) =

I

66 - 64 2^
Since 64 < x < 81, we have 8 < y/x < 9, so

for some x in [64, 66],

I 66-8 I

< <
2-9 2 2-8

51. l'Hopital's Rule does not lead to the equation

6.v,. 3jc
2 + 1

Inn
x-*\ 2x -3

because Km 3x" + 1 / 0.
X->1

52. (i)

lim = lim
x-+0 tan x x ->0 sec2 x

lim
*-+l 2

lim cos" x — 1

.

(ii)

cos x — 1 —2sinx cos*
lim r = hm = — 1

.

x-^0 X 1 x->0 2jc

1. (i) f~\x) = (x - l)'/
3

. (If v = f~Hx), then x = /(y) = y
3 + 1, so

(iii) f~
1 = f. (If y = /" 1

U), then

A" = /(y)
y, y rational

— y, y irrational;

since ±y is rational or irrational if and only if y is, we have y — x if x

is rational and y = —x if jc is irrational, so y = /(*).)

(v)

f~\x) =
X,

at-

ari,

x / at, a.

">x — aj, i = z n

.v = a
i

.

(vii) /- = /•

(i) / is increasing and f~
l

(x) is not defined for x < 0.

(iii) /
_1

is decreasing and f (x) is not defined for x £ 0.

Suppose / is increasing. Let a < b. Then f~ (a) =£ f~ (b), since / is

one-one. So either f~\a) < f~
l
{b) or f~

l
(a) > f~

]

(b). But if /"'(«) >

f~
x

{b), then

b = f(f~
l

(b)) </(/-'(«))= a,

a contradiction. The proof is similar for decreasing /, or one can consider

— / instead.

4. Clearly, f + g is increasing, for if f(a) < f(b) and g(a) < gib), then

(/ + g)(a) = /(a) + g(a) < fib) + g(b) = (/ + g)(b).

f -g is not necessarily increasing; for example, if f(x) = g(x) = x. (But /•#
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is increasing if f(x), g(x) > for all x.)

f o g is increasing, for if a < b, then g(a) < g(b), so f(g(a)) < f{g{b)).

5. (a) If (fog)(x) = (fog)(y), so that f(g(x)) = f(g(y)), then g(x) = g(y),

since / is one-one, so x = y, since g is one-one.

(/ ° g)" 1 = £
_1

° f-
1

: for if y = (/ o g)~ l
(x), then x = (f o g)(y) =

f(g(y)), so g(y) = /-'U), so y = g- l

(f-
l

(x)).

6. If f(x) = f(y), then

ax + b ay + b

ex + d cy + d

so

acxy + bey + adx + bd = acxy -f ady + /?cx + ^J,

or

ad{x — y) — bc(x — y).

If ad / be, this implies that x — y = 0. (But if ad = be, then f(x) = f(y)
for all x and y in the domain of /.)

If y = f~
l

(x), then x = /(y), so

ay + /?

x = —
cy + d

so

_
i

—dx + b
f (x) = y = lor x ^ a/c.

ex — a

7. (i) Those intervals [a,b] which are contained in (
— oo, 0] or [0,2] or

[2, oo), since / is increasing on (— oo, 0] and [2, oo), and decreasing

on [0,2].

(iii) Those intervals [a, b] which are contained in (— oo, 0] or [0, oo), since

/ is increasing on (— oo, 0] and decreasing on [0, oo).

1 1 . Since

(/
_1

)'(x) = =
,

f'(f-Hx))

we have

f"(rHx))-(f- ly(x)
(rr(x) =

U'(f-Hx))] 2

-f"(f-\x))

[f(f-Hx))] 3
'

20. The formula for the derivative reads:

dx 1

dy " dj'

dx

(In this formula, it is understood that dx/dy means (/~ )'(y), while dy/dx

is an "expression involving x" and in the final answer x must be replaced

by y, by means of the equation y = f(x).)
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The computation in Problem 20, when completed, shows that

dx ] "'
1 _ 1

dx ' n(x ] /")"- ] " nx x
- (X l u)

_ }_x a/n)-i^

21.

22.

G'(x) = x(f-
l

)'(x) + f~\x) - F'(f-\x)) (f-
l
)'(x)

= x(f-
l

)'(x) + f-\x) - f{f~\x)) (f-
l
)'(x)

= x(f-
l
y(x) + f-

l (x)-x(f- l
y(x)

= f~Hx).

\\' t(h-
l

YO)
/7'(/2-'(3)) /7'(0) Sin

2
(sinl)

CHAPTER 13 1. If Pn = {to t,,} is the partition with t
{
= ib/n, then

L(f, Pn ) = ]Tfe-i)
3

• & - tt-i)

1=1

n

-i) 3

n 3

b

n
i=\

b4 '^\ .

b4

~
U 4

~{n-\)4 (n-1)3 (n-\) 2

4 2 4

similarly

.4 "

u^ p^ = -4E-r
7=i

4 12
n n n

T + y + T

Clearly L(f, P„) and [/(/, P„) can be made as close to b4/4 as desired by

choosing n sufficiently large, so £/(/, P„) — L(/, P„) can be made as small

as desired, by choosing /; large enough. This shows that / is intcgrable.

Moreover, there is only one number a with L(f, Pn ) < a < U(f, P„) for

all /;; since fQ x* dx has this property, the proof that Jq x 3 dx = b4/4 will

be complete once we show that L(f, Pn ) < b4/4 < U(f, P„) for all n. This
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I'M.

can be done by a straightforward computation, but it actually follows from

the fact that L(f, Pn ) and U(f, P„) can be made as close to b4 /4 as desired

by choosing n sufficiently large. In fact, if it were true that b /4 < f x dx,

then it would not be possible to make U(f, P„) as close as desired to b4 /4 by

choosing n large enough, since each U(f, P„) > fQ x dx, and similarly we

cannot have b4/4 > f x 3 dx.

We have

(n - l)
5

(n - l)
4

(/? - I)
3 (n- 1)

~T~ ~Y~ ~T~ 30
L(f,P„) =

b5

U(f,Pn ) =
b5

'

n 5

n n n n

T + T + T ~
30

Clearly L(/', P„) and U(f, Pn ) can be made as close to b /5 as desired by

choosing n large enough. As in Problem 1, this implies that J x 4 dx = b 5
/5.

(i) Jo / = 0-

(v) / is not integrable.

M /o/ = l.

(For a rigorous proof that the functions in (i), (iii), and (vii) are integrable,

see Problem 19. The values of the integrals, which are clear from the

geometric picture, can also be deduced rigorously by using the ideas in

the proof of Problem 19, together with known integrals.)

t:

\l*
2 \ 16— + 2 — X dx =

l\
2

/
3

(iii)

(v)

/
v/2/2

[(1 -x 2)-x 2]dx =
Isfl

-J7.I1

fJo [(x
2 - 2x + 4) - x

2
] dx = 4.

f(x)g(y)dy) dx
« = [(ml g(y)dy

J
dx (here f(x) is the constant)

g(y)dy- / f(x)dx

f
(here / g(y)dy is the constant).

13. (a) Clearly L(f, P) > for every partition P.
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CHAPTER 14

(b) Apply part (a) to / — g, and use the fact that

23. (a) Clearly

rb r b nb

/ (/-*)=/ f- / g.
Ja J a J a

m(b -a)< L(f, P) < U(f, P) < M(b - a)

for all partitions P of [a, b\. Consequently,

>b

m(b — a)< f(x)dx<M(b—a).
J a

Thus

f(x)dx

33

37. Since

b — a

satisfies m < fi < M.

(b) Let m and M be the minimum and maximum values of / on [a,/?].

Since / is continuous, it takes on the values m and M, and consequently

the number fi of part (a),

(a) 0.

(b) i

we have

so

p

b

rb fib

J a J a J a

\

rb rb

\

f \- !/l '

I
J a

I
J a

f
b

(Problem 36 implies that / \f\ makes sense.)

J a

1. (i) (sin
3

jc
3
) • 3x 2

.

N f ~ ;
~ dL

Js 1 + t- + sin /

(v) f ;

J u 1 + t- + sin /

(vii) (F-')'(x)\\'iv\ — I

F-Ux).
F'(F-Hx))

(i) All x # 1

.

(iii) All .V # 1 .

(V) All AT.

(vii) All x ^ 0. (F is not differentiable at because F(x) = for x < 0, but

there are x > arbitrarily close to with -f^
= j-)
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4.

u„~ 1 1

CTTA)
f'(f-HO))

" l+sinCsinC/- 1

^)))

1

=1.
1 + sin(sinO)

8. F(x) =x
I

f(t)dt, so
Jo

F'(x) = xf(x) + f f(t)dt.
Jo

11

CHAPTER 15 1.

7.

JO \Jo \Jo J] + sin
2

f Ivl -

1 3 . We can choose

x (1/b)+1

Then

I + i

n

/ iftdx = f(b) - /(0) = -p-
io 1

+1
/7

(iii)

1 + arctan 2 (arctan x) 1 + arctan 2 x 1 + x 2

( 2 tan *
sec x arctan x +

1 + (tan x arctan x) 2
\ 1+x 2

(i) 0.

(iii) 0.

(v) 0.

(a)

sin 2x = sin(x + x) — sin x cos x + cos x sin x = 2 sin x cos x

cos 2x = cos x — sin x = 2 cos x— 1 = 1— 2 sin x

.

sin 3x = sin(2x + x) = sin 2x cos x + cos 2x sin x
9 9 .9= 2 sin x cos x + (cos x — sin x)sinx

-> 2 -3= 3 sin x cos x — sin x.

cos 3x = cos(2x + x) = cos 2x cos x — sin 2x sin x

= (cos" x — sin x)cosx = 2sin x cos

= cos x — sin x cos x — 2 sin" x cos x
3 i-2= cos x — 3 sin xcosx

X

4 cos
3
x — 3 cos x

.
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9.

(b) Since cos7r/4 > and

U = cos — = cos 1 — = 1 cos -— 1

.

2 4 4

we have cos jt/4 = V2/2. It follows, since sin rc/4 > and sin" +
cos

2 = 1, that sin jt/4 = V2/2, and consequently tan^/4 = 1. Sim-

ilarly, since cos n/6 > and

TC

2

n

6
= cos — = cos 3 • 7—4 cos' — — 3 cos

we have costt/6 = V3/2. It follows, since sin7r/6 > 0, that sin7r/6 =

>/l - (V3/2) 2 = f

tan(x + v) =
sin(.v + y)

cos(x -f y)

sin x cos y + cos x sin y

cos a: cos y — sin x sin y

sin x cos y cos x sin y^ +
cos x cos y cos x cos y

cos x cos y sin x sin y

cos x cosy cos x cosy

tan x + tan y

1 — tan x tan y

(b) From part (a) we have

tan(arctan x + arctan y) =
tan(arctan x) + tan (arctan y)

1 — tan (arctan x) tan (arctan y)

x + y

1 xy

provided that arctan x, arctan y, and arctan x + arctan y ^ kn + tt/2.

Since —n/2 < arctan x, arctan y < tt/2, this is always the case except

when arctan x + arctan y = ±7r/2, which is equivalent to xy = 1. From

this equation we can conclude that

arctan x + arctan y = arctan
x + y

1 — .vy

provided that arctan x + arctan y lies in (—tt/2, tt/2), which is true when-

ever xy < 1 . (If x, y > and xy > 1, so that arctan x + arctan y > tt/2,

then we must add 7r to the right side, and if x, y < and xy > 1, so

thai arctan x + arctan y < —n/2, then we must subtract 7r.)
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1 1

.

The first formula is derived by subtracting the second of the following two

equations from the first:

cos(ra — n)x = cos(mx — nx) — cosmx cos(—nx) — sinrnx sin(—nx)

= cos mx cos nx + sin mx sin nx ,

cos(m + n)x = cosmx cosnx — sinmx sinnx.

The other formulas are derived similarly.

12. It follows from Problem 1 1 that if m / n, then

r . . i r
/ sin mx sin nx dx = — I [cos(ra — n)x — cos(m + n)x] dx
J —n ^ J—n

1
|

("sin(m — n)n sin(m+«)7r

m — n m + n

sin(m — n)n sin(w+n)7r

m — n m +n
= 0.

(Note that sin(m — «)(— tt) = sin(m — ri)n since m — n is an integer.) But if

m = n, then

J —71

sin mx sin nx dx -J£-

-J|[-

cos(m +n)x^/x

sin(m + n)^-

m + n
-TT

sin(m + n)7r

m + n

= 71.

The other formulas are proved similarly.

15. (a) We have

cos 2jc = cos x — sin jc

= 1 — 2 sin x

= 2 cos x — 1

.

So

sin x

cos x

1 — cos 2x

1 + cos 2x

(b) These formulas follow from part (a), because cosjc/2 > and sinjc/2 >

(since < x < n/2).

(c)

I sin x dx = I

Ja Ja

J
cos jc dx — I

Ja J a

b
1 -cos2jc ,1 1 . „ f . „— dx = -(b — a) — - (sin 2b — sin 2a).

b 1+cos2jc 1 1 . „— dx — —{b — a) + -r(sin 2b — sin 2a).
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19. (a) arctan 1 — arctanO = tx/4.

(b) lim arctan x — arctan = tx/2.

20. lim x sin — = lim — sin x = 1

.

x->oc x x-*0+ X

21. (a)

(sin
c

r(x) = ^-cos(^) = -|
)

cos^).

IX . / 7XX \ —It
.

(cos )(*) =— --sm(—) =—-W
sin°x sin(7rx/180) tx sin(7rx/180)

(b) lim = lim = lim ——- •
—-

—

x_o x x^O x *->ol80 ttjc/180

. 1 sin°x tx

lim x sin — = lim = .

*->oo x *^o+ x 180

IX

180

CHAPTER 18
1. i e

(iii) (sin x) sin(sinv)
[(log(sin x)) cos(sin x) cos x

(v) (sinx) (sin x f

+ (cos x/ sin x) • sin(sinx)]

cos*
(sinx)smjc • log(sinx)|cosx • log(sinx) + sinx

+ (sinx)
sinjr

sinx

cosx

sin x

(vii) arcsin (
—

)

L V sin x / J

X \ "I log(sin e
x

)

(log (arcsin (JL)))
(cose*)^

sin eX

+ log(sine*)
sinx — x cosx

arcsin

(ix) (logx) los T
1

sin x

1 1

Vsinx/ V Vsinx/
sin" x

log (log x) • - + logx
x log X X

_

(xi) cos(* s^sinJt

>)-x sin^ cos(x sinv
) -x skix logx

cosx 1 sin(x
smv

)

cosx • logx + -

5. (i) 0.

(m

(v)
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8. (a) ,2 .2
f ex +e~x

\
2

(

e

x - e~>
cosh x — sinh" x =

2x i -2x
e 1 e

4 2 4

g2* j e
-2x'

~4~ ~ 2
H ~4~

= 1.

(c)

sinh x cosh y + cosh x sinh y =
- e

x
\ (

'

e

y + e y
\ ( e* f e~

e
x+y e~x ~ y e~x+y e

x~y

+
e
x+y

e
-x-y

e
-*+y

e
x~y

+
4 4

= sinh(.x + y).

gx+y _ e-(x+y]

(e) Since

we have

(g) Since

we have

X I „— Jt

sinhjc =
e + c

sinh (jc )
= = cosh x

.

tanh x =
sinn xh

tanh'(x)

cosh x
'

(cosh*) 2 — (sinh;c)
2

cosh"

1

by part (a)

cosh" x

9. (a) If v = cosh x, then y > and

= cosh y = v 1 + sinh v by Problem 7(a).

So

sinh(cosh x) = sinh y = v x 2 — 1 since sinh y > for y > 0.

(sinh"T (jc) =
I

sinh' (sinh (x))

1

cosh (sinh (x))

—7= by part (b).
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(e)

Now,

so

or

(tanh
_1

)'(•*) =
I

tanh'(tanh (*))

'

= cosh
2
(tanh

_1
U)).

u2 1
tanh y H =—

cosh y

tanh
2
(tanh

l

(*)) +

cosh
2
(tanh '(*)) =

-- 1 by Problem 8(b),

2
'

,
=i.

cosh (tanh '(*))

1

\-x 2

-l
10. (a) If y = sinh x, then

x — sinh j
e>' -e~y

so

e-
v — e -v' = 2x,

e
2y - 2xey -1=0,

so

or

e^ = x + v 1 + x 2 since e3 >

y = sinh * = log(;c + v 1 + x 2
).

Similarly,

cosh x = logU + y/x 2 — 1 ),

tanh" x = j log(l + x) — \ log(l — x).

(b)

/
l -l

a y/\ +X 2
dx = sinh b — sinh a by Problem 9(c

/'
J a

I

V* 2 -l

* 1

dx =

= \og(b + j\+b2
)
- log(a Wl +a 2

)-

\og(b + Vb2 -\)- log(a + Va 2 - 1 ) a,fc>l

- log(-ft + \/fc
2 - 1 ) + log(-fl + s/a 2 - 1 ) a,b<

I.
, </jc = -flog(l + ft) - log(l - b) - log(l + a) + log(l - a)].

1 — x A 2
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13. (a) lim a x = lim e
x °& a

. Since log a < 0, we have lim xloga = — oo,
x—>oo jc—»oo x—»oo

lim e*
loS fl =0.

x—>oo

(c) lim
v & = lim — = 0.

x—>oo x y-*oo g^

(e) lim xx = lim e
rlog *. Now, lim xlogx = by part (d), so lim x x = 1.

x-+0+ x—>0+ x^>0+ x—>0+

17. (a) lim log(l + v)/y = log'(l) = 1.

y—*0

(b) lim jclog(l + 1/jc) = lim log(l + y)/y = 1.
X-+00 y—>0+

(c)

e = exp(l) — exp( lim xlog(l + l/x))
X—>oo

(*) = lim exp(xlog(l + l/x))
X—>-OG

= lim(l + \/x)
x

.

X—KX)

(The starred equality depends on the continuity of exp at 1, and can

be justified as follows. For every s > there is some <5 > such that

\e — exp j | < £ for |v — 1| < 8. Moreover, there is some TV such that

\x log(l + l/x) — 1| < 8 for x > N. So \e — exp(jclog(l + l/x))
|
< e for

x > N.

(d)

e
a = [ lim (1 + l/.r)T = lim (1 + l/x)

ax

JC—>00 x—*oo

= lim (1 + l/x)
a*

ax—»oo

= lim(l+fl/v) v
.

19. After one year the number of dollars yielded by an initial investment of one

dollar will be

lim(l+a/100x)* = e
fl/10°.

20. (a) Clearly f'(x) = 1/* for x > 0. If x < 0, then f(x) = log(-x), so

f(x) = (-\)-l/(-x) = l/x.

(b) We can write log \f\ asgo/ where g(x) = log |x| is the function of part

(a). So (log l/D'^o /)/' = !///'
21. (c) Let g(x) = f(x)/e". Then

e
cx f'(x)-f(x)cecx

s (*) = ^ = °-

so there is some number & such that g(x) = k for all x.

22. (a) According to Problem 21, there is some k such that A{t) = kect
. Then

A- = ke0t = A . So A(r) = A Qe
ct

.

(b) If A(/ + t) = A (0/2, then
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so ectecx = e
c!
/2 or e

CT = i, so r = — (log2)/c. It is easy to check that

this t does work.

23. Newton's law states that, for a certain (positive) number c,

T'(t) = c(T -M),

which can be written

(T -M)' = c(T - M).

So by Problem 2 1 there is some number k such that

T(t) - M = ke
ct

,

and k = ke0t = T(0) - M = T - M. So T(t) = M + (T - M)ect
.

CHAPTER 19
I (V^+ v^)/v^ = .^

/10 + A--
1 / 3

.

1 y/x - 1 - y/x + 1

2

(in)

(iv)

(v)

fvi)

Vll

(viii)

ix

y/x ~ 1 + y/x + 1

(g* + e
2x + e

3xy
e
4x _ g

-3* + g
-2.r + g-x

tan x = sec"" x — 1

.

1 lAr

a- -+- a~
1 + CJ

1 -/«

\/a 2 - x 2
y/\ -

(x /a)
2

1 1 — sin x 1 — sin x

1 + sin x 1 - sin
2 * cos2 x

8a-
2 + 6* +4 6

= 8.v — 2 +

= sec x — sec x tan .v

.

a + 1

1

A + 1

(1)

(iii)

(v)

(vii)

(ix)

ffl

y/lx-X 2 y/l-(x- l) 2

— cos e* . (Let m = e
x

.)

(log a) /2. (Let m = log a.)

e
e\ (Let w = e

e
\)

2e^. (Let w = >/*.)

— (log(cosA))
-
/2. (Let u = log(cosA).)

/,W,=,V-/2,^=,V-2
= x2

e
x -2xex + 2e

x
.

xe /,,/,



Answers to Selected Problems 651

(iii) We have

/
e
ax

sin bx dx
e"

x
sin bx bimbx _ b_ f

e
ax

a a J

e
ax

sin bx b

a a

cos bx dx

e
ax

cos bx b

so

f e
ax

sisin bx dx
a 2 + b2

Cl

e
ax

sin bx —

^/,«,- S isin bx ) dx

a 2 + fc
-e

ax cosbx.

(v) Using the result f(\ogx) dx = A(logA)~ — 2A(logA) + 2A from the text,

we have

/ (logA')
3* = [X (log A)

2 - 2A(logA) + 2a] logA

r i

— / -[a (log a)" — 2a (log a) + 2a] dx

= A(logA) — 2a (log a )~ + 2x log A

— / (log a) dx + 2 [a log a — a] — 2a

= a (log A ) — 2a (log a)" + 2a log a

— [a (log a)~ — 2a (log a) + 2a] + 2 [a log a — x] — 2x

— x (log A ) — 3a (log A ) + 6a log a — 6a .

Vll

-// sec x dx = I (sec" a)(scca)g?a = tan a sec a - / (tanA)(secA tan a)^a

= tan a sec x — I sec x (sec a — 1 ) dx

so

/ sec~ a dx — j [tan a sec a + log(sec a + tan a)]

2a 3/2
,

2 f

(ix)

/v*ogA dx
3

2a 3 /2

3

2a 3 /2

2f '/*.!*

log*--
g /

r'/
2*

log A A 3/2
.

3
s

9

4. (i) Let a = sin u, dx = cos u du. The integral becomes

cos u du/cos // du C

\/ 1 — sin ;/ «/sin u

1 </// = u = arcsin a.
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(iii) Let x = sec u, dx = sec u tan u du. The integral becomes

/sec u tan udu f— — = / sec u du = log(sec u + tan w)

V sec2 u — 1 «/

= log(x + 7a- 2 - 1 ).

(v) Let x = sin u , <7a = cos u du . The integral becomes

/cos w du f— = / esc u du = — log(csc it + cot u)

sinwvl — sin u J

(vii) Let x = sinw, dx = cos w du. The integral becomes

/ (sin~u cosw) cosu du = / sin w cos udu= I (sin m)(1 — cos" u) cos udu

I
DS

3 M COS5 W
= / (sinw)(cos u — cos u)du = - —^— • +

(1-a 2
)

3 /2 (1-a 2
)

5 /2

(ix) Let A" = tan u, dx = sec
2
w d«. The integral becomes

/ sec w sec u du = I sec u du

—
2
[tan w sec u + log (sec w + tan w)] by Problem 3 (vii)

= i [X V
7

! + A"
2 + log(A + 71+ A 2

)] .

Let u = v a + 1, a = ir — I, dx =2udu. The integral becomes

-2

/SW(2 +
1 + u

du

= 2u -21og(l +u) = 2y/x + 1 -21og(l + y/x+\ ).

(iii) Let w = a'/ , a = w
6

, Ja = 6*r dw. The integral becomes

_ff- = 6 / ( ir - // + 1 - — ) du = 2u3 - 3w2 + 6u - 6 Log(w + 1

)

u 3 + u 2 J \ u + 1 )

= 2VJc-3^/Jc + 6^-61og(^c+ 1).
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(v) Let u = tanx, x = arctan u, dx = du/(l + w). The integral becomes

f du 1 f / 1 w - 2 \

i (l+w 2
)(2 + a)

"
5 J \2 + u

" \+u 2
)

1 C du 1 r 2u 2 C du
=

5 J 2 + u"~ To J T+^5J TT^2

1 1 2 2
= - log(2 + u) - — log(l + u ) + - arctan u

1 1 2 2
= - log(2 + tan*) - — log(l + tan x) + -x.

(vii) Let u = 2X , x = (log«)/(log2), dx = dw/(wlog2). The integral

becomes

i—~ /
;— ^" = ;—~ / H du

log 2./ (w + L)m log2,/ V u(u+ I)

J

i

/71+ I * U
log 2 J V u u + 1 /

[m + log w — 2 log(w + 1 )]
log 2

= r^r[2
x + xlog2-21og(2* + l)].

log 2

(ix) Let u — y/x, x = u 2
, dx = 2u. The integral becomes

/V 1 — u 2 2udu

l-u
'

Now let w = sin y, du — cosy dy. The integral becomes

/2 cos v sin y cos y f ( 1 — sin y ) sin v

i
r^ dy = 2 / r dy

1 — sin y J 1 — sin y

— 2 I ( 1 + sin y) sin y dy

= 2 / sin y dy + / 1 — cos 2y dy

sin 2y— —2 cos y + y — = —2 cos y + y — sm y cos y

= —2y 1 — u 2 + arcsin u — u-s/ 1 — w 2

= —2y 1 — A' + arcsinn — Vx v 1 — jc.

The substitution u = \/l — x, x — 1 — u 2
, dx — —2udu leads to

/— 2u 2 du

l-V\-u 2
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l

and the substitution u — sin y then leads to

— 2 sin" y cosy dy

1 — cos y
— —2 sin y — y — sin y cos y

— —2u — arcsin u — // v 1 — u2

— —2v 1 — x — arcsin v 1 — x — V 1 — xwx.

These answers agree, since

JT

arcsin y/x = — — arcsin v 1 — a

(check this by comparing their derivatives and their values for x = 0).

6. In these problems / will denote the original integral.

(i)

= l^l dX +
I

3

(a+1) 2
clx

= 21og(x-l)
3

x + \

m

/ = f — dx + f — d)
J (x- l) 2 J (a + 1)

3

I

(x-1) (a + 1)
2

1 f 2x [4
= j log(x" + 1 ) + 4 arctan x

.

vn

f l
, f 2x

— I v dx + I —r — dx
J (.Y + 1) J (A 2 +A + 1)

r l /• 2.v +

1

/• l

~
i * + 1 / A 2 + A + 1 J X2 +X + 1

*/*.

Now

/ A 2 +A+ 1

dx
J (x + ±) 2

V
^ 4

dx

[*(* + DI

Ja

+ 1

4 x/3

3
'~2~

2V3

arctan (-j= (x + \)j

arctan (^ (, + $)) ,
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so

/ = \og(x + 1 ) + log(;T + x + 1

)

2V3
arctan (^ (x + ±))

IX

/ 2x + 1

(x 2 +x + \)
2

2x + l

x 2 + x + l) 2

dx

dx

J (x 2 +x
16

/

+ 1)
2
dx

V3 (* + J)

J*,

+ 1

Now the substitution

// = -7= ( x + 5 ) , dx — ^ du

changes the second integral to

16 n/3 f du/3 /"
,

2 J ^ + D 2

Using the reduction formula, this can be written

8v/3
+

2(« 2 +l) 2

1 /" dw

2,/ u 2 + \

so

/ = -
x 2 +a- + 1 4(.x-

2 + x+l)2,,;^ - -9- arctanU I* + ?))

14. The equation / e
v
sin itfi = ex

sin x — e
x cos x — J e

x
sin x dx means that any

function F with F'(x) = e
x sinx can be written F(x) = e

x
sin a — e

x
cosjc —

G(x) where G is another function with G'(x) — e
x sinx. Of course, G = F+c

for some number c, but it is not necessarily true that F = G.

16. fa)

/ arcsin xdx = / 1 • arcsin x dx = x arcsin x

vl^v 2

dx

= x arcsinsinx + yl — x 2
.
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17. (a)

/-sin x dx =
/

sl"
2
x dx

sin
\dx

sin x cos x 3

sin x cos x 3^4— +
4

sin x cos x 3 sin x cos x 3

I cos 2x cos 2x

x cos x 1 f— +
il

+
8
X -

I

2 y j \4

x sin2x f ' -\- cos4x

4
"

2
+ dx

4 4

x sin 2x 1

4
" T~ ^4

</jc

x sin Ax

2
+—

3x sin 2x sin 4x=
1 4~ +

32 '

(b) It follows that these two answers are the same, since they have the same

value for x — 0.

21. (a)

= /(si
n-\

sin" x dx = I (sin x )(sin" x ) dx

— cos x sin" x + {n — 1) / cos x (sin" x ) cos x dx

= — cos* sin" x + (n — 1) / (sin" "x — sin" x) dx,

so

/sin"
1 . i w -

x Jx = cos x sin x +
" 1 f n

/ sin
n J

-2
x dx.

(b)

/cos^ = /(cos*)(cos*-'*)^

,n-l= sin x cos" x + (n — 1 ) / sin x (cos" jc ) sin x dx

sin x cos" x

I
+ (/? — !) / (cos"

-
x — cos" x) dx.

so

/cos" x dx = — sin x cos" x +
n

n-l
f n-

-
/ COS

2 xdx.
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CHAPTER 20

(c)

/dx f dx f x"

u 2 + D»
==

J (.t
2 + iy-i ~

J W-
dx

(x 2 + \y

r dx

J (x 2 + l)"- [

/dx

IV

/ x • —5 — dx
J (x 2 + \y

X

2(1 -n)(x 2 + \)"~ [

-I
dX

so

/
dx 1

2(1 -n)(x2 + l)"" 1

.

_ 2/7-3 /• 1

2(n- 1)7 U2+1)"" 1(x 2 + 1)" 2(n- 1) U 2 + l)"" 1

We can also use the substitution x — tan u, dx = sec"
- w dw , which

changes the integral to

sec u du/sec u du f 7ii _ 1= / cos ~ udu
secz" u J

1 ,2»-3

2 _ 2
cor " sin M + "

2n - 3

3/ 2n-4 7

COS M AM

In -3
+

2"- 2 (vWl) 2"" 3 Vx 2 +1 2n -2 J (x 2

dx

+ 1)"" 1

+
2/7-3

2(ti - 1) (x 2 + l)"- 1
2/i - 2 i (A

2

ofjc

1. (i) P3,o(x) = e + ex + ex 2 + (5e/3\)x 3
.

(in) P2n,7t/2(X) = 1 ^ 1

7^

+ l)n-r

(-l)"(.V-7T/2) 2"

+
(2//)!

eU-1) 2 e(jc-l)"
(v) pnl (x ) = e + e (x -1) + -__. + . .+

2! //:

(vii) P4,oU)=A+A 3
.

(ix) P2„+i.oU) = 1 - x 2 + x
4 - • + (-1)"* 2".

2. If / is a polynomial function of degree /7, then / ( "+1) = 0. It follows from

Taylor's Theorem that RllM (x) = 0, so f{x) = PnM {x).

(i) -12 + 2(a--3) + (.y-3) 2
.

(iii) 243 + 405(x - 3) + 270(jc - 3)
2 + 90(a - 3)

3 + 15(jc - 3)
4 + (x - 3)

5
.

Q

1v- (-D'
> ~ZT. 777

1=0
(2/ + 1)!

17

(2/7 + 2)!
< 10

-1
' for 2/z +2 > 19, or/7 >9

in
y^ (-1)''

(2/ + 1)!

I

since
20

22"+2 (2/7+2)!
< 10

-u
for 2// + 2 > 18,

or n > 8 .
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(iii)

(n + 1)!

*3
2' / 3" • 2"+ '

^ —
I since -

—

—^ :
10~ 5

for n -\ 4, or n I

c, = cij + bi

.

o = f ./'

JO
(t)dt; Cj = «/_i// for / > 0.

CHAPTER 22 1. (i)

9.

Ill

Vll

IX

1 - «/(n + 1) = l/(/i + 1) < £ for w + 1 > 1/e.

lim ?/n 2 + 1 - i/« + 1 = lim (vV + 1- v
7^ 2

) + lim (^- >/^TT)
n—»oo «—oc n—>oo
= + = 0. (Each of these two limits can be proved in the same way

that lim (y/n + 1 — \fn ) = was proved in the text.)

Clearly lim (log a)/n = 0. So lim \fa = lim e
{k^ a)/ " = e° (by Theo-

rem 1) = 1

.

5. (a)

(b)

yV < \/n2 +n < l/2n 2~, so C-^n)
2 < \Vn 2 + n < v^Cv^) 2

, and

lim (\fn)
2 = lim V2(^/n) 2 — 1 by parts (v) and (vi).

n—*oo n—>oo

Clearly a(n) < log2 «, and lim (\og2 n )/ n = 0.
n—>-oo

If < a < 2, then a 2 < 2a < 4, so a < \J2a < 2.

Part (a) shows that

V2< J2V2 < V2v/

2v/
2 < < 2,

so the sequence converges by Theorem 2.

(c) If this sequence is denoted by {a,,}, then the sequence {v2a„ } is the

same as {a„+ i}. So the hint shows that / = V2/, or / = 2.

8. If x is rational, then n\nx is a multiple of it for sufficiently large n, so

(cosnljTx)~k — 1 for all such n, so lim ( lim (cosnljtx) ) = 1. If x is

irrational, then n!^A" is not a multiple of n for any «, so
|
cos«!7rx| < 1, so

lim (cos/7!7r.v)
2 ^ = 0, so f(x) = 0.

/ e
x dx — e — 1. (Use partitions of [0, 1] into n equal parts.)

h
1

1

A'—>oo

L

i

- dx = log 2.

1— dx — -.
(1+A-) 2 2

1 +.v

1

CHAPTER 23 1. (i) (Absolutely) convergent, since \(sinn0)/n 2
\

< \/n 2
.

(iii) Divergent, since the first 2n terms have sum 5 + • •• + 1/"- (Leibniz's

Theorem does not apply since the terms are not decreasing in absolute

value.)
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(v) Divergent, since

1 1

>
y^~r » 2/3

'

(vii) Convergent, since

(n + l)2/(n + i)! fn + l\
2

1

hm = = hm I
J

• = U.
n^oo n~/n\ «->oo y n / n + 1

(ix) Divergent, since l/(logn) > \/n.

(xi) Convergent, since l/(logn)n < — for n > 9.

(xiii) Divergent, since

n
2

1

>
n3 + 1 2/7

for large enough //.

(xv) Divergent, since

1

I,
dx = log(log N) — log(log 2) -> oo as TV —» oo.

2 xlogx

(Notice that /(x) = \/(x log*) is decreasing on [2, oo), since

/-(,)=
- [l

,

+ 1°y ] <0 forx>l.

(xvii) Convergent, since l//7"(logn) < 1//? for « > 2.

(xix) Convergent, since

,.
2" +l (n + D!/(w + 1)" +1 ,. 2(n + l)nM

hm = hm r
n^oo 2"n\/n" n^oo {n + 1)'!+1

2 2
= lim

1 \ »

1 +
A?

by Problem 18-17.

7. (a) For each /V we clearly have

0<J2 a » l0~" <9^ 10"" = ! -

n=\ n=\

oo

so 2^a„l0~" converges by the boundedness criterion, and lies between

n=\

and 1. (Actually, this number is denoted by 0.«ifl2«3«4 • • only when

the sequence {a,,} is not eventually 0.)
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20. The area of the shaded region is A. The integral is

2<[l-2] + [? ^J + [T6-3l] +
1 ,r\)-m l] + l

l
s

"2 l 2 t 8 1 32 ^ 128 ^

= ; i

32

J_
16

2M(l-TZ-l

:(l + i + TC + 3a + ---)
64

1 1 1

7 + TT + TT +
4 42 43

16 T 64

4 ^ 16

256 ^

1 +

(l + T-TTI + aHJ_
64 )

CHAPTER 24 1.

Ill

(Hi)

/(*)= lim /„(*) =
0, a- =
1, 0<jc< 1.

{/„} does not converge uniformly to /.

f(x) = lim f„(x) = (since lim x" = oo for x > 1). The sequence
H—*00 /!—»-00

{/„} does not converge uniformly to /; in fact, for any n we have fn (x)
large for sufficiently large x

.

f(x) = lim fn (x) = 0, and {/„} converges uniformly to /, since
n—>oo

I
/«(*)! < l/« for all x.

a 2

N £(-d>(/}

oo (-1)"

E .2k+l

k=0

e~x
.

If

2k + 1

then

/(*) = +

/'(*)

3-2 4-3

2 3
X X

Ia| < 1

= log(l+A) |a| < 1,

so for |jc
|
< 1 we have /(a) = (1 + A)log(l + a) — (1 + a) + c for

some number c. Since /(0) = 0, we have c = 1, so /(a) = (1 + a) •

log(l +a) — a for
|

a
|
< 1.
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6. Since
™

(
_ lrx2n+l

sin* = > — —

—

^ (2n + l)\

we have

(-\)"x 2n

fix) = J2
n
(2n + l)!

(notice that the right side is 1 for x = 0). So

(-1)"

f
(k)

(0) =
, k = 2n

2n + 1

0, k odd.

chapter 25 1. (i) |3 + 4/| = 5; = arctan
J.

(iii) |(1 +/) 5
|

= (|1 +/|)
5 = (v 2 ) ; since n/4 = arctan 1/1 is an argument

for 1 + i, an argument for (1 + i) is 5tt/4.

(v) |(|3+4/|)| = |5|= 5; 0=0.
i

-i±y/-\ -4

2

-i±V5i
2

(-1 + V5)/ (-1-V5)/
or

2 2

(iii) x 2 + 2/ A' — 1 = (x + i)
2

,
so the only solution is x — —i.

(v) x — x — x — 2 = (x — 2)(x + x + 1). The solutions are

1 V3 1 V3
2

' ~2 + V' -2--T 1 -

(i) All z = /y with y real.

(iii) All z on the perpendicular bisector of the line segment between a and b.

(v) For z = x + iy,we need vi" + y" < 1 — x. This requires that 1 — x >

0, and then our inequality is equivalent to i 2 + y
2 < (1 — x) 2

, or

x < (1 — y )/2 (and conversely this inequality implies that x < \, so

that 1 — a > holds). The set of points x + iy with x = (1 — y )/2 is the

parabola pointing along the second axis, with the point ^ + 0/ closest

to the origin, and which passes through the points + i and — /; the

desired set of complex numbers is the set of points inside this parabola.

\x + iy\- — x- + y = x + (— y) = \x — iy\ .

(z + z)/2 = [U + /y) + (a - zy)]/2 = x.

(z - 1)12 = [U + iy) - (x - iy)]/2i = y.

\z + w\
2 + \z — w\ 2 = (z + w)(z + u)) + (z - w)(z — w) = 2zz + 2ww =

2(\z\ + \w\ ). Geometrically, this says that the sum of the squares of the

diagonals of a parallelogram equal the sum of the squares of the sides.
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CHAPTER 27
1. (i)

(iii)

Converges absolutely, since |(1 +/)"/« !| = (V2 )"//?!, and ^(V2 )"///!

converges.

Converges, but not absolutely, since the real terms form the series

and the imaginary terms form the series

Diverges, since the real terms form the series

log 3 log 4 log 5 log 7
|

^log8 log 9

3 4

The limit

+
7

+2nr +
9

+

nm z = lim

m

n—>oo \z\" /H n-*-oo \ll -\

is < 1 for |z| < 1, but > 1 for \z\ > 1

The limit

m+1
lim

3. (i)

is < 1 for \z\ < 1 but > 1 for \z\ > I.

The limit

9«+l i_|(n+l)!

lim '

, = lim 2|c|
( " +1,! -" !

is for |z| < 1, but oo for \z\ > 1.

The limits

\z\
2n

\z\ 2 i
\z\

2"+l

lim , /
—— = —^= and lim

in

3" 73 n-^oo y 2" +1 V2

are < 1 for \z\ < v 2, so the series converges absolutely for |-| < V2.

But the series does not converge absolutely for |z| > v2, so the radius

of convergence is v2.

Since

lim " —— = lim — 'Un = — bv Problem 22-1 (vi),
2" n^-oo 2 2

the radius of convergence is 2.

The limit

lim ^2^ = 2 lim z
{n~ l]

is for \z\ < 1, but oo for
|

—
|
> 1, so the radius of convergence is 1.
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P 9

\a\ 11

yfx 12

max(x, >') 16

min(jc, y) 16

e ("epsilon") 18

N 21

23

n! 23

X> 24

Z 25

Q. 25

R 25, 589

0"
/OO 40, 47, 601

/ 43

/ + * 43,245

An 5 43

/* 43

//* 43

eg 43

{*:...} 43

{a z} 44

/ + g + h 44

f-g-h 44

/og 44

f o g o h 45

x -> /(x) 45

a
hC

49

n«< 49

CA 50

AUB 50

R- A 50

l/l 51

max(/, g) 5

1

min(/,g) 51

f<8 53

the pair (a, b) 54

the open interval (a, b)

56

[a,b] 57

(a, oo) 57

[a,oo) 57

(— oo, a) 57

(-oo, a] 57

(— oo, oo) 57

[x] 72

{x} 72

v + w 75

v • w 78

\\v\\ 78

det(u, w) 79

8 ("delta") 98

lim/(x) 101
x-*a

lim/ 101

lim /(x) 106

lim/(x) 106
x\a

lim /(x) 106

lim/(x) 106
x fa

lim /(x) 106
a:-»-oo

lim f(x) 113

lim/(x) = oo 113
x—*a

lim /(x) =oo 113
*-»oo

sup A 134

lubA 134

infA 134

gib A 134

nmA 143

lim sup A 143

lim A 143

/'(a) 151

/' 151

df(x)

dx

df(x)

154

dx

f" 161

/'" 161

f k) 161

d2
f(x)

dx 2

/- ] 231

155

162

e 244,331

c + d 245

a c 245

cd 246

det(c, J) 246

d 246

R(f,a,b) 253

L(/, /») 254

[/(/P) 254

r

r

/ 258

/(x)a"x 264

£(/, P) 277

ig(x) 278

J a

L / 295

J a

fJ a

[

i:

L

f 295

/ 301

/(x)ax 301

/ 301

/ 301

sin 304

sin
r

304

Tx 305

A(x) 306

cos 306, 308, 563

sin 306, 308, 563

sec 310

tan 310

esc 310

cot 310

arcsin 310

arccos 311

arctan 311

e 331

log 341

exp 343, 563

e 343

665
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e
x 344

a x 345

log
a

346

sinh 353

cosh 353

tanh 353

arg cosh 353

arg sinh 353

arg tanh 353

Nap log 358

F{x) 363

If 364

ff(x)dx 364

r(x) 394

P,,a 412

Pn.a.f 412

Rn,a 421

[P]n 434

(») 437W
{a,,} 452

lim a n 453

lim a„ = oo 456
n—>oo

y 463

lim .y„ 467
n-*oo

lim sup xn 467

lim x„ 468

liminfA,, 468
n—>oo

N(n;a,b) 469

oo

£>„ 472

/ 526, 532

C 531

z 534

\z\ 534

Re 541

Im 541

6 542

lim /(c) 542
z—*a

f'(a) 551

sin 563

cos 563

exp 563

b„ 572

B„ 572

D 573

D k 573

e
D 573

A 573

H>n 575

fn 576

+ 581,591

• 581,594

581,591

1 582, 596

—a 582, 592

a~ l

582, 596

P 583

> 584, 590

< 584, 590

> 584, 590

< 584, 590

\a\ 595



INDEX





AalbmcndoE, 276

Abel, Niels Henrik, 410, 522

Abel summable, 522

Abel's formula for summation by parts,

392

Abel's Lemma, 393

Abel's test, 496

Abel's Theorem, 522

Absolute value, 1

1

of a complex number, 534

Absolutely convergent, 480, 556

Absolutely summable, 480

Acceleration, 161

Acta Eruditorum, 148

Addition, 3

associative law for, 9

commutative law for, 9

of complex numbers, 531

geometric interpretation of, 535

of vector-valued functions, 245

of vectors, 75

Addition formula

for arcsin, 317

for arctan, 317

for cos, 314

for sin, 313, 314

for tan, 317

Additive identity

existence of, 9

for vectors, 76

Additive inverses

existence of, 9

Algebra, Fundamental Theorem of,

377, 538, 548, 567

Algebraic functions, 363

Algebraic number, 442

Algebraist's real numbers, 598

Almost lower bound, 142

Almost upper bound, 142

Analyst's real numbers, 598

Angle, 303

directed, 303

Antidiagonal, 243

Arabic numerals, multiplication of, 8

Arc length, 278, 283

Arccos, 3 1

1

derivative of, 311

Archimedes, 138, 141,263

Archimedian property

for the rational numbers, 584

for the real numbers, 138

Archimedian spiral, 85, 249

Arcsec, 320, 383

Arcsin, 310

addition formula for, 317

derivative of, 3 1

1

Taylor series for, 517

Arctan, 311

addition formula for, 317

derivative of, 311

Taylor polynomials for, 413, 420

remainder term for, 426

Area, 253, 258

Arg cosh, 353

Arg sinh, 353

Arg tanh, 353

Argument, 536

Argument function, 542

discontinuities of, 546

Argument of the hyperbolic

functions, 353

Arithmetic mean, 33

Arrow, 75, 76

"x arrow sin(x )", 45

Associative law

for addition, 9

of vectors, 76

for multiplication, 9

Average velocity, 152

Axis

horizontal, 57

imaginary, 534

real, 533

vertical, 57

Bacon, Francis, vi

Basic properties of numbers, 3

"Bent graphs", 149

Bernoulli, Jakob, 148, 574

Bernoulli numbers, 572

Bernoulli polynomials, 575

Bernoulli's inequality, 32

Big game hunting, mathematical

theory of, 552

Binary operation, 581

669
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Binomial coefficient, 27, 437

Binomial series, 495, 518

Binomial theorem, 28

Bisection argument, 142, 552

Bohr, Harold, 394

Bolzano-Weierstrass Theorem, 458, 469,

552

Bound

almost lower, 142

almost upper, 142

greatest lower, 1 34

least upper, 133, 584

lower, 134

upper, 133

Boundedness criterion, 474

Bounded above, 122, 133, 457, 584

Bounded below, 134, 457

Bourbaki, Nicholas, 148

Cantor, Georg, 448

Cardioid, 89, 250

Cartesian coordinates, 84

Cauchy

Condensation Theorem, 496

criterion, 473

form of the remainder, 437

Mean Value Theorem, 204

product, 493, 513

sequence, 459, 571

equivalence of, 599

Cauchy-Hadamard formula, 569

Cauchy-Schwarz inequality, 281

Cavalieri, Bonaventura, 275

Cesaro summable, 493

Chain Rule, 174 ff.

proof of, 178

Change, rate of, 152

Characteristic (of a field), 586

Circle, 65

"/ circle g", 44

unit, 66

Circle of convergence, 560
( 'lassical notation

for derivatives, 154 156, 162, 167,

187,241-242

for integrals, 265

Cleio, 186

( Hosed intciN al, 57

Closed rectangle, 547

Closure under addition, 9

Closure under multiplication, 9

Commutative law

for addition, 9

of vectors, 76

for multiplication, 9

Comparison test, 474

limit, 475

Comparison Theorem, Sturm, 323

Complete induction, 23

Complete ordered field, 584, 603

Completing the square, 17, 379

Complex analysis, 565

Complex function

continuous, 545, 546

differentiable, 550

graph of, 542

limit of, 542

nondifferentiable, 55

1

Taylor series for, 563

Complex /;th root, 536

Complex numbers, 526, 531

absolute value of, 534

addition of, 531

geometric interpretation of, 535

geometric interpretation of, 533-534

imaginary part of, 531

infinite sequence of, 555

infinite series of, 555-557

logarithm of, 570

modulus of, 534

multiplication of, 531

geometric interpretation

of, 535-536

real part of, 531

Complex plane, 533

Complex power series, 557

circle of convergence of, 560

radius of convergence of, 559

Complex-valued functions, 541

Composition of functions, 44

Concave function, 220

Conditionally convergent series, 48

1

Cone, 80

generating line of, 80

surface area of, 404

Conic sections, 80; see also Ellipse,

Hyperbola, Parabola

Conjugate, 534, 539
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Conjugate function, 541

Constant function, 43

Construction of the real numbers,

588 ff.

Continued fraction, 462

Continuous, uniformly, 144

Continuous at a, 1 15, 545

Continuous function, 115, 118,546

nowhere differentiable, 159, 509

Continuous on (a, b), 118

Continuous on [a,b], 118

Contraction, 466

Contraction lemma, 466

Converge

pointwise, 502

uniformly, 502, 506

Convergent sequence, 453, 555

Convergent series, 472, 556

absolutely, 480, 556

conditionally, 481

Convex function, 219

strictly, 228

weakly, 228

Convex subset of the plane, 229, 553

Cooling, Newton's law of, 356

Coordinate

first, 57

second, 57

Coordinate system, 57

cartesian, 84

origin of, 57

Coordinates

polar, 84

"Corner", 60

Cos, 303-304, 306, 321 322, 563

addition formula for, 314

derivative of, 172, 307

inverse of, see Arccos

Taylor polynomials for, 413

remainder term for, 424

Cosh, 353

Cosine, hyperbolic, 353

Cot, 310

derivative of, 310

Countable, 449

Counting numbers, 21

Critical point, 190

Critical value, 190

Csc, 310

derivative of, 310

Cubic equation, general solution,

528-529

Curve

parameterized, tangent line of, 246

parametric representation of, 244

reparameterization of, 247

Cycloid, 250

Darboux's Theorem, 214

De Moivre's Theorem, 536

Decimal expansion, 73, 492, 599

Decreasing function, 195

Decreasing sequence, 457

Dedekind, Richard, 38

Defined implicitly, 241

Definite integral, 365

DEFINITION, 47

Definition, recursive, 23

Degree (of a polynomial), 42

Degree measurement, 304-305

Delicate ratio test, 493

Delicate root test, 493

Dense, 140

Derivative, 149 ff., 151

classical notation for, 154-156, 162,

167, 187,241-242

higher-order, 161

"infinite", 158

left-hand, 156

Leibnizian notation for, see Derivative,

classical notation for

logarithmic, 351

"negative infinity", 158

of/, 151

of / at a, 151

of vector-valued function, 246

right-hand, 156

Schwarzian, 1 84

second, 161

Schwarz, 439

Derivative of quotient, incantation for,

171

Descartes, Rene, 84

Determinant, 79

of vector-valued functions, 248

Diagonal, 233
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Difference operator, 573

Differentiable, 151,550

Differential equation, 292, 300, 321,

322-323, 356, 361, 438-440

initial conditions for, 440

Differentiation, 168 ff.

implicit, 241

logarithmic, 35

1

Differentiation operator, 573

Dini's Theorem, 524

Directed angle, 303

Dirichlet's test, 495

Disc method, 402

Discontinuities of a nondecreasing

function, 450

Discontinuity, removable, 121

Disraeli, Benjamin, 2

Distance, 58, 534

shortest between two points, 278

Distributive law, 9

Diverge, 453, 556

Division, 6

Division by zero, 6

Domain, 40, 41, 47, 601

Dot product

of vectors, 78

of vector-valued functions, 246

Double intersection, 165

Double root, 185

Durege, 38

e, 343

irrationality of, 429

relation with n , 448, 564

transcendentality of, 444

value of, 344, 426

Eccentricity of ellipse, 87

Elementary function, 363

Ellipse, 66, 82

axes of, 87

eccentricity of, 87

equation in polar coordinates, 86 87

focus point of, 66, 86

major axis of, 87

minor axis of, 87

Ellipsoid of revolution, 405

Empt\ collection, 23

Entire function, 567

Epsilon, 18

Equal up to order n, 418

Equality, order of, 418

Equations, differential, see Differential

equations

Equivalent Gauchy sequences, 599

Etymology lesson, 82

Euler, Leonhard, 575

Euler's number, 463

Euler-Maclaurin Summation Formula,

576

Even function, 51, 199

Even number, 25

Eventually inside, 555

Exhaustion, method of, 141

Exp, 343 ff, 563

classical approach to, 357

elementary definition of, 468

Taylor polynomials for, 413

remainder term for, 426

Expansion, decimal, 73, 492, 599

Extension of a function, 115-116

Factorial, 23

Factorials, table of, 432

Factorization into primes, 31

Fibonacci, 32

Fibonacci Association, 32

Fibonacci Quarterly, The, 32

Fibonacci sequence, 32, 521, 572

Field, 581

characteristic of, 586

complete ordered, 584, 603

ordered, 583

First coordinate, 57

First Fundamental Theorem of Calculus,

285

Fixed point of a function, 465

Focus point, 66, 86

Force, as vector, 76

Four leaf clover, 88

Fourier series, 318, 320, 323

Fraction, continued, 462

Function, 39, 47

absolute value, 541
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Function {continued)

argument, 542

discontinuities of, 546

complex valued, 541

composition of, 44

concave, 220

conjugate, 541

constant, 43

continuous, 1 15 ff.

convex, 219

critical point of, 190

critical value of, 190

decreasing, 195

derivative of, 149 IT.

differentiable, 151, 550

elementary, 363

entire, 567

even, 51, 199

exponential, 343-344

extension of, 115-116

fixed point of, 465

from A to 5, 601

from real numbers to the plane, 244

graphs of, 57-65, 198, 542

hyperbolic, 353

identity, 43

imaginary part, 541

implicitly defined, 241

increasing, 195

integrable, 258

integral of, 258

inverse, 231 ff.

linear, 58

local maximum point of, 189

local minimum point of, 189

local strict maximum point of, 218

logarithm, 341, 346

maximum point of, 188

maximum value of, 188

minimum value of, 188

most general definition of, 601

negative part of, 51

nondecreasing, 243

nonincreasing, 243

nonnegative, 5

1

notation for, 40, 45

odd, 51, 199

one-one, 230

periodic, 71, 164, 298

polynomial, 42

positive part of, 51

power, 60

product of, 43

quotient of, 43

rational, 42

real part, 541

real-valued, 541

"reasonable", 68, 118, 149, 180

regulated, 524

square root, 546-547

step, 278

strict maximum point of, 218

sum of, 43

trigonometric, 303 ff.

value at x, 40

vector-valued, 244

Fundamental Theorem of Algebra, 377,

538, 549, 567

Fundamental Theorem of Calculus

First, 285

Second, 289

Gabriel, 408

Galileo Galilei, 148, 164

Gamma function, 394, 444

Generating line, of a cone, 80

Geometric mean, 33

Geometric series, 473

Global property, 123

Goes to, "x goes to sin(x )", 45

Graph of polynomial function, 197-198

Graph sketching, 196-201

Graphs, 57-65, 85 ff., 90-91, 197 198,

542

Gravitation, 330

Greatest lower bound, 134

Grin and bear it, 385-386

Gronwall's inequality, 356

Grow

at the same rate as, 361

faster than, 361
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Hadamard, see Cauchy-Hadamard

formula

Half-life (of radioactive substance), 356

Hermite, Charles, 443

High-school student's real numbers, 599

Higher-order derivatives, 161

HUbert, David, 443

Horizontal axis, 57

Hyperbola, 67, 82

equation in polar coordinates, 88

Hyperbolic cosine, 353

Hyperbolic functions, 353

Hyperbolic sine, 353

Hyperbolic spiral, 316

Hyperbolic tangent, 353

Identity

additive, 9

multiplicative, 9

Identity function, 43

Identity operator, 574

Imaginary axis, 534

Imaginary part function, 541

Imaginary part of a complex number,

531

Implicit differentiation, 241

Implicitly defined, 241

Improper integral, 301-302, 397-399

Incantation for derivative of quotient,

171

Increasing at a, 217

Increasing function, 195

Increasing sequence, 457

Indefinite integral, 365

Indefinite integrals, short table of,

365-366

Induction, mathematical, 21

complete, 23

Inductive set of real numbers, 34

Inequalities, 9

in an ordered held, 584

Inequality

Bernoulli's, 32

Cauchy-Schwarz, 281

geometric-arithmetic mean, 33

( in inu all's, 356

Jensen's, 228

Liouville's, 448

Schwarz, 17, 33, 281

triangle, 7

1

Young's, 276

Infimum, 134

"Infinite" derivative, 158

Infinite intervals, 57

Infinite product, 329, 395, 497

Infinite sequence, 452, 555

Infinite series, 47

1

multiplication of, 486

Infinite sum, 430, 47 1

Infinite trumpet, 408

Infinitely many primes, 32

"Infinitely small", 155, 264

Infinity, 57

minus, 57

Inflection point, 225

Initial conditions for differential equa-

tions, 440

Instantaneous speed, 152

Instantaneous velocity, 152

Integer, 25

Integrable, 258

Integral, 258

classical notation for, 264-265

definite, 365

improper, 301 302, 397-399

indefinite, 365

short table of, 365 366

Leibnizian notation for, see Integral,

classical notation for

lower, 295

Mean Value Theorem for, 277

Second Mean Value Theorem for,

391

upper, 295

Integral form of the remainder, 423

Integral sign, 258

Integral test, 478

Integration

by parts, 366 ff.

by substitution, 369 If.

limits of, 258

of rational functions, 377 ff.

Interest (finance), 355



Index 675

Intermediate Value Theorem, 124, 131,

135, 299

Interpolation, Lagrange, 49

Intersection of sets, 43

Interval, 56

closed, 57

infinite, 57

open, 56; see also Nested Intervals

Theorem

Inverse

additive, 9

multiplicative, 9

Inverse of a function, 231 ff.

Inverse square law, 330

Inverses of trigonometric functions,

see Trigonometric functions

Irrational numbers, 25

Isomorphic fields, 602

Isomorphism, 602

Jensen's inequality, 228

Johnson, Samuel, 607

Jump, 60

Kepler, Johannes, 330

Kepler's laws of planetary motion, 330

Lagrange form of the remainder, 423,

436

Lagrange interpolation formula, 49

Large negative, 64

Least upper bound, 133 ff, 584

Least upper bound property, 135

Lebesgue, see Riemann-Lebesgue

Lemma
Left-hand derivative, 156

Leibniz, Gottfried Wilhelm, 155, 264

Leibniz's formula, 184

Leibniz's Theorem, 481

Leibnizian notation for derivatives, 154-

156, 167, 187, 241

for higher order derivatives, 162

Lemma, 102

Lemniscate, 89

Length, 278, 283

L'Hopital, Marquis de, 148

L'Hopital's Rule, 204, 213-214

Limit, 90 ff, 98, 542

at infinity, 106

"does not exist", 101

from above, 106

from below, 106

of a sequence, 453

of vector-valued function, 246, 252

uniqueness of, 100

Limit comparison test, 475

Limit of integration, 258

Limit point, 469, 552

Limit superior, 143, 467

Lindemann, Ferdinand von, 447

Line, real, 56

Line, tangent, see Tangent line

Linear functions, 58

Liouville, Joseph, 448

Liouville's inequality, 448

Liouville's Theorem, 567

Lipschitz of order a, 210

Local maximum point of function, 189

higher-order derivative test for, 417

second derivative test for, 201

Local minimum point of function, 189;

see also Local maximum point

Local property, 109, 123, 166

Local strict maximum point, 218

Log, 341, 346

Taylor polynomials for, 413

remainder term for, 427

Logarithm

classical approach to, 357

Napierian, 358

of a complex number, 570

to the base 10, 339

Logarithmic derivative, 351

Lower bound, 134

almost, 142

greatest, 1 34

Lower integral, 295
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Lower limit of integration, 258

Lower sum, 254

Lowest terms, 73

Multiplicative inverses, existence of, 9

Multiplicity (of a root), 130, 185-186

Maclaurin, see Euler-Maclaurin summa-

tion formula

Major axis of ellipse, 87

Mass, rate of change of, 152

Mathematical induction, 21

Maximum of two numbers, 16

Maximum point of a function, 188

local, 1 89; see also Local maximum
point

local strict, 2 1

8

strict, 218

Maximum value of function, 1 88

Mean
arithmetic, 33

geometric, 33

Mean Value Theorem, 193, 194

Cauchy, 204

for integrals, 277

Second, 391

Method of exhaustion, 141

Minimum of function, 1 88

Minimum of two numbers, 16

Minimum point of a function, local,

189; see also Local minimum point

Minor axis of ellipse, 87

Minus infinity, 57

Mirifici logarithmonum canonis description,

358

Modulus of a complex number, 534

Mollerup, Johannes, 394

Multiplication, 5

associative law for, 9

closure under, 9

commutative law for, 9

of arabic numerals , 8

of complex numbers, 531

geometric interpretation, 535 536

of function and vector-valued func-

tion, 245

of infinite series, 486

of number and vector, 77

of vectors , 77

Multiplicative identity, existence of, 9

Napier, John, 358

Napierian logarithm, 358

Natural numbers, 21, 34

Negative, large, 64

"Negative infinity", derivative, 158

Negative number, 9

Negative numbers, product of two, 7

Negative part of a function, 5

1

Nested Interval Theorem, 142

Newton, Isaac, 155, 276, 330

Newton's law of cooling, 356

Newton's laws of motion, 161

Newton's method, 464

Nondecreasing function, 243

Nondecreasing sequence, 457

Nondifferentiable complex functions,

551

Nonincreasing function, 243

Nonincreasing sequence, 457

Nonnegative function, 51

Nonnegative sequence, 474

Norm, 78, 252

Notational nonsense, 573

Nowhere differentiable continuous

function, 509

«th root, 71, 536

existence of, 125, 536, 553

primitive, 540

Null set, 23

Number
algebraic, 442

complex, 526, 531

counting, 21

even, 25

imaginary, 526

irrational, 25

natural, 21, 34

odd, 25

prime, 3

1

rational, 25

real, 25, 534, 589

transcendental, 442

Numbers, basic properties of, 3
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Odd function, 51, 199

Odd number, 25

One-one function, 230

Open interval, 56

"Or", 6

Order of equality, 418

Ordered field, 583

complete, 584

Ordered pair, 47 (footnote), 54

Origin (of a coordinate system), 57

Pair, 46

ordered, 47 (footnote), 54

Parabola, 60, 82

area under, 263

equation in polar coordinates, 88

Parallelogram, 76

Parameterized curve, tangent line of,

246

Parametric representation of a curve,

244

Partial fraction decomposition, 378

Partial sums, 471

Partition, 254

Parts

Abel's formula for summation by, 392

integration by, 366 ff.

Pascal's triangle, 27

"Peak", 61

Peak point, 458

Period of a function, 71, 164, 298

Periodic function, 71, 164, 298

Perpendicularity of lines, 70

Petard, H., 552

Pig, yellow, v, 375

Pigheaded, 186

Plane, 58

complex, 533

Planetary motion, Kepler's laws of, 330

Point, 56

Point of contact, 220

Point-slope form of equation of a line,

59,70

Polar coordinates, 84 ff.

Polynomial function, 42

graph of, 61, 197 ff.

multiplicity of roots, 130,185-186

Polynomials, Bernoulli, 575

Pope, Alexander, 330

Position, rate of change of, 152

Positive element of R, 593

Positive elements of an ordered

field, 583

Positive number, 9

Positive part of a function, 5

1

Power functions, 60

Power series, 510

complex, 557

centered at a, 510, 564

Powers of 2, table of, 432

Prime number, 31

characteristic of a field, 586

infinitely many of, 32

unique factorization into, 31

Primitive, 363

Primitive «th root, 540

Principia, 276

Product, 5

Cauchy, 493,513

infinite, 329, 395, 497

of function and vector-valued func-

tion, 245

of functions, 43

of number and vector, 77

of two negative numbers, 7

of vectors, 77

Pyramid

surface area of, 403

volume of, 407

Pythagorean theorem, 25, 58

7T, 305

Archimedes' approximation of, 141

irrationality of, 326

relation to e, 448, 564

transcendentality of, 447

value of, 433

Viete's product for 2/n, 329

Wallis' product for tt/2, 395

Quaternions, 587

Quotient of functions, 43
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Rabbits

growth of population, 32

Radian measure, 63, 304 305

Radioactive decay, 355-356

Radius of convergence of complex

power series, 559

Rate of change of mass, 152

Rate of change of position, 152

Ratio test, 476

delicate, 493

Rational functions, 42

integration of, 377 ff.

Rational numbers, 25

Real axis, 533

Real line, 56

Real number (formal definition), 589

Real numbers, 25

algebraist's, 598

analyst's, 598

Archimedian property of, 138

construction of, 588 ff.

high-school student's, 599

inductive set of, 34

Real part function, 541

Real part of a complex number, 531

Real-valued function, 541

Rearrangement of a sequence, 483

"Reasonable" function, 68, 118, 149,

180

Rectangle, closed, 547

Recursive definition, 23

Reduction formulas, 377

Regulated function, 524

Remainder term for Taylor poly-

nomials, 421,423,437

Removable discontinuity, 121

Reparameterization, 247

Revolution

ellipsoid of, 405

solid of, 402

Riemann sum, 282

Riemann-Lebesgue Lemma, 320, 391

Right-hand derivative, 156

Rising Sun Lemma, 143

Rolle, Michel, 186

Rolle's Theorem, 193

Root

multiplicity of, 130, 185 186

Root of a polynomial function, 50

double, 185; see also nth roots

Root test, 493

delicate, 493

Same sign, 12

Scalar, 78

Scalar product of vectors, 78

Schwarz, H. A., 217

Schwarz inequality, 17, 33, 281

Schwarz second derivative, 438

Schwarzian derivative, 184

Sec, 310

derivative of, 310

inverse of, see Arcsec

Secant line, 150

Second coordinate, 57

Second derivative, 161

Schwarz, 438

Second derivative test for maxima and

minima, 201

Second Fundamental Theorem of

Calculus, 289

Second Mean Value Theorem for

Integrals, 391

Sequence

absolutely summable, 480

Cauchy, 459

complex, 571

equivalence of, 599

complex numbers, 555

convergent, 453

pointwise, 502

uniformly, 502

decreasing, 457

divergent, 453, 556

Fibonacci, 32, 521, 572

increasing, 457

infinite, 452, 555

limit of, 453

nondecreasing, 457

nonincreasing, 457

nonnegative, 474

rearrangement of, 483

summable, 472

Series

absolutely convergent, 480

conditionally convergent, 481
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Series (continued)

convergent, 472, 556

Fourier, 318,320, 323

geometric, 473

power, 510, 557

Taylor, 5 1 1

Set, 22

empty, 23

Sets

intersection of, 43

notation for, 43-44

Shadow point, 143

Shell method, 403

Sigma, 24

Sign, 12

Simpson's rule, 401

Sin, 43, 303 304, 306, 321-322, 563

addition formula for, 313, 314

derivative of, 172, 307

inverse of, see Arcsin

Taylor polynomials for, 412

remainder term for, 424

Sine, hyperbolic, 353

Sine function, 43

Sinh, 353

Sketching graphs, 196 201

Skew field, 587

Slope of a straight line, 58

Solid of revolution, 402

Speed, instantaneous, 152

Spiral

Archimedian, 85, 249

hyperbolic, 316

Square root, 12, 527

existence of, 124

Square root function, 546-547

Square root in a field, 586

Squaring the circle, 447

Step function, 278

Stirling's Formula, 578

Straight line

analytic definition, 58

shortest distance between two points,

278

slope of, 58

Strict maximum point, 218

Strictly convex, 228

Sturm Comparison Theorem, 323

Subsequence, 458

Substitution

integration by, 369 ff.

world's sneakiest, 386

Substitution formula, 369

Subtraction, 5

Sum
finite, 3-4

infinite, 430,471

lower, 254

of an infinite sequence, 472

of an infinite sequence of complex

numbers, 555

of functions, 43

of vector-valued functions, 245

of vectors, 75

partial, 471

sigma notation for, 24

upper, 254

Sum of squares, 552

Summable, 472, 556

Abel, 522

absolutely, 480

Cesaro, 493

uniformly, 506

Summation by parts, Abel's formula for,

392

Supremum, 1 34

Surface area

of cone, 404

of pyramid, 403

of solid of revolution, 404

Swift, Jonathan, 580

Symmetry in graphs, 199

Tan, 310

derivative of, 310

inverse of, see Arctan

Taylor series for, 573

Tangent, hyperbolic, 353

Tangent line, 149, 151

of parameterized curve, 246

point of contact of, 220

"Tangent line", vertical, 158

Tanh, 353

Taylor polynomial, 412 ff.

remainder term of, 421, 423, 427;

see also specific functions
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Taylor series, 5 1

1

Taylor's Theorem, 424

Torus, 405

Transcendental number, 442

Trapezoid rule, 400

Triangle inequality, 71

Trichotomy law, 9

Trigonometric functions, 303 ff., see also

cos, cot, esc, sec, sin, tan

integration of, 376-377

inverses of, 310 ff., see also arccos,

arcsec, arcsin, arctan

Trumpet

infinite, 408

Truncation of a polynomial, 434

Two-time differentiable, 161

Uniform limit, 502

Uniformly continuous function, 144

Uniformly convergent sequence, 502

Uniformly convergent series, 506

Uniformly distributed sequence, 469

Uniformly summable, 506

Uniqueness

of factorization into primes, 3

1

of limits, 100

Unit circle, 66

Upper bound, 133, 584

almost, 142

least, 133

Upper integral, 295

Upper limit of integration, 258

Upper sum, 254

Vanishing condition, 473

Vector-valued functions, 244

Vector-valued functions

determinant of, 246

derivative of, 246

dot product of, 246

limit of, 246, 252

multiplication of function by, 245

sum of, 245

Vectors, 75

addition of, 75

as forces, 76

dot product of, 78

multiplication by numbers, 77

multiplication of, 77

scalar product of, 78

Velocity

average, 152

instantaneous, 152

Vertical axis, 57

Viete, Francois, 329

Volume, 402^103

of solid of revolution, 402

Wallis' product, 395

Weakly convex, 228

Weierstrass, see Bolzano-Weierstrass

Theorem

Weierstrass M-test, 507

Well-ordering principle, 23

Wright, Edward, 388

Young's inequality, 276

"Valley", 61

Value

absolute, see Absolute value

Value of / at x, 40

Zahl, 25

Zero, division by, 6
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