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PREFACE



PREFACE TO THE FIRST EDITION

Every aspect of this book was influenced by the desire to present calculus not
merely as a prelude to but as the first real encounter with mathematics. Since
the foundations of analysis provided the arena i which modern modes of math-
ematical thinking developed, calculus ought to be the place in which to expect,
rather than avoid, the strengthening of msight with logic. In addition to devel-
oping the students’ intuition about the beautiful concepts of analysis, it is surely
equally important to persuade them that precision and rigor are neither deterrents
to mtuition, nor ends in themselves, but the natural medium i which to formulate
and think about mathematical questions.

This goal implies a view of mathematics which, m a sense, the entire book
attempts to defend. No matter how well particular topics may be developed, the
goals of this book will be reahzed only if it succeeds as a whole. For this reason, it
would be of httle value merely to list the topics covered, or to mention pedagogical
practices and other mnovations. Even the cursory glance customarily bestowed on
new calculus texts will probably tell more than any such extended advertisement,
and teachers with strong feehngs about particular aspects of calculus will know just
where to look to sce if this book fulfills their requirements.

A few features do require expheit comment, however. Of the twenty-nine chap-
ters n the book, two (starred) chapters are optional, and the three chapters com-
prising Part V have been included only for the benefit of those students who might
want to examine on their own a construction of the real numbers. Moreover, the
appendices to Chapters 3 and 11 also contain optional material.

The order of the remaming chapters is intentionally quite nflexible, since the
purpose of the book 1s to present calculus as the evolution of one idea, not as a
collection of ““topics.” Smce the most exciting concepts of calculus do not appear
until Part I, 1t should be pomnted out that Parts I and II will probably require
less time than their length suggests—although the entire book covers a one-year
course, the chapters are not meant to be covered at any uniform rate. A rather
natural dividing point does occur between Parts 1T and 1, so it 1s possible to
reach differentiation and mtegration even more quickly by treating Part IT very
briefly, perhaps returning later for a more detailed treatment. This arrangement
corresponds to the traditional organization of most calculus courses, but I feel
that it will only diminish the value of the book for students who have seen a
small amount of calculus previously, and for bright students with a reasonable
background.

The problems have been designed with this particular audience in mind. They
range from straightforward, but not overly simple, exercises which develop basic
techniques and test understanding of concepts, to problems of considerable dith-
culty and, I hope, of comparable mterest. There are about 625 problems i all.
Those which emphasize manipulations usually contain many examples, numbered
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viiit  Preface

with small Roman numerals, while small letters are used to label interrelated parts
in other problems. Some indication of relative difficulty 1s provided by a system of
starring and double starring, but there are so many criteria for judging difficulty,
and so many hints have been provided, especially for harder problems, that this
guide is not completely reliable. Many problems are so difhicult, especially if the
hints are not consulted, that the best of students will probably have to attempt only
those which especially mterest them; from the less difficult problems it should be
casy to select a portion which will keep a good class busy, but not frustrated. The
answer section contains solutions to about half the examples from an assortment
of problems that should provided a good test of technical competence. A separate
answer book contains the solutions of the other parts of these problems, and of all
the other problems as well. Finally, there is a Suggested Reading list, to which the
problems often refer, and a glossary of symbols.

[ am grateful for the opportunity to mention the many people to whom 1 owe my
thanks. Jane Bjorkgren performed prodigious feats of typing that compensated for
my fitful production of the manuscript. Richard Serkey helped collect the material
which provides historical sidelights in the problems, and Richard Weiss supplied
the answers appearing in the back of the book. I am especially grateful to my
friends Michael Freeman, Jay Goldman, Anthony Phillips, and Robert Wells for
the care with which they read, and the relentlessness with which they criticized, a
preliminary version of the book. Needles to say, they are not responsible for the
deficiencies which remain, especially since I sometimes rejected suggestions which
would have made the book appear suitable for a larger group of students. I must
express my admiration for the editors and stafl’of W. A. Benjamin, Inc., who were
always eager to increase the appeal of the book, while recogmzing the audience
for which it was mntended.

The inadequacies which preliminary editions always imvolve were gallantly en-
dured by a rugged group of freshmen in the honors mathematics course at Brandeis
University during the academic year 1965-1966. About half of this course was
devoted to algebra and topology, while the other half covered calculus, with the
preliminary edition as the text. It is almost obligatory in such circumstances to
report that the preliminary version was a gratufying success. This is always safe—
after all, the class is unlikely to rise up in a body and protest publicly—but the
students themselves, it seems to me, deserve the right to assign credit for the thor-
oughness with which they absorbed an mpressive amount of mathematics. I am
content to hope that some other students will be able to use the book to such good
purpose, and with such enthusiasm.

Waltham, Massachusetts MICHAEL SPIVAK
Lebruary 1967



PREFACE TO THE SECOND EDITION

I have often been told that the title of this book should really be something like “An
Introduction to Analysis,” because the book is usually used in courses where the
students have already learned the mechanical aspects of calculus — such courses are
standard in Europe, and they are becoming more common in the United States.
After thirteen years it seems too late to change the title, but other changes, in
addition to the correction of numerous misprints and mistakes, seemed called for.
There are now separate Appendices for many topics that were previously shighted:
polar coordinates, uniform continuity, parameterized curves, Riemann sums, and
the use of integrals for evaluating lengths, volumes and surface areas. A few topics,
like manipulations with power series, have been discussed more thoroughly in the
text, and there are also more problems on these topics, while other topics, like
Newton’s method and the trapezoid rule and Simpson’s rule, have been developed
in the problems. There are in all about 160 new problems, many of which are
intermediate in difficulty between the few routine problems at the beginning of
each chapter and the more difficult ones that occur later.

Most of the new problems are the work of Ted Shifrin. Frederick Gordon
pointed out several serious mistakes in the original problems, and supplied some
non-trivial corrections, as well as the neat proof of Theorem 12-2, which took
two Lemmas and two pages in the first edition. Joseph Lipman also told me
of this proof; together with the similar trick for the proof of the last theorem in
the Appendix to Chapter 11, which went unproved in the first edition. Roy O.
Davies told me the trick for Problem 11-66, which previously was proved only in
Problem 20-8 [21-8 in the third edition], and Marina Ratner suggested several
mteresting problems, especially ones on uniform continuity and infinite series. To
all these people go my thanks, and the hope that in the process of fashioning the
new edition their contributions weren’t too badly botched.

MICHAEL SPIVAK



PREFACE TO THE THIRD EDITION

The most signtficant change m this third edition 1s the inclusion of a new (starred)
Chapter 17 on planetary motion, m which calculus is employed for a substantal
phystcs problena.

In preparation for this, the old Appendix to Chapter 4 has been replaced by
three Appendices: the first two cover vectors and conic sections, while polar coor-
dmates are now deferred until the third Appendix, which also discusses the polar
coordinate equations of the conie sections. Norcover, the Appendix to Chapter 12
has been extended to treat vector operations on vector-valued curves.

Another large change 1s merely a rearrangement of old material: “The Cos-
mopolitan Integral,” previously a sccond Appendix to Chapter 13, is now an
Appendix to the chapter on “Integration in Elementary Terms™ (previously Chap-
ter 18, now Chapter 19); morcover, those problems from that chapter which used
the material from that Appendix now appear as problems in the newly placed
Appendix.

A few other changes and renumbering of Problems result [rom corrections, and
elmmation of mcorrect problems.

I was both startled and somewhat dismayed when I realized that after allow-
mg 13 years to elapse between the first and second editions of the book, I have
allowed another 14 years to clapse before this third editton. During this time 1
seem to have accumulated a not-so-short list of corrections, but no longer have
the original communications, and therefore cannot properly thank the vartous -
dividuals mvolved (who by now have probably lost mterest anyway). I have had
time to make only a few changes to the Suggested Reading, which after all these
years probably requires a complete revision; this will have to wait until the next
edition, which I hope to make m a more timely fashion.

MICHAEL SPIVAK



PREFACE TO THE FOURTH EDITION

Promises, promises! In the preface to the third edition I noted that 1t was 13 years
between the first and second editions, and then another 14 years before the third,
expressing the hope that the next edittion would appear sooner. Well, here 1t 1s
another 14 years later before the fourth, and presumably final, edition.

Although small changes have been made to some material, especially m Chap-
ters 5 and 20, this edition differs mainly in the introduction of additional problems,
g, and the correction of numerous er-
rors. These have been brought to my attention over the years by, among others,
Nils von Barth; Philip Locwen; Fernando Mejias; Lance Miller, who provided a
long list, particularly for the answer book; and Michael Maltenfort, who provided

a complete update of the Suggested Readm

an amazmgly extensive list of misprnts, errors, and criticisms.

Most of all, however, I am indebted to my friend Ted Shifrin, who has been
usmg the book for the text m his renowned course at the University of Georgia
for all these years, and who prodded and helped me to finally make this needed
revision. I must also thank the students m his course this last academic year, who
served as guinea pigs for the new edition, resulting, in particular, m the current
proof m Problem 8-20 for the Rising Sun Lemma, far simpler than Reisz’s original
proof; or even the proof in [38] of the Suggested Reading, which itself has now
been updated considerably, agamn with great help from Ted.

MICHAEL SPIVAK
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CHAPTER

BASIC PROPERTIES OF NUMBERS

The title of this chapter expresses in a few words the mathematical knowledge
required to read this book. In fact, this short chapter is simply an explanation of
what is meant by the “basic properties of numbers,” all of which——addition and
multiplication, subtraction and division, solutions of equations and mequalities,
factoring and other algebraic manipulations—are already familiar to us. Never-
theless, this chapter is not a review. Despite the familiarity of the subject, the
survey we are about to undertake will probably seem quite novel; it does not amm
to present an extended review of old material, but to condense this knowledge
into a few simple and obvious properties of numbers. Some may even seem too
obvious to mention, but a surprising number of diverse and important facts turn
out to be consequences of the ones we shall emphasize.

>

Of the twelve properties which we shall study i this chapter, the first nine are
concerned with the fundamental operations of addition and multiplication. For
the moment we consider only addition: this operation is performed on a pair
of numbers- the sum a + b exists for any two given numbers @ and b (which
may possibly be the same number, of course). It might seem reasonable to regard
addition as an operation which can be performed on several numbers at once, and
consider the sum ay + - - 4+ a, of n numbers ay, ..., a, as a basic concept. It is
more convenient, however, to consider addition of pairs of numbers only, and to
define other sums in terms of sums of this type. For the sum of three numbers
a, b, and ¢, this may be done in two different ways. One can first add » and ¢,
obtaining b + ¢, and then add a to this number, obtaining a + (b + ¢); or one can
first add a and b, and then add the sum a + b to ¢, obtaming (a + b) + ¢. Of
course, the two compound sums obtained are equal, and this fact is the very first
property we shall hst:

(P1) It a, b, and ¢ are any numbers, then

a+b+c)=(a+b)+c.

The statement of this property clearly renders a separate concept of the sum of
three numbers superfluous; we simply agree that a + b + ¢ denotes the number
a+(b+c) = (a+b)+c. Addition of four numbers requires similar, though slightly
more involved, considerations. The symbol a + b + ¢ + d is defined to mean

(1) ((a+b)y+c)+d,
or (2) (a+bh+c)+d,
or 3) a+((b+c)+d),
or 4) a+ b+ (c+d)),
or (5) (@a+b)+ (c+d).
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This definition is unambiguous since these numbers are all equal. Fortunately, this
fact need not be listed separately, since 1t follows from the property P1 already
listed. For example, we know from P1 that

(a+b)y+c=a+ (b+c),

and it follows immediately that (1) and (2) are equal. The equality of (2) and (3)
1s a direct consequence of PI, although this may not be apparent at first sight
(one must let b + ¢ play the role of b in P1, and d the role of ¢). The equalities
(3) = (4) = (5) are also simple to prove.

It is probably obvious that an appeal to P1 will also suffice to prove the equality
of the 14 possible ways of summing five numbers, but it may not be so clear how we
can reasonably arrange a proof that this is so without actually listing these 14 sums.
Such a procedure is feasible, but would soon cease to be if we considered collections
of six, seven. or more numbers; it would be totally inadequate to prove the equality
of all possible sums of an arbitrary finite collection of numbers aj.....a,. This
fact may be taken for granted, but for those who would like to worry about the
proof (and it is worth worrying about once) a reasonable approach is outlined in
Problem 24. Henceforth, we shall usually make a tacit appeal to the results of this
problem and write sums aj + - - - + a, with a blithe disregard for the arrangement
of parentheses.

The number 0 has one property so important that we list it next:

(P2) If a is any number, then

a+0=04+a=a.

An important role is also played by 0 in the third property of our list:
(P3)  For every number a, there is a number —a such that

a+(—a)=(—a)+a=0.

Property P2 ought to represent a distinguishing characteristic of the number 0,
and it is comforting to note that we are already m a position to prove this. Indeed,
if a number x satisfies

a+x=ua

for any one number a, then x = 0 (and consequently this equation also holds for all
numbers a). "The proof of this assertion involves nothing more than subtracting a
from both sides of the equation, in other words, adding —a to both sides; as the
following detailed proof shows, all three properties P1-P3 must be used to justify
this operation.

If a+x=a,
then (—a)+ (a+x)=(—a)+a=0;
hence ((—a) +a) +x =0;
hence 0+x=0;
lience 7 = (),
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As we have just hinted, 1t 1s convenient to regard subtraction as an operation
derived from addition: we consider @ — b to be an abbreviation for a 4+ (—=b). It
is then possible to find the solution of certain simple equations by a series of steps
(each jusufied by P1, P2, or P3) similar to the ones just presented for the equation
a + x = a. For example:

It x+3=35,
then  (x+3)+(=3)=5+(-3);
hence x+ @B+ (-3)=5-3=2;
hence x+0=2;

hence F = 2

Naturally, such elaborate solutions are of interest only until you become convinced
that they can always be supplied. In practice, it is usually just a waste of time to
solve an equation by indicating so expheitly the reliance on properties P1, P2, and
P3 (or any of the further properties we shall list).

Only one other property of addition remains to be listed. When considering the
sums of three numbers a, b, and ¢, only two sums were mentioned: (a + b) + ¢
and a + (b + ¢). Actually, several other arrangements are obtamed if the order of
a, b, and ¢ 1s changed. That these sums are all equal depends on

(P4) If @ and b are any numbers, then

a+b=>b+a.

The statement of P4 1s meant to emphasize that although the operation of ad-
dition of pairs of numbers might conceivably depend on the order of the two
numbers, in fact it does not. It is helpful to remember that not all operations are
so well behaved. For example, subtraction does not have this property: usually
a — b # b —a. In passing we might ask just when a — b does equal b — a. and 1t
1s amusing to discover how powerless we are if we rely only on properties P1- P4
to justify our manipulations. Algebra of the most elementary variety shows that
a —b = b —a only when a = b. Nevertheless, 1t 1s impossible to derive this fact
from properties P1 -P4: it is instructive to examine the elementary algebra care-
fully and determimne which step(s) cannot be justified by P1 -P4. We will indeed
be able to justify all steps in detail when a few more properties are listed. Oddly
enough, however, the crucial property mvolves multiphication.

The basic properties of multiplication are fortunately so similar to those for ad-
dition that littke comment will be needed; both the meaning and the consequences
should be clear. (As in elementary algebra, the product of @ and b will be denoted
by a - b, or simply ab.)

(P5) It a, b, and ¢ are any numbers, then

a-b-c)=(@-b)-c.

(P6) If @ 1s any number, then
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Moreover, 1 # 0.

(The assertion that I # 0 may seem a strange fact to list, but we have to
list it, because there 1s no way it could possibly be proved on the basis of the
other properties listed— these properties would all hold if there were only one
number, namely, 0.)

(P7)  TFor every number a # 0, there 1s a number a~ ! such that

(P8) It @ and b are any numbers, then

a-b=>b-a.

One detail which deserves emphasis 1s the appearance of the condition a # 0
m P7. This condition is quite necessary; since 0-b = 0 for all numbers b, there 1s no
number 07! satisfying 0- 07! = 1. This restriction has an important consequence
for division. Just as subtraction was defined in terms of addition, so division is
defined in terms of multiplication: The symbol a/b means a - b~!. Since 07! is
meaningless, a/0 1s also meaningless—division by 0 1s always undefined.

Property P7 has two important consequences. If a - b = a - ¢, it does not
necessarily follow that b = ¢; for if @ = 0, then both @ -b and a - ¢ are 0, no matter
what b and ¢ are. However, if a # 0, then b = ¢; this can be deduced from P7 as
follows:

If a-b=a-canda #0,
then a' (a-by=a' (- c);
hence (a_1 ~a)-b= (a’1 -a)-c;
hence o= o

hence () = @:

It is also a consequence of P7 thatif a-b = 0, then either a = 0 or b = 0. In fact,

if a-b=0anda #0,
then  a ' (@a-b)=0:
hence (@' a)-b=0:
hence 1.6=0:
hence b=0.

(It may happen that @ = 0 and b = 0 are both true; this possibility 1s not excluded
when we say “cither a = 0 or b = 0”; m mathematics “or™ is always used in the
sense of “one or the other, or both.”)

This latter consequence of P7 is constantly used m the solution of equations.
Suppose, for example, that a number x 1s known to satisty

(x — I)(x =2)=0.
-2

Then 1t foltows that either x — 1 =0 or x = 0: hence x =1 or x = 2.
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On the basis of the eight properties histed so far it 1s still possible to prove very
little.  Listing the next property, which combines the operations of addition and
multiphcation, will alter this situation drastically.

(P9)  If @, b, and ¢ are any numbers, then
a-b+c)y=a-b+a-c.

(Notce that the equation (b+c¢)-a =b-a+c-a s also true, by P8.)

As an example of the usefulness of P9 we will now determine just when a — b =

b—a:
If a—b=>b-—a.
then (a—by+b=b-a)+b=b+ (b —a);
hence a=b+b—a;
hence at+ta=b+b—a)+a=0b+0D.
Consequently a-(1+1)=5b-(1+1),
and therefore a=Dh.

A second use of P9 is the justification of the assertion a - 0 = 0 which we have
already made, and even used in a proof on page 6 (can you find where?). This
fact was not listed as one of the basic properties, even though no proof was offered
when 1t was first mentioned. With P1- P8 alone a proofwas not possible, since the
number 0 appears only in P2 and P3, which concern addition, while the assertion
in question involves multiplication. With P9 the proof is simple, though perhaps
not obvious: We have

a-0+a-0=a-0+0)
=a-0:

as we have already noted, this immediately implies (by adding —(a - 0) to both
sides) that a - 0 = 0.

A series of further consequences of P9 may help explain the somewhat myste-
rious rule that the product of two negative numbers 1s positive. To begin with,
we will establish the more casily acceptable assertion that (—a) -b = —(a - b). To
prove this, note that

(—a)-b+a-b=[(—a)+a]-b
=0-b
= ()
It follows immediately (by adding —(a - b) to both sides) that (—a)-b = —(a - b).

Now note that

(—a)- (=b)y+|—(a-b)| =(—a) - (=D)+ (—a)- b
= (—a) - [(—D) + b]
= (—a)-0
= 0.



8 Prologue

Consequently, adding (a - b) to both sides, we obtain
(—a)-(=b)=a-b.

The fact that the product of two negative numbers is positive is thus a consequence
of P1-P9. In other words, if we want Pl to P9 to be true, the rule for the product of two
negatie numbers is_forced upon us.

The various consequences of P9 examined so far, although interesting and im-
portant, do not really indicate the significance of P9; after all, we could have listed
each of these properties separately. Actually, P9 is the justfication for almost all
algebraic manipulations. For example, although we have shown how to solve the
equation

0w L0 e = O
we can hardly expect to be presented with an equation in this form. We are more
likely to be confronted with the equation
x2=3x+2=0.
The “factorization” x2 —3x +2 = (x — )(x —=2) is really a triple use of PY:

=D &x=2)=x-(x=2+(=D-(x-2)
X-X+x-(=2)+ -l -x+(=D-(-2)
A x[(=2)+ (=D]+2

= x> —3x+2.

A final illustration of the importance of P9 is the fact that this property is actually
used every time one multiplies arabic numerals. For example, the calculation

is a concise arrangement for the following equations:

13-24=13-(2- 10+ 4)
—13-2-10+13 .4
—26- 10+ 52.

(Note that moving 26 to the left in the above calculation is the same as writing

26 - 10.) The muluplication 13 -4 = 52 uses P9 also:

13-4=(1-10+3)-4
=1-10-4+3-4
—4.10+ 12
=4.-10+1-10+2
—@d+1)- 1042
—5.104+2
50
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The properties P1-P9 have descriptive names which are not essential to remem-
ber, but which are often convenient for reference. We will take this opportunity to
list properties P1-P9 together and indicate the names by which they are commonly

designated.

(P1)  (Associative law for addition) a+b+c)=(@a@+b)+c.

(P2)  (Existence of an additive a+0=04+a=a.
identity)

(P3)  (Existence of additive inverses) a+(—a)=(-a)+a=0.

(P4)  (Commutative law for addition) a+b=>b+a.

(P5)  (Associative taw for multiplica- a-(b-c)y=1(a-b)-c.
tion)

(P6)  (Existence of a multiplicative a-1=1-a=a 1#0.
identity)

(P7)  (Existence of multiplicative a-al=a'l.a=1, fora#0.
mverses)

(P8)  (Commutative law for mult- a-b=>b-a.
plication)

(P9)  (Distributive law) a-b+c)=a-b+a-c.

The three basic properties of numbers which remain to be listed are concerned
with inequalities.  Although mequalities occur rarely in elementary mathematics,
they play a promient role n calculus. The two notions of inequality, a < b
(@ 1s less than b) and a@ > b (a 1s greater than b), are intimately related: a < b
means the same as b > a (thus 1 < 3 and 3 > | are merely two ways of writing
the same assertion). The numbers a satisfying @ > 0 are called positive, while
those numbers a satistying a < 0 are called negative. While positivity can thus
be defined in terms of <, 1t is possible to reverse the procedure: a < b can be
defined to mean that b — a is positive. In fact, it is convenient to consider the
collection of all positive numbers, denoted by P, as the basic concept, and state
all properties in terms of P:

(P10)  (Trichotomy law) For every number a, one and only one of the
following holds:

i) a=0,
(1) @ is in the collection P,
(1) —a 1s in the collection P.

(P11)  (Closure under addition) If @ and b arc in P, then a + b is in P.

(P12)  (Closure under multiplication) If @ and b are m P, then a - b is
m P.
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These three properties should be complemented with the following definitions:

a>b f a—bisin P;
a<b f b>a;

a>b f a>bora=0b;
a<b f a<bora=>b*

Note, mn particular, that ¢ > 0 if and only if a 15 P,

All the fanmhar facts about inequalities, however elementary they may seem, are
consequences of P10-P12. For example, if @ and b are any two numbers, then
precisely one of the following holds:

0 a—b=0,
() a — b 1s in the collecton P,
() —(a —b) =b — a 1s m the collection P.

Using the definitions just made, 1t follows that precisely one of the following holds:

1) a=0b,
(i) a>b,
(m) b > a.

A slightly more interesting fact results from the following manipulations. If
a < b,so that b —a s P, then surely (b +¢) — (a 4+ ¢) 1sin P: thus.if a < b,
then a + ¢ < b + ¢. Similarly, suppose a < b and b < ¢. Then

b—aisin P,
and c¢c—bisin P,
SO c—a=(c—Db)+ (b —a)ism P.

This shows that if @ < b and b < ¢, then a < ¢. (The two mequalities a < b and
b < ¢ are usually written in the abbreviated forma < b < ¢, which has the third
mequality a < ¢ almost built in.)

The followng assertion 1s somewhat less obvious: If' ¢ < 0 and b < 0, then
ab > 0. The only ditficulty presented by the proof'is the unraveling of definitions.
The symbol ¢ < 0 means, by definition, 0 > a, which means 0 —a = —a 1s m P.
Similarly —b 1s in P, and consequently, by P12, (=a)(=b) = ab is m P. Thus
ab > 0.

The fact that ab > 0 if @ > 0, b > 0 and also if a < 0, b < 0 has one
special consequence: a® > 0if @ # 0. Thus squares of nonzero numbers are
always posttive, and m particular we have proved a result wlich might have seemed
suthciently elementary to be mcluded m our list of properties: 1 > 0 (sice 1 = 13,
*There 1s one slightly perplexmg feature of the symbols = and <. "The statements

l+1<3

1+1<2
arc both true, even though we know that < could be replaced by < in the first, and by = in the
second. This sort of thing is bound to occur when < is used with specific numbers: the uscfulness
of the symbol is revealed by a statement like Theorem 1 here equality holds for some values of a
and b, while mequality holds for other values.
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The fact that —a > 0 1if @ < 0 is the basis of a concept which will play an
extremely mportant role in this book. For any number a, we define the absolute
value |a| of a as follows:

a < 0.

a, a>0
la| =
—a

Note that |a| 1s always positive, except when a = 0. For example, we have | = 3| =
371 =7.1+4vV2=V3|=1+v2=V3.and [l + V2= V10| = V10 - V2 - 1.
In general, the most straightforward approach to any problem involving absolute
values requires treating several cases separately, since absolute values are defined
by cases to begin with. This approach may be used to prove the following very
important fact about absolute values.

For all numbers a and b, we have

la + b| < |a| + |b].

We will consider 4 cases:
(1) a>0, b=>0;
(2) a>0, b<0;
3 a<0, b=>0;
4) a<0. b=<\.
In case (1) we also have a + b > 0, and the theorem is obvious; n fact,

la+bl=a+b=|a|+ |b|,

so that m this case equality holds.
In case (4) we have a + b < 0, and again equality holds:

la +b| = —(a+b)=—a+ (=b) = |a| + |b|.
In case (2), when @ > 0 and b < 0, we must prove that
la+b| <a-—D>b.

This case may therefore be divided into two subcases. If @ + b > 0. then we must
prove that

a+b<a-0>b,
@, b < -=b,

which is certainly true since b < 0 and hence —b > 0. On the other hand. if
a+b <0, we must prove that

—a—b<a->b,

s
=

G —a <a,

which 1s certamly true since @ > 0 and hence —a < 0.

Finally, note that case (3) may be disposed of with no additional work, by apply-
ing case (2) with @ and b interchanged. §
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Although this method ol treating absolute values (separate consideration of var-
lous cases) 1s sometimes the only approach available, there are often simpler meth-
ods which may be used. In fact, it is possible to give a much shorter prool of
Theorem I; this prool is motivated by the observation that

la] = Va2.

(Here, and throughout the book, /x denotes the positive square root of x; this
symbol is defined only when x > 0.) We may now observe that

(la + b|)2 — (a+ b)2 = a® +2ab + b*
<a*+ 2lal - b + b*
= |al®> +2lal - |b| + b
= (la| + [b])*.

From this we can conclude that |a 4+ b| < |a| + |b| because x% < 3 mmplies x <y,
provided that x and y are both nonnegative; a proof of thus fact 1s left to the reader
(Problem 3).

One final observation may be made about the theorem we have just proved: a
close examination of either proof offered shows that

la + b| = |a| + |b]

if @ and b have the same sign (i.e., are both positive or both negative), or if one of
the two 1s 0, while
la + b| < |a| + |b]

il @ and b arc of opposite signs.

We will conclude this chapter with a subtle point, neglected until now, whose
inclusion is required m a conscientious survey of the properties of numbers. After
stating property P9, we proved that a — b = b —a implies a = b. The proof began
by establishing that

a-(1+1)=>b-(1+1),

from which we concluded that @ = b. This result is obtained from the equation
a-(1+1)=>b-(1+1) by dividing both sides by 1 4 1. Division by 0 should
be avoided scrupulously, and it must therefore be admitted that the validity of the
argument depends on knowing that 1 +1 # 0. Problem 25 is designed to convinee
you that this fact cannot possibly be proved [rom properties Pl P9 alone! Once
P10, P11, and P12 are available, however, the proof is very simple: We have
already seen that 1 > 0; 1t follows that 1 41 > 0, and m particular 1 + 1 # 0.
This last demonstration has perhaps only strengthened your feeling that it 1s
absurd to bother proving such obvious facts, but an honest assessment of our
present ssituation will help justify serious consideration of such details.  In this
chapter we have assumed that numbers are familiar objects, and that P1- P12 are
merely explicit statements of obvious, well-known properties of numbers. It would
be dificult, however, to justify this assumption. Although one learns how to “work
with” numbers m school, just what numbers are, remains rather vague. A great
deal of this book 1s devoted to elucidating the concept of numbers, and by the end
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of the book we will have become quite well acquainted with them. But it will be
necessary to work with numbers throughout the book. It is therefore reasonable
to admit frankly that we do not yet thoroughly understand numbers; we may still
say that, m whatever way numbers are finally defined, they should certainly have
properties P1-P12.

Most of this chapter has been an attempt to present convincing evidence that
P1 P12 are indeed basic properties which we should assume in order to deduce
other familiar properties of numbers. Some of the problems (which indicate the
derivation of other facts about numbers from P1-P12) are offered as further evi-
dence. It 1s still a crucial question whether P1-P12 actually account for a/l prop-
ertics of numbers. As a matter of fact, we shall soon see that they do not. In the
next chapter the deficiencies of properties P1-P12 will become quite clear, but
the proper means for correcting these deficiencies is not so easily discovered. The
crucial additional basic property of numbers which we are seeking is profound and
subtle, quite unlike P1-P12. The discovery of this crucial property will require all
the work of Part II of this book. In the remainder of Part I we will begin to see
why some additional property is required; in order to investigate this we will have
to consider a little more carefully what we mean by “numbers.”

PROBLENMS

1. Prove the following:

(1) If ax = a for some number a # 0, then x = 1.

) x?—y*=@x-y&x+).

(i) If x2 = v, then x =y or x = —y.

) x*—y =@ —nE>+xy +y2.

v) x"—y'=@x-— sl e o e L il

i) 23+ v = +y)(x? — xy + y?). (There is a particularly easy way to

do this, usmg (1v), and it will show you how to find a factorization for
x" 4 y" whenever n 1s odd.)

2. What is wrong with the following “proof™? Let x = y. Then

2
= = S,
22 .. 2
XT—y-=xy—y°,
(x+»Ex=y)=yx—y),
X + W=,
2y =y,
2 =1.
3. Prove the following:
e NG
—=—,1f b,c#0.
G =k T o
g ; 1+ bc ..
B) o b 2t D08 e 420,

E d bd
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(x1v)

(ab)™' = a b, if a.b # 0. (To do this you must remember the
dcﬁninq propertv of (ab)™!)

a

a C ad
5/_{ e ibberd 210,

If b,d # 0, then -5 = i] i and only if ad = be. Also determine when
a

a b

b a

all numbers x for which
4—x <3 —2x.
5—x2<8.

Sy 0

(x — D)(x = 3) > 0. (When is a product of two numbers positive?)
=D =

bl

x2 —x+10> 16.

x2 4 x 41 >0

x—m)x+5x—-3) >0.

(x— ¥2)(x —v2) >0.

2* < 8.

x+ 3" <4,

1 1

~+
=
x—1
x+1

> 0.

=2k

> (.

Prove the following:

)

(1)
(11i)
(v)
(v)

(v1)
(vii)
(viii)
(ix)
(%)

X

fa<bandec <d.thena+c < b+d.

If a < b, then —b < —a.

Ifa<bande>d, thena—¢c <b—d.

If a < band c > 0, then ac < be.

If @ < b and ¢ < 0, then ac > bc.

If a > 1, then a% > a.

If 0 <a < 1, then a* < a.

IfO0<a<band 0 < ¢ <d, then ac < bd.

If 0 < a < b, then a® < b*. (Use (viii).)

If a,b > 0 and a® < b?, then a < b. (Use (ix), backwards.)

a) Provethatif 0 <x <y, thenx" <y",n=1,2,3,....

) Prove that if x” = y" and n 1s odd, then x = y.

(a)
(b) Prove that if x < y and n 1s odd, tlu nxt <y
(
(

d) Prove that if x" = y" and nis even, then x = y or x = —y.
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Prove that if 0 < a < b, then

b
i < b.

a < vab <

Notice that the inequality vab < (a + b)/2 holds for all @, b > 0. A gener-
alization of this fact occurs in Problem 2-22.

Although the basic properties of inequalities were stated in terms of the col-
lection P of all positive numbers, and < was defined in terms of P, this
procedure can be reversed. Suppose that P10 P12 are replaced by

(P’10)  For any numbers @ and b one, and only one, of the

following holds:
0 a=b,
(1) a<b,
(i) b <a.

(P’11)  For any numbers a, b, and ¢, if a < b and b < ¢, then

a<c.

(P’12)  For any numbers a, b, and ¢, if a < b, then
a+c<b+ec.

(P"13)  For any numbers a, b, and ¢, if a < b and 0 < ¢, then
ac < be.

Show that P10-P12 can then be deduced as theorems.

Express each of the following with at least one less pair of absolute value
signs.

M IV2+V3-V5+ V1

() |(la + bl — la] = [bDI.

(i) [(la + bl + el — la +b + cD.
(iv) Ix2 — 2xy + y2|.

(

V) 1UV2 4+ V3] = V5 = V).

Express each of the following without absolute value signs, treating various
cases separately when necessary.

() a4+ bl —|bl.
(i) |(x] = DI

(i) x| — |x2].

) a—|(a—lal)|.

Find all numbers x for which

1y |Jx=3]=8.
(1) |Jx—3] <8.
() |x+4| <2.
(W |x=1+x=-2]>1.
V) =1+ x+1] <2
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28

13.

14.

*15.

*16.

vy |x=H+x+1 <1
(vii) |x =t |lx+1]=0
(vin) |x = 1|« |x 4+ 2| = 3.

Prove the foltowing:

@ eyl =Ixl- 1yl

1 | L
(1) —| = ﬁ, if x # 0. (The best way to do this is to remember what
X X
x|t is)
I.\I X
(i) — == if y #0.
ol |y

(i) [x=—yl<Ix

v) x| =1y] < |x = y|. (A very short proof is possible, if you write things in
the right way.)

(vi)  [(|x] = |yD] < |x — y|. (Why does this follow mmediately from (v)?)

(vii) |x +y +z| < x|+ |yl + |z]. Indicate when equality holds, and prove
your statement.

+ |v]. (Give a very short proof.)

The maximum of two numbers x and y 1s denoted by max(x, y). Thus
max(—1,3) = max(3,3) = 3 and max(—1.—-4) = max(—4.-1) = —
The minimum of x and y 1s denoted by min(x, y). Prove that

xtyHly—a
max(x, y) = .
2
: x+y— |y —x
min(x, y) = 3 .

Derive a formula for max(x, v, z) and min(x, y, 2), using, for example

max(x, y, 7) = max(x, max(y, 2)).

(a) Prove that |a| = |—al. (The trick 1s not to become confused by too many
cases. First prove the statement for @ > 0. Why is it then obvious for
a <0?)

(b) Prove that —=b < a < b if and only if |a| < b. In particular, 1t follows
that —|a| < a < |a|.
(c) Use this fact to give a new proof that |a + b| < |a| + |b].

Prove that if' x and y are not both 0, then
el Xy o _\'2 > 0,
x*+ x3y + xz),z +.\'y3 + )'4 > 0.
Hint: Use Problem 1.
(a) Show that

(x+y)2=x>+v? onlywhenx=0ory=0,
(x + _\’)3 =14 )’3 only when x =0ory=0o0r x = —y.
Y
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(b) Using the fact that
e 2xy + y2 = (x + }")2 >0,

show that 4x? + 6xy + 4y> > 0 unless x and y are both 0.

(¢) Use part (b) to find out when (x + y)* = x* + y*.

(d) Tind out when (x +y)5 = x5+y5. Hint: Irom the assumption (x+y) =
kg you should be able to derive the equation X34 2x2y 4+ 2xy2 4y =
0, if xy # 0. This implies that (x + v)* = 2y + xy> = xv(x + y).

You should now be able to make a good guess as to when (x +y)" = x"+ y";

the proof is contained m Problem 11-63.

(a) Tind the smallest possible value of 2x? — 3x +4. Hint: “Complete the
square,” 1.e., write 2x2 —3x +4=2(x —3/4)% +?

(b) Find the smallest possible value of x> —3x 4+ 2y> + 4y + 2.

(¢) Tind the smallest possible value of x% 4+ 4xy + 5y? —dx — 6y + 7.

(a) Suppose that b> —4¢ > 0. Show that the numbers

~b+ Vb? —4c —b —Vb?> —4c
> :

2

both satisfy the cquation x2 + bx + ¢ = 0.

(b) Suppose that b2 — 4¢ < 0. Show that there are no numbers x satisfying
x2 4+ bx +¢=0;in fact, x2 + bx + ¢ > 0 for all x. Hint: Complete the
square.

(c) Use this fact to give another proof that if x and y are not both 0, then
X2+ xy 4 < > 0.

(d) For which numbers « is it true that x> + axy + y* > 0 whenever x and
y arc not both 0?

(¢) TFind the smallest possible value of x> + bx + ¢ and of ax® + bx + ¢, for
a > 0.

The fact that @*> > 0 for all numbers a, elementary as it may seem, is
nevertheless the fundamental idea upon which most important inequali-
ties are ultimately based. The great-granddaddy of all inequalities is the
Schwarz inequality:

) 2 9l 2
Xy +xy2 < \/-X‘l“ + x2” \/_,\’1' + ¥2".

(A more general form occurs in Problem 2-21.) The three proofs of the

Schwarz inequality outlined below have only one thing in common —their
0 3 o) .

reliance on the fact that a= > 0 for all a.

(@) Prove that if x; = Ay; aud xo = Ay, for some number & > 0, then
cquality holds m the Schwarz mequahty. Prove the same thing if y; =
v2 = 0. Now suppose that y; and y» are not both 0, and that there is no
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number A such that x; = Ay; and x2 = Ay;. Then

0 < (Ay; —x)? 4 (Ayy — x2)?
=12+ 7)) — 20(x1y1 + X2y2) + (1% 4 x22).

Using Problem 18. complete the proof of the Schwarz inequality.
(b) Prove the Schwarz inequality by using 2xy < x?+y? (how s this derived?)

with

Xi Vi

= e, V= —
2 2 : 2 2
VX7 + x0T Vit +v©
first for i = 1 and then fori = 2.
(¢) Prove the Schwarz mequality by first proving that

(12 + 02707 + 327) = (xyy1 + x202)% + (132 — x2y1)%

(d) Deduce, from each of these three proofs, that equality holds only when
v; = y2 = 0 or when there is a number A > 0 such that x; = Ay, and
X2 = Ayo.

In our later work, three facts about inequalities will be crucial. Although proofs
will be supplied at the appropriate pomnt in the text, a personal assault on these
problems is infinitely more enlightening than a perusal of a completely worked-out
proof. The statements of these propositions involve some weird numbers, but their
basic message is very simple: if x 1s close enough to xg, and y is close enough to yo,
then x 4+ y will be close to xp+ yg, and xy will be close to xgyg, and 1/y will be close
to 1/vg. The symbol “&” which appears in these propositions is the fifth letter of the

Greek alphabet (“epsilon”), and could just as well be replaced by a less mtimidating

Roman letter; however, tradition has made the use of & almost sacrosanct m the

contexts to which these theorems apply.

20.

*21.

Prove that 1if

€1
|x —xp| < > and |y — yo| < >

<

then

[(x + ) = (xo + yo)| <e&.
[(x —y) — (x0 — yo)| < é&.
Prove that if
. £ ‘
lx — xo| < min (m 1) and |y — yol < 2%l + 1)
then |xy — xpyo| < €.

('T'he notation “min” was defined i Problem 13, but the formula provided by
that problem is irrelevant at the moment; the first mequality in the hypothesis

Just means that

lx — xg| < and |x —xg| < I:

E
2(lyol + 1)
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at one point n the argument you will need the first inequality, and at an-
other point you will need the second. One more word of advice: since the
hypotheses only provide information about x — xg and y — yg, 1t is almost a
foregone conclusion that the proof will depend upon writing xy — xgyp In a
way that mvolves x — xg and y — yp.)

Prove that if yy # 0 and

R
). e |yol &lyol”
y=>%0 7 ' o ,

then y # 0 and
1 1

y Yo

< @,

Replace the question marks in the following statement by expressions involv-
ng €, xg, and vg so that the conclusion will be true:

If yo # 0 and
[y — vl <? and |x —xg| <?

then y # 0 and

X X0

< &,

y Yo
This problem is trivial in the sense that its solution follows from Problems 21
and 22 with almost no work at all (notice that x/y = x - 1/y). The crucial
point is not to become confused; decide which of the two problems should
be used first, and don’t panic if your answer looks unlikely.

This problem shows that the actual placement of parentheses m a sum is
irrelevant. The proofs mvolve “mathematical induction™; if you are not fa-
miliar with such proofs, but still want to tackle this problem, it can be saved
until after Chapter 2, where proofs by induction are explained.

Let us agree, for definiteness, that ay + - - - + a, will denote

ay+ a2+ @3 +---+ (a2 + (@p-1 +an))) ---).

Thus ay + a> + a3 denotes ay + (a2 + a3). and a; + a2 + a3 + a4 denotes
ay + (az + (a3 + ay)), ctc.

(a) Prove that
(”l +"‘+”k) +Uk+1 =d) +"'+(Ik+l,

Himt: Use mduction on k.
(b) Prove that if n > k, then

@ +--+a)+ (@ +---+an)=a1+---+a,.

Hint: Use part (a) to give a proof by induction o k.



20 Prologue

(c) Lets(ay,....ar) be some sum formed from ay, .. .,a,. Show that
S(@ 5o avar@p)i= 1 = == ay.

Hint: There must be two sums s'(ay, ....a;) and s"(a;qq, ..., ay) such
that

(3 (7 NI %) 12 i 7/ 3 M, ap)) + s"(ajpy, ... ap).

25.  Suppose that we interpret “number” to mean either 0 or 1, and + and - to
be the operations defined by the following two tables.

+ 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Check that properties P1-P9 all hold, even though 1 + 1 = 0.



CHAPTER

NUMBERS OF VARIOUS SORTS

In Chapter 1 we used the word “number” very loosely, despite our concern with
the basic properties of numbers. It will now be necessary to distinguish carefully
various kinds of numbers.

The simplest numbers are the “counting numbers”
1528 32° 5

The fundamental significance of this collection of numbers is emphasized by its
symbol N (for natural numbers). A brief glance at P1 P12 will show that our
basic properties of “numbers” do not apply to N——{or example, P2 and P3 do not
make sense for N. From this point of view the system N has many deficiencies.
Nevertheless, N is sufficiently important to deserve several comments before we
consider larger collections of numbers.

The most basic property of N is the principle of “mathematical induction.”
Suppose P(x) means that the property P holds for the number x. Then the prin-
ciple of mathematical induction states that P(x) is true for all natural numbers x
provided that

(1) P(1) 1s true.
(2) Whenever P (k) is true, P(k 4 1) is true.

Note that condition (2) merely asserts the truth of P(k+1) under the assumption
that P(k) is true; this sufhices to ensure the truth of P(x) for all x, if’ condition
(1) also holds. In fact, if P(1) is true, then it follows that P(2) is true (by using
(2) in the special case k = 1). Now, since P(2) is truc it follows that P(3) is true
(using (2) 1 the special case k = 2). It 1s clear that each number will eventually be
reached by a series of steps of this sort, so that P(k) is true for all numbers k.

A favorite llustration of the reasoning behind mathematical induction envisions
an mfinite line of people,

person number 1, person number 2, person number 3, ... .

If cach person has been instructed to tell any secret he hears to the person behind
him (the one with the next largest number) and a secret is told to person number 1,
then clearly every person will eventually learn the secret. Iff P(x) 1s the assertion
that person number x will learn the secret, then the mstructions given (to tell all
secrets learned to the next person) assures that condition (2) is true, and telling
the secret to person number I makes (1) true. The following example is a less
facetious use of mathematical induction. There s a useful and striking formula
which expresses the sum of the first 7 numbers in a simple way:

21
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nn+1)
—s

|+ +n=

To prove this formula, note first that 1t 1s clearly true for n = 1. Now assume that
for some natural number k we have

kik+1
]+...+]\—:L_+_).
2
Then
k(k + 1
1+---+k+(k+l)=—7—)+k+l
_k(k+l)+2k+2
N 2
k24 3k42
a 2
kDG +2)
— Pa's

so the formula is also true for & + 1. By the principle of induction this proves
the formula for all natural numbers n. This particular example illustrates a phe-
nomenon that frequently occurs, especially m connection with formulas like the
one just proved. Although the proof by induction is often quite straightforward,
the method by which the formula was discovered remains a mystery. Problems 5
and 6 mdicate how some formulas of this type may be derived.

The principle of mathematical induction may be formulated in an equivalent
way without speaking of “properties™ of a number, a term which is sufficiently
vague to be eschewed in a mathematical discussion. A more precise formulation
states that if A is any collection (or “set”——a synonymous mathematical term) of
natural numbers and

(1) liismA,
(2) k+ lisin A whenever k£ is m A,

then A is the set of all natural numbers. It should be clear that this formulation
adequately replaces the less formal one given previously—we just consider the
sct A of natural numbers x which satisfy P(x). lor example, suppose A is the set
of natural numbers n for which it 1s true that

nn+1)
—

I+ dn=

Our previous proof of this formula showed that A contains 1. and that £ + 1 1s
n A, if kis. It follows that A 1s thie set of all natural numbers, 1.c., that the formula
holds for all natural numbers n.

There 1s yet another rigorous formulation of the principle of mathematcal -
duction, which looks quite different. If A is any collection of natural numbers, it
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1s tempting to say that A must have a smallest member. Actually, this statement
can fail to be true in a rather subtle way. A particularly important set of natural
numbers is the collection A that contains no natural numbers at all, the “empty
collection™ or “null set,”* denoted by ¥. The null set ¥ is a collection of natural
numbers that has no smallest member—in fact, it has no members at all. This
is the only possible exception, however: if A is a nonnull set of natural numbers,
then A has a least member. This “mtuitively obvious™ statement, known as the
“well-ordering principle,” can be proved from the principle of induction as follows.
Suppose that the set A has no least member. Let B be the set of natural numbers
nsuch that 1. ..., n are all not in A. Clearly 1 is in B (because 1f 1 were in A, then
A would have | as smallest member). Moreover, if 1, ... k are not in A, surcly
k 4+ 11s not in A (otherwise £ + 1 would be the smallest member of A),so I, ...,
k + 1 are all not in A. This shows that if k is in B, then £ + 1 is in B. It follows
that every number n is in B, i.c., the numbers 1, ..., n are nof m A for any natural
number n. Thus A = @, which completes the proof.

It 1s also possible to prove the principle of induction from the well-ordering
principle (Problem 10). Either principle may be considered as a basic assumption
about the natural numbers.

There is still another form of induction which should be mentioned. It some-
tumes happens that in order to prove P(k 4+ 1) we must assume not only P(k), but
also P(I) for all natural numbers / < k. In this case we rely on the “principle of
complete mduction™ If” A 1s a set of natural numbers and

(1) Tlisin A, .
2) k+1lismAifl, ..., karein A,

then A is the set of all natural numbers.

Although the principle of complete induction may appear much stronger than
the ordinary principle of induction, it is actually a consequence of that principle.
The proof of this fact is left to the reader, with a hint (Problem 11). Applications
will be found in Problems 7, 17, 20 and 22.

Closely related to proofs by induction are “recursive definitions.” For example,
the number n! (read “n factorial”) is defined as the product of all the natural
numbers less than or equal to n:

nl=1-2-...-(n—1)-n.
This can be expressed more precisely as follows:

() 1=1
(2) nl=n-(n-1.

This form of the definition exhibits the relationship between n! and (n — 1)! in an

* Although it may not strike you as a collection, in the ordinary sense of the word, the null set arises
quite naturally in many contexts. We frequently consider the set A, consisting of all x satisfying some
property P; often we have no guarantee that P is satisfied by any number, so that A might be @ in
fact often one proves that £ is always false by showing that A = ¢.
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explicit way that 1s 1deally suited for proofs by mduction. Problem 23 reviews a
definition already famihar to you, which may be expressed more succinetly as a re-
cursive definition; as this problem shows, the recursive deflinition is really necessary
for a rigorous proof of some of the basic propertics of the definition.

One definition which may not be familiar involves some convenient notation
which we will constantly be using. Instead of writing

A 9 ° AR @

we will usually employ the Greek letter 2 (capital sigma, for “sum”) and write
H
E a;.
i:l

H
In other words, E a; denotes the sum of the numbers obtamed by letting

=

i=1.2.....n Thus

1
Zi=l+2+--~+n=w.

~

n
Notice that the letter i really has nothing to do with the number denoted by Z i,
: N =l
and can be replaced by any convenient symbol (except n. of course!):

i,_n(il—}-l)
L=

T )
Zfz 5
i=1

J

_JG+D
le = ——,)—

n=1

n
To define E a; precisely really requires a recursive definition:

i=1
1
0 Ya=a,
i:|
n n—1
2) Zai = Za,- + a,.
j==1 =l

But only purveyors of mathematical ansterity would insist oo strongly on snch
precision.  In practice, all sorts of modifications of this symbolism are used, and
no one ever considers it necessary to add any words of explanation. The symbol
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for example, 1s an obvious way of writing
ayt+a+ay+as+ae+---+an,

or more precisely,
3

Zai +’Zla,-.

fi=ll =5

The deficiencies of the natural numbers which we discovered at the beginning
of this chapter may be partially remedied by extending this system to the set of
integers

ISR

This set 1s denoted by Z (from German “Zahl,” number). Of properties P1-P12,
only P7 fails for Z.

A sull larger system of numbers is obtained by taking quotients m/n of integers
(with n # 0). These numbers are called rational numbers, and the set of all
rational numbers is denoted by Q (for “quotients”). In this system of numbers all
of P1 P12 are true. It is tempting to conclude that the “propertes of numbers,”
which we studied in some detail in Chapter 1, refer to just one set of numbers,
namely, Q. There 1s, however, a still larger collection of numbers to which proper-
ties P1-P12 apply-—the set of all real numbers, denoted by R. The real numbers
include not only the rational numbers, but other numbers as well (the irrational
numbers) which can be represented by infinite decimals; 7 and V2 are both
examples of irrational numbers. The proof that 7 is irrational is not easy—we
shall devote all of Chapter 16 of Part I11 to a proof of this fact. The wrationality
of V2. on the other hand, is quite simple, and was known to the Greeks. (Since the
Pythagorean theorem shows that an isosceles right triangle, with sides of tength 1.
has a hypotenuse of length V2, it is not surprising that the Greeks should have
mvestigated this question.) The proof depends on a few observations about the
natural numbers. Every natural number n can be written either in the form 2k
for some nteger &, or else in the form 2k + | for some integer & (this “obvious”
fact has a simple proof by induction (Problem 8)). Those natural numbers of the
form 2k are called even; those of the form 2k + 1 are called odd. Note that even
numbers have even squares, and odd numbers have odd squares:

(2k)% = 4k* =2 (2k%).
2k + 1)> =4k> + 4k + 1 =2 (2k* +2k) + 1.
In particular it follows that the converse must also hold: if n2 is even, then n is even;

S I . . T ~ . . . . . .
if 7 1s odd, then 1 1s odd. The proof that V2 is irrational is now quite simple.

Suppose that V2 were rational: that is, suppose there were natural numbers p
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and ¢ such that

We can assume that p and ¢ have no common divisor (since all common divisors
could be divided out to begin with). Now we have

P’ =24’

o P o 0
This shows that p~ is even, and consequently p must be even; that is, p = 2k for
some natural number k. Then

SO
P b
2k =g~

This shows that ¢ is even, and consequently that ¢ is even. Thus both p and ¢
are even, contradicting the fact that p and ¢ have no common divisor. This
contradiction completes the proof.

[t is important to understand precisely what this proof shows. We have demon-
strated that there is no rational number x such that x> = 2. This assertion is often
expressed more briefly by saying that V2 is irratonal. Note, however, that the
use of the symbol V2 implhes the existence of some number (nccessarily irrational)
whose square 1s 2. We have not proved that such a number exists and we can as-
sert confidently that, at present, a proofl’is impossible {or us. Any prool at this stage
would have to be based on P1-P12 (the only properties of R we have mentioned):
since P1-P12 are also true for Q the exact same argument would show that there
1s a rational number whose square is 2, and this we know is false. (Note that the
reverse arguiment will not work—our proof that there is no rational number whose
square is 2 cannot be used to show that there i1s no rcal number whose square 1s 2,
because our proof used not only P1-P12 but also a special property of Q. the fact
that every number m Q can be written p/g for mtegers p and q.)

This particular deficiency in our list of properties of the real numbers could,
of course, be corrected by adding a new property which asserts the existence of
square roots of positive numbers. Resorting to such a measure 1s, however, neither
aesthetically pleasing nor mathematically satisfactory; we would still not know that
every number has an nth root if n 1s odd, and that every positive number has an
nth root if 1 1s even. Even if we assumed this, we could not prove the existence of
a number x satisfying v + x + 1 = 0 (even though there does happen to be one),
sice we do not know how to write the solution of the equation m terms ol nth
roots (in fact, 1t 15 kiiown that the solution cannot be written i this form). And,
of course, we certainly do not wish to assume that all equations have solutions,
since this is false (o real number x satisfies x> 4 1 = 0, for example). In fact,
this direction of investigation is not a fruitful one. The most useful hints about the
property distinguishing R from Q. the most compelhing evidence for the necessity
of elucidating tlis property, do not come from the study of numbers alone. In
order to study the properties of the real numbers in a more profound way, we
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must study more than the real numbers. At this point we must begin with the
foundations of calculus, in particular the fundamental concept on which calculus
is based—functions.

PROBLEMS

1. Prove the following formulas by induction.

. 5 nn+1)2n+1)
i 12 2 . .
(1) + +n 6

@ PB4+t nd=0+---+n)

Il

2. Find a formula for

) Y Ri-1)=14+3+5+--+@2n—1).

(ii) Z(zf 12 =124324524 ... 420 —1)>

I=

Hint: What do these expressions have to do with 1 +2+3 4 ... 4 2n and
12422432 4.+ (2n)??

n
3. 1If 0 <k < n. the “binomial coetlicient™ (R) 1s defined by

n n! nn— 1) (n—k+ 1) -
(_k) = R Kl e T

(g) = (”) = 1 (a special case of the first formula if we define 0! = 1),
n

and for k < 0 or k > n we just define the binomial coefhcient to be 0.

(e)=(")+ ()

(a) Prove that

(The proof does not require an induction argument.)
This relation gives rise to the following configuration, known as “Pas-
cal’s triangle”™—a number not on one of the sides 1s the sum of the two
. . ¥ T n .
numbers above it; the binomial coefficient ' 15 the (k + 1)st number

in the (n + 1)st row.
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(b) Notice that all the numbers in Pascal’s triangle are natural numbers. Use
/ : 5 TN o
part (a) to prove by induction that ) always a natural number. (Your
entire proof by induction will, in a sense, be summed up in a glance by
Pascal’s triangle.)

(e : ny . :
(¢) Give another proof that (k) 18 a natural number by showing that

N\ ’ ! : -
(,{) 1s the number of sets of exactly k& mtegers cach chosen from 1,
L.

(d) Prove the “binomial theorem™: If a and b are any numbers and n is a
natural number, then

2 n 5o n
(a+b)r=a"+ (’I )a”'"'b + (7)u”_*b* S ( l)ub" L A
_ £ n—

n

n :
- Z( _)a"_"h’.
ol

(e) Prove that

8 £ ()-()+

{ odd

" E()-

{ even

4. (a) Prove that

i n)( m )‘ n+m)
PN I )

fe=0; N7

Hint: Apply the binomial theorem to (1 4 x)"(1 + x)™.
(b) Prove that

n 2

> () =(3)

k=0
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(a) Prove by induction on n that

L+r+rit+tr"=

if r # 1 (if r = 1, evaluating the sum certainly presents no problem).
(b) Derive this result by setting § = 1 4+r+-- -+ ", multiplying this equation
by r, and solving the two equations for §.

e - S 7) ) = 2 - : .
['he formula for 1=+ ... 4+ n~ may be derived as follows. We begin with the
formula

k+1)P° -k =3k>+3k+1.

Writing this formula for k = 1. ..., n and adding, we obtain

1) —a =3 -n> 4 3-n+1

(1) -1 3124 - +n?]+3[1 +---+n] +n.

n n
Thus we can find Zk3 if we already know Z k (which could have been
k=1 k=1
found in a similar way). Use this method to find
i) P4-tnd
(@ 1t nt
| | - I
2. 23 nin+1)
3 5 2n+1
nn+ 1)

n
Use the method of Problem 6 to show that E k” can always be written in

i=1
the form
n ;:-i—l

o1 + An? 4 BnP~ VL CnP 24 e v,

(The first 10 such expressions are
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10.

11.

12.

n
2
Zk = %n“ -+ %n
k=1
H
12 BB 1.2 1
Zk =30 +5n° +gn
=]|
n
7
Zk3 = }1114 + %113 + }'n“
=1l
H
41,5 1,4 1,3 1
Zl\ =3zn" +3n +3n 35
=]
n
2
st =1p6 L1y + %/14 — L,n“
6 12 12
=]
n
© 7 =6 1.5 Il 3] 1
Zl\ =zn" 451 + 507 —gn” + 5n
=1
1]
Zk7 = 1,8 + 17 + l,n(’ — Iy -+ 1,2
8 2 12 24 12
=]
n
8§ _ 19 1.8 , 27 _71.5,23 |
ZI\ =g +3n° +3n s+ g5n 3571
=]

n

9_1,10,1,9 , 38 _ 7.6, 1.4 _ 3 2
Zk =qgh t3n +3n ot 30 30/
k=1

H
Zklo = ﬁn“ + %”l() - %ng SO 170 %113 + 65_6”'
=l

Notice that the coefficients in the second column are always 1, and that after
the third column the powers of n with nonzero coethcients decrease by 2 until
n? or n is reached. The coeflicients in all but the first two columns seem to
be rather haphazard, but there actually 1s some sort of pattern; finding it may
be regarded as a super-perspicacity test. See Problem 27-17 for the complete
story.)

Prove that every natural number is either even or odd.

Prove that if a set A of natural numbers contains ng and contains k& + 1
whencever it contains k, then A contains all natural numbers > ng.

Prove the principle of mathenatical induction from the well-ordering prin-

ciple.

Prove the principle of complete induction from the ordinary principle of

induction. Hint: If A coutains 1 and A contains n + | whenever it contains

I,...,n, consider the set B of all X such that 1, ..., &k arc all n A.

(a) Il @ 1s rational and b 1s wrrational, 1s a + b necessarily rrational? What
it a and b are both irrational?
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14.

15.

16.
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=

If a is ranonal and b 1s irrational, 1s ab necessarily rrational? (Careful!)

4

3 2 . . . . . . )
Is there a number a such that a= is irrational, but a” 1s rational:

—
&)
~

Are there two irrational numbers whose sum and product are both ra-

—
ol
=

tional?

(a) Prove that V3. V5, and V6 are irrational. Hint: To treat v/3, for exam-
ple, use the fact that every integer is of the form 3n or 3n + 1 or 3n + 2.
Why doesn’t this proof work for V42

(b) Prove that V2 and V3 are irrational.

Prove that
() V2 + V6 is irrational.
(b) V2 + V3 is irrational.

(a) Prove thatif x = p+ /g where p and ¢ are rational, and m is a natural
number, then x™ = a + b/q for some rational a and b.

(b) Prove also that (p — /g)" =a —b/q.

N = o) )
(@) Prove that if m and n are natural numbers and m~/n° < 2, then
, . 2
(m 4+ 2n)~/(m + n)- > 2; show, morcover, that
) 2
m—+ 2n)- me
e

-2 < 2—-—.
(m +n)? n?

(b) Prove the same results with all inequality signs reversed.

(c) Prove that if m/n < V2. then there is another rational number m’/n’
with m/n <m'/n’ < V2.

It seems hkely that Jn is irrational whenever the natural number 1 is not

the square of another natural number. Although the method of Problem 13

may actually be used to treat any particular case, it i1s not clear in advance

that 1t will always work, and a proof for the general case requires some extra
information. A natural number p is called a prime number if it is impos-

sible to write p = ab for natural numbers a and b unless one of these 1s p,

and the other I; for convenience we also agree that 1 1s 7ot a prime number.

The first few prime numbers are 2, 3,5, 7, 11, 13, 17, 19. It n > | is not a

prime, then n = ab, with a and b both < n; il either a or b 1s not a prime 1t

can be factored similarly; continuing in this way proves that we can write n

as a product of primes. For example, 28=4.7=2.2.7,

(a) Turn this argument into a rigorous proof by complete induction. (To
be sure, any reasonable mathematician would accept the informal argu-
ment, but this is partly because it would be obvious to her how to state
1t rigorousty:)

A fundamental theorem about integers, which we will not prove here, states
that this factorization i1s unique, except for the order of the factors. Thus,
for example, 28 can never be written as a product of primes one of which
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*18.

19.

20.

is 3. nor can it be written m a way that mvolves 2 only once (now you should

appreciate why 1 1s not allowed as a prime).

(b) Using this fact, prove that /i is irrational unless n = m? for some natural
number m.

(c) Prove more generally that /n is irrational unless n = m*.

(d) No discussion of prime numbers should fail to allude to Euclid’s beautiful
proof that there are infinitely many of them. Prove that there cannot be
only finitely many prime numbers py, p2, p3, ..., p, by considering

Pl P2 .. pnt L.

(@) Prove that if x satisties

1

X"ta, 4 x" 4+ 4+ap=0,

for some mtegers a,_1, ... , agp, then x is irrational unless x is an integer.
(Why 1s this a generahization of Problem 17?)
(b) Prove that v6 — v2 — V/3 is irrational.

(c) Prove that V2 + V2 is irrational. Hint: Start by working out the first 6
powers of this number.

Prove Bernoullt’s inequality: If /# > —1, then
(I +m">14+nh

for any natural number n. Why is this trivial if /# > 0?

The Fibonacct sequence ay, as. as, ... 1s defined as follows:
A=A
a =1,
ay = ap_1 + a,_» for n > 3.

This sequence, which begins 1, 1,2,3,5,8, ..., was discovered by Fibonacct
(circa 1175 1250), in connection with a problem about rabbits. Fibonacct
assumed that an mitial pair of rabbits gave birth to one new pair of rabbits
per month, and that after two months each new pair behaved similarly. The
number a, of pairs born in the nth month is a,_| + a,-2, because a pair of
rabbits is born for cach pair born the previous month, and moreover each
pair born two months ago now gives birth to another pair. The number of
mnteresting results about this sequence 1s truly amazing— there is even a Fi-
bonacci Association which pubhshes a journal, The Fibonacct Quarterly. Prove
that
L3\ (1o VB!

2 2

V5

One way of deriving this astonishing formula is presented in Problem 24-16.

a, =
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The Schwarz mequality (Problem 1-19) actually has a more general form:

Give three proofs of this, analogous to the three proofs in Problem 1-19.

The resultin Problem 1-7 has an important generalization: If ay.....a, > 0,
then the “arithmetic mean”
ay+---+ay,

n

Ap =

and “geometric mean”

satisty

(a) Suppose that a; < A,. Then some a; satisfies ¢; > A,; for convenience,
say ap > A,. Let ay = A, and let ap = a; + a2 — a;. Show that

ajax > ayas.
Why does repeating this process enough times eventually prove that G, <
A,? (This 1s another place where it is a good exercise to provide a formal

proof by induction, as well as an informal reason.) When does equality
hold in the formula G, < A,,?

The reasoning n this proof is related to another interesting proof.

(b) Using the fact that G, < A,, when n = 2, prove, by induction on k, that
G, < A, for n =2,
(c) For a general n, let 2" > n. Apply part (b) to the 2" numbers
ay,....an, Ay, ... Ay
— e

2™ —n times

to prove that G, < A,,.

The following is a recursive definition of a”:

1

a =a,
a"tl' =q".a.
Prove, by induction, that
un+m — (l” . am‘
(an)m — anm.

(Don’t try to be fancy: use either induction on n or induction on m, not both
at once.)
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25.

&’/
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!

Suppose we know properties P1 and P4 for the natural numbers, but that
multiplication has never been mentioned. Then the following can be used
as a recursive definition of muluplication:

l-b=b,
(a+1)-b=a-b+b.

Prove the following (in the order suggested!):

a-(b+c)=a-b+a-c(use nduction on a),
a-1=a,
a-b =b-a (you just finished proving the case b = 1).

In this chapter we began with the natural numbers and gradually built up to
the real numbers. A completely rigorous discussion of this process requires
a htde book in itself (see Part V). No one has ever figured out how to get to
the real numbers without going through this process, but if we do accept the
real numbers as given, then the natural numbers can be defined as the real
numbers of the form 1, 1 +1, I + 1+ 1, etc. The whole point of this problem
1s to show that there is a rigorous mathematical way of saying “etc.”

(a) A set A of real numbers is called inductive if

(1) lism A,
(2) k4 11sin A whenever & 1s in A.

Prove that

(1)  Ris inductive.
(1) The set of positive real numbers 1s inductive.
(in) The set of positive real numbers unequal to % 1s inductive.
(iv)  The set of positive real numbers unequal to 5 is not inductive.
(v)  If' A and B are inductive, then the set C of real numbers which
arc n both A and B is also inductive.
(b) Areal number n will be called a natural number if 7 is in every inductive
set.

(i) Prove that I is a natural number.
(i) Prove that k + | is a natural number if & is a natural number.

There is a puzzle consisting of three spindles, with n concentric rings of
decreasing diameter stacked on the first (Figure 1). A ring at the top of a
stack may be moved from one spindle to another spindle. provided that it
is not placed on top of a smaller ring. For example, 1t the smallest ring is
moved to spindle 2 and the next-smallest ring is moved to spindle 3, then
the smallest ring may be moved to spindle 3 also, on top of the next-smallest.
Prove that the entire stack of n rings can be moved onto spindle 3 i 2" — 1
nioves, aid that this cannot be done in fewer than 2" — I moves.
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University B. once boasted 17 tenured professors of mathematics. ‘Tradi-
tion prescribed that at their weekly luncheon meeting, faithfully attended by
all 17, any members who had discovered an error in their published work
should make an announcement of this fact, and promptly resign. Such an an-
nouncement had never actually been made, because no professor was aware
of any errors in her or his work. This is not to say that no errors existed,
however. In fact, over the years, in the work of every member of the de-
partment at least one error had been found, by some other member of the
department. This error had been mentioned to all other members of the
department, but the actual author of the error had been kept ignorant of the
fact, to forestall any resignations.

One fatetul year, the department was augmented by a visitor from another
university, one Prof. X, who had come with hopes of being offered a perma-
nent position at the end of the academic year. Naturally, he was apprised, by
various members of the department, of the published errors which had been
discovered. When the hoped-for appointment failed to materialize, Prof. X
obtained his revenge at the last luncheon of the year. “I'have enjoyed my visit
here very much,” he said, “but I feel that there is one thing that I have to tell
you. At least one of you has published an incorrect result, which has been
discovered by others in the department.” What happened the next year?

After figuring out, or looking up, the answer to Problem 27, consider the fol-
lowing: Each member of the department already knew what Prof. X asserted,
so how could his saying it change anything?
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The statemuent is so _frequently made
that the differential calculus deals with
continuous magnitude, and yet

an explanation of this continuity is
nowhere given;

even the most rigorous expositions

of the differential calculus do not base
their proofs upon continuity but,

with more or less consciousness of the fact,
they either appeal to geomelric notions
or those suggested by geometry,

or depend upon theorems which are never
established in a purely arithmetic manner.
Among these, for example,

belongs the above-mentioned theorem,
and a more careful investigation
convinced me that this theorem, or

any one equivalent to it, can be regarded
in some way as a sufficient basis

Jfor infinitesimal analysis.

It then only remained to discover its true
origin in the elements of arithmetic

and thus at the same time

to secure a real definition of

the essence of continuity.

[ succeeded Nov. 24, 1858, and

a_few days afterward I communicated
the results

of my meditations to my dear friend
Durége with whow I had a long

and lvely discussion.

RICHARD DEDEKIND



CHAPTER

PROVISIONAL DEFINITION

FUNCTIONS

Undoubtedly the most mportant concept in all of mathematics 1s that of a
function—in almost every branch of modern mathematies functions turn out to
be the central objects of investigation. It will therefore probably not surprise you
to learn that the concept of a function 1s one of great generality. Perhaps it will
be a relief to learn that, for the present, we will be able to restriet our attention to
functions of a very special kind; even this small class of funcaons will exhibit suth-
clent variety to engage our attention for quite some time. We will not even begin
with a proper definition. For the moment a provisional definition will enable us to
discuss functions at length, and will illustrate the intuitive notion of functions, as
understood by mathemaucians. Later, we will consider and discuss the advantages
of the modern mathematical defimtion. Let us therefore begin with the following:

A function is a rule which assigns, to each of certain real numbers, some other real
number.

The following examples of functions are meant to illustrate and amplify this defi-
nition, which, admittedly, requires some such clarification.

Example 1 'The rule which assigus to each number the square of that number.

Example 2 "The rule which assigns to cach number y the number

v +3y+5
»2+1

Lxample 3 'The rule which assigns to each number ¢ # 1. —1 the number

Example 4 'The rule which assigns to cach number x satusfying —17 < x < 7/3
the number x.

Example 5 The rule which assigns to each number a the number 0 if @ is
rrational, and the number 11f a 1s rational.

Example 6 The rule which assigns

to 2 the number 5.

36
to 17 the number —.
b8
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i
2
to — the number 28,
17
36
to — the number 28,
T
) 2 o . . . \/;
and to any y # 2. 17, 7= /17, or 36/7., the number 16 1f y is of the form a + bv2
fora, b m Q.

Example 7 'The rule which assigns to each number ¢ the number 2 + x. (This
rule depends, of course. on what the number x is, so we are really describing
infinitely many different functions, one for each number x.)

Example & The rule which assigns to each number z the number of 7%s in the
decimal expansion of z. if this number is finite, and —z if there are mfinitely many
7’s m the decimal expansion of z.

One thing should be abundantly clear from these examples——a function is any
rule that assigns numbers to certain other numbers, not just a rule which can
be expressed by an algebraie formula, or even by one uniform condition which
applies to every number: nor 1s 1t necessarily a rule which you, or anybody else,
can actually apply in practice (no one knows, for example, what rule 8 associates
to 7). Moreover, the rule may neglect some numbers and it may not even be clear
to which numbers the function apphes (try to determine, for example, whether the
function in Example 6 applies to 7). The set of numbers to which a function does
apply 1s called the domain of the function.

Before saying anything clse about functions we badly need some notation. Since
throughout this book we shall frequently be talking about functions (indeed we shall
hardly ever talk about anything else) we need a convenient way of naming func-
tions, and of referring to functions n general. The standard practice 1s to denote
a function by a letter.  For obvious reasons the letter 7 1s a favorite, thereby
making “g” and “h” other obvious candidates, but any letter (or any reasonable
“x7and “y7, although these letters
are usually reserved for indicating numbers. If £ i1s a funcuon, then the number
which f associates to a number x 1s denoted by f(x) —this symbol is read ™ f of
x” and is often called the value of f at x. Naturally. if we denote a function by x.
some other letter must be chosen to denote the number (a perfectly legitimate,
[, leadmg to the symbol x(f)). Note that the
symbol f(x) makes sensce only for x n the domam of f; for other x the symbol

symbol, for that matter) will do, not excluding

though perverse, choice would be *
f(x) 1s not defined.

If the functions defined m Examples -8 are denoted by f, g, h.r, s, 0, «,,
and v, then we can rewrite their definitons as follows:

() f)= x%  forall x.

S43v+5
2) gy)= \——_;—\——i__ for all v.
’ y-+ 1
34 3¢4+5
(3) h(c) = (—i;f— forall ¢ £ 1, —1.



3. Functions 41

(4) r(x) =x> forall x such that =17 < x < /3.

, 0, x wrational
D) SUPi L, % isalierrll.
5. =2
36
—., x=17
b4
JTZ
6) O(x)= 28, «x= 17
3
28, x = —6
T
? 36 . .
16, x#£2, 17, 75 or —, and x = a + bv/2 for a, b in Q.
b4

(I ofe(c) = 3+ x  for all numbers 7.

n, exactly n 7’s appear m the decimal expansion of x
—m, infinitely many 7’s appear in the decimal expansion of x.

8) y(x)=

These definitions illustrate the common procedure adopted for defining a func-
tion f—indicating what f(x) 1s for every number x in the domain of f. (Notice
that this is exactly the same as indicating f(a) for every number a. or f(b) for ev-

ery number b, etc.) In practice, certain abbreviations are tolerated. Definition (1)
could be written simple

() f)=x?

the qualifying phrase “for all x” being understood. Of course, for definition (4)
the only possible abbreviation is

4 rx)= x2, —17 <x <7m/3.

It is usually understood that a definitton such as

| |
k(x)y=—+——, x#0.1
xr x—1

can be shortened to

1

x—1

.

1
k(x)=—+
X

m other words, unless the domain s explicitly restricted further, it s understood to consist of
all numbers for which the definition makes any sense at all.

You should have litde difhculty checking the following assertions about the func-
tons defined above:

fx+ 1= fx)+2x+1;
g(x)y=h(x)il M 43x+5=0;
me)zmn+h+lM—U§x§%—h
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s(x + y) =s(x) il yis rational;

2 3
o (% =9(—6 :
17 T

a(x) =x-[f(x)+1];

()=o)

If the expression f(s(a)) looks unreasonable to you, then you are forgetting that
s(a) 1s a number hke any other number, so that f(s(a)) makes sense. As a matter
ol fact, f(s(a)) = s(a) for all a. Why? Even more complicated expressions than
Sf(s(a)) are, alter a first exposure, no more difficult to unravel. The expression

L (s@(az(y(H)NN).

formidable as it appears, may be evaluated quite easily with a little patience:

Sr(s@az(y($)))))
= f(r(s(B(a3(0)))))
= f(r(s(6(3)))
= f(r(s(16)))
= f(r(l))
= f(1)
= 1.

The first few problems at the end of this chapter give further practice manipulating
this symbolism.

The function defined in (1) is a rather special example of an extremely impor-
tant class of functions, the polynomial functions. A function f is a polynomial
function if there are real numbers ag, ... , @, such that

1

f))=ax" +a,_ 1 x"""+ -+ arx? + ayx + ao. for all x

(when f(x) 1s written in this form it is usually tacitly assumed that a, # 0). The
highest power of x with a nonzero coeflicient is called the degree of f; for
example, the polynomial function f defined by f(x) = 5x% + 137x* — 7 has
degree 6.

The functions defined in (2) and (3) belong to a somewhat larger class of func-
tions, the rational functions; these are the functons of the form p/g where p
and ¢ arc polynomial functions (and ¢ is not the function which is always 0). The
rational functions are themselves quite special examples of an even larger class of
functions, very thoroughly studied in calculus, which arve simpler than many of the
[unctions first mentioned in this chapter. The following are examples of this kind
of function:

Y42 4x sin? x

9) f(x)=— —
X SHIX + X sIn- X
(10)  f(x) = sin(x?).

(1) f(x) = sin(sin(x?)).
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(12) f(x)= sin’ (sin(sin” (x sin” x2))) - sin (X st SUl X)).

X +sinx

By what criterion, you may feel impelled to ask, can such functions, especially a
monstrosity like (12), be considered simple? The answer is that they can be built
up from a few simple functions using a few simple means of combining functions.
In order to construct the functions (9)-(12) we need to start with the “identity
function” 7, for which 7(x) = x, and the “sine function” sin, whose value sin(x) at
x is often written simple s x. The following are some of the important ways in
which functions may be combined to produce new functions.

If f and g are any two functions, we can define a new function f + g, called
the sum of f and g, by the equation

(f +9)x) = fx)+ g(x).

Note that according to the conventions we have adopted, the domaim of f + g
consists of all x for which “ f(x) + g(x)” makes sense, i.e., the set of all x i both
domam f and domamn g. If A and B are any two sets, then A N B (read “A
intersect B” or “the intersection of A and B”) denotes the set of x m both A
and B: this notation allows us to write domain( f 4+ g) = domain f N domain g.

In a similar vein, we define the product f - g and the quotient ! (or f/g) of

f and g by
(f @) = f(x) - gl)

f_) RPACY)
(g o g(x)’

Moreover, if g is a function and ¢ 1s a number, we define a new function ¢ - g by

and

(c-g)x)=c-glx).

This becomes a special case of the notation f - g if we agree that the symbol ¢
should also represent the function f defined by f(x) = ¢; such a function, which
has the same value for all numbers x, i1s called a constant function.

The domain of f - g is domain f N domain g, and the domain of ¢- g 1s simply
the domain of g. On the other hand, the domain of f/g is rather complicated—it
may be written domaimn f Ndomain g N {x : g(x) # 0}, the symbol {x : g(x) # 0}
denoting the set of numbers x such that g(x) # 0. In general, {x : ...} denotes
the set of all x such that * ... " is true. Thus {x : x3 + 3 < 11} denotes the set of
all numbers x such that x* < 8, and consequently {x : x*+3 < 11} = {x : x < 2}.
Either of these symbols could just as well have been written using y everywhere
wistead of x. Varmations of this notation are common, but hardly require any
discussion. Any one can guess that {x > 0 : x% < 8} denotes the set of positive
numbers whose cube is less than 8; it could be expressed more formally as {v :
x > 0and x? < 8). Incidentally, this set is equal to the set {x : 0 < x < 2}. One
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variation is slightly less transparent, but very standard. The set {1.3,2,4}, for
example, contains just the four numbers 1, 2, 3, and 4; it can also be denoted by
[x:x=lorx=30orx=2orx =4}

Certain facts about the sum. product, and quotient of functions are obvious con-
sequences of facts about sums, products, and quotients of numbers. For example,
1t 18 very easy to prove that

(f+e)+h=f+(g+h).

The proof is characteristic of almost every proof which demonstrates that two
funcuons are equal—the two functions must be shown to have the same domain,
and the same value at any number in the domain. For example, to prove that
(f+g)+h = f+(g+h), note that unraveling the defimtion of the two sides gives

[(f+8) +h]x)=(f+gx)+h(x)
= [f(x) + g(x)] + h(x)

and

[f+ (g +MD]x)= fx)+ (g +M)(x)
= f(x) + [g(x) + h(x)].

and the equality of [ f(x)+ g(x)] +i(x) and f(x)+ [g(x)+ h(x)] 1s a fact about
numbers. In this proof the equality of the two domains was not expheitly men-
tioned because this i1s obvious, as soon as we begin to write down these equations;
the domam of (f + g) +/h and of f + (g + N) is clearly domam f N domain g N
domain . We naturally write f+ g+ h for (f +g) +h = f + (g + h), precisely
as we did for numbers.

[t 1s just as easy to prove that (f-g)-h = f-(g-h), and this function is denoted
by f-g-h. The equations f+g =g+ f and f.g = g - f should also present
no dithculty.

Using the operations +, -, / we can now express the functuon f defined in (9)
by

== WEISYT <[] AETE S ST oS

/- sin+/ - sin-sm

It should be clear, however, that we cannot express function (10) this way. We re-
quire yet another way of combining functions. "This combination, the composition
of two functions, is by far the most important.

If f and g arc any two functions, we define a new function f o g, the compo-
sition of [ and g, by

(f o)) = f(gl)):

the domain of fog s {v @ x is in domain g and g(x) 1s in domam f}. The symbol
“fog”is olten vead  f circle g Compared to the phrase “the composition of f
and g” this has the advantage of brevity, of course, but there is another advantage
of far greater import: there 1s much less chance of confusing f o ¢ with g = f, and
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these must not be confused, since they are not usually equal; in fact, almost any f
and g chosen at random will illustrate this pomt (try f = 7 - [ and g = sin, for
example). Lest you become too apprehensive about the operation of composition,
let us hasten to point out that composition s associative:

(fog)loh=fo(goh)

(and the proof'1s a triviality); this function 1s denoted by f o g o h. We can now
write the functions (10), (11), (12) as

(10) f=simo(l-1),
(11)  f=sinosino (I 1),
(12)  f = (sin-sin)osino (sin-sin)o ([ - [(sin-sin)o (I - 1)]) -

. I +sino ([ -sin)
sin o - .
I + sin

One fact has probably already become clear. Although this method of writing
functions reveals their “structure” very clearly, it 1s hardly short or convenient. The
shortest name for the function f such that f(x) = sin(x?) for all x unfortunately
seems to be “the function f such that f(x) = sin(x?) for all x.” The need for
abbreviating this clumsy description has been clear for two hundred years, but no
reasonable abbreviation has received universal acclaim. At present the strongest
contender for this honor i1s something like

. bl
x — sm(x”)

(read “x goes to sin(x?)” or just “x arrow sin(x?)”), but it is hardly popular among
writers of calculus textbooks. In this book we will tolerate a certam amount of
ellipsis, and speak of “the function f(x) = sin(x).” Even more popular is the
quite drastic abbreviation: “the function sin(x?).” For the sake of precision we
will never use this description, which, strictly speaking, confuses a number and
a function, but it is so convenient that you will probably end up adopting it for
personal use. As with any convention, utility is the motivating factor, and this
criterion 1s reasonable so long as the slight logical deficiencies cause no confusion.
On occasion, confusion will arise unless a more precise description is used. For
example, “the function x + 3 is an ambiguous phrase; it could mean either

X — x+ t3, re., the function f such that f(x) = x + t3 for all x

or

t = x + 12, i.e., the function f such that f(1) = x + t3 for all ¢.

As we shall see, however, for many important concepts associated with functions,
calculus has a notation which contains the “x — built in.

By now we have made a suthciently extensive investigation of functions to war-
rant reconsidering our definttion. We have defined a function as a “rule,” but it is
hardly clear what this means. If we ask “What happens if you break this rule?” it
is not easy to say whether this question is merely facetious or actually profound.
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A more substantial objection to the use of the word “rule” is that

2

fl)=x
and

f)=x>4+3x4+3-3x+1

arc certainly different rules, if by a rule we mean the actual structions given for
determiing f(x); nevertheless, we want

[ =x°
and
f)=x’43x+3—clx+ 1)

to define the same funcuon. For this reason, a function 1s sometimes defined as an
“association” between numbers; unfortunately the word “association” escapes the
objections raised against “rule” only because it is even more vague.

There i1s, of course, a satistactory way of defining functions, or we should never
have gone to the trouble of criticizing our original definition. But a satisfactory
definition can never be constructed by finding synonyms for English words which
are troublesome. The definition which mathematicians have finally accepted for
“function” is a beautiful example of the means by which intuitive ideas have been
incorporated into rigorous mathematics. The correct question to ask about a
function 1s not “What is a rule?” or “What is an association?” but “What does
one have to know about a function in order to know all about it?”” The answer to
the last question is casy- for each number x one needs to know the number f(x);
we can imagine a table which would display all the information one could desire
about the function f(x) = xZ:

X f(x)
| |
—1 |
2 4
-9 4
2

[}9]

|
'\*‘r%|s|l
o

T

(397

—JT T

[t is not even necessary to arrange the numbers in a table (which would actually
be impossible if we wanted to list all of them). Instead of a two colummn array we
can consider various pairs of numbers

(1. 1), (=1 1), 2.4). (=2.4). (r.75). (V2.2)....
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simply collected together mnto a set.* To find f(1) we simply take the second
number of the pair whose first member is 1; to find f(r) we take the second
number of the pair whose first member is 7. We seem to be saying that a function
might as well be defined as a collection of pairs of numbers. For example, it we
were given the following collection (which contains just 5 pairs):

f={.7), 3,7, (5,3), 4.8), B b},
then f(1)=7, f3) =7, f5) =3, f@ =8, f(8 =4 and 1, 3,4, 5, 8 are the

only numbers in the domain of f. If we consider the collection
=007, G,7), 2,5). (1,8), (8,4)},

then f(3) =7, f(2) =5, f(8) = 4; but it is impossible to decide whether f(1) =7
or f(1) = 8. In other words, a function cannot be defined to be any old collection
of pairs of numbers; we must rule out the possibility which arose in this case. We
are therefore led to the following definition.

A function 1s a collection of pairs of numbers with the following property: if
(a.b) and (a,c) are both m the collection, then b = ¢; i other words, the
collection must not contain two different pairs with the same first element.

This 1s our first full-fledged definition, and illustrates the format we shall always
use to define significant new concepts. These definitions are so important (at
least as important as theorems) that it 1s essential to know when one is actually
at hand, and to distinguish them from comments, motivating remarks, and casual
explanatons. They will be preceded by the word DEFINITION, contain the term
being defined in boldface letters, and constitute a paragraph unto themselves.

There is one more definition (actually defining two things at once) which can
now be made rigorously:

If f1s a function, the domain of f is the set of all a for which there i1s some b
such that (a,b)ism f. If @ 1s in the domam of f, it follows from the definition
of a function that there 1s, in fact, a unigue number b such that (a, b) is in f.

This unique b is denoted by f(a).

With this definition we have reached our goal: the important thing about a
function f is that a number f(x) 1s determined for each number x in its domain.
You may feel that we have also reached the pomt where an intuitive definition has
been replaced by an abstraction with which the mind can hardly grapple. Two
consolations may be offered. First, although a function has been defined as a

*The pairs occurring here are often called “ordered pairs,” to emphasize that, for example, (2, 4) 1s
not the same pair as (4, 2). It 1s only fair to warn that we are going to define functions m terms of
ordered pairs, another undefined term. Ordered pas can be defined, however, and an appendix 1o
this chapter has been provided for skeptics.
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collection of pairs, there is nothing to stop you from thinking of a function as a
rule. Second, neither the intuitive nor the formal definition indicates the best way
of thinking about functions. The best way is to draw picturcs; but this requires a
chapter all by itself.

PROBLEMS

1.

Let f(x)=1/(1 4+ x). What 1s
(1)  f(f(x)) (for which x does this make sense?).

W r(5)

n)  f(cx).

iv)  f(x+y).

v) )+ f(y).

vi) Tor which numbers ¢ 1s there a number x such that f(cx) = f(x).
Hint: There are a lot more than you might think at first glance.

(vit) For which numbers ¢ is 1t true that f(cx) = f(x) for two different

numbers x?

Let g(x) = x2, and let

0, x rauonal

h(x) = . .
) I, x wrratonal.

(i)  For which y is h(y) < y?
(1)  For which y is hi(y) < g(y)?
(in)  What is g(h(z)) — h(z)?

(

(

) For which w s g(w) < w?

v)  For which ¢ 1s g(g(g)) = g(e)?

Find the domain of the functions defined by the following formulas.
i) fx)=v1-x2
i) fo)=yl-=vVI-=-x=2

B! 1
m f(x)= P +x—2'

av) f(x)= V1 —x2+\/x2 - 1.
v f)=VI-x+vVx-2.

8 o) 3 . . 3 g
Let S(x) = x=, let P(x) = 2%, and let s(x) = sin x. Find each of the following,
In each case you answer should be a number.

(1) (SoP)y).
(i) (Sos)(y).

i) (SoPos)t)+(soP)1).

) s,

“xpress each of the following functions m terms of S, P, s, using only
+, +, and o (for example, the answer to (i) 15 P o s). In cach case your

(
(
I
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answer should be a function.

(vi)

f(\) = 2sin.r.

f(x) =sm2'.

f(x) = sinx?.

fx)= sin” x (remember that sin> x is an abbreviation for (sin x)?).
f() = 2%. (Note: a” always means a®”; this convention is adopted
because (a?)¢ can be written more simply as a”“.)

fu) =sin(2" + 2“1).

(vi) f(y) = sin(sin (sin( 2z )))
(\111) f((l) - 2sin:u + Sin(az) + 2sin(a2+sina)_

Polynomuial functions, because they are simple, yet flexible, occupy a favored
role in most investigations of functions. The following two problems illustrate their
flexibility, and guide you through a derivation of their most important elementary
properties.

(@)

(b)

If xj, ..., x, are distinct numbers, find a polynomial function f; of
degree u — 1 which 1s I at x; and O at x; for j # i. Hint: the product of
all (x —xj) for j #i,is O at xjif j #i. (This product is usually denoted

by
n

[T =,

j=1

J#
the symbol IT (capital p1) playing the same role for products that £ plays
for sums.)
Now find a polynonual function f of degree n — 1 such that f(x;) = a;,
where ay, ..., a, are given numbers. (You should use the functions
fi from part (a). The formula you will obtain is called the “Lagrange
interpolation formula.”)

Prove that for any polynomial function f, and any number a, there 1s a
polynomial function g, and a number b, such that f(x) = (x —a)g(x)+b
for all x. (The idea is simply to divide (x — @) mto f(x) by long division.
untl a constant remainder is left. For example, the calculation

x2 +x -2
x—1 )x3 —3x+1
3 =x2
x2 —3x
x2 —x
—2x +1
—2x 12

-1
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10.

i1.

shows that x3 —=3x+1 = (x = D(x>+x —2) — 1. A formal proof is
possible by induction on the degree of f.)

(b) Prove thatif f(a) = 0, then f(x) = (x — a)g(x) for some polynomial
function g. (The converse 1s obvious.)

(¢) Prove that if f is a polynomial function of degree n, then f has at most
n roots, 1.e., there are at most n numbers a with f(a) = 0.

(d) Show that for cach n there is a polynomial function of degree n with
n roots. I n is even find a polynomial function of degree n with no
roots, and if* 7 1s odd find one with only one root.

For which numbers a, b, ¢, and d will the function

o ax +b
fo) = cex +d
satsly f(f(x)) = x for all x (for which this equation makes sense)?
(@) If A 1s any set of real numbers, define a function C, as follows:

I, xmA

Cilx) = :
At 0, xnotm A.

Find expressions for Canp and Caup and Cr_ 4, n terms of C4 and Cpg.
(The symbol A N B was defined m this chapter, but the other two may
be new to you. They can be defined as follows:

AUB={x:xisin Aorx isin B},
R—A={x:x1sinRbutxisnotin A}.)

(b) Suppose f is a function such that f(x) = 0 or 1 for each x. Prove that
there 1s a set A such that f = Cj.
(¢c) Show that f = % if and only if' f = C4 for some set A.
(a) For which functons f 1s there a function g such that f = ¢>? Hint: You
can certainly answer this question if “function” is replaced by “number.”
(b) For which functions f 1s there a function g such that f = 1/g?
*(¢) Tor which functions b and ¢ can we find a function x such that

(X)) 4+ bD)x () +c(1) =0

for all numbers ¢?
*d) What conditions must the functions @ and b sausfy if there is to be a
function x such that

a(H)x()+b() =0
for all mumbers 2 How many such functions x will there be?

(a) Suppose that H 1s a function and y s a number such that H(H(y)) = y.
What 1s
HH(H(--(H(y)---)?

80 times
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*13.

14.

15.

*16.
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(b) Same question if 80 is replaced by 81.
(¢) Same question 1f H(H(y)) = H(y).

*(d) Find a funcion H such that H(H (x)) = H(x) for all numbers x, and
such that H(1) =36, H(2) =7 /3, H(13) =47, H(36) =36, H(w/3) =
/3, H(47) = 47. (Don’t try to “solve” for H (x); there are many func-
tions H with H(H (x)) = H (x). The extra conditions on H are supposed
to suggest a way of finding a suitable H.)

*e) Find a function H such that H(H(x)) = H(x) for all x, and such that
H(l)y=7, H(17) = 18.

A function f is even if f(x) = f(—x) and odd if f(x) = —f(—x). For
example, f is even if f(x) = x2or f(x) = |x| or f(x) = cosx, while f is
odd if f(x) =x or f(x) =sinx.

(a) Determine whether f + g is even, odd, or not necessarily cither, in the
four cases obtained by choosing f even or odd, and g even or odd. (Your
answers can most conveniently be displayed in a 2 x 2 table.)

(b) Do the same for f - g.

(c) Do the same for f o g.

(d) Prove that every even function f can be written f(x) = g(]x]), for in-
finitely many functions g.

(a) Prove that any function f with domain R can be written f = E + O,
where E is even and O is odd.

(b) Prove that this way of writing f is unique. (If you try to do part (b) first,
by “solving” for E and O you will probably find the solution to part (a).)

If f is any function, define a new function |f| by |[f|(x) = |f()]. If f
and g arc functions, define two new functions, max(f, g) and min(f, g), by

max( f, g)(x) = max(f(x).gx)),
min( f, g)(x) = min(f(x), g(x)).

Find an expression for max(f, g) and mm(f. g) in terms of | |.

(a) Show that f = max(f.0) + min(f, 0). This particular way of writing
S s fairly useful; the functions max(f. 0) and min(f, 0) are called the
positive and negative parts of f.

(b) A function f is called nonnegative if’ f(x) > 0 for all x. Prove that any
function f can be written f = g — h, where g and h are nonnegative,
in mfinitely many ways. (The “standard way™ is ¢ = max(f, 0) and h =
—min(f, 0).) Hint: Any number can certainly be written as the difference
of two nonnegative numbers in infinitely many ways.

Suppose f satsfies f(x +v) = f(x)+ f(») for all x and v.

(a) Prove that f(x; 4+ x,) = 1)+ + f(x).

(b) Prove that there is some number ¢ such that f(x) = cx for all rational
numbers x (at this point we're not trying to say anything about f(x) for
wrational x). Hint: First figure out what ¢ must be. Now prove that
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f(x) = cx, first when x 1s a natural number, then when x is an integer,
then when x is the reciprocal of an integer and, finally, for all ratonal x.

If f(x) =0 forall x, then f satstes f(x+y) = f(x)+ f(¥) forall x and y,
and also f(x-y) = f(x)- f(y) for all x and y. Now suppose that f satisfies
these two properties, but that f(x) 1s not always 0. Prove that f(x) = x for
all x, as follows:

(a)

Prove that f(1) =1.

Prove that f(x) = x il x is rational.

Prove that f(x) > 0 if x > 0. (This part is ticky, but if you have
been paying attention to the philosophical remarks accompanying the
problems in the last two chapters, you will know what to do.)

Prove that f(x) > f(y)if x > y.

Prove that f(x) = x for all x. Hmt: Use the fact that between any two
numbers there is a rational number.

Preaisely what conditions must f, g, i, and & satisfy in order that f(x)g(y) =
h(x)k(y) for all x and y?

(a)

Prove that there do not exist functions f and g with either of the followmg
propertics:

(i) f(x)+g(y) =xyforall x and y.
(i) f(x)-g(v)=x+yforall x and y.

Hint: Try to get some information about f or g by choosing particular
values of x and y.
Find functions f and g such that f(x + y) = g(xy) for all x and y.

Find a function f, other than a constant function, such that | f(y) —
SOl 1ly — x|

Suppose that f(y) — f(x) < (y — x)? for all x and y. (Why does this
imply that | f(y) — f(x)] < (v —x)??) Prove that f is a constant function.
Hint: Divide the interval from x to y into n equal pieces.

Prove or give a counterexample for each of the following assertions:
h be}

fo@+h)y=fog+ foh.
(g+h)of=gof+hof.

| 1

fog ¥

()
fog 7 \g/)

Suppose g = h o f. Prove thatif' f(x) = f(y), then g(x) = g(»).
Conversely, suppose that f and g are two functions such that g(x) = g(y)
whenever f(x) = f(y). Prove that g = ho f for some function . Hmt

Just try to define Ai(z) when z 1s of the form z = f(x) (these are the only 2

that matter) and use the hypotheses to show that your definition will not
run into trouble.
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Suppose that f = g = I, where I(x) = x. Prove that

(a)
(b)
(a)

(b)

il x # vy, then g(x) # g(v):

every number b can be written b = f(a) for some number a.

Suppose g is a function with the property that g(x) # g(y) if x # y.
Prove that there is a function f such that fog=1.

Suppose that f is a function such that every number b can be written
b = f(a) for some number a. Prove that there is a function g such that

fog=1

Find a function f such that g - f = I for some g, but such that there is no
function i with foh =1.

Suppose fog=1and ho f =1. Prove that g = h. Hmt: Use the fact that
composition 1s associative.

()
(b)

(c)

Suppose f(x) = x+ L. Are there any functions g such that fog =go f?
Suppose f1s a constant function. For which functions g does fo g =
gof?

Supposc that fog = g f for @/l functions g. Show that f s the identity
function, f(x) = x.

Let F be the set of all funcuons whose domain is R. Prove that, using +
and - as defined in this chapter, all of properties P1- P9 except P7 hold
for F, provided 0 and 1 are interpreted as constant functions.

Show that P7 does not hold.

Show that P10-P12 cannot hold. In other words, show that there is
no collection P of functions 1 F, such that P10-P12 hold for P. (It 1s
suthicient, and will simphfy things, to consider only functions which are 0
except at two points xg and xj.)

Suppose we define f < g to mean that f(x) < g(x) for all x. Which of
P10 P’13 (in Problem 1-8) now hold?

If f<goishof<hog?lsfoh<goh?
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DEFINITION

THEOREM 1

PROOF

APPENDIX. ORDERED PAIRS

Not only in the definition of a function. but in other parts of the book as well,
1t 1s necessary to use the notion of an ordered pair of objects. A definition has
not yet been given, and we have never even stated explicitly what properties an
ordered pair is supposed to have. The one property which we will require states
formally that the ordered pair (a, b) should be determined by ¢ and b, and the
order m which they are given:

if (a,b)=1(c,d), thena=cand b=d.

Ordered pairs may be treated most conveniently by simply introducing (a, b)
as an undefined term and adopting the basic property as an axiom—since this
property is the only significant fact about ordered pairs, there 1s not much point
worrying about what an ordered pair “really” 1s. Those who find this treatment
satisfactory need read no further.

The rest of this short appendix is for the benefit of those readers who will feel
uncomfortable unless ordered pairs are somehow defined so that this basic property
becomes a theorem. There 1s no pomt in restricting our attention to ordered pairs
of numbers; it 1s just as recasonable, and just as important, to have available the
notion of an ordered pair of any two mathematical objects. This means that our
definition ought to volve only concepts common to all branches of mathematics.
The one common concept which pervades all areas of mathematcs is that of a
set, and ordered pairs (like everything else in mathematics) can be defined in this
context; an ordered pair will turn out to be a set of a rather special sort.

The set {a, b}, containing the two elements @ and b, 1s an obvious first choice,
but will not do as a definmition for (a. b), because there is no way of determiing
from {a, b} which of a or b 1s meant to be the first element. A more promising
candidate 1s the rather starthng set:

{{a}. {a.b}}.

This set has two members, both of which are themselves sets; one member 1s the set
{a}, containing the single member a, the other s the set {a, b}. Shocking as it may
seem, we are going to define (a, b) to be this set. The justification for this choice 1s
given by the theorem immediately following the defimtion — the definition works,
and there really 1sn't anything else worth saying.

(a, b) = {{a}. {a. b} }.

If (a,b) =(c,d), thena=cand b=d.

The hypothesis means that

{{a}, {a.b}} = {{c}, {c.d}}.

Now {{a}, {a,b}} contains just two members, {a} and {a.b}: and a is the only
common clement of these two members of { {a}, {a.b}}. Similarly, ¢ is the unique
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common member of both members of {{c¢}, {¢.d}). Therefore a = ¢. We there-
fore have
{{a}, la.b}} ={la}, {a,d}}.

and only the proof that b = d remains. It is convenient to distinguish 2 cases.

Case 1. b = a. In this case, {a, b} = {a}, so the set { {a}. {a. b} ] really has only one
member, namely, {a}. The same must be true of {{a}. {a.d}}, so {a.d} = {a},
which implies that d = a = b.

Case 2. b # a. In this case, b 1s in one member of {{a}. {a,b}} but not in the
other. It must therefore be true that b is in one member of {{a}. {a.d}} but not
m the other. This can happen only if b 1s in {a, d}, but b is not in {a}; thus b = a
orb=d,buth#a;sob=d.l|
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Mention the real numbers to a mathematician and the image of a straight hne will
probably form in her mind, quite involuntarily. And most likely she will neither
banish nor too eagerly embrace this mental picture of the real numbers. “Geomet-
ric ntuition” will allow her to mterpret statements about numbers in terms of this
picture, and may even suggest methods of proving them. Although the properties
of the real numbers which were stuched m Part I are not greatly illummated by a
geometric picture, such an mterpretation will be a great axd in Part 11

You are probably already fanmhar with the conventional method of considering
the straight line as a picture of the real numbers, i.e., of associating to each real
number a point on a line. To do this (Figure 1) we pick, arbitrarily, a pomnt which
we label 0, and a pomnt to the right, which we label 1. The point twice as far to
the right 1s labeled 2, the pomt the same distance from O to 1, but to the left of O,
is labeled —1, ete. With this arrangement, if @ < b, then the point corresponding
to a lies to the left of the pomt corresponding to b. We can also draw rational
numbers, such as %, in the obvious way. It 1s usually taken for granted that the
rrational numbers also somehow fit into this scheme, so that every real number
can be drawn as a pomnt on the line. We will not make too much fuss about
Justifying this assumption, since this method of “drawing” numbers is mtended
solely as a method of picturing certam abstract ideas, and our proofs will never
rely on these pictures (although we will frequently use a picture to suggest or help
explamm a proof). Because this gcometric picture plays such a prominent, albeit
messential role, geometric terminology is frequently employed when speaking of
numbers — thus a number is sometimes called a pomnt, and R is often called the
real line.

The number |a—b] has a simple interpretation in terms of this geometric picture:
it is the distance between a and b, the length of the Iine segment which has a as one
end pomt and b as the other. This means, to choose an example whose frequent
occurrence justifies special consideration, that the set of numbers x which satisfy
|x — a| < & may be pictured as the collection of pomts whose distance from a is
less than e. This set of points is the “interval™ from a — € to a + &, which may also
be deseribed as the points corresponding to numbers x with ¢ — & < x < a + ¢
(Iigure 2).

Sets of numbers which correspond to mtervals arise so frequently that 1t 1s desn-
able to have special names for them. The set {x 1 a < x < b} 1s denoted by (a, b)
and called the open interval from « to b. This notation naturally creates some
ambiguity, since (a. b) is also used to denote a pair of numbers, but in context it s
always clear (or can casity be made clear) whether one is talkig about a pair or
an nterval. Note that if @ > b, then (a, b) = @, the set with no clements; in prac-
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tice, however, it 1s almost always assumed (explicitly if one has been careful, and
implicitly otherwise), that whenever an mterval (a. b) 1s mentioned, the number a
i1s less than b.

The set {x : a < x < b} is denoted by [a, b] and 1s called the closed interval
from @ to b. This symbol is usually reserved for the case a < b, but it is sometimes
used for a = b, also. The usual pictures for the intervals (a, b) and [a, b] are shown
m Figure 3; since no reasonably accurate picture could ever indicate the difference
between the two intervals, various conventions have been adopted. Figure 3 also
shows certain “infinite” mtervals. The set {x : x > «} i1s denoted by (a, 00),
while the set {x : x > a} i1s denoted by [a, 00); the sets (=00, @) and (—00, a] are
defined similarly. At this pomt a standard warning must be issued: the symbols co
and —oo, though usually read “infinity” and “minus infinity,” are purely suggestive;
there 1s no number “00” which sausfies oo > a for all numbers a. While the
symbols 0o and —oo will appear in many contexts, it 1s always necessary to define
these uses in ways that refer only to numbers. T'he set R of all real numbers 1s
also considered to be an “mterval,” and 1s sometimes denoted by (—o00, 00).

Of even greater interest to us than the method of drawing numbers is a method
of drawing pairs of numbers. This procedure, probably also familiar to you, re-
quires a
distinguish these straight lines, we call one the horizontal axis, and one the vertical
axis. (More prosaic terminology, such as the “first” and “second” axes, is probably
preferable from a logical point of view, but most people hold their books, or at
least their blackboards, in the same way, so that “horizontal” and “vertical” are
more descriptive.) Each of the two axes could be labeled with real numbers, but

coordinate system,” two straight lines mtersecting at right angles. To

we can also label pomts on the horizontal axis with pairs (a. 0) and points on the
vertical axis with pairs (0, b), so that the intersection of the two axes, the “origin”
of the coordinate system, is labeled (0,0). Any pair (a, b) can now be drawn as
in Figure 4, lying at the vertex of the rectangle whose other three vertices are la-
beled (0, 0), (a,0), and (0, b). The numbers a and b are called the first and second
coordinates, respectively, of the point determined in this way.

Our real concern, let us recall, 1s a method of drawing functions. Since a func-
tion is just a collection of pairs of numbers, we can draw a function by drawing
each of the pairs m the funcuon. The drawing obtained m this way is called the
graph of the function. In other words, the graph of f contains all the points cor-
responding to pairs (x, f(x)). Since most functions contain infinitely many pairs,
drawing the graph promuses to be a laborious undertaking, but, m fact, many
functions have graphs which are quite easy to draw.

Not surprisingly; the simplest functions of all, the constant functions f(x) = ¢,
have the simplest graphs. It is easy to see that the graph of the function f(x) =¢
15 a straight line parallel (o the horizontal axis, at distance ¢ from it (Figure 5).

The functions f(x) = cx also have particularly simple graphs — straight lines
through (0.0), as in IFigure 6. A proof of this fact is mdicated in Figure 7:
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Let x be some number not equal to 0, and let L be the straight line which passes
through the origin O, corresponding to (0, 0), and through the pomt A, corre-
sponding to (x, cx). A poimnt A’, with first coordmmate y, will lie on L when the
triangle A’B’O is similar to the triangle ABO, thus when
A'B AB
o~ 0oB _©
this 1s precisely the condition that A” corresponds to the pair (y. cv), i.e., that A’
lies on the graph of f. The argument has implicitly assumed that ¢ > 0, but the
other cases are treated easily enough. The number ¢, which measures the ratio of
the sides of the triangles appearing in the proof; is called the slope of the straight
line, and a line parallel to this line 1s also said to have slope c.

This demonstration has neither been labeled nor treated as a formal proof.
Indeed, a rigorous demonstration would necessitate a digression which we are
not at all prepared to follow. The rigorous proof of any statement connecting
geometric and algebraic concepts would first require a real proof (or a precisely
stated assumption) that the pomts on a straight line correspond in an exact way
to the real numbers. Aside from this, it would be necessary to develop plane
geometry as precisely as we mtend to develop the properties of real numbers.
Now the detailed development of plane geometry is a beautiful subject, but it 1s by
no means a prerequisite for the study of calculus. We shall use geometric pictures
only as an aid to intuttion; for our purposes (and for most of mathematics) it is
perfectly satisfactory to define the plane to be the set of all pairs of real numbers,
and to define straight lines as certain collections of pairs, including, among others,
the collections {(x.cx) : x a real number}. To provide this artificially constructed
geometry with all the structure of geometry studied in high school, one more
definition is required. If (a.b) and (¢, d) are two points in the plane, i.e., pairs of
real numbers, we define the distance between (a. b) and (¢, d) to be

V@a—e)2+ (b —d)2.

If the motivation for this definition is not clear, Figure 8 should serve as adequate
explanation with this definitton the Pythagorean theorem has been built into our
geometry™

Reverting once more to our mformal geometric picture, 1t 18 not hard to see
(Figure 9) that the graph of the function f(x) = cx 4+ d is a straight hne
with slope ¢, passing through the point (0.d). For this reason, the functions
f(x) = cx 4+ d are called linear functions. Smple as they are, hnear func-
tons occur frequently, and you shonld feel comfortable working with them. The
following is a typical problem whose solution should not cause any trouble. Given
two distinet points (a, b) and (¢, d), find the lincar function f whose graph goes
through (a, b) and (¢, d). This amounts to saying that f(a) = b and f(c) =d. If

*Phe fastidious reacder might object to this definition on the grounds that nonnegative numbers
are not yet known to have square roots. "This objection is really unanswerable at the moment— the
definition will just have to be accepted with reservations, until this hittle point is settled.
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[ 1s to be of the form f(x) = ax + B, then we must have

aa+ p=0b,
GO —
therefore « = (d — b)/(c —a) and B =b — [(d — b)/(c — a)]a, sO
d—>b d—>b d—>b
fx) = x+b— al = (x —a)—+ b,
c—a c—a c—a

a formula most easily remembered by using the “pomnt-slope form” (see Problem 6).

Of course, this solution is possible only if’ a # ¢; the graphs of hnear functions
account only for the straight lines which are not parallel to the vertical axis. The
vertical straight Imes are not the graph of any function at all; in fact, the graph of a
function can never contain even two distinct points on the same vertical line. This
conclusion 1s immediate from the definition of a function— two pomts on the same
vertical line correspond to pairs of the form (a, b) and (a, ¢) and. by definition, a
function cannot contain (a, b) and (a, ¢) if b # c¢. Conversely, if a set of points m
the plane has the property that no two points lic on the same vertical line, then
it is surely the graph of a function. Thus, the first two sets in Figure 10 are not
graphs of functions and the last two are; notice that the fourth is the graph of a
function whose domain is not all of R, since some vertical lines have no points on
them at all.

After the linear functions the simplest is perhaps the function f(x) = x2. If we
draw some of the pairs in f, i.e., some of the pairs of the form (x, x?2), we obtain
a picture like Figure 11.

(1%
NI

1
(—%VQQ - o_(%.
(0,0)

FIGURE 1
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FIGURE 12
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(c)
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It is not hard to convince yourself that all the pairs (x, x2) lie along a curve like
the one shown in Figure 12; this curve is known as a parabola.

Since a graph is just a drawing on paper, made (in this case) with printer’s ink,
the question “Is this what the graph really looks like?” 1s hard to phrase in any
sensible manner. No drawing 1s ever really correct smce the hne has thickness.
Nevertheless, there are some questions which one can ask: for example, how can
you be sure that the graph does not look like one of the drawmgs in Figure 13?
It 1s easy to see, and even to prove, that the graph cannot look hke (a); for if
0 < x < y, then x? < y2, so the graph should be higher at y than at x, which is
not the case in (a) . It 1s also easy to see, simply by drawing a very accurate graph,
first plotting many pairs (x, x?), that the graph cannot have a large “jump” as in (b)
or a “corner” as m (c). In order to prove these assertions, however, we first need
to say, in a mathematical way, what it means for a function not to have a “jump”
or “corner”; these ideas already ivolve some of the fundamental concepts of
calculus. Eventually we will be able to define them rigorously, but meanwhile you
may amuse yourself by attempting to define these concepts, and then examining
your definitions critically. Later these definitions may be compared with the ones
mathematicians have agreed upon. If they compare favorably, you are certainly
to be congratulated!

The functions f(x) = x", for various natural numbers n, are sometimes called
power functions. Their graphs are most easily compared as i Figure 14, by
drawing several at once.

The power functions are only special cases of polynomial functions, mtroduced
i the previous chapter. Two partcular polynomial functions are graphed in

FIGURL 14
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Figure 15, while Figure 16 is meant to give a general idea of the graph of the
polynomial function

Fx) = apx" +a,_1x" '+ +ag,

in the case a, > 0.

In general, the graph of f will have at most n — 1 “peaks” or “valleys” (a “peak”
is a point like (x, f(x)) in Figure 16, while a “valley” 1s a pomt like (y, f(y)). The
number of peaks and valleys may actually be much smaller (the power functions,
for example, have at most one valley). Although these assertions are easy to make,
we will not even contemplate giving proofs until Part I11 (once the powerful meth-
ods of Part I1I are available, the proofs will be very easy).

Figure 17 illustrates the graphs of several rational functions. The rational func-
tions exhibit even greater variety than the polynonmial functions, but their behavior
will also be easy to analyze once we can use the derivative, the basic tool of Part I11.

Many interesting graphs can be constructed by “piecing together” the graphs of
functions already studied. The graph in Figure 18 is made up entirely of straight
lines. The function f with this graph satisfies

f (1) = (=",
n

f (_—1) = (=
n

fo=1, iz,

and is a limear function on each interval [1/(n+ 1), 1/n] and [—1/n, —=1/(n+ 1)].
(The number 0 1s not in the domain of f.) Of course, one can write out an explicit
formula for f(x), when x 1sin [1/(n + 1), 1/n]; this 1s a good exercise in the use
of linear functions, and will also convince you that a picture is worth a thousand
words.

<1
gdle = —

n even n odd

(a) (b)
FIGURE 16
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It is actually possible to define, in a much simpler way, a function which exhibits
this same property of oscillating infinitely often near 0, by using the sine function,
which we will discuss in detail in Chapter 15. As usual, we are using radian
measure, so an angle of 27 means an angle “all the way around™ a circle, an
angle of 7 an angle half way around (or 180" in layman’s terms), an angle of /2
a right angle, etc.

The graph of the sine function is shown in Figure 19.

Lo (x) =sinx /—\ /
\/2' \/4H
=

FIGURE 19

Now consider the function f(x) = sinl/x. The graph of f 1s shown in Fig-

ure 20. To draw this graph it helps to first observe that
1
)= forx=—, —, —., ...,
I n 2n 3nm
- 1 I 1
filx) =1 forx=a—, 7 p :
ST 5T +27 sm+4nw
. I I 1
f(x)=—1 for x = —, e e

T 3 .
s w427 Em 4w

Notice that when x is large, so that 1/x is small, f(x) is also small; when x 1s

S|
———

. -1
fx) =sin—
X

FIGURE 20
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“large negative,” that is, when |x| is large for negative x, again f(x) is close to 0,
although f(x) < 0.

An mteresting modificaton of this function is f(x) = xsin1/x. The graph of
this function is sketched in Figure 21. Since sin 1/x oscillates infinitely often near 0
between | and —1, the function f(x) = x sin 1/x oscillates infinitely often between
x and —x. The behavior of the graph for x large or large negative is harder to

FIGURE 21

FIGURE 22
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analyze. Since sin 1 /x 1s getting close to 0, while x is getting larger and larger, there
seems to be no telling what the product will do. It s possible to decide, but this 1s
another question that is best deferred to Part ITL. The graph of f(x) = x?sin 1/x
has also been illustrated (Figure 22).

For these mfinitely oscillating functions, it is clear that the graph cannot hope to
be really “accurate.” The best we can do is to show part of it, and leave out the
part near O (which is the interesting part). Actually, it is easy to find much simpler
functions whose graphs cannot be “accurately” drawn. The graphs of

x2, x <1

2 1
| 2, x>1

fx) = { oo

<
=2

and gx) = {

can only be distinguished by some convention simitar to that used for open and
closed intervals (Figure 23).
Out last example 1s a function whose graph 1s spectacularly nondrawable:

Fx) = 0, x mrational
771 1, x rational.
1, x rational
fx) = { 0, x irrational

9000000000000 00000000000000000000000000000000000000

FIGURE 24

The graph of f must contain infinitely many points on the horizontal axis and
also mfinitely many points on a line parallel to the horizontal axis, but it must not
contain either of these lines entirely. Figure 24 shows the usual textbook picture
of the graph. To distinguish the two parts of the graph, the dots are placed closer
together on the line corresponding to irrational x. (There is actually a mathemat-
ical reason behind this convention, but it depends on some sophisticated ideas,
mntroduced m Problems 21-5 and 21-6.)

The peculiarities exhibited by some functions are so engrossing that it is easy
to forget some of the simplest, and most important, subsets of the plane, which
are not the graphs of functions. The most important example of all is the circle.
A circle with center (a. b) and radius r > 0 contains, by definition, all the points
(x, y) whose distance from (a, b) is equal to r. The circle thus consists (Figure 25)
of all pomts (x, y) with

\/(x —a)’ + (v — by = r

or
5

(x — a)2 A= (v= b): = r°.



66 Foundations

The circle with center (0,0) and radius I, often regarded as a sort of standard copy,
is called the wmt circle.

A close relative of the circle is the ellipse. This is defined as the set of points,
the sum of whose distances from two “focus™ points 1s a constant. (When the two
foci are the same, we obtain a circle.) If. for convenience, the focus points are
taken to be (—¢,0) and (¢. 0), and the sum of the distances is taken to be 2a (the
factor 2 simplifies some algebra), then (x, y) is on the ellipse if and only if
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)
xies
— =1, xi=izka,
i
2 2
Gy =4 2= =1
(0. b) T 2 b2
: i 1
(—a, ) (a,0)
(0, —b)

FIGURE 26



(—a,0)

FIGURE 27

3
X<
)

a

4. Graphs 67

and 1t intersects the vertical axis when x = 0, so that
D)
M T
b-
The hyperbola is defined analogously, except that we require the difference of
the two distances to be constant. Choosing the points (—c¢, 0) and (¢, 0) once
agam, and the constant difference as 2a, we obtain, as the condition that (x, y)

be on the hyperbola,

\/('x e =f T \/(x —0)> 4+ y? = £2a.

which may be simpltfied to

In this case, however, we must clearly choose ¢ > a, so that at—ct < 0. If
b =/ ¢* —a?, then (x, v) is on the hyperbola if and only if

)
0t § e

PER A
The picture is shown m Figure 27. It contams two pieces, because the difference
between the distances of (x,y) from (—c, 0) and (c. 0) may be taken in two dif-
ferent orders. The hyperbola intersects the horizontal axis when y = 0, so that
x = +a. but it never intersects the vertical axis.
It 1s mteresting to compare (Figure 28) the hyperbola with a = b = V2 and

the graph of the functon f(x) = 1/x. The drawings look quite similar, and
the two sets are actually identical, except for a rotation through an angle of /4
(Problem 23).

Clearly no rotation of the plane will change circles or ellipses mto the graphs of
functions. Nevertheless, the study of these important geometric figures can often
be reduced to the study of functions. Ellipses, for example, are made up of the

(b)

FIGURE 28
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graphs of two functions,

fx)y=bvV1-— (xz/az), —a<x<a
gx)y=-bvl-— (xz/az), —a <x <a.

Of course, there are many other pairs of functions with this same property. For

and

example, we can take

bVl —(xz/az). O<x<a

fx) =
—bVv1-— (xz/az). —a<x<0
and
) —bvl—(xz/az), O<x<a
gx) =

bvl— (xz/az. —a <x <0.
We could also choose

2 2 o
bVl —(x“/a%), xratonal, —a <x <a

fx) =
—bV1 —(x%/a®), «xirratonal, —a<x<a
and
) bVl -— (xz/az), xrational, —a <x <a
gx) =

2 25 0 0
bv1l—(x“/a"), x wrational, —a < x < a.

But all these other pairs necessarily involve unreasonable functions which jump
around. A proof; or even a precise statement of this fact, is too diflicult at present.
Although you have probably already begun to make a distinction between those
functions with reasonable graphs, and those with unreasonable graphs, you may
find it very difficult to state a reasonable definition of reasonable functions. A
mathematical definition of this concept is by no means easy, and a great deal of this
book may be viewed as successive attempts to impose more and more conditions
that a “reasonable” function must satisfy. As we define some of these conditions,
we will take time out to ask if we have really succeeded in 1solating the functions
which deserve to be called reasonable. The answer, unfortunately;, will always be
“no,” or at best, a qualified “yes.”

PROBLEMS

1. Indicate on a straight line the set of all x sausfying the following conditions.
Also name each set, using the notation for intervals (in some cases you will
also need the U sign).

1 |x=3] <l
m |x=3=<1I.
() |x —al| <e.
v) |x2—=1| <

IA

[
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1
| + x2
1

v)

=

| —

(V1) < a (give an answer in terms of a, distinguishing various cases).

1+ x2
(vii) x24+1>2.
(viii) (x + D(x = D(x = 2) > 0.

There is a very useful way of describing the pomts of the closed interval [a, b]
(where we assume, as usual, that a < b).

(@) First consider the mterval [0, b], for b > 0. Prove thatf x 1s m [0, b],
then x = b for some ¢t with 0 <7 < 1. What is the significance of the
number 2 What 1s the mid-pomt of the interval [0, b]?

(b) Now prove that if x is in [a, b], then x = (I — t)a + tb for some 1 with
0 <t < l. Hintt This expression can also be written as a + 1(b — a).
What is the nidpoint of the interval [a, b]? What is the point 1/3 of the
way from a to b?

(¢) Prove, conversely, that if O < < I, then (1 — t)a + b is n [a, b].

(d) The points of the open interval (a. b) are those of the form (1 —7)a + tb
forO <t < 1.

Draw the set of all points (x, y) satisfying the following conditions. (In most
cases your picture will be a sizable portion of a plane, not just a line or curve.)

1y x>y

) x4+a>y+b.

(i) y < x2

(iv) y<xZ

V) |x—=yl <l

V) |x+vy] <l

(vil) x4+ y 1s an mnteger.

|

(vin) Is an integer.
y
x) (x=D*2+(uy-2)2<1.

x) xZ<y<x*

Draw the set of all points (x, y) satistying the following conditions:

G e+ Iyl =1,

() el —Ivl=1.

() |Jx—=1]=]y—1].
) |l =x|=]y—1].
) x24+y2=0.

(viy xy=0.

(vii) x2—2x +y2=4.
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5y
6.
7.
(1, m)
8.
*(1,n)
FIGURE 29
9.

Draw the set of all points (x. y) satislymg the following conditions:

B x=y>

}’2 ‘.2
(11) v i) = |
(m) x =yl

(iv) x =smy.
Hint: You already know the answers when x and y are mterchanged.

(a) Show that the straight line through (a. b) with slope m is the graph of the
function f(x) = m(x —a)+b. This formula, known as the “pomt-slope
form™ is [ar more convenient than the equivalent expression f(x) =
mx + (b —ma); it 1s imediately clear from the pomt-slope form that the
slope 1s m, and that the value of f ata 1s b.

(b) For a # ¢, show that the straight line through (a, b) and (¢, d) 1s the
graph of the function

flx)=

1—1

o ] (x —a)+b.

C—d

() When are the graphs of f(x) = mx + b and g(x) = m'x + b’ parallel
straight hnes?

(a) For any numbers A, B, and C, with A and B not both 0, show that the
set of all (x.y) satsfying Ax + By + C = 0 1s a straight line (possibly a
vertical one). Hmt: First decide when a vertical straight hine is described.

(b) Show conversely that every straight lne, mcluding vertical ones, can be
described as the set of all (x, y) sausfying Ax + By + C = 0.

(@) Prove that the graphs of the functions

f(x)=mx + b,
g(x)=nx+c,

are perpendicular if mn = —1, by computing the squares of the lengths
of the sides of the triangle i Figure 29. (Why 1s this special case, where
the lines intersect at the origin, as good as the general case?)

(b) Prove that the two straight lines consisting of all (x, y) satisfving the con-
ditions

Ax+ By +C =0,
Ax+B'y+C =0,

arc perpendicular if and onlv if AA"4+ BB = 0.

(a) Prove, using Problem 1-19, that

Vi + v + 2+ v2)? < Va2 + 022 + V2 + 32



10.

11.

12.

13.

14.
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(b) Prove that

\/(«\‘3 — )P+ 3=y’ < \/(.\‘2 —x)*+ -0’

+ \/(—’63 —x2)2 4+ (3 — »2)°.

Interpret this mequality geometrically (it 1s called the “triangle mequal-
ity”). When does strict incquality hold?

Sketch the graphs of the following functions, plotting enough points to get
a good idea of the general appearance. (Part of the problem is to make
a reasonable decision how many 1s “enough™; the queries posed below are
meant to show that a little thought will often be more valuable than hundreds
of mdividual ponts.)

1

(1) f(x) =x 4+ —. (What happens for x near 0, and for large x? Where
X

does the graph lie in relation to the graph of the identify function? Why

does 1t suflice to consider only positive x at first?)

. 1
(\II) j(\) =l i<

(iif) fx)=x+

-
|._. N|_.

(iv) fx)=x?—

=
to

Describe the general features of the graph of f if

i)  f 1s even.

() f 1s odd.

(i) f 1s nonnegative.

(iv)  f(x) = f(x +a) for all x (a functuon with this property is called peri-
odic, with period a.

Graph the functions f(x) = /x form = 1, 2, 3, 4. (There is an casy way to

m

do this, using Figure 14. Be sure to remember, however, that 3/x means the
posittie mth root of x when m is even; you should also note that there will be
an mmportant difference between the graphs when m is even and when m 1s

odd.)

(@) Graph f(x) = |x| and f(x) = x2.

(b) Graph f(x) = |sinx|and f(x) = sin’x. (There is an mmportant differ-

ence between the graphs, which we cannot yet even describe rigorously.
See if you can discover what it 1s; part (a) is meant to be a clue.)

Describe the graph of ¢ in terms of the graph of f if
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15.

16.

17.

18.

1 gx)= f(x)+ec.

(1) g(x) = f(x +c¢). (It is casy to make a mistake here.)
()  g(x) =cf(x).
(v)  g(x) = flex).
(v)  glx)= f(l/x).
(Vi) g(x) = f(lxD.
(i) () = £ (L.
(vii1) g(x) = max(f.0).
(ix) g(x)=mn(f,0).
(x)  g(x)=max(f.1).

(Distinguish the cases ¢ =0, ¢ > 0, ¢ <0.)

Draw the graph of f(x) = ax® 4 bx + ¢. Hint: Use the methods of Prob-
lem 1-18.

Suppose that A and C are not both 0. Show that the set of all (x, y) satisfying
Ax>+ Bx+Cy>+ Dy+E=0

is either a parabola, an ellipse, or an hyperbola (or a “degenerate case™ two
lines [either mtersecting or parallel], one line, a pont, or ¥). Hint: The
case C = 0 is essentially Problem 15, and the case A = 0 is just a minor
variant. Now consider separately the cases where A and B are both positive
or negative, and where one is positive while the other is negative. When do
we have a circle?

The symbol [x] denotes the largest integer which is < x. Thus, [2.1] = [2] =
2 and [-0.9] = [—-1] = —1. Draw the graph of the following functions
(they are all quite interesting, and several will reappear frequently in other
problems).

@ feo=[x].

i) fx)y=x—[x].

G) F00) = X5

) £ =[x+ VX =[x

I
V) flx)= [:il

) B

T
X
Graph the following functions.

1) f(x) = {x}, where {x}1s defined to be the distance from x (o the nearest
niteger.

() SO = (2x),

(i) f(x) = {x} + 3{2x).

iv)  f(x) = {4x}.

V) f) = {x) 4 2{2x) + gldx).
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(x, x?)

FIGURE 30
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Many functions may be described in terms of the decimal expansion of a num-
ber. Although we will not be in a position to describe mfinite decimals rigorously
until Chapter 23, your intuitive notion of infinite decimals should suffice to carry
you through the following problem, and others which occur before Chapter 23.
There 1s one ambiguity about infinite decimals which must be elimmated: Every
decimal ending in a string of 9s 1s equal to another ending in a string of 0’s (e.g.,

1.23999 ... = 1.24000...). We will always use the one ending in 9’s.

*19.

*20.

21.

*22.

Describe as best you can the graphs of the following functions (a complete
picture is usually out of the question).

() f(x) = the Ist number in the decimal expansion of x.

()  f(x) = the 2nd number in the decimal expansion of x.

(m)  f(x) = the number of 7°s in the decimal expansion of x if this number
1s finite, and 0 otherwise.

(iv)  f(x) = 01if the number of 7°s n the decimal expansion of x is finite,
and 1 otherwise.

(v)  f(x) = the number obtamed by replacing all digits in the decimal
expansion of x which come after the first 7 (if any) by 0.

(vi)  f(x) =0if 1 never appears in the decimal expansion of x, and n if 1
first appears in the nth place.

0, x irrational

fx)y=4 1

- X = P rational in lowest terms.

q q
(A number p/q is in lowest terms if p and g are integers with no common
factor, and g > 0). Draw the graph of f as well as you can (don’t sprinkle
points randomly on the paper; consider first the rational numbers with g = 2,
then those with ¢ = 3, etc.).

(a) The points on the graph of f(x) = x? are the ones of the form (x, x?).
Prove that each such point 1s equidistant from the point (0, %) and the
graph of g(x) = —%. (See Figure 30.)

(b) Given a horizontal line L, the graph of g(x) = y, and a pomnt P = («, B)
not on L, so that y # B, show that the set of all points (x, y) equidistant
from P and L is the graph of a function of the form f(x) = ax?4+bx+c.
What is this set ift y = B?

(a) Show that the square of the distance from (¢, d) to (x.m.x) is

x"‘(m2 + 1) + x(—2md — 2¢) + d> +c>.

Using Problem 1-18 to find the minimum of these numbers, show that
the distance from (¢, d) to the graph of f(x) =mux is

lem —d|/vVm? + 1.

(b) Find the distance from (¢, d) to the graph of f(x) = mx + b. (Reduce
this case to part (a).)
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*23. (a) Using Problem 22, show that the numbers x’ and y’ indicated in Fig-
ure 31 are given by
A | . 1
XS ==Xt — ¥
V2 V2

\-’ | |

. ) length x' Vo= — — - ——
length y\ 3 \/5 \/5 )

(b) Show that the set of all (x. y) with (x’/\/§ o (j;:’/\/'i')2 = | 1s the same
FIGURE 31 as the set of all (x, y) with xy = 1.
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APPENDIX 1. VECTORS

Suppose that v is a point in the plane; in other words, v is a pair of numbers
v = (v, 012).

For convenience, we will use this convention that subscripts indicate the first and
second pairs of a point that has been described by a single letter. Thus, if we
mention the pomts w and z, it will be understood that w is the pair (w), w»),
while z is the pair (z1, 22).

Instead of the actual pair of numbers (v, v2), we often picture v as an arrow
from the origin O to this pomt (Figure 1), and we refer to these arrows as vectors
in the plane. Of course, we've haven’t really said anything new yet, we've simply
introduced an alternate term for a point of the plane, and another mental picture.
The real point of the new termmology is to emphasize that we are going to do
some new things with points in the plane.

For example, suppose that we have two vectors (1.e., points) in the plane,

v=(v,v2), w=((wp,w2).
Then we can define a new vector (a new point of the plane) v+ w by the equation
(1) v+ w = (vy +wy. v2 + wo).

Notice that all the letters on the right side of this equation are numbers, and the
+ sign is just our usual addition of numbers. On the other hand, the + sign on
the left side 1s new: previously, the sum of two points in the plane wasn’t defined,
and we've simply used equation (1) as a definition.

A very fussy mathematician nught want to use some new symbol for this newly
defined operation, like

v 4w, or perhaps vdw,

but there’s really no need to nsist on this; since v 4+ w hasn’t been defined before,
there’s no possibility of confusion, so we might as well keep the notation simple.
Of course, any one can make new notation; for example, since it’s our definition,
we could just as well have defined v + w as (v) + wy - wa. v2 + w?), or by some
other equally weird formula. The real question 1s, does our new construction have
any particular significance?
Figure 2 shows two vectors v and w, as well as the point

(v1 + wy, v2 + w2),

which, for the moment, we have simply indicated in the usual way. without drawing
an arrow. Note that it is easy to compute the slope of the hne L between v and
our new pomt: as indicated m Figure 2. this slope is just

(vu+w2)—v2 W

(vi+w)—v; w
1 1 1 |

N

and this, of course, 1s the slope of our vector w, from the origin O to (wy, u»). In
other words, the line L is parallel to w.
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FIGURE 3

v+ w

FIGURE 4

FIGURE S

Similarly, the slope of the line M between (w), wz) and our new point is

(vy + wo) —w» )

n+w)—v v’

which is the slope of the vector v; so M is parallel to v. In short, the new point
v+ w lies on the parallelogram having v and w as sides. When we draw v + w as
an arrow (Figure 3), it points along the diagonal of this parallclogram. In physics,
vectors are used to symbolize forces, and the sum of two vectors represents the
resultant force when two different forces are applied simultancously to the same
object.

Figure 4 shows another way of visualizing the sum v+w. 1f'we use “w” to denote
an arrow parallel to w, and having the same length, but starting at v instead of at
the origin, then v + w is the vector from O to the final endpoint; thus we get to
v + w by first following v, and then following w.

Many of the properties of 4 for ordinary numbers also hold for this new + for
vectors. For example, the “commutative law™

vt+w=w+v,

1s obvious from the geometric picture, since the parallelogram spanned by v and
w is the same as the parallelogram spanned by w and v. It is also easily checked
analytically, since it states that

(w1 +wy,v2 +wor) = (wy + vy, wr + v2),

and thus simply depends on the commutative law for numbers:

v +wp = wp + vy,
v2 +wy = w2+ v2.

Similarly, unraveling definitions, we find the “associative law™
[v+w]+z=v+[w+<z].

Figure 5 indicates a method of finding v + w + z.
The origin O = (0, 0) 1s an “additive identity,”

O+v=v+ 0 =v,

and if we define

—v = (—vy, —w2),

then we also have
v+ (—v)=—v+v=0.

Naturally we can also define
w—v=w+ (—v),
exactly as with numbers; equivalently,

w—v=(w; — v.wy— 02).
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Just as with numbers, our definition of w — v simply means that it satisfies
v+ (w—v) = w.

Figure 6(a) shows v and an arrow “w — v” that is parallel to w — v but that starts
at the endpoint of v. As we established with Figure 4, the vector from the origin
to the endpoint of this arrow is just v + (w — v) = w (Figure 6(b)). In other words,
we can picture w — v geometrically as the arrow that goes from v to w (except that
it must then be moved back to the origin).

There is also a way of multiplying a number by a vector: For a number a and
a vector v = (v, v2), we define

a-v=(avy,avy)

(We sometimes simply write av instead of a - v; of course, it 1s then especially
important to remember that v denotes a vector, rather than a number.) The
vector a - v pomts in the same direction as v when @ > 0 and in the opposite
direction when a < 0 (Figure 7).

You can casily check the following formulas:

a-(b-v)=(ab)-v,

l-v=uv,
0-v=0,
—1.-v=—wv.

Notice that we have only defined a product of a number and a vector, we have
not defined a way of ‘multiplying” two vectors to get another vector.* However,
there are various ways of ‘multiplying’ vectors to get numbers, which are explored
n the following problems.

PROBLEMS

1.  Given a point v of the plane, let Rg(v) be the result of rotating v around the
origin through an angle of 6 (Figure 8). The aim of this problem is to obtain
a formula for Ry, with minimal calculation.

(@) Show that

Rs(1.0) = (cos O, sin ), [we should really write Ry((1, 0)), etc.]
Ry(0, 1) = (—sm 8, cos ).

(b) Explain why we have

Ro(v+w) = Ry(v) + Rg(w),
Ry(a-w) =a- Ry(w).

() Now show that for any point (x, y) we have
Ro(x,y) = (xcosO® — ysinf, xsinf + ycos).
*1f you jump to Chapter 25, you'll find that there is an important way of defining a product, but

this is something very special for the plane—it doesn’t work for vectors in 3-space, for example, even
though the other constructions do.
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()

Use this result to give another solution to Problem 4-23.

Given v and w, we define the nwmber

Vew = viw + vaw;

this 1s often called the “dot product” or ‘scalar product” of v and w (‘scalar’

being a rather old-fashioned word for a number, as opposed to a vector).

()

)

(d)

Given v, find a vector w such that v+« w = 0. Now describe the set of all
such vectors w.
Show that

Vel =WV
ve(w+z)=vew+v-z

and that
a-w-w)y=(a-v)y-w=v-(a- w).

Notice that the last of these equations involves three products: the dot
product - of two vectors; the product - of a number and a vector; and
the ordmary product - of two numbers.

Show that v-v > 0, and that v-v = 0 only when v = O. Hence we can
define the norm |v|| as

lv|l = Vv v,

which will be 0 only for v = 0. What is the geometric nterpretation of
the norm?
Prove that

v+ wl < llvll + lwll,

and that equality holds if and only if v =0 or w =0 or w = a - v for
some number a > 0.
Show that

v+ w|* = v — w|?

4

Let Ry be rotation by an angle of 6 (Problem 1). Show that

Vel =

Ry(v) « Ry(w) = v - w.

Let e = (1. 0) be the vector of length 1 pointing along the first axis, and
let w = (cos @, sin): this is a vector of fength 1 that makes an angle of” 6
with the first axis (compare Problem ). Calculate that

e w = cost.
Conclude that in general
vew = ||[v] - |lw] - cos6,

where 6 s the angle between v and w.
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Given two vectors v and w, we'd expect to have a simple formula, involving
the coordinates vy, v2, wy, wa, for the area of the parallelogram they span.
Figure 9 indicates a strategy for finding such a formula: since the triangle
with vertices w, A, v + w 1s congruent to the triangle OBv, we can reduce
the problem to an easier one where one side of the parallelogram lies along
the horizontal axis:
(a) The line L passes through v and 1s parallel to w, so has slope wa/wj.
Conclude that the point B has coordinate
viwa — w2
wn ’
and that the parallelogram therefore has area

det(v, w) = vjwy — w vy

This formula, which defines the determinant det, certainly seems to be simple
enough, but it can’t really be true that det(v, w) always gives the area. After
all, we clearly have

det(w, v) = —det(v, w),

so sometimes det will be negative! Indeed, it is easy to see that our “deriva-

tion” made all sorts of assumptions (that w> was positive, that B had a positive

coordinate, etc.) Nevertheless, it seems likely that det(v, w) 1s &£ the area; the
next problem gives an independent proof.

(a) If v points along the positive horizontal axis, show that det(v, w) is the
area of the parallelogram spanned by v and w for w above the horizontal
axis (wy > 0), and the negative of the area for w below this axis.

(b) If Ry 1s rotation by an angle of 6 (Problem 1), show that

det(Ryv, Ryw) = det(v. w).

Conclude that det(v, w) is the area of the parallelogram spanned by
v and w when the rotation from v to w is counterclockwise, and the
negative of the area when 1t is clockwise.

Show that

det(v, w + 2) = det(v, w) + det(v. 2)
det(v + w, 2) = det(v, 2) + det(w, z

and that
adet(v, w) = det(a - v, w) = det(v, a - w).

Using the method of Problem 3, show that
det(v, w) = [|v] - [Jw]| - sin O,

which is also obvious from the geometric interpretation (Figure 10).
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APPENDIX 2. THE CONIC SECTIONS

Although we will be concerned almost exclusively with figures i the plane,
defined formally as the set of all pairs of real numbers, in this Appendix we want
to consider three-dimensional space, which we can describe in terms of triples of
real numbers, using a “three-dimensional coordinate system,” consisting of three
straight lines intersecting at right angles (Figure 1). Our horizontal and vertical axes
now mutate to two axes in a horizontal plane, with the third axis perpendicular to
both.

One of the simplest subsets of this three-dimensional space 1s the (infinite) cone
illustrated in Figure 2; this cone may be produced by rotating a “‘generating line,”
of slope C say, around the third axis.

slope C

(x,y,2)

. (x. v, O)

FIGURE 2

For any given first two coordinates x and y, the pomt (x. y,0) in the horizontal
. 2 7~ .« .
plane has distance Vx~ 4 y~ from the origin, and thus

(1 (x.y,2) 15 on the cone if and only if z = £CV x? + yz.

We can descend from these three-dimensional vistas to the more familiar two-
dimensional one by asking what happens when we intersect this cone with some
plane P (Figure 3).

FIGURIL 3

If the plane is parallet to the horizontal plane, there’s certainty no mystery- - the
intersection is just a circle. Otherwise, the plane P intersects the horizontat plane
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in a straight lne. We can make things a lot simpler for ourselves i we rotate
everything around the vertical axis so that this intersection line points straight out
from the plane of the paper, while the first axis is in the usual position that we
are familiar with. The plane P is thus viewed “straight on,” so that all we see
(Figure 4) is 1ts intersection L with the plane of the first and third axes; from this
view-point the cone itself simply appears as two straight lines.

I this Iine L happens to be vertical, consisting of all points (a, z) for some a,
then equation (1) says that the intersection of the cone and the plane consists of
all points (a, y, z) with

2 — C%y? = C2a?,

which 1s an hyperbola.
Otherwise, in the plane of the first and third axes, the line L can be described
as the collection of all pomnts of the form

(x,Mx + B),
where M is the slope of L. For an arbitrary point (x, y, z) it follows that
2) (x,y.z) 1s in the plane P if and only if z = Mx + B.

Combining (1) and (2), we see that (x, y, z) 1s in the intersection of the cone and
the plane if and only if

(%) Mx 4+ B = £CVx* +y%

Now we have to choose coordinate axes in the plane P. We can choose L as the
first axis, measuring distances from the intersection Q with the horizontal plane
(Figure 5); for the second axis we just choose the line through Q parallel to our
original second axis. If the first coordinate of a point in P with respect to these
axes 1s x, then the first coordinate of this point with respect to the original axes
can be written mn the form

ax +

for some @ and B. On the other hand, if the second coordinate of the point with
respect to these axes 1s y, then y is also the second coordinate with respect to the
original axes.

Consequently, () says that the point lies on the mtersection of the plane and the
cone 1if and only if

M(ax + B) + B = +CV (ax + f)* + 2.
Although this looks fairly complicated, after squaring we can write this as
C2y2 — a2 (M* —CHX 4+ Ex+F=0

for some E and F that we won't bother writing out.
Now Problem 4-16 indicates that this is either a parabola, an ellipse, or an
hyperbola. In fact, looking a little more closely at the solution, we see that the
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FIGUREL 7

values of E and F are irrelevant:

() If M = £C we obtain a parabola;
(2) If C* > M? we obtain an ellipse;

(3) If €% < M? we obtain an hyperbola.

These analytic conditions are easy to interpret geometrically (Figure 6):

(1) If our plane 1s parallel to one of the generating lines of the cone we obtain
a parabola;

(2) If our plane slopes less than the generating line of the cone (so that our
intersection omits one half of the cone) we obtain an ellipse;

(3) If our plane slopes more than the generating line of the cone we obtain an
hyperbola.

D !

wrA

FIGURE 6

In fact, the very names of these “conic sections”™ are related to this description.
The word parabola comes from a Greek root meaning “alongside.” the same root
that appears in parable, not to mention paradigm, paradox, paragon, paragraph,
paralegal, parallax, parallel, and even parachute. Lllipse comes from a Greek root
meaning ‘defect,” or omission, as in ellipsis (an omisston, ... or the dots that in-
dicate w). And fyperbola comes from a Greek root meaning “throwing beyond,” or
excess. With the currency of words like hyperactive, hypersensitive, and hyperven-
tilate, not to mention hype, one can probably say, without risk of hyperbole, that
this root is famihar to alhmost everyone.*

PROBLEMS

1. Consider a cyhnder with a generator perpendicular o the horizontal plane
(I'igure 7); the only requirement for a point (x, y. z) to lic on this eyhnder is
* Although the correspondence between these roots and the geometric picture correspond so beau-

tfully, for the sake of dull accuracy it has to be reported that the Greeks ongmally apphied the words
to describe features of certam equations mvolving the conie sections.
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that (x, v) hes on a circle:
e _\'2 =C2

Show that the intersection of a plane with this eylinder can be described by
an equation of the form

2 2 2
(ax+pB)"+y " =C".
What possibilities are there?

In Figure 8, the sphere Sy has the same diameter as the eylinder, so that its
equator C lies along the cylinder; it is also tangent to the plane P at Fj.
Similarly, the equator C3 of 5 lies along the cylinder, and S5 is tangent to P
at Fs.

(a) Let z be any point on the intersection of P and the cylinder. Explain
why the length of the line from z to Fjis equal to the length of the vertical
line L from z to Cj.

(b) By proving a similar fact for the length of the line from z to F», show that
the distance from z to Fy plus the distance from z to F» is a constant, so
that the intersection 1s an ellipse, with foct Fy and F».

Similarly, use Figure 9(a) to prove geometrically that the intersection of a
plane and a cone is an ellipse when the plane intersects just one half of the

cone. Similarly, use (b) to prove that the itersection is an hyperbola when
the plane mtersects both halves of the cone.

FIGURE 9
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APPENDIX 3.  POLAR COORDINATES

In this chapter we've been acting all along as if there’s only one way to label
points in the plane with pairs of numbers. Actually, there are many different
ways, each giving rise to a different “coordinate system.” The usual coordinates
of a pomt are called its cartesian coordinates, after the French mathematician
and philosopher René Descartes (1596-1650), who first introduced the idea of
coordinate systems. In many situations it is more convenient to introduce polar
coordinates, which are illustrated i Figure 1. To the pomt P we assign the polar
coordinates (r,0), where r is the distance from the origin O to P, and 6 1s the
measure, in radians, of the angle between the horizontal axis and the line from
O to P. This 6 1s not determined unambiguously. For example, points on the
right side of the horizontal axis could have either # = 0 or # = 27; moreover, 6
1s completely ambiguous at the origin O. So 1t is necessary to exclude some ray
through the origin if we want to assign a unique pair (r,8) to each point under
consideration.

On the other hand, there 1s no problem associating a unique point to any pair
(r.0). In fact, it is possible (though not approved of by all) to associate a point
to (r,0) when r < 0, according to the scheme indicated in Figure 2. Thus, it
always makes sense to talk about “the point with polar coordinates (r, 8),” (with
or without the possibility of r < 0), even though there 1s some ambiguity when we
talk about “the polar coordinates”™ of a given point.

&

Z=

length r

P is the point with polar coordinates (r, 6})
and also the point with polar coordinates
(=r,07).

FIGURE 2

It is clear from Figure 1 (and Figure 2) that the pomnt with polar coordinates
(r, #) has cartesian coordinates (x, y) given by

X =rcost, y =rsinf.
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Conversely, if a point has cartesian coordinates (x, y), then (any of) its polar co-
ordinates (r, 8) satisfy

r=4vVxZ4y?

y

tanf = ul if x #£ 0.
X

Now suppose that f is a function. Then by the graph of f in polar co-
ordinates we mean the collection of all points P with polar coordinates (r,6)
satisfying r = f(6). In other words, the graph of f n polar coordinates is the
collection of all points with polar coordinates (f(0), ). No special significance
should be attached to the fact that we are considering pairs (f(0), 0), with f(0)
first, as opposed to pairs (x, f(x)) in the usual graph of f; it is purely a matter of
convention that r is considered the first polar coordinate and 6 is considered the
second.

The graph of f in polar coordinates 1s often described as “the graph of the
equation r = f(0).” For example, suppose that f is a constant function, f(0) = a
for all 6. The graph of the equation r = a is simply a circle with center O and
radius a (Figure 3). This example illustrates, in a rather blatant way, that polar
coordinates are likely to make things simpler in situations that involve symmetry
with respect to the origin O.

The graph of the equation r = 6 1s shown in Figure 4. The solid line corresponds
to all values of 8 > 0, while the dashed line corresponds to values of ¢ < 0.

——

FIGURE 4 Spiral of Archimedes

As another example involving both positive and negative r, consider the graph of
the equation r = cos 6. Figure 5(a) shows the part that correspondsto 0 < 6 < /2
Figure 5(b) shows the part corresponding to 7/2 < 6 < 7; here r < 0. You can
check that no new pomts are added for 6 > m or 0 < 0. It is casy to describe
this same graph in terms of the cartesian coordinates of its points. Since the polar
coordnates of any point on the graph satisty

=EGOSIA
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and hence

9 )
r- =rcosg,
its cartesian coordinates satisfy the equation
2 2
X°+y =X

which describes a circle (Problem 4-16). [Conversely. it is clear that if the cartesian
coordinates of a point satisfy x> 4 y? = x, then it lies on the graph of the equation
r =cosf.]

Although we've now gotten a circle in two different ways, we might well be
hesitant about trying to find the equation of an ellipse in polar coordinates. But
it turns out that we can get a very nice equation if we choose one of the foci as
the origin. Figure 6 shows an ellipse with one focus at O, with the sum of the
distances of all points from O and the other focus f being 2a. We've chosen f to
the left of O, with coordinates written as

(—2ea,0).

(We have 0 < ¢ < 1, since we must have 2a > distance from f to O).

(x, )

2a —r r

e (:—23(:.0) (0]

FIGURE 6
The distance r from (x. y) to O is given by
(1) P = x2 +‘\'3.
By assumption, the distance from (x, y) to £ is 2a — r, hence
(2a —r)* = (x — [—2ea])* + ¥,
or
(2) 4a® — dar +r® = x% + deax + 4e%a® + _\‘3.

Subtracting (1) from (2), and dividing by 4a, we get

'y
a—r=&x-4+¢&a,
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or

]
r=a—¢&x —é&a
. ¥
= (1 —&“)a —ex,
which we can write as
7 = 1
(3) r=A—e¢x, for A = (1 —&7)a.

\

Substituting r cos @ for x, we have

r=A—e¢ercost,
r(l +ecosf) = A,

and thus

A
4) r=—o—0.
' 1 + & cos#
In Chapter 4 we found that
x:  y*
(5) —+=5=1
) 2P

is the equation in cartesian coordinates for an ellipse with 2a as the sum of the
distances to the loci, but with the foci at (—¢, 0) and (¢, 0), where

2 )
b=+a*—c-

Since the distance between the foci is 2¢, when this ellipse is moved left by ¢
units, so that the focus (e, 0) is now at the origin, we get the ellipse (4) when we
take ¢ = ea or ¢ = ¢/a (with equation (3) determining A). Conversely, given
the ellipse described by (4), for the corresponding equation (5) the value of a 1s
determined by (3),

A

a=—,
] — &=

and again using ¢ = ea, we get

A
e —é‘zl

Thus, we can obtain a@ and b, the lengths of the major and minor axes, immediately
from e and A.

b= \/n'3 —c? = \/(13 —ela? = u\r/l — 2 =

The number

the eccentncity of the ellipse, determines the “shape™ of the ellipse (the ratio of the
major and minor axes), while the number A determines its “size,” as shown by (4).
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(x,y)

PROBLEMS

e

y=a

0

FTGURIL 7

If two pomts have polar coordinates (ry, 8)) and (1, 62), show that the dis-
tance d between them is given by

d> = r|2 + r22 — 2r1r cos(9) — 6).
What does this say geometrically?
Describe the general features of the graph of f in polar coordinates if

(1) f1seven.
(i) fis odd.
i) £©) = £ +m.

Sketch the graphs of the following equations.

) r=asnd.
i) r=asect. Hint Itis a very simple graph!
m) r = cos260. Good luck on this one!

i ran S e S e e
==
~

= cos 36.
v) r=|cos26]|.
vi) r =]cos30|.

Find equations for the cartesian coordinates of points on the graphs (i), (i)
and (ii1) in Problem 3.

Consider a hyperbola, where the difference of the distance between the two
foci 1s the constant 2a, and choose one focus at O and the other at (—2ea, 0).
(In this case, we must have ¢ > 1). Show that we obtain the exact same
equation in polar coordmates

A
=
1+ ¢&cosb
as we obtamned for an ellipse.
Consider the set of points (x, y) such that the distance (x, y) to O is equal to

the distance from (x, y) to the hne y = a (Figure 7). Show that the distance
to the line 1s @ — r cos @, and conclude that the equation can be written

a = r(l 4+ cos ).
Notice that this equation for a parabola is again of the same form as (4).

Now, for any A and &, consider the graph m polar coordnates of the equa-
tion (4), which implies (3). Show that the points satistying this equation satisty

(1 - e5)x? + _\'2 = A% —2Aex.

Using Problem 4-16, show that this is an ellipse for ¢ < 1, a parabola for
¢ = 1, and a hyperbola for & > 1.
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Sketch the graph of the cardioid r = 1 — sin .
Show that it 1s also the graph of r = —1 — sin 6.
Show that it can be described by the equation

2 2 2 2
X Y=t iyt
and conclude that it can be described by the equation
2y 2 7. 2 & )
Ry =X )

the graphs of the following equations.

(=

Fi=i — %sinH.
r=1—2sn6
= 2+ cosf.

-

Sketch the graph of the lemniscate
2 2
re = 2a* cos26.

Find an equation for its cartesian coordinates.
Show that it is the collection of all points P in Figure 8 satsfying
2 _ Ll
did» = a-.
Make a guess about the shape of the curves formed by the set of all P
s s . !
satistying dyd>» = b, when b > a= and when b < a-.



CHAPTER

PROVISIONAL DEFINITION

LIMITS

The concept of a limit 1s surely the most important, and probably the most difficult
one in all of calculus. The goal of this chapter 1s the defimtion of hmits, but we
are, once more, going to begin with a provisional definition; what we shall define
is not the word “linnt” but the notion of a function approaching a limit.

The function f approaches the limit / near a, if we can make f(x) as close as we
like to [ by requiring that x be sufhiciently close to, but unequal to, a.

Of the six functions graphed in Figure 1, only the first three approach [ at a.
Notice that although g(a) is not defined, and h(«a) 1s defined “the wrong way,” it
is still true that ¢ and h approach [ near a. This is because we explicitly ruled
out, in our definition, the necessity of ever considering the value of the function
at a1t is only necessary that f(x) should be close to [ for x close to a, but unequal
to a. We are simply not interested in the value of” f(a), or even in the question of
whether f(a) 1s defined.

I+ f 7k A eIt ./h
/7

= < 4
a a / a

FIGURE 1

One convenient way of picturing the assertion that f approaches [ near a is
provided by a method of drawing functions that was not mentioned m Chapter 4.
In this method. we draw two straight lines, cach representing R, and arrows from
a point x in one, to f(x) in the other. Figure 2 iHustrates such a picture for two
different funcuons.

90
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Eodl 1 K5 0 1 2
@) f00) = c b) f) = 3

FIGURE 2

Now consider a function f whose drawing looks like Figure 3. Suppose we ask
that f(x) be close to [/, say within the open interval B which has been drawn
in Figure 3. This can be guaranteed if we consider only the numbers x in the
interval A of Figure 3. (In this diagram we have chosen the largest interval which
will work; any smaller interval containing a could have been chosen instead.) If we

7 g

W _#

"N, Y

FIGURE 3 FIGURE 4

l

choose a smaller interval B (Figure 4) we will, usually, have to choose a smaller A’,
but no matter how small we choose the open interval B, there is always supposed
to be some open interval A which works.

A similar pictorial interpretation is possible in terms of the graph of f, but in
this case the mterval B must be drawn on the vertical axis, and the set A on the
horizontal axis. The fact that f(x)is in B when x is in A means that the part of the
graph lying over A is contained in the region which is bounded by the horizontal
lines through the end points of B; compare Igure 5(a), where a valid interval A
has been chosen, with Figure 5(b), where A is too large.

(a) (b)

FIGURE 5
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15 /
e Y A
f(x) = 3x
+
5

FIGURE 6

To take a specific simple example, let’s consider the function f(x) = 3x with
a =5 (Figure 6). Presumably f should approach the limit 15 near 5—we ought
to be able to get f(x) as close to 15 as we like if we require that x be sufhiciently
close to 5. 'To be specific, suppose we want to make sure that 3x 1s within 1—10 of
15. This means that we want to have

| |
15-1—0<3.\ <15+l—0,

which we can also write as

—— <3x—1 —.
T S5< 0
To do this we just have to require that
1 1
——— <x—=5< —,
30 5177730

or simply jx — 35| < %; There is nothing special about the number 1—10 It is just as
casy to guarantee that |3x — 15| < ﬁ; simply require that |x — 5| < 2(1)—0 In fact,
if we take any positive number € we can make [3x — 15| < & simply by requiring
that |x — 5| < ¢/3.

There’s also nothing special about the choice a = 5. It’s just as easy to see that
f approaches the limit 3a at a for any a: To ensure that

3x — 3a| < ¢

we just have to require that

X —al < =
< =,
3

Naturally, the same sort of argument works for the function f(x) = 3,000,000x.
We just have to be 1,000,000 times as careful, choosing |x —a| < £/3.000,000 in
order to ensure that | f(x) —a| < e.

The functon f(x) = x2 is a litde more mnteresting.  Presumably, we should be
able to show that f(x) approaches 9 near 3. This means that we need to show
how to ensure the inequality

Ix>=9] <¢

for any given positive number € by requiring |x — 3| to be small enough. The
obvious first step is to write

X2 —9] = |x = 3] - |x + 3|

which gives us the useful [x — 3| factor. Unlike the situation with the previous
examples, however, the extra factor here is [x 43|, which isn't a convenient constant
like 3 or 3.000,000. But the only crucial thing is to make sure that we can say
something about how big |x + 3| 1s. So the first thing we'll do is to require that
v — 3] < 1. Once we've specified that [x =3} < 1, or 2 < x < 4, we have
S5 < x4+ 3 <7 and we've guaranteed that |x 4+ 3| < 7. So we now have

X2 =9 = |x = 3|- |x +3| < 7|x = 3|,
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which shows that we have [x*> — 9| < ¢ for |x — 3| < &/7, provided that we've
also required that |x — 3| < 1. Or, 1o make it look more ofhcial: we require that
|x — 3| < min(e/7, 1).

The ninal specification |[x — 3| < 1 was simply made for convenience. We
could just as well have specified that |x — 3| < Tl(“) or |x — 3| < 10 or any other
convenient number. To make sure you understand the reasoning in the previous
paragraph, it is a good exercise to figure out how the argument would read if we
chose |x — 3] < 10.

Our argument to show that f approaches 9 near 3 will basically work to show
that f approaches a® near a for any a, except that we need to worry a bit more
about getting the proper nequality for |x + a|. We first require that [x —a| < 1,
agamn with the expectation that this will ensure that |x 4+ a| 1s not too large. In
fact, Problem 1-12 shows that

x| = la] < |x —al <1,

SO

< I +al,

X

and consequently

x+al < x|+ |a| < 2lal + 1,

so that we then have

|x —(12| =|x—al-|x +al

<|x —al- QCla|+ 1),

. bJ 9 3 .
which shows that we have [x~—a”| < € for [x —a| < ¢/(2|a|+ 1), provided that we

x —al| < 1. Officially: we require that [x — «a| < min(e/Q2la| + 1), 1).

also have

In contrast to this example, we’ll now consider the function f(x) = 1/x (for
x # 0), and wry to show that f approaches /3 near 3. This means that we need
to show how to guarantee the inequality

for any given positive number & by requiring |v — 3| to be small enough. We begin
by writing

== e
3

.

giving us the nice factor [x — 3], and even an extra % for good measure, along with
the problem factor 1/]x]. In this case, we first need to make sure that |x| sn't too
small, so that 1/|x| won’t be too large.

We can first require that |x — 3| < 1, because this gives 2 < x < 4. so that

1
- <
4

.

19| —

I
- <
X
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possible values for x

a<0
FIGURE 7

/

FIGURE 8

f(x) = xsin

1

X

_ 1 | o :
which not only tells us that — < =, but also that x > 0, which is important in

X 2
1 1
order to conclude that |—~| <3 We now have
X 2
1 1 1 1 |
— ——l==.—:|x—3 — | — 3],
i 3‘ 3 x| X |<6|r |

which shows that we have [1/x — 1/3| < ¢ for [x — 3| < 6¢, provided that we've
also required that [x — 3| < 1. Or, to make it look official again: we require that
lx — 3| < min(6e, 1).

If we mstead wanted to show that f approaches —1/3 near —3, we would begin
by stipulating that [x — (=3)| < 1, giving —4 < x < —2, once again implying that
|1/x] < 1/2, so that everything works as before.

To show m general that f approaches 1/a near a for any a we proceed in
basically the same way, except that, again, we have to be a little more careful
in formulating our initial stipulation. It’s not good enough simply to require that
|x —a| should be less than 1, or any other particular number, because if a 1s close to
0 this would allow values of x that are negative (not to mention the embarrassing
possibility that x = 0, so that f(x) isn’t even defined!).

The trick in this case is to first require that

n other words, we require that x be less than half as far from 0 as a (Figure 7).
You should be able to check first that x # 0 and that 1/|x| < 2/|al, and then work
out the rest of the argument.

With all the work required for these simple examples, you may have begun to
quail at the prospect of tackling even more complicated functions. But that won't
really be necessary, since we will eventually have some basic theorems that we can
rely on. Instead of worrying about the unpleasant algebra that might be mvolved
in functions like f(x) = x? or f(x) = 1/x3, we'll turn our attention to some
examples that might appear to be even more frightening.

Consider first the function f(x) = xsin 1/x (Figure 8). Despite the erratic
behavior of this function near 0 it is clear, at least intuitively, that f approaches
I = 0 near @ = 0 (remember that our provisional definition specifically exempts
x = a from consideration, so it doesn’t matter that this function isn’t even defined
at 0). We want to show that we can get f(x) = xsin 1/x as close to 0 as desired
if we require that x be suthciently close to 0, but # 0. In other words, for any
number ¢ > 0, we want to show that we can ensure that

|f(x)=0] =

WX

X Sl —

by requiring that |x| = |x — 0] is suthciently small (but # 0). But this is casy. Since

<1, for all x #£ 0,

sl —
X
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we have

sund -
xsin— | < |x|, for all x # 0,
X

so we can make |x sin 1 /x| < & simply by requiring that x| < & and # 0.

- 4 . . e i N i
For the function f(x) = x=sin l/x (Figure 9) it seems even clearer that f ap-
proaches 0 near 0. If; for example, we want

S
X5 Sity —
X

1
< —,

10

then we certainly need only require that |x| < % and x # 0, since this implies

2 |
that [x°| < 155 and consequently

5 = 5 1 1
xoshti= | = || < o= e

100 10

(We could do even better, and allow [x| < 1/+10 and x # 0, but there is no
particular virtue in being as economical as possible.) In general, if € > 0, to
ensure that

1

i
X SN —
X

<< &y

we need only require that

x| <& and x #0,

provided that e < 1. I we are given an € which is greater than 1 (it might be, even
though it is “small” &’s which are of interest), then it does not suffice to require
that |x| < &, but it certainly suffices to require that |x| < I and x # 0.

As a third example, consider the function f(x) = /|x|sin 1/x (Figure 10). In
order to make |{/|x|sin 1 /x| < & we can require that

x| <& and x#0

(the algebra is left to you).
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Finally; let us consider the function f(x) = sin 1 /x (Figure 11). For this function
it 1s_false that f approaches 0 near 0. This amounts to saying that it is not true
for every number & > 0 that we can get [ f(x) — 0] < & by choosing x sufficiently
small, and # 0. To show this we simply have to find one ¢ > 0 for which the
condition | f(x) — 0] < & cannot be guaranteed, no matter how small we require

Ix| to be. In fact, ¢ = 3 will do: it is impossible to ensure that | f(x)] < 1o

matter how small we require |x| to be; for if A is any interval containing 0, there

is some number x = 1/(37 +2n7) which is in this interval, and for this x we have

flx)y=1

ol —|

f(x) = sin l
X

FIGURE Il

This same argument can be used (Figure 12) to show that f does not approach
any number near 0. To show this we must again find, for any particular number /,
some number ¢ > 0 so that | f(x) — | < & 1s nol true, no matter how small x 1s

required to be. The choice & = 1 works for any number /; that is, no matter how

small we require |x| to be, we cannot ensure that | f(x) — /]| < 1 The reason is,

that for any mterval A containing 0 we can find both x; and x; mn this mterval
with

fxp) =1 and fx) =—1,

namely
| ]
X = ——0 and Xy =———
T+ 2nm s+ 2mmw

9] —

for large enough 7 and m. But the interval from [ — 4 to 1+ 1 cannot contain
both —1 and 1, since its total length is only 1; so we cannot have

Il -1 <4 andalso |-1-1] < 1.

b+ —

no matter what / is.
The phenomenon exhibited by f(x) = sin 1/x near 0 cain occur in many ways.
If we consider the function
0. x rrational

f) =

1. x rational,



0
.
0
.

i =

X. x rational
0. x irrational

FIGURE I3

i) =], s

f(x)=—1, x <0

FIGURE 14

a
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then, no matter what a 1s, f does not approach any number / near a. In fact, we

cannot make | f(x) =1/ < % no matter how close we bring x to a, because in any

interval around a there are numbers x with f(x) = 0, and also numbers x with
f(x) =1, so that we would need |0 — /| < % and also |1 — 1| < %

An amusing variation on this behavior is presented by the function shown
Figure 13:

fx) = X, X T‘atio'nzll

: 0. x wrational.

The behavior of this function 1s “opposite” to that of g(x) = sinl/x; it ap-
proaches 0 at 0, but does not approach any number at a. if @ # 0. By now you
should have no difficulty convineing yourself that this 1s true.

We conclude with a very simple example (Figure 14):

-1, x<0

Fx) = I, x>0.

If @« > 0, then f approaches | near a: mdeed, to ensure that | f(x) — 1] < & 1t
certainly suflices to require that |x —a| < a, since this implies

—a <X —a
or 0<x

so that f(x) = 1. Smularly. if b < 0, then f approaches —1 near b: to ensure
that | f(x) — (—=1)| < & 1t sutlices to require that |x —b| < —b. Finally; as you may
casily check, f does not approach any number near 0.

The time has now come to pomt out that of the many demonstrations about
limits which we have given, not one has been a real proof. The fault lies not
with our reasoning, but with our definition. If our provisional definition of a
function was open to criticisim, our provisional definiion of approaching a limit
1s even more vulnerable. This definition 1s simply not suthciently precise to be
used in proofs. It is hardly clear how one “makes™ f(x) close to [ (whatever
“close™ means) by “requiring” x to be sufliciently close to @ (however close “suth-
ciently” close 1s supposed to be). Despite the criticisms of our definitton you may
feel (I certainly hope you do) that our arguments were nevertheless quite convine-
mg. In order to present any sort of argument at all, we have been pracucally forced
to invent the real definition. It is possible to arrive at this definition m several steps,
cach one clarifying some obscure phrase which sull remains. Let us begin, once
agau, with the provisional definition:

The function f approaches the hmit / near a, if we can make f(x) as close
as we like to [ by requiring that x be sufficiently close to, but unequal to, a.

The very first change which we made in this defimttion was to note that making
f(x) close to I meant making | f(x) — /| small, and simikavly for v and a:
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DEFINITION

f(x)y=1| as

small as we like by requiring that |x — a| be sufliciently small, and x # a.

The functon f approaches the limit / near a, it we can make

The second, more crucial, change was to note that making | f(x) — | “as small as
we hike” means making | f(x) — /] < & for any & > 0 that happens to be given us:

The function f approaches the lmit [ near a, if for every number & > 0 we
can make | f(x) — 1| < € by requiring that |x — a| be sufliciently small, and

X #d.

There 1s a common pattern to all the demonstrations about limits which we have
given. For cach number ¢ > 0 we found some other positive number, § say, with
the property that if x # a and |x —a| < §, then | f(x) — 1] < e. For the function
f) = xsinl/x (with @ = 0, 1 = 0), the number § was just the number &;
for f(x) = \/ITI sin 1/x, it was €2; for f(x) = x? it was the minimum of 1 and
e/(2lal + 1). In general, it may not be at all clear how to find the number §,
given ¢, but it 1s the condition |x —a| < § which expresses how small “sufliciently”™
small must be:

The function f approaches the hmit / near a, if for every € > 0 there is some
8 > 0 such that, for all x, if |x —a| < § and x # a, then |f(x) =] < e.

This is practically the definition we will adopt. We will make only one trivial
change, noting that “|x —a| < § and x # a” can just as well be expressed “0 <
lx —al <8.”

The function f approaches the limit / near a means: for every € > 0 there
is some 8§ > 0 such that, for all x,if O < |x —a| < &, then |f(x) =] < e.

This definition is so important (everything we do from now on depends on 1t) that
proceeding any further without knowing it is hopeless. If necessary memorize it,
like a poem! That, at least. is better than stating it incorrectly; if you do this you
are doomed to give incorrect proofs. A good exercise in giving correct proofs is to
review every fact already demonstrated about functions approaching limits, giving
formal proofs of each. In most cases, this will merely involve a bit of rewording
to make the arguments conform to our formal definition—all the algebraie work
has been done already. When proving that f* does not approach [ at a, be sure to
negate the definition correctly:

If it 1s ot true that

for every & > 0 there is some § > 0 such that, for all x,1f 0 < |x —a| <6,
then | f(x) —1] < &,

then
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there is some ¢ > 0 such that for every § > 0 there is some x which satisfies
0<|x—al<ébutnot |f(x)—1] <e.

Thus, to show that the function f(x) = sin 1/x does not approach 0 near 0, we

consider & = % and note that for every § > 0 there is some x with 0 < [x = 0] < §

but not |sin 1/x — 0] < %—namely, an x of the form 1/(zr/2 + 2nm), where n 1s

so large that 1/(w/2 4+ 2nm) < 6.
As a final illustration of the use of the definition of a function approaching a
limit, we have reserved the function shown in Figure 15, a standard example, but

one of the most comphcated:

0, x nrational, 0 < x < |
1/g, x = p/q inlowest terms, 0 < x < 1.

fx)=

(Recall that p/q 1s in lowest terms if’ p and ¢ are integers with no common factor
and ¢ > 0.)

i . 0, x irrational
f) =41 p.
—, x = — in lowest terms
q
1 o o
i : :
1 —% [ [ ] [ ] [ ]
e [ ] [ ]
h_% [ ] [ ] L ] L [ ] L ]
— I L | L J IL J, ] L
a2 1 J 2, 34 1
53 3 5 2 5 3 15

FIGURE 15

For any number a, with 0 < a < 1, the function f approaches 0 at a. To prove
this, consider any number ¢ > 0. Let n be a natural number so large that 1/n < ¢.
Notice that the only numbers x for which | f(x) — 0] < & could be false are:

13 1234 1 n—1
47475555 T o
(If a is rational, then a might be one of these numbers.) However many of these
numbers there may be, there are, at any rate, only finitely many. Therefore, of all
these numbers, one is closest to a; that is, |p/g —a| is smallest for one p/g among
these numbers. (If @ happens to be one of these numbers, then consider only the
values |p/q — al for p/q # a.) This closest distance may be chosen as the §. For
it 0 < |x —a| < 8, then x 1s not one of

n—1

N —

n
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and therefore |f(x) — 0] < & & true. This completes the proof. Note that our
description of the 8 which works for a given € is completely adequate— there is no
rcason why we must give a formula for § in terms of €.

Armed with our definition, we are now prepared to prove our first theorem; you
have probably assumed the result all along, which is a very reasonable thing to do.
This theorem 1s really a test case for our definition: 1f the theorem could not be
proved, our definition would be useless.

THEOREM 1 A function cannot approach two different limits near a. In other words, if’ f
approaches [ near a, and f approaches m near a, then [ = m.

PROOF Since this is our first theorem about hmuits 1t will certainly be necessary to translate
the hypotheses according to the definition.
Since f approaches [ near a, we know that for any € > 0 there is some number
81 > 0 such that, for all x,

if 0 <|x —al <é,then | f(x)—1I| <e.

We also know; since f approaches m near a. that there is some 8> > 0 such that.
for all x,
if 0 < |x —al < &, then | f(v) —m| < e.

We have had to use two numbers, §; and 82, since there is no guarantee that the 8
which works in one definition will work in the other. But, n fact, it is now easy to
conclude that for any & > 0 there 1s some § > 0 such that, for all x,

0 <|x—al<d, then |f(x) =1 <eand |f(x)—m| < &

we simply choose § = min(§y, 82).
To complete the proof we just have to pick a particular &€ > 0 for which the two
conditions
[f(x)=1l <e and |f(x)—m|<e

cannot both hold, if 7 # m. The proper choice is sugeested by Figure 16. If
[ % m, so that |l —m| > 0, we can choosc |l —m|/2 as our €. It follows that there
is a & > 0 such that, for all x,

i 0 ) sl ) — |l — m|
I —— 0 < |x —a| < ,lun|/(.x)—|<T
| —— ———m ‘ [l — |
— Il —m| and | f(x) —m| < —

length ——  length —— &

FTG URE T6 This implies that for 0 < |x —a] < & we have

W —m| == fx)+ fx)—m| < |l = fO]+]f(x) —m|
{H—m| | —m]
<5t

“~ o~

=\l —m

[}

a contradiction. |
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The number ! which f approaches near a is denoted by im f(x) (read: the limit
xXx—a

of f(x)as x approaches a). This definition is possible only because of Theorem 1,

which ensures that lim f(x) never has to stand for two different numbers. The

X—da

equation

lm f(x)=1
x->a’
has exactly the same meaning as the phrase
f approaches [ near a.

The possibility still remains that f does not approach / near a, for any /, so that
lim f(x) =1 1s false for every number /. This is usually expressed by saying that

X—>a
“hm f(x) does not exist.”

X—>a

Notice that our new notation introduces an extra, utterly irrelevant letter x,
which could be replaced by 7, y, or any other letter which does not already
appear—— the symbols

lim f(x), }im f(1), lim f(y).

xX—=>d y—a

all denote precisely the same number, which depends on f and a, and has nothing
to do with x, 7, or vy (these letters, in fact, do not denote anything at all). A more
logical symbol would be something like lim f, but this notation, despite its brevity,

, ! )
is so infuriatingly rigid that almost no one has seriously tried to use it. The notation
lim f(x)is much more useful because a function f often has no simple name, even
X—d .
though it might be possible to express f(x) by a simple formula involving x. Thus,
the short symbol

o 2 .
limi (x= + s x)
28 =(71

could be paraphrased only by the awkward expression
. . 2 .
lim f, where f(x) = x"+sinx.
a
Another advantage of the standard symbolism is illustrated by the expressions

lim x + 1°.

X=>=d

lim x 4 13,

t—=a
The first means the number which f approaches near @ when
. . 3 3 .

f(x)y=x+4+1r", forall x;

the sccond means the number which f approaches near @ when
. 3 .

f()y=x+1", forallr.

You should have little difhculty (especially if you consult Theorem 2) proving that

limx+1 =a413,

X—d

limx 415 =x +ia’,

t—a
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LEMMA

PROOF

These examples illustrate the main advantage of our notation, which is its flex-

ibility.  In FZlCt, the notation lim (x) 1S SO H(’Xi]ﬁ)](‘ that there is some dangm‘ of
£
x—a

forgetting what it really means. Here 1s a simple exercise mn the use of this no-
tation, which will be important later: first interpret precisely, and then prove the
equality of the expressions
lim f(x) and lim f(a + h).

h—0

Kis== (Y

An important part of this chapter is the proof of a thcorem which will make
it easy to find many limits, as we promised long ago. The proof depends upon
certain properties of mequalities and absolute values, hardly surprising when one
considers the definition of hmit. Although these facts have already been stated n
Problems 1-20, 1-21, and 1-22, because of their importance they will be presented
once again, in the form of a lemma (a lemma is an auxiliary theorem, a result that
jJustifies its existence only by virtue of its prominent role mn the proof ol another
thecorem). The lemma says, roughly, that if' x 1s close to xp, and y is close to yo,
then x 4+ y will be close to xg 4+ yo, and xy will be close to xgyg, and 1/y will be
close to 1/yg. This intuttive statement is much easier to remember than the precise
estimates of the lemma, and it 1s not unreasonable to read the proof of Theorem 2
first, i order to see just how these estimates are used.

(1) If
g s
lx — xol < 5 lyv — yol < 5
then
[(x +y) — (xo + yo)| < &.
2) It
5
x—xol<mm|l,—} and |y —y| < ——,
| | ( 2(yol + 1)) 2(Jxol + 1)
then

lxy — xoyo| < e.
(3) If yo # 0 and
,
[yol €lyol”

5 5 s

Ve

|y — yo| < min

then vy # 0 and

I |
= = | =&
Yo
(I) |(-\‘ - _\') - (.\'() + .\’())| =5 |(x — xp) + ()v I ,\V())l
£ &
Sk —xol+ly—yol <5+5=¢

(2) Smce |x — xp| < | we have

lx] — |vol < lx —xo < 1,
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so that
x| < 1 4 |xp]-

Thus

|xy — xpyol| = [x(y — yo) + yo(x — xp)|
< |x[ -y — yol + Iyol - |x — xo]

e €
< (l + l_‘.“|'} e e |.T(}| A e e
2(|xpl + 1) 2(lyol + 1)
ghle
(3) We have
lyol
Vi — |y < Y — ¥ = '_‘
lyol = Iyl = |y — yol 5
so [y] > [yol/2. In particular, y # 0, and
1 2
— < —
Iyl Iyol
Thus L
1 1 lyo — ¥l 2 1 glyol”
ST 0 AT 8 ¢ |
y oY vl -1yol  lvol [yol 2
THEOREM 2 If lim f(x) =/ and lim g(x) = m, then
(1) bhm(f +g)x)=1+m;
(2) lm(f-g)x)=1-m.
X—rd
Moreover, it m # 0, then
: 1 |
(3) lim (—) Y =i—.
v—a \ g m
PROOF  The hypothesis means that for every & > 0 there are §;,8, > 0 such that, for

allix,

if 0 < |x —al| <3§). then |f(x)—1| < &,

and if 0 < |x —a| < 82, then |g(x) —m| < &.

This means (since, after all, £/2 is also a positive number) that there are §;, 82 > 0
such that, for all x,

if 0 < |x —al <8, then [f(x) =] < ;i-

” €
and if 0 < |x —a| < 82, then |g(x) —m| < =0

Now let § = min(8;,62). If 0 < |x —a| < §, then 0 < |[x —a|] < 8, and
0 < |x —a| < &> are both true, so both

3 &
| fx) =1 < = and |g(x) —m| < 5

e ¥
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are true. But by part (1) of the lemma this implies that |[(f + g)(x) — ({ +m)| < &.
This proves (1).

To prove (2) we proceed similarly, after consulting part (2) of the lemma. If
£ > 0 there are 81, 6> > 0 such that, for all x,

if 0 < |x —al| < 8y, then | f(x) =[] < min (1. m)

£

and if 0 < |x —a| < &, then |g(x) —m| < ————.
% e 20 + 1)
Agam let § = min(3y, 82). If 0 < |[x —a| < §, then

£
T 2(jm| + 1)

£

) and |gx) —m| < m

|f(x) —1I] < min (l

So. by the lemma, [(f - g)(x) —1 -m| < &, and this proves (2).

Finally, if & > 0 there is a 6 > 0 such that, for all x,

=
] . [ |lm] e|lm|-
if0 < |x —al <d,then |g(x) —m| < min | —

27 2

But according to part (3) of the lemma this means, first, that g(x) # 0, so (1/g)(x)
makes sense, and second that

a8 |

— ("‘-) —_

g m

<UE:

This proves (3). I

Using Theorem 2 we can prove, trivially, such facts as

L X+ B+ 74
lim —; =—
v—a x=+ | a=+ 1

without going through the laborious process of finding a §, given an €. We must
begin with

him7=7.
X—d
Il =1,
X—rd
I =ad,
X—=>d

but these are easy to prove directly. If we want to find the §. however, the proof of
Theorem 2 amounts to a prescription for doing this. Suppose, to take a simpler
example, that we want to find a § such that, for all x,

il 0 < |x —al <4, then |.\‘3 tx—(a*+a)| <e.
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Consulting the proof of Theorem 2(1), we see that we must first find §; and 6> > 0
such that, for all x,

o ) 2 €
if 0 < |x —al <ép, then |x° —a“| < 5
. €
and if 0 < |x —a| < 8, then |[x —a] < 5
e . ~ . 2 2 .
Since we have already given proofs that m x“ = ¢~ and lim x = a, we know how
X—da X—a
to do this:
€
: 2
Sy =mun \ 1, = ,
2]al + 1

t
o] ™

Thus we can take

€

2 &€

1’ —_—s= ] =

2al+1/ 2
If @ # 0, the same method can be used to find a § > 0 such that, for all x,
1

x2 a2

= min(d;, §2) = min | min

if O <|x—a| <34, then < &.

The proof of Theorem 2(3) shows that the second condition will follow if we find
a § > 0 such that, for all x,

o) /
2 o flal® elalt
x —al| < §, then |x“ —a”| < min -5

if 0 <

)

Thus we can take

2 4
. [ lal® elal
min | —,
2 2
S§=min\l.
2]al + 1

Naturally, these complicated expressions for § can be simplified considerably, after
they have been derived.

One technical detail in the proof of Theorem 2 deserves some discussion. In
order for Iim f(x) to be defined it is, as we know, not necessary for f to be defined

X—a

at a, nor 1s it necessary for f to be defined at all pomts x # a. However, there
must be some § > 0 such that f(x) 1s defined for x sausfying 0 < |x — a| < &
otherwise the clause

“U0<|x—al <é, then [f(x)—1] <™

would make no sense at all, since the symbol f(x) would make no sense for
some x’s. If f and g are two functions for which the definition makes sense,
1t 1s easy (o see that the same is truc for f + ¢ and f - g. But this is not so
clear for 1/g, since 1/g is undefined for x with g(x) = 0. However. this fact gets
established in the proof of Theorem 2(3).
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(b)

FIGURE 17

1

N

FIGURE 18

There are umes when we would like to speak of the limit which f approaches
at a, even though there is no § > 0 such that f(x) is defined for x satislying
0 < |x —a|] <. For example, we want to distinguish the behavior of the two
functions shown m Figure 17, even though they are not dehned for numbers less
than a. For the functon of Figure 17(a) we write

hm f(x)=1 or lmf(x)=I

x—at xla

(The symbols on the left are read: the hmit of” f(x) as x approaches a from above.)
These “limits from above™ are obviously closely related to ordinary limits, and the
defiition is very similar: lim  f(x) =/ means that for every € > O thereisa § > 0

x—at

such that, for all x,
0 <x—a<é, then |f(x)—1] <e.

(The condition “0 < x —a < 8" is equivalent to “0 < |[x —a| < § and x > a.”)

“Limits from below™ (Iigure 18) are defined similarly:  im f(x) = [ (or
X—a
lim f(x) = ) means that for every ¢ > 0 there is a § > 0 such that, for
xta
all x,

0 <a—x<é,then |f(x)—1] <e.

It is quite possible to consider lmits from above and below even if f 1s defined
for numbers both greater and less than a. Thus, for the function f of Figure 14,
we have

hm f(x)=1 and lIm f(x)=-1.
x—07t x—0-

It is an ecasy exercise (Problem 29) to show that lim f(x) exists if and only if
xX—=a

hm f(x) and lim f(x) both exist and are equal.

X—av xXr—>a-

Like the definitions of lmits from above and below, which have been smuggled
mto the text informally; there are other modifications of the limit concept which
will be found useful. In Chapter 4 it was claimed that if x is large, then sin 1/x is
close 1o 0. This assertion 1s usually written

lim sin 1/x = 0.

X—>0C

The symbol lim f(x) is read “the lumit of f(x) as x approaches 00,” or “as x
V=00

becomes infinite.” and a limit of the form hm £ (x) is often called a limit at infinity.
X =2a




5. Linuts 107

Figure 19 illustrates a general situation where lim f(x) = /. Formally, im f(x) =
X—>00 x—>00

[ means that for every ¢ > 0 there 1s a number N such that, for all x,
if x> N, then |f(x)—1| <e.

The analogy with the definition of ordinary limits should be clear: whereas the
condition 0 < |x —a| < § expresses the fact that x is close to @, the condition
“x > N7 expresses the fact that x is large.

FIGURE 19

We have spent so little time on limits from above and below, and at mfinity,
because the general philosophy behind the definitions should be clear if you un-
derstand the definition of ordinary limits (which are by far the most important).
Many exercises on these definitions are provided in the Problems, which also con-
tain several other types of mits which are occasionally useful.

PROBLEMS

1. Find the following limits. (These hmits all follow, after some algebraic ma-
nipulations, from the various parts of Theorem 2; be sure you know which
ones are used n each case, but don’t bother histing them.)

)
: =]
(1) lim ——
t—1 X + |
Snps gtk L B
(i) lim ——.
x—=2 X —
3
PR =t
() hm ——.
v—3 x —2
o , " — _\.n
(iv) lim
=y X —y
lphe .\.n
(v) lmm ]
T —
e e NG+ R =
(Aal) (Sl =
h—0 h

2.  Find the [ollowing limits.

! W el
(1) lim—

x—1 | —x
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5

L
1 lhm——,
x—0) 2
=2
(i) lim ———.
x—0 X

In each of the following cases, determine the limit / for the given a, and
prove that 1t 1s the limit by showing how to find a § such that |f(x) — 1| < &
for all x satsfying 0 < |x —a| < 8.

i) fx)=x[3—cos(x?)], a=0.
(i) fx)=x24+5x—-2, a=2.

ol el 100
m) fx)=—, a=1
X
() fx)= .1'4, arhitr;.m_' a.
|
V) fx)=x*+=, a=1
x
= . X
@) = =———— g =0
2 —sin" x

(i) f(x)=./|x], a=0.
(i) i) = S, =it

For each of the functions in Problem 4-17, decide for which numbers a the

limit lim f(x) exists.
X—>d

(a) Do the same for each of the functions in Problem 4-19.
(b) Same problem, if we use infinite decimals ending in a string of 0’
mstead of those ending in a string of 9'.

Suppose the functions f and g have the following property: for all ¢ > 0 ‘

and all x,

-

if 0 < |x —2| < sin? (%) + &, then | f(x) — 2| < &,
f0<|x—2| < &2, then lg(x) —4| <e.
For each € > 0 find a § > 0 such that, for all x,

i) if0<|x—2| <é,then [f(x)+gkx)—6] <e.
(i) i 0<|x—2| <, then |f(x)g(x)— 8| <e.

1 1

() if0<|x—2| <é§,then [— — —| < &.
glx) 4
el

(iv) i 0 < |x — 2| <6, then S —| < &.
glx) 2

Give an example of a function f for which the following assertion is_false:
If |[f(x) =1 <& when O < |x —a|l < §, then |f(x) —I| < &/2 when
0<|x—al <§/2.
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(a) If 1i1_}1 f(x) and liLn g(x) do not exist, can lil_pl[f(x) + g(x)] exist? Can
llﬂi f‘ I(x)g(x) exi-;t?a L
(b) AI[‘ 11_131 S (x) exasts and lim [ f(x) + g(x)] exists, must 11_131 g(x) exast?

(c) If Ii_leaf(x) exists and lirl_;ag(x) does not exist, can llinli fL(IX)—l—g(x)] exist?
(d) If 'xlinal f(x) exists zm(f li[;n f(x)g(x) exsts, does )icl f['()ll()w that lim g(x)
fi o o
Prove that ll_r}‘ll el e 11113}) f(a + h). (This 1s mainly an exercise in under-

standing what the terms mean.)

(a) Prove that m f(x) =17 1f and only if hm|[ f(x) — /] = 0. (First see why
X—a X—a

the assertion 1s obvious; then provide a rigorous proof. In this chapter

most problems which ask for proofs should be treated m the same way:)

(b) Prove that lim0 fx)=lm f(x —a).
(c) Prove that l_in}) ¥ (@) = lin(l) f(x3).

(d) Give an example where lin}) f(x3) exists, but lirrb f(x) does not.
X X—>

Suppose there 1s a § > 0 such that f(x) = g(x) when 0 < |x —a| < 8. Prove

that m f(x) = hm g(x). In other words, lim f(x) depends only on the
X—a X—a X—d

values of f(x) for x near a—this fact 1s often expressed by saying that limits

are a “local property.” (It will clearly help to use &', or some other letter,

mstead of 8, in the definition of limits.)

(a) Suppose that f(x) < g(x) for all x. Prove that lim f(x) < lim g(x),

provided that these limits exist.
(b) How can the hypotheses be weakened?
() If f(x) < g(x) for all x, does it necessarily follow that lim f(x) <

. X—a
lim g(x)?

Suppose that f(x) < g(x) < h(x) and that Iim f(x) = hm h(x). Prove that

lim g(x) exists, and that lim g(x) = lim f(x) = lim A(x). (Draw a picture!)
X—a x—a X—a

(a) Prove that if ljng) f(x)/x =1 and b # 0, then lin})f(bx)/x = bl. Hint:
Write f(bx)/x = b| f(bx)/bx].

(b) What happens if b = (0?
(c) Part (a) enables us to find lim(sin 2x)/x i terms of lim (sin x)/x. Find

1 EE x—0 x—0
this limit in another way.

Evaluate the followmng limits in terms of the number o = lim (sin x)/x.

x—0
N . sin 3x
1  lhm
x—=0 X
. sinax
() lim —

x>0 sinbx
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16.

1.

18.

19.

*20.

21.

o
e L sint Qi
(m) lmm ——.
x—0 X
-2
. . osin” 2x
(iv) hm ——s—.
‘ x—0 x-
. 1l —cosx
v)  lim ———
: r—0 0

. tan? x + 2x
(viy hm ————
x—0 I AE S
o .. XsInx
(vi) hm —,
x—=01—cosx
sm(x + h) — sinx

T
e =
. o osin(x? — 1)
) lm ———=
<L\) \Tll x —1
x2(3 +sinyx)

x) lm——
(x) b (x + sin.x)?2

3
(xi) lim (x% = 1)? sin ( : 1) !
e

X—

(@) Prove that if lim f(x) =1/, then lim | f[(x) = |/].

X—=>a

(b) Prove that if lim f(x) = and lim g(x) = m, then lim max(f, g)(x) =

X—>a X—>

max(/, m) and similarly for min.

(a) Prove that lim 1/x does not exist, t.c., show that im 1/x =1 is false for

x—0 xX—
every number /.
(b) Prove that Iim 1/(x — 1) does not exist.
x—1

Prove that ift lim f(x) = [, then there is a number § > 0 and a number M

X—=>a

such that | f(x)| < M if 0 < |x —a| <. (What does this mean pictorially?)
Hint: Why does it suffice to prove that /-1 < f(x) < [+1for0 < [x—a| < §?

Prove that if f(x) = O for wrational x and f(x) = 1 for rational x,
then lim f(x) does not exist for any a.

X—da
Prove that ift f(x) = x for rational x, and f(x) = —x for nrational x, then
lim f(x) does not exist it a # 0.
xX—a

(a) Prove thatif lin(l)g(.\‘) = 0. then lin})g(;\') s 1 /x = 0.
X— X

(b) Generalize this fact as folows: I hm g(x) =0 and |i(x)| < M for all x,
: x—0
then him g(x)h(x) = 0. (Naturally it 1s unnecessary to do part (a) if you
v —{)
succeed mr doing part (b); actually the statement of part (b) may make it

casicr than (a)— that’s one of the values of generalization.)
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Consider a function f with the following property: il g is any function for
which hm g(x) does not exist, then hm [ f(x) + g(x)] also does not exist.
x—0

xX—>

Prove that this happens if and only if hm f(x) does exist. Hint: This is
x—0

actually very easy: the assumption that lill(l S (x) does not exist leads to an
x—0

immediate contradiction if you consider the right g.

This problem is the analogue of Problem 22 when f + g 1s replaced by f - g.
In this case the situation is considerably more complex, and the analysis
requires several steps (those in search of an especially challenging problem
can attempt an independent solution).

(a) Suppose that lin}) f(x) exists and 1s # 0. Prove that if lin? g(x) does not
' X x—0
exist, then hm f(x)g(x) also does not exist.
x—0
(b) Prove the same result if lin}) | f(x)| = 00. (The precise definition of this
X—

sort of limit is given in Problem 37.)
(¢) Prove that if neither of these two conditions holds, then there 1s a function
g such that hm g(x) does not exist, but lin}) f(x)g(x) does exist.
X—>

x—0

Hint: Consider separately the following two cases: (1) for some ¢ > 0
we have | f(x)| > ¢ for all sufficiently small x. (2) For every ¢ > 0, there
are arbitrarily small x with | f(x)] < . In the second case, begin by
choosing ponts x, with |x,| < I/n and | f(x,)| < 1/n.

Suppose that A, 1s, for each natural number n. some finite set of numbers in
[0. 1], and that A, and A,, have no members in common if m # n. Define
I as follows:

1/n, xm A,

0. x not in A, for any n.

Prove that lim f(x) =0 for alt @ n [0. 1].

X—a

flx) =

Explam why the following definitions of lim f(x) =/ are all correct:

X—da

For every § > 0 there i1s an &€ > 0 such that, for all x,

1 1 0<|x—a|<e, then|f(x)—1] <3.

@ i 0<|x—al<e, then |f(x)—1] <86.

m) if 0 < |x —a| <e, then |f(x)—1| <5§.

iv) i 0 <|x —al <e/l10, then | f(x)—1] < 8.

Give examples to show that the following definitions of hm f(x) = [ are not

correct. e

(@) For all 8§ > 0 there is an € > 0 such that if 0 < |x — «| < §, then
| f(x)—=1| <e.

(b) For alt ¢ > 0 there 1s a § > 0 such that if |f(x) — 1] < &, then 0 <
|x —a| < é.
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27.

*28.

AR

30.

31.

325

33.

34.

35.

For each of the funcuons m Problem 4-17 indicate for which numbers a the
one-sided limits lim f(x) and lim f(x) exist.
X—a-

x—a’

(a) Do the same for each of the functions m Problem 4-19.
(b) Also consider what happens if decimals ending in 0’s are used nstead of
decimals ending in 9%,

Prove that hm f(x) exists if lim f(x) = lIim f(x).
x—a v —at xX—a-

Prove that
1 Im f(x)= lim f(—x).
() x—0+ " x—0 f
(1)  lim f(|x]) = lim f(x).
) x—0 x—0+
“ee . 2 .
(m) hm f(x7) = hm f(x).

x—0 x—0+
(These equations, and others like them, are open to several interpretations.
They might mean only that the two limits are equal if they both exist; or that
if a certain one of the limits exists, the other also exists and is equal to it; or

that 1f either hmit exists, then the other exists and 1s equal to 1t. Decide for
yourself which interpretations are suitable.)

Suppose that lim f(x) < hm f(x). (Draw a picture to illustrate this as-
X—a~ x—at
sertion.) Prove that there 1s some § > 0 such that f(x) < f(y) whenever

x<a<yand |x —a| < and |y —al| < §. Is the converse true?

Prove that lim (a,x" 4 - - 4+ag)/(bux" + - - + bp) (with a, # 0 and b, # 0)

X—=>00
exists if and only if m > n. What is the lmit when m = n? When m > n?

Hint: the one easy limit is lim 1/x* = 0; do some algebra so that this is the
X—>00

only information you need.

Find the following limits.

(i) lim X+ s x
=00 Sx+6
(ii) lim X sl x

X—>00 xz -+ 5 '

(i) lim Va2 +x —x.

X—00

. 2
. . x%(1 +sin”x)
iy My —————
x—o0o (x4 sinx)- I
Prove that lim f(1/x) = hm f(x).
x—0+ X—00
Find the followng limits in terms of the number o = lin(l)(sin ) /A

A5

SIN X

1) lim

. x—>00 X

: .

()  lm xsin —.
: X —00 .4



5. Linuts 113

36. Define “ Iim f(x)=1"

— =00

(a) Find lim (a,x" +:--+agp)/(bpx™ + - - -+ by).

' X—r— 00

(b) Prove that lim f(x) = lim f(—x).
X—>0D0 X—+—D0

(¢c) Prove that lin{ f(/x)= lim_f(x).

x—0-

37. We define im f(x) = o0 to mean that for all N there is a 6 > 0 such that,

X—ra
for all x,if 0 < |x —a| < 8, then f(x) > N. (Draw an appropriate picture!)
(Of course, we may still say that lim f(x) “does not exist™ in the usual sense.)

X—>ql

(a) Show that lim1 1/(x —3)% = oo.
K=hC

(b) Prove thatif f(x) > & > 0 for all x, and lim g(x) = 0, then

X—>d

Ii:_n fx)/|g(x)| = co.

38. (a) Define lim f(x) =00 and hm f(x)= oc. (Or at least convince your-

v—at X—=d-
self that you could write down the definitions if you had the energy. How
many other such symbols can you define?)

(b) Prove that lm 1/x = o0,

x—0
(¢) Prove that lim f(x) =oc if and only if hm f(1/x) = oc.
v—(+ X—>0Q

39. Find the following limits, when they exist.

i I X e —7
R o
o e By

. FEy
(1)  Im x(l +smn~x).
X—* 00

voe . . 2
() hm xsin”x.

r— 0
. ! 5 . |
(iv) hm x~sin —.
X— 00 i
A 5 -2 1 e =
(v) hm v x=+ 2x — x.
r— 00
(vi) lim x(vVx+2—Vx).
L x—> 00
/|
. . x|
(vit) lim v ;
- s oy

40. (a) Find the perimeter of a regular n-gon inscribed in a circle of radius r.
[Answer: 2rn si(m/n).]
(b) What value does this perimeter approach as n becomes very large?

(¢) What limit can you guess from this?
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(a) For ¢ > 1, show that ¢"/" = {/c approaches 1 as n becomes very large.
Hint: Show that for any & > 0 we cannot have ¢!/" > 1 + ¢ for large n.
(b) More generally, if ¢ > 0, then ¢!/" approaches 1 as n becomes very large.

Afier sending the manuscript for the first edition of this book off to the printer,

I thought of a much simpler way to prove that lim x> = ¢ and lim x? =

X—*{ X=—+a
a’, without going through all the factoring tricks on page 92. Suppose, for
. 2 2 .
example, that we want to prove that hm x* = @°, where @ > 0. Given

X—>a

e > 0, we simply let 8 be the minimum of va?+¢ —a and a — va? —¢
(see l‘1gluv 19); lhen |x—al < 5 implies that Va2 —¢e < x < Va®+e, so

—¢ < x? <a’+e, or|x?—a? < e. Itis fortunate that these pages had
d]rt.ﬂdy been set, so that I couldn’t make these changes, because this “proof™
is completely fallacious. Wherein lies the fallacy?




CHAPTER CONTINUOUS FUNCTIONS

I f is an arbitrary function, it 1s not necessarily true that

lAim f(x) = f(a).

7 In fact, there are many ways this can fail to be true. For example, f nught not
| even be defined at a, in which case the equation makes no sense (Figure 1).
o I
@ Again, lmlll f(x) might not exist (Figure 2). Finally, as illustrated in Figure 3,
even if f 1s defined at @ and lim f(x) exists, the limit might not equal f(a).
FIGURE 1 X—a

i /l /1
7 T v T
— a /] a a

!
(a) (b) . (0)

FIGURL 2

We would like to regard all behavior of this type as abnormal and honor, with
some complimentary designation. functions which do not exhibit such peculiarities.
The term which has been adopted is “continuous.” Intuitively, a function f is
continuous if the graph contains no breaks, jumps, or wild oscillations. Although
this description will usually enable you to decide whether a function is continuous
simply by looking at its graph (a skill well worth cultivating) it is easy to be fooled,
and the precise definition is very important.

DEFINITION The function f is continuous at a if

o l_im f(x) = f(a).

We will have no difficulty finding many examples of functions which are, or are

“ not, continuous at some number a —every example involving limits provides an
example about continuity, and Chapter 5 certainly provides enough of these.

FIGURE 3 The function f(x) = s 1/x 1s not continuous at ), because it is not even defined
at 0, and the same 1s true of the function g(x) = xsin I/x. On the other hand, if
we are willing to extend the sccond of these functions, that is, if we wish to define

115
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FIGURE 4

THEOREM 1

a new function G by

G(x) = { xsin l/x, x#0
a, x =0,

then the choice of @ = G(0) can be made in such a way that G will be continuous
at 0—to do this we can (if fact, we must) define G(0) = 0 (Figure 4). This sort of
extension 1s not possible for f; if we define

sin 1 /x, x#0

a, e = (0).

F(.r):{

then F will not be contnuous at 0, no matter what «a is, because m f(x) does

M=z

not exist.
The function
X, X rational

(x) = . :
U ! 0. x irrational
1s not continuous at a, if a # 0, since lim f(x) does not exist. However, lim f(x) =
X—a x—0
0= f(0), so f 1s continuous at precisely one point, 0.
— . , . o) s
I'he functions f(x) = ¢, g(x) = x, and h(x) = x- are continuous at all num-
bers a, since

hm f(x)=lmc=c= f(a).

X—a 5= (e

lim g(x) = hmx =a = g(a).

X—da X—da

- L2 2

hm (x) = lim x° = a“ = h(a).
xX—a X—a

Finally, consider the function

)= 0, x irrational

1/q. X = p/q m lowest terms.

In Chapter 5 we showed that hm f(x) = 0 for all a (actually, only for 0 < a < 1,

but you can easily see that this is true for all a). Since 0 = f(a) only when a is
irrational, this function is continuous at a if « is irrational, but not if ¢ is rational.

[t is even easier to give examples of continuity if we prove two simple theorems.

If f and g are continuous at a, then

(1) f + g 1s continuous at a,
(2) [ - gis continuous at a.

Morcover, il" g(a) # 0, then

(3) 1/g 1s continuous at a.
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Smce f and g are continuous at a,

hm f(x) = f(a) and hm g(x) = g(a).

X—da X—da
By Theorem 2(1) of Chapter 5 this implies that

hn (f + 2)(x) = f(a) + gla) = (f + g)(a),

X—=a
which is just the assertion that f 4 g is continuous at a. The proofs of parts (2)
and (3) are left to you. |

Starting with the functions f(x) = ¢ and f(x) = x, which are continuous at a,

for every a. we can use Theorem 1 to conclude that a function

Daxt £ bym by - . . + by

fx)=
Cpx™ + ('m—l-'(m_1 i G ()

1s continuous at every pomt mn its domain. But 1t 1s harder to get much further
than that. When we discuss the sine function in detail it will be easy to prove that
sin 1s contmuous at a for all a; let us assume this fact meanwhile. A function like

-2 ) 4 .
smm-x +x< 4+ x7'smx

fix)=

sin®’ x 4+ 4x2sin” x

can now be proved continuous at every poimnt i its domain. But we are still
unable to prove the continuity of a function like f(x) = sin(x?); we obviously
need a theorem about the composition of continuous functions. Before stating this
theorem, the following point about the definition of continuity 1s worth noting. If
we translate the equation ‘112:11 f(x) = f(a) according to the definition of hmits,

we obtain
for every & > 0 there 1s § > 0 such that, for all x,

if 0 < |x —al <8, then |[f(x)— f(a)| <e.

But in this case, where the lmit is f (). the phrase
O<|x—al<é
may be changed to the simpler condition
|lx —al <8,

since if x = a it 1s certainly true that | f(x) — f(a)| < e.
If g 1s continuous at a, and f 1s continuous at g(a). then f © ¢ is continuous at a.
(Notice that f 1s required to be continuous at g(a), not at a.)
Let € > 0. We wish to find a § > 0 such that for all x,

i [x —al < 8. then [(fog)(x)— (fog)a)| < &,
Le., |f(gx)) — f(gla))| < e&.
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We first use continuity of f to estimate how close g(x) must be to g(a) in order
for this mequality to hold. Since f 1s continuous at g(a), there is a §" > 0 such
that for all y,

(b i |y —g(@)] <8, then [f(y) — f(ga))] < e.
In particular, this means that
(2) if [g(x) — gla)| < &', then | f(g(x)) — f(g(a))] < &.

We now use continuity of g to estimate how close x must be to @ in order for the
mequality |g(x) — g(a)] < 8" to hold. The number §" is a positive number just like
any other positive number; we can therefore take 6" as the € (!) in the definition of
continuity of g at a. We conclude that there is a § > 0 such that, for all x,

(3) if [x —a| <8, then |[g(x) —g(a)] < §.
Combining (2) and (3) we see that for all x,

il |x —al <6, then | f(g(x)) — f(ga)] <e. |

We can now reconsider the function

xsml/x, x#0

flx) = 0, x=0.

We have already noted that f 1s continuous at 0. A few apphcations of Theorems 1
and 2, together with the continuity of sin, show that f 1s also continuous at a, for
a # 0. Functions like f(x) = sin(x? + sin(x + Sillz(.Y3))) should be equally easy
for you to analyze.

The few theorems of this chapter have all been related o continuity of functions
at a single pont, but the concept of continuity doesn’t begin to be really interesting
until we focus our attention on functions which are continuous at all pomts of some
mterval. Il £ is continuous at x for all x in (a. b), then f is called continuous
on (a, b); as a “special case”, f is continuous on R = (—00, o0) [sec page 57] if
it is continuous at x for all x in R. Continuity on a closed interval must be defined
a hitde differently; a function f is called continuous on [a. b] if

() f1s continuous at x for all x in (a, b).

(2) ‘limL f(x) = f(a) and lilIlJI fx)= f().

(We also often simply say that a function 1s continuous 1f it 1s continuous at x for
all x m 1ts domam.)

Functions which are continuous on an interval are usually regarded as especially
well behaved; indeed continuity might be specified as the first condition which a
“reasonable”™ function ought to sausfy. A\ continuous function is sometimes de-
scribed, intuitively, as one whose graph can be drawn without hftng your pencil
from the paper. Consideration of the function

xsimnl/x, x#0

FI=194. =0
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shows that this description is a little too optimistic, but it is nevertheless true that
there are many important results involving functions which are continuous on an
mterval. There theorems are generally much harder than the ones in this chapter,
but there is a simple theorem which forms a bridge between the two kinds of results.
The hypothesis of this theorem requires continuity at only a single pomnt, but the
conclusion describes the behavior of the function on some mterval containing the
pomt. Although this theorem is really a lemuna for later arguments, it 1s included
here as a preview of things to come.

Suppose f 1s continuous at a, and f(a) > 0. Then f(x) > 0 for all x in some
mterval containing a; more precisely, there 1s a number § > 0 such that f(x) > 0
for all x satsfying |v —a| < 8. Smnilarly, if' f(a) < 0, then there is a number § > 0
such that f(x) < 0 for all x satsfymg |x —a| < 8.

Consider the case f(a) > 0. Smce f 1s continuous at «, for every & > 0 there is a
8 > 0 such that, for all x,
it |[x —al <8, then | f(x) — f(a)| < &,
Le, —& < f(x)— f(a) <e.

In particular, this must hold for ¢ = %f(u), since %f('a) > 0 (Figure 5). Thus
there is § > 0 so that for all x.

if |x —al| <6, then —%f(a) < f(x)— fla) < %f(a),

and this implies that f(x) > %f(’a) > 0. (We could even have picked ¢ to be f(a)
iself, leading to a proof that is more elegant, but more confusing to picture.)

A similar proof can be given in the case f(a) < 0; take ¢ = ——%f(a). Or one
can apply the first case to the function —f. |

PROBLEMS

1. For which of the following functions f is there a continuous function F with
domain R such that F(x) = f(x) for all x in the domam of f?

. L ox2-4

(1) f(x) =0, x wrational.
(iv)  f(x)=1/¢g,x = p/q rational m lowest terms.

2. At which pomts are the functions of Problems 4-17 and 4-19 continuous?
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10.

11.

*12.

(a) Suppose that f is a function satisfying | f(x)| < |x| for all x. Show that
S 1s continuous at 0. (Notice that f(0) must equal 0.)

(b) Give an example of such a function f which 1s not continuous at any
a # 0.

(c) Suppose that g 1s continuous at 0 and g(0) = 0, and |f(x)| < |g(x)].
Prove that f is continuous at 0.

Give an example of a function f such that f is continuous nowhere, but | f|
1s continuous everywhere.

For each number a. find a function which is continuous at a, but not at any
other points.

but continuous

B =
I —
-
£

(@) Iind a function f which is discontinuous at 1,
at all other points.
(b) Find a function f which is discontinuous at 1, %, %, %, ..., and at 0, but

continuous at all other points.

Suppose that f satisfies f(x + y) = f(x) + f(y), and that f is continuous
at 0. Prove that f is continuous at a for all a.

Suppose that f is continuous at a and f(a) = 0. Prove that if’ @ # 0, then
f 4« 1s nonzero i some open interval containing a.

(a) Suppose f is defined at a but is not continuous at a. Prove that for
some number ¢ > 0 there are numbers x arbitrarily close to a with
| f(x)— f(a)| > e. Hlustrate graphically.

(b) Conclude that for some number e > 0 ether there are numbers x arbi-
trarily close to a with f(x) < f(a)— € or there are numbers x arbitrarily
close to a with f(x) > f(a)+e.

(a) Prove thatif f is continuous at a, then so s | f].

(b) Prove that every function f continuous on R can be written f = E+ O,
where E is even and continuous and O is odd and continuous.

(¢c) Prove that if f and g are continuous, then so are max(f, g) and
min(f, g).

(d) Prove that every continuous f can be written f = g —h, where g and h
are nonnegative and continuous,

Prove Theorem 1(3) by using Theorem 2 and continuity of the function

Q) = 1/x.

(a) Prove that if f is continuous at [ and hm g(x) =/, then hm f(g(x)) =
X—a X—>d
f (). (You can go right back to the definitions, but it 1s easier to consider
the function G with G(x) = g(x) for x Za, and G(a) =1.)
(b) Show that if continuity of f at / is not assumed, then it is not generally

truc that lim f(g(x)) = f(lim g(x)). Hint: Try f(x) = 0for x #/, and
f)=1.




13.

14.

15.

16.

17.

(b)
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Prove that if f is continuous on [a. b], then there is a function g which
1s continuous on R, and which sausfies g(x) = f(x) for all x m [a, b].
Hint: Since you obviously have a great deal of choice, try making g
constant on (—o0, ¢ and [b, 00).

Give an example to show that this assertion is false if [a, b] is replaced
by (a.b).

Suppose that g and h are continuous at a, and that g(a) = h(a). Define
f(x) to be g(x)if x >a and h(x)1f x <a. Prove that f is continuous
ata.

Suppose g 1s continuous on [a,b] and & 1s continuous on [b, ¢| and
g(b) = h(b). Let f(x) be g(x) for x n [a,b] and h(x) for x m [b,c].
Show that f is continuous on [a, ¢]. (Thus, continuous functions can be
“pasted together™.)

Prove thatif f is continuous at a, then for any ¢ > 0 there is a § > 0 so that

whenever [x —a| < 8 and |y — a| < §, we have

(a)

(b)

J@) = fnl <e.

Prove the following version of Theorem 3 for “right-hand continuity™:
Suppose that m f(x) = f(a), and f(a) > 0. Then there 1s a number
x—at

5 > 0 such that f(x) > O for all x satisfying 0 < x —a < §. Similarly,
if f(a) < 0, then there is a number § > 0 such that f(x) < 0 for all x
satisfying 0 <x —a < 4.

Prove a version of Theorem 3 when ‘_121[3 fx)= f(b).

If lim f(x) exists, but is # f(a), then f 1s said to have a removable dis-
X—a

continuity at a.

(a)

(b)

*d)

(o)

If f(x) =smnl/x for x # 0 and f(0) = 1, does f have a removable
discontinuity at 02 What if f(x) = xsm 1l /x for x # 0, and f(0) = 1?
Suppose f has a removable discontinuity at a. Let g(x) = f(x) for
X # a, and let g(a) = }12}1 S (x). Prove that g is continuous at a. (Don’t
work very hard; this 1s quite easy:)

Let f(x) =01f x is wrrational, and let f(p/q) = 1/q if p/q is m lowest
terms. What 1s the function g defined by g(x) = ‘11_131 f(y)?

Let f be a function with the property that cvery point of discontinuity
1s a removable discontinuity. This means that m f(y) exists for all x.
y—x

but f may be discontinuous at some (even mfinitely many) numbers x.
Define g(x) = lim f(y). Prove that g is continuous. (This is not quite
y—x

so easy as part (b).)

Is there a function f which is discontinuous at every point, and which has
only removable discontinuities? (It is worth thinking about this problem
now, but mainly as a test of intuition: even if you suspect the correct
answer, you will almost certainly be unable to prove it at the present
time. Sec Problem 22-33.)
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THREE HARD THEOREMS

This chapter 15 devoted to three theorems about continuous functions, and some
of their consequences. The proofs of the three theorems themselves will not be
given until the next chapter, for reasons which are explained at the end of this
chapter.

If fis continuous on [a,b] and f(a) < 0 < f(b), then there is some x in [a, b]
such that f(x) = 0.

(Geometrically, this means that the graph of a continuous function which starts
below the horizontal axis and ends above it must cross this axis at some point, as
in Figure 1.)

If f is continuous on [a, b|, then f 1s bounded above on [a, b], that is, there is
some number N such that f(x) < N for all x in [a, b].

(Geometrically, this theorem means that the graph of f lies below some line par-
allel to the horizontal axis, as in Figure 2.)

If f is continuous on [a,b], then there is some number y i [a,b] such that
f ()= f(x) forall x in [a,b] (Figure 3).

These three theorems differ markedly from the theorems of Chapter 6. The
hypotheses of those theorems always involved continuity at a single pomt, while
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the hypotheses of the present theorems require continuity on a whole mterval
[a. b]—if continuity fails to hold at a single point, the conclusions may fail. For
example, let f be the function shown in Figure 4,

-1, 0§x<\/§

flx) =
It J2 <x <2

Then f is continuous at every point of [0, 2] except «/2_, and f(0) <0 < f(2),
but there is no point x in [0, 2] such that f(x) = 0; the discontinuity at the single
point V2 is sufficient to destroy the conclusion of Theorem 1.

Similarly, suppose that f is the function shown in Figure 5,

_J Ix, x#0
F®=10 2o

Then f 1s continuous at every point of [0, 1] except 0, but f is not bounded above
on [0, 1]. In fact, for any number N > 0 we have f(1/2N) =2N > N.

This example also shows that the closed mterval [a, b] in Theorem 2 cannot be
replaced by the open interval (a, b), for the function f is continuous on (0. 1), but
1s not bounded there.

Finally, consider the function shown in Figure 6,

2
S|

0, x=>1.

fx) =

On the interval [0, 1] the function f 1s bounded above, so f does satisty the
conclusion of Theorem 2, even though f is not continuous on [0, I]. But f
does not satisty the conclusion of Theorem 3-——there is no y in [0, 1] such that
f(y) = f(x)forall x in [0, 1]; n fact, it is certainly not true that f(1) > f(x) for
all x in [0, 1] so we cannot choose y = 1, nor can we choose 0 < y < 1 because
f(y) < fx)if x 1s any number with y < x < 1.

This example shows that Theorem 3 is considerably stronger than Theorem 2.
Theorem 3 is often paraphrased by saying that a continuous function on a closed
interval “takes on its maximum value” on that interval.

As a compensation for the stringency of the hypotheses of our three theorems,
the conclusions are of a totally different order than those of previous theorems.
They describe the behavior of a function, not just near a point, but on a whole -
terval; such “global” properties of a function are always significantty more difficult
to prove than “local” properties, and are correspondingly of much greater power.
To illustrate the usefulness of Theorems 1, 2, and 3, we will soon deduce some 1m-
portant consequences, but it will help to first mention some simple generalizations
of these theorems.

If f 1s continuous on [a.b] and f(a) < ¢ < f(b), then there is some x m [a. b]
such that f(x) =c.
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Let g = f—c¢. Then g is continuous, and g(a) < 0 < g(b). By Theorem 1, there
is some x i [a, b] such that g(x) = 0. But this means that f(x) =c. |

If £ is continuous on [a.b] and f(a) > ¢ > f(b), then there is some x in [a, b]
such that f(x) = c.

The function —f 1s continuous on [a,b] and —f(a) < —¢ < —f(b). By The-
orem 4 there 1s some x i [a,b] such that —f(x) = —¢, which means that

fy=cl

Theorems 4 and 5 together show that f takes on any value between f(a)
and f(b). We can do even better than this: 1f ¢ and d are i [a, b}, then f
takes on any value between f(c) and f(d). The proof'is simple: if; for example,
¢ < d, then just apply Theorems 4 and 5 to the interval [¢, d]. Summarizing, if a
continuous function on an interval takes on two values, 1t takes on every value in
between; this slight generalization of Theorem 1 1s often called the Intermediate
Value Theorem.

If f 1s contnuous on [a, b], then f 1s bounded below on [a, b], that is, there 1s
some number N such that f(x) > N for all x in [a, b].

The function — f i1s continuous on [a. b, so by Theorem 2 there 1s a number M
such that — f(x) < M for all x in [a. b]. But this means that f(x) > —M for all x
in [a.b].sowecanlet N =—-M. ||

Theorems 2 and 6 together show that a continuous function f on [a, b] 1s
bounded on [a. b], that 1s, there 1s a number N such that | f(x)| < N for all x in
[a.b]. In fact, since Theorem 2 ensures the existence of a number Ny such that
f(x) < Ny for all x in [a, b], and Theorem 6 ensures the existence of a number
N> such that f(x) > N> for all x in [a, b]. we can take N = max(|Ny|. [N2]).

)

If f is continuous on [a, b], then there is some y in [a, b] such that f(y) < f(x)
for all x in [a, b}.

(A continuous function on a closed mterval takes on its minimum value on that
mterval.)

The function — f 1s continuous on [a, b]; by Theorem 3 there is some y in [a. b]
such that — f(v) = — f(x) for all x in |a.b], which means that f(y) < f(x) for
all x in [a.b]. 1

Now that we have derived the trivial consequences of Theorems 1. 2, and 3, we
can begin proving a few teresting things.

Every positive number has a square root. In other words, if « > 0, then there is
9
some number x such that v~ = «.
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Consider the function f(x) = x2, which is certainly continuous. Notice that the
statement of the theorem can be expressed in terms of f: “the number « has a
square root” means that f takes on the value «. The proof of this fact about f
will be an easy consequence of Theorem 4.

There is obviously a number b > 0 such that f(b) > « (as illustrated in Figure 7);
in fact, if @ > 1 we can take b = «, while if ¢ < 1 we can take b = 1. Since
f(0) < a < f(b), Theorem 4 applied to [0, b] implies that for some x (in [0, b]),
we have f(x) =a, ie, x> =a. |

Precisely the same argument can be used to prove that a positive number has
an nth root, for any natural number n. If n happens to be odd, one can do
better: every number has an nth root. To prove this we just note that if the positive
number « has the nth root x, L.e., if x" = «, then (—x)" = —« (since n is odd), so
—a has the nth root —x. The assertion, that for odd # any number « has an nth
root, is equivalent to the statement that the equation

e — o =10

has a root if n i1s odd. Expressed in this way the result is susceptible of great
generalization.

If n is odd, then any equation

1

X"+a, 4 x"+ - 4+ap=0

has a root.

We obviously want to consider the function
fO)=x"+a,x" 4+ +ao;

we would like to prove that f is sometimes positive and sometimes negative. The
mtuitive idea is that for large |x|, the function is very much like g(x) = x" and,
since n 1s odd, this function is positive for large positive x and negative for large
negative x. A little algebra is all we need to make this intuitive idea work.

The proper analysis of the function f depends on writing
‘ ap—1 + .. (1()).

FE) =x"+ a5 o ag =x" (1 + +
4G bl

Note that

dp—1 | Gn-2 ag| _ lan-1] laol
. 2 +..._|_x_n < ] |x”|.
Consequently, if we choose x satisfying
(x) x| > 1, 2nla, 1], ..., 2nlag|.
then |x¥| > |x| and
lan—il  lanl lansl 1

| K| x| 2nlan—x| 20’
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Yo

b

SO
dy_1 U2 agp 1 1 |
b S =
X x2 b 2n 2n 2
—————
1 terms
In other words,
| a) ! a |
_ ™ 1 L. i < —.
W= X xn T 2
which mmplies that
1 a,_| a(
— < 1 + 4 + 4+ —.
2 X G

Therefore, if we choose an x; > 0 which satisfies (x), then

(xy)"
7

L

< (x;)”(l it M, il >=f(x1’),

X (xp)"

so that f(x;) > 0. On the other hand, if x; < 0 satisfies (%), then (x2)" < 0 and

(x2)" a, a
2 L G0

n
X2 (x2)"

> (x2)" (l + ) = f(x2),
so that f(x2) < 0.

Now applying Theorem 1 to the interval [x2. x;] we conclude that there is an x
in [x2, x1] such that f(x)=0.11

Theorem 9 disposes of the problem of odd degree equations so happily that it
would be frustrating to leave the problem of even degree equations completely
undiscussed. At first sight, however, the problemn seems msuperable. Some equa-
tions, like x2 — 1 = 0, have a solution, and some, like xZ + 1 = 0, do not—what
more is there to say? If we are willing to consider a more general question, how-
ever, something mteresting can be said. Instead of trying to solve the equation

M4 a, x4+ 4+ ap =0,

let us ask about the possibility of solving the equations

1

XMt a, x" o +ag=c

for all possible numbers ¢. This amounts to allowing the constant term aq to vary.
The mformation which can be given concerning the solution of these equations
depends on a fact which is illustrated in Figure 8.

The graph of the function f(x) = x"+a,_ x4 ag, with 7 even, contains.
at least the way we have drawn i, a lowest point. In other words, there is a
number v such that f(y) < f(x) for all numbers x— the function f takes on a
minimum value, not just on cach closed interval, but on the whole line. (Nouce
that this is false i n i1s odd.) The proof depends on Theorem 7, but a tricky
application will be required. We can apply Theorem 7 to any mterval [a. b|, and
obtain a point yg such that f(yg) 1s the mmimum value of f on {a. b]; butif [a. b]
happens to be the interval shown m Figure 8, for example. then thie point yo will
not be the place where f has its minimmum value for the whole hne. In the next
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theorem the entire point of the proof'is to choose an interval [a. b] m such a way
that this cannot happen.

THEOREM 10 If nis even and f(x) = x" + ap_1x" "+ -+ + ag, then there is a number y such
that f(y) < f(x) for all x.

PROOF  As in the proof of Theorem 9, if
M = max(l, 2n|a,_1|. . ... 2nlagy|).

then for all x with |x| > M, we have

Since n 1s even, x" > 0 for all x, so

Ap—1

e a
S (2 D) = ),
Z X

X

provided that |x| = M. Now consider the number f(0). Let & > 0 be a number
such that " > 2 f(0) and also b > M. Then, if x > b, we have (Figure 9)

f0 2% 25 2 [
_lb ;I) Sinilarly, if x < —b, then
b n _b n lil
HGURE 9 IOFEAPE R AR
Summarizing:

if x>borx<-—b,then f(x)> f(0).

Now apply Theorem 7 to the function f on the interval [—b, b]. We conclude
that there 1s a number y such that

(n if —b <x < b, then f(y) < f(x).
In particular, f(y) < f(0). Thus
) if x < —=borx>b, then f(x)=> f(0) > f(y).

Combining (1) and (2) we see that f(y) < f(x) for all x. |

Theorem 10 now allows us to prove the following result.

THEOREM 11 Consider the equation

1

() %l 4w x" - dag = .
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and suppose 1 1s even. Then there is a number m such that () has a solution for
¢ > m and has no solution for ¢ < m.

Let f(X)=x"4+a,_x" 14+ +ap (Figure 10).

According to Theorem 10 there 1s a number y such that f(y) < f(x) for all x.
Let m = f(y). Iff ¢ < m, then the equation (%) obviously has no solution, since
the left side always has a value = m. If ¢ = m, then (%) has y as a solution.
Fmally, suppose ¢ > m. Let b be a number such that b > y and f(b) > ¢. Then
f(y)=m < ¢ < f(b). Consequently, by Theorem 4, there is some number x in
[y, b] such that f(x) = ¢, so x is a solution of (x). |

These consequences of Theorems 1, 2, and 3 are the only ones we will derive
now (these theorems will play a fundamental role mn everything we do later, how-
ever). Only one task remains—to prove Theorems 1, 2, and 3. Unfortunately,
we cannot hope to do this——on the basis of our present knowledge about the real
numbers (namely, P1-P12) a proof is impossible. There are several ways of con-
vinemg oursclves that this gloomy conclusion is actually the case. For example,
the proof of Theorem 8 relies only on the proof of Theorem 15 if we could prove
Theorem 1, then the proof of Theorem 8 would be complete, and we would have
a proof that every positive number has a square root. As pomted out in Part I, it
1s impossible to prove this on the basis of P1- P12, Agan, suppose we consider the
function

|
fx) = 75
If there were no number x with x> = 2, then f would be continuous, since the
denommator would never = 0. But f 1s not bounded on [0, 2]. So Theorem 2
depends essentially on the existence of numbers other than rational numbers, and
therefore on some property of the real numbers other than P1-P12.

Despite our mability to prove Theorems 1, 2, and 3, they are certainly results
which we want to be true. If the pictures we have been drawing have any con-
nection with the mathematics we are doing, if our notion of continuous function
corresponds to any degree with our intuttive notion, Theorems 1, 2, and 3 have
got to be true. Since a proof of any of these theorems must require some new
property of R which has so far been overlooked, our present ditheulties suggest a
way to discover that property: let us try to construct a proof of Theorem 1, for
example, and see what goes wrong,

One idea which seems promising is to locate the first point where f(x) = 0, that
15, the smallest x in [a, b] such that f(x) = 0. To fiind this point, first consider
the set A which contams all numbers x in |a. b| such that f is negative on [a. x|.
I Figure 11, x is such a point, while x” is not. The set A itself 1s indicated by a
heavy line. Siice f s negative at a, and positive at b, the set A contains some
points greater than a, while all points sulliciently close to b are not in A. (We are
here nsing the continuity of f on [a, b, as well as Problem 6-16.)



(f(x) < 0 for all x in this interval

A would also contain
all these points

FIGURE 12

A could really be
only this blg

%

\f(r) > 0 for all x

in this interval

FIGURE 13
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Now suppose « is the smallest number which is greater than all members of” A;
clearly @ < o < b. We claim that f(«) = 0, and to prove this we only have to
eliminate the possibilities f(«) < 0 and f(a) > 0.

Suppose first that f(a) < 0. Then, by Theorem 6-3, f(x) would be less than 0
for all x in a small interval containing «, in particular for some numbers bigger
than « (Figure 12); but this contradicts the fact that « 1s bigger than every member
of A, since the larger numbers would also be in A. Consequently, f(a) < 0 is
false.

On the other hand, suppose f(«) > 0. Again applying Theorem 6-3, we see that
f(x) would be positive for all x in a small interval containing «, in particular for
some numbers smaller than o (Figure 13). This means that these smaller numbers
are all not in A. Consequently, one could have chosen an even smaller « which
would be greater than all members of A. Once again we have a contradiction;
fla) > 0 is also false. Hence f(a) =0 and, we are tempted to say, Q.E.D.

We know, however, that something must be wrong, since no new properties of R
were ever used, and it does not require much scrutiny to find the dubious point.
It is clear that we can choose a number « which is greater than all members of A
(for example, we can choose o = b), but it is not so clear that we can choose a
smallest one. In fact, suppose A consists of all numbers x > 0 such that x? < 2.
If the number v2 did not exist, there would not be a least number greater than
all the members of Aj; for any y > V2 we chose, we could always choose a still
smaller one.

Now that we have discovered the fallacy, it 15 almost obvious what additional
property of the real numbers we need. All we must do is say it properly and use it.
That is the business of the next chapter.

PROBLEMS

1. Lor each ofthe following functions, decide which are bounded above or below
on the indicated mterval, and which take on their maximum or minimum
value. (Notice that f might have these properties even i’ f 1s not continuous,
and even if the interval is not a closed interval.)

1) fx)= xZon(=1,1).
(1) fx)= 3 on (=1.1).
)  f(x) = x2onR.

av) fx) = x2 on [0, 00).

on (—a — 1,a +1). (We assume a > —1, so

v) f(x‘)z{x" =

a+2, x>a

that —a — 1 < a+ 1; it will be necessary to consider several possibilities

for a.)
’ v <a
(viy f(x)=1"" * =% on[—a—1l.a+1]. (Again assume a > —1.)
a+?2, x>a
0. X irrational

}‘(\)‘{ on [0. 1].

1/q.

X = p/q n lowest terms
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X 1rrational
/q. X = p/q inlowest terms

(viil) f(x) = 1[0, 1].

[

x Irrational
(ix) fx)= J n [0, 1].
—l/q, X = p/q m lowest terms
x, x rational
0, x irrational

GANNNER) = on [0, al.
(x1) f(x)= sin‘(cos x+Vva+a?)on [0, (13].

(x1) f(x)=[x]on [0,a].

For each of the following polynomial functions f, find an integer n such that
f(x) =0 for some x between n and n + 1.

i) f)=x>-x+3.

(i)  fx)=x"+5:4 4+ 2x + 1.
(i) f)=x>+x+1,

(iv) f(x)=4x2—4x +1.

Prove that there is some number x such that

163
i x4+ ———— =119.
l +x2+sin“x

() sinx =x— 1.

This problem is a continuation of Problem 3-7.

(@) If n =k is even, and > 0, find a polynomial function of degree n with
exactly k roots.

(b) A root a of the polynomial function f is said to have multiplicity m
i f(x) = (x —a)”"g(x), where g is a polynomial function that does not
have a as a root. Let f be a polynomial function of degree n. Suppose
that f has k roots, counting multiplicities, 1.e., suppose that & is the sum
of the multiplicities of all the roots. Show that n — k 1s even.

Suppose that f is continuous on [a, b] and that f(x) is always rational. What
can be said about f?

Suppose that f is a continuous function on [—1. 1] such that 24+ (f(x)* =1
for all x. (This means that (x, f(x)) always lies on the unit circle.) Show that

either f(x) =v1—x2forall x,orelse f(x)=—-V1-— x2 for all x.

. . . oo~ ~ 2 2
How many continuous functions f are there which satisly (f(x))° = x< for
all x?

Suppose that f and g are continuous, that f2 = g2 and that f(x) # 0 for
all x. Prove that cither f(x) = g(x) for all x, or else f(x) = —g(x) for all x.

(a) Suppose that f 1s continuous, that f(x) = 0 only for x = a. and that
f(x) > 0 for some x > a as well as for some x < a. What can be said

about f(x) for all x # a?
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(b) Again assume that f is continuous and that f(x) = 0 only for x = a,
but suppose, instead, that f(x) > 0 for some x > a and f(x) < O for
some x < a. Now what can be said about f(x) for x # a?

*¢) Discuss the sign of x4+ x%y + xy*> 4 y3 when x and y are not both 0.

10.  Suppose f and g are continuous on |a, b| and that f(a) < g(a), but f(b) >
g(b). Prove that f(x) = g(x) for some x in [a.b]. (If your proof isn’t very
short, it’s not the right one.)

11.  Suppose that f is a continuous function on [0, 1] and that f(x) is in [0, 1]
for each x (draw a picture). Prove that f(x) = x for some number x.

12.  (a) Problem 11 shows that f mtersects the diagonal of the square in Fig-
ure 14 (solid line). Show that f must also intersect the other (dashed)
diagonal.

(b) Prove the following more general fact: If g is continuous on [0, 1] and
g0)=0,g(hy=1or g0) =1, g(1) =0, then f(x)= g(x) for some x.

13. (a) Let f(x) =sml/x for x # 0 and let f(0) = 0. Is f continuous on
[—1.1]? Show that f satisfies the conclusion of the Intermediate Value
Theorem on [—1, 1]; in other words, if f takes on two values somewhere
on [—1, 1], it also takes on cvery value in between.

*b) Suppose that f satisfies the conclusion of the Intermediate Value Theo-
rem, and that f takes on each value only once. Prove that f is continuous.

*c) Generalize to the case where f takes on each value only finitely many
ames.

14. If f is a continuous function on [0, 1], let || f]| be the maximum value of | f|

on 0. 1].

(@) Prove that for any number ¢ we have |lcf || = |c| - | f]l.

*b) Prove that || f + gll < IfIl + ligll. Give an example where || f + g|| #
WA=+ lgll

(c) Prove that |h — fll < |lb —gll + llg — fII.

*15.  Suppose that ¢ is continuous and lm ¢(x)/x" =0= hm ¢(x)/x".
X=X X—>—0C

(@) Prove thatif n 1s odd, then there is a number x such that x” + ¢ (x) = 0.
(b) Prove that if n 1s even, then there is a number y such that v + ¢(y) <
x"+ ¢ (x) for all x.

Hint: Of which proofs does this problem test your understanding?

*16. (a) Supposc that f is continuous ot (a. b) and lim f(x) = him f(x) = oc.
, : .

x—a x—b

Prove that f has a mimmum on all of (a, b).
(b) Prove the corresponding result when @ = —oo and/or b = oo.

*¥17.  Let f be any polynomial function. Prove that there is some number v such

that | f(y)] < | f(x)] for all x.
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*18.  Suppose that f i1s a continuous function with f(x) > 0 for all x, and
lm f(x) = 0= hm f(x). (Draw a picture.) Prove that there is some
X—00 X—>—00

number y such that f(y) > f(x) for all x.

*19.  (a)

FIGURE 15
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Suppose that f 1s continuous on [a, b], and let x be any number. Prove
that there is a point on the graph of f which 1s closest to (x,0); in
other words there is some y in [a, b] such that the distance from (x,0)
to (v, f(y)) is < distance from (x,0) to (z, f(2)) for all z in [a,b]. (See
Figure 15.)

Show that this same assertion is not necessarily true if [a, b] is replaced
by (a, b) throughout.

Show that the assertion s true if [a, b] is replaced by R throughout.

In cases (a) and (c), let g(x) be the minimum distance from (x, 0) to a
pomt on the graph of f. Prove that g(y) < g(x)+|x — y|, and conclude
that g 1s continuous.

Prove that there are numbers xg and x; m [a, b] such that the distance
from (xg,0) to (x1, f(x1)) 1s < the distance from (x¢’, 0) to (xy’, f(x1"))
for any x¢’, x;" n [a, b].

Suppose that f is continuous on [0, 1] and f(0) = f(1). Let n be any
natural number. Prove that there is some number x such that f(x) =
f(x+1/n), as shown m Figure 16 for n = 4. Hint: Consider the function
g(x) = f(x) — f(x + 1/n); what would be true if g(x) # 0 for all x?
Suppose 0 < a < 1, but that a 1s not equal to 1/n for any natural
number n. Find a function f which is continuous on [0, 1] and which
satisfies f(0) = f(1), but which does not satsty f(x) = f(x + a) for
any x.

Prove that there does not exist a continuous function f defined on R
which takes on every value exactly twice. Hnt: If f(a) = f(b) for
a < b, then cither f(x) > f(a) for all x m (a.b) or f(x) < f(a) for
all x in (a, b). Why? In the first case all values close to f(a), but shghtly
larger than f(a), are taken on somewhere 1 (a, b); this implies that
f(x) < f(a)for x <aand x > b.

Refine part (a) by proving that there is no continuous function f which
takes on each value either 0 times or 2 times, i.c., which takes on exactly
twice each value that it does take on. Hint: The previous hint implies
that f has either a maximum or a mimimum value (which must be taken
on twice). What can be said about values close to the maximum value?
Find a continuous function f which takes on every value exactly 3 times.
More generally, find one which takes on every value exactly n times, if
n is odd.

Prove that if n is even, then there 1s no continuous f which takes on
every value exactly n times. Hint: "To treat the case n = 4, for example,
let f(x)) = f(x2) = f(x3) = f(xg). Then etther f(x) > 0 for all x m
two of the three intervals (x1, x2), (x2, x3), (x3,x4), or else f(x) < 0 for
all x in two of these three ntervals.



CHAPTER

DEFINITION

DEFINITION

LEAST UPPER BOUNDS

This chapter reveals the most important property of the real numbers. Never-
theless, 1t 1s merely a sequel to Chapter 7; the path which must be followed has
already been indicated, and further discussion would be useless delay.

A set A of real numbers is bounded above if there 1s a number x such that
x >a foreveryain A.

Such a number x is called an upper bound for A.

Obviously A is bounded above if and only if there is a number x which is an
upper bound for A (and in this case there will be lots of upper bounds for A); we
often say, as a concession to idiomatic English, that *A has an upper bound” when
we mean that there is a number which is an upper bound for A.

Notice that the term “bounded above™ has now been used in two ways- first, in
Chapter 7, n reference to functions, and now n reference to sets. This dual usage
should cause no confusion, since it will always be clear whether we are talking
about a set of numbers or a function. Moreover, the two definitions are closely
connected: if A is the set {f(x) : a < x < b}, then the function f is bounded
above on [a, b] if and only if the set A 1s bounded above.

The entire collection R of real numbers, and the natural numbers N, are both
examples of sets which are not bounded above. An example of a set which
bounded above is

A={x:0<x<1}.

To show that A is bounded above we need only name some upper bound for A,
which is easy enough; for example, 138 is an upper bound for A, and so are 2,
l%, 1%, and 1. Clearly, 1 is the least upper bound of A; although the phrase

just introduced is self-explanatory, in order to avoid any possible confusion (in

particular, to ensure that we all know what the superlative of “less” means), we
define this explicitly.

A number x is a least upper bound of A if

() x is an upper bound of A,
and (2) if yis an upper bound of A, then x < y.

133
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The use of the indefinite article “a” n this definition was merely a concession
to temporary ignorance. Now that we have made a precise defmition, it is easily
seen that if x and y are both least upper bounds of A, then x = y. Indeed, in this
case

x < y. since y is an upper bound, and x is a least upper bound,

and y < x, sice x 1s an upper bound, and y 1s a least upper bound;

it follows that x = y. For this reason we speak of #he least upper bound of A.
The term supremum of A 1s synonymous and has one advantage. It abbreviates
quite nicely to

sup A (pronounced “soup A”)

and saves us from the abbreviation

lub A

(which 1s nevertheless used by some authors).

There is a series of important definitions, analogous to those just given, which
can now be treated more briefly. A set A of real numbers 1s bounded below if
there is a number x such that

x<a for every a m A.

Such a number x is called a lower bound for A. A number x 1s the greatest
lower bound of A if

(1) xi1salower bound of A,
and (2) if yis alower bound of A. then x > y.

The greatest lower bound of A is also called the infimum of A, abbreviated
mnf A:

some authors use the abbreviation
glb A.

One detail has been omitted from our discussion so far— the question of which
sets have at least one, and hence exactly one, least upper bound or greatest lower
bound. We will consider only least upper bounds, since the question for greatest
lower bounds can then be answered easily (Problem 2).

If A is not bounded above, then A has no upper bound at all, so A certainly
cannot be expected to have a least upper bound. It is tempting to say that A does
have a least upper bound if it has some upper bound, but, like the principle of
mathematical induction, this assertion can fail to be true in a rather special way:
If A = ¢, then A is bounded above. Indeed, any number x is an upper bound
for ¥:

x>y forevery yin ¢

simply because there 1s no y in . Since every number is an upper bound for 4,
there is surely no least upper bound for 4. With this tivial exception however,
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our assertion 1s true- -and very important, definttely important enough to warrant
consideration of details. We are finally ready to state the last property of the real
numbers which we need.

(P13)  (The least upper bound property) If A is a set of real numbers,
A # ), and A 1s bounded above, then A has a least upper bound.

Property P13 may strike you as antichmactic, but that is actually one of its
virtues. To complete our list of basic properties for the real numbers we require no
particularly abstruse proposition, but only a property so simple that we might feel
foolish for having overlooked 1t. Of course, the least upper bound property is not
really so innocent as all that; after all, it does not hold for the rational numbers Q .
For example, if A is the set of all rational numbers x satisfying x> < 2. then there
1s no rational number y which 1s an upper bound for A and which is less than or
equal to every other rational number which is an upper bound for A. It will become
clear only gradually how significant P13 is, but we are already in a posttion to
demonstrate its power, by supplying the proofs which were omitted in Chapter 7.

If f 1s continuous on [a,b]| and f(a) < 0 < f(b), then there is some number x
m |a. b| such that f(x) = 0.

Our proof is merely a rigorous version of the outline developed at the end of
Chapter 7—we will locate the smallest number x in [a. b] with f(x) = 0.
Define the set A, shown in Figure 1, as follows:

A={x:a <x <b, and f is negative on the interval [a, x]}.

Clearly A # @, since a 1s in A; m fact, there 1s some § > 0 such that A contains
all points x satislying a < x < a + §; this follows from Problem 6-16, since f is
contmuous on |[a, b] and f(a) < 0. Smmilarly, b 1s an upper bound for A and, m
fact, there 1s a § > 0 such that all points x satistying b — § < x < b are upper
bounds for Aj; this also follows from Problem 6-16, since f(b) > 0.

From these remarks it follows that A has a least upper bound « and that
a < o < b. We now wish to show that f(«) = 0, by eliminating the possibil-
ities f(a) < 0 and f(a) > 0.

Suppose first that f(e) < 0. By Theorem 6-3, there i1s a § > 0 such that
f(x) <0fora—6 <x <a+6 (Figure 2). Now there is some number xg in A
which satisfies « — & < xg < o (because otherwise o would not be the least upper
bound of A). This means that f is negative on the whole interval [a, xg]. Butif
x1 1s a number between o and « 4§, then f is also negative on the whole interval
[x0, x1]. Therefore f s negative on the mterval |a, x|, so x) 1s m A. But this
contradicts the fact that « 1s an upper bound for A; our original assumption that
f(a) < O must be falsc.

Suppose, on the other hand, that f(«) > 0. Then there s a number § > 0 such
that f(x) > Ofor o — 8§ < x < a4+ 4§ (Figure 3). Once again we know that there is
an x¢g in A satisfying o — 8 < xg < «; but this means that f is negative on [a. v,
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which is impossible, since f(xg) > 0. Thus the assumption f(«) > 0 also leads to
a contradiction, leaving f(a) = 0 as the only possible alternative. i

The proofs of Theorems 2 and 3 of Chapter 7 require a simple preliminary
result, which will play much the same role as Theorem 6-3 played in the previous
proof.

If f is continuous at a, then there is a number § > 0 such that f is bounded
above on the mterval (¢ — §.a + 8) (sec Figure 4).

Since lim f(x) = f(a), there is, for every € > 0, a § > 0 such that, for all x,

if |x —al <8, then | f(x) — f(a)] < e&.

It is only necessary to apply this statement to some particular & (any one will do),
for example, & = 1. We conclude that there is a § > 0 such that, for all x|

if [x —al <4, then | f(x)— f(a)| < 1.

It follows, m particular, that if |x —a| < 8, then f(x)— f(a) < 1. This completes
the proof: on the mterval (@ — §,a + §) the function f is bounded above by

fla)y+ 1.1

[t should hardly be necessary to add that we can now also prove that f 1s
bounded below on some mterval (a — 6§, a + §), and, finally, that f is bounded on
some open interval containing a.

A more significant pomt is the observation that ift Iim_ f(x) = f(a). then there
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is a 8§ > 0 such that f is bounded on the set {x : ¢ < x < a + §}, and a sumilar
observation holds i hm f(x) = f(b). Having made these observations (and
x—b—

assuming that you will supply the proofs), we tackle our second major theorem.
If f 1s continuous on [a. b], then f 1s bounded above on [a. b].

Let
A= {x ca < x < band f 1s bounded above on [ax]}

Clearly A # ¢ (smce a 1s in A), and A 1s bounded above (by b), so A has a least
upper bound «. Notice that we are here applying the term “bounded above™ both
to the set A, which can be visuahized as lying on the horizontal axis, and to f, iL.e.,
to the sets {f(y) 1 a < y < x}, which can be visuahzed as lying on the vertical axis
(Figure 5).

Our first step is to prove that we actually have o = b. Suppose, instead, that
a < b. By Theorem 1 there is § > O such that f 1s bounded on (¢ —§, @ +6). Sice
a 1s the least upper bound of” A there is some xp n A satisfying « —8§ < xg < «. This
means that f 1s bounded on [a. xo]. Butif v} is any number with ¢ < x] < a + 6,
then f 1s also bounded on [xg, x1]. Therefore f is bounded on [a, x{], so x; 1s
m A, contradicting the fact that « 15 an upper bound for A. This contradiction
shows that @ = b. One detail should be mentioned: this demonstration imphicitly
assumed that ¢ < « [so that f would be defined on some interval (@ — 8, a + 8)];
the possibility @ = « can be ruled out similarly, using the existence of a 8 > 0 such
that f is bounded on {x : a < x < a + §}.

The proof'is not quite complete— we only know that f is bounded on [«. x] for
every x < b, not necessarily that f is bounded on [a, b]. However, only one small
argument needs to be added.

There is a § > 0 such that f is bounded on {x : b — § < x < b}. There 1s xg
mn A such that b — 8 < xg < b. Thus f 1s bounded on [a. xo] and also on [xg, b],
so f is bounded on [a.b]. |

To prove the third important theorem we resort to a trick.

If f is continuous on [a, b], then there 1s a number y n [a. b] such that f(y) >
f(x) for all x in [a, b].

We already know that f 1s bounded on [a, b], which means that the sct
{f():x in [a.b]}

is bounded. This set is obviously not ¥, so it has a least upper bound «. Since

a > f(x) for x m [a. b] it suffices to show that @ = f(y) for some y in [a. b|.

Suppose nstead that @ # f(v) for all y m [a, b]. Then the function g defined
by

glx) = — xm |a.b]

o~ f(x)
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is continuous on [a, b], since the denominator of the right side is never 0. On the
other hand, a is the least upper bound of {f(x) : x in [a, b] }: this means that

for every e > 0 there is x in {a.b] with @ — f(x) < &.
This, mn turn, means that
for every & > 0 there is x in [a. b] with g(x) > 1/e.

But this means that g is not bounded on [a, b}, contradicting the previous theo-
rem. |

At the beginning of this chapter the set of natural numbers N was given as an
example of an unbounded set. We are now going to prove that N is unbounded.
After the difficult theorems proved in this chapter you may be startled to find
such an “obvious” theorem winding up our proceedings. Il so, you are, perhaps,
allowing the geometrical picture of R to influence you too strongly. “Look,” you
may say, “the real numbers look like

| | |

e — L LR o FE
0 1 2 3 nx n+l

so every number x is between two integers 1, n+ 1 (unless x is itself an mteger).”
Basing the argument on a geometric picture is not a proof, however, and even the
geometric picture contains an assumption: that if you place unit segments end-to-
end you will eventually get a segment larger than any given segment. This axiom,
often omitted from a first introduction to geometry, is usually attributed (not quite

justly) to Archimedes, and the corresponding property for numbers, that N 1S Not

bounded, is called the Aichimedean property of the real numbers. This property is not
a consequence of P1 P12 (see reference [14] of the Suggested Reading), although
it does hold for Q, of course. Once we have P13 however, there are no longer
any problems.

N is not bounded above.

Suppose N were bounded above. Since N # ¢, there would be a least upper
bound « for N. Then

o >n for all # in N.

Conscquently:
a>n+1 forallnmN,

since 1+ 1is in N if n1s m N. But this means that
a—1>n forall n m N,

and this means that o — 1 is also an upper bound for N, contradicting the fact that
« is the least upper bound. [l




THEOREM 3

PROOF

8. Least Upper Bounds 139

There is a consequence of Theorem 2 (actually an equivalent formulation) which
we have very often assumed mmpheitly.

For any € > 0 there is a natural number n with 1/n < e.

Suppose not; then 1/n > ¢ for all n in N. Thus n < 1/e for all n in N. But this
means that /¢ is an upper bound for N, contradicting Theorem 2. §

A brief glance through Chapter 6 will show you that the result of Theorem 3
was used in the discussion of many examples. Of course, Theorem 3 was not
available at the ume, but the examples were so important that in order to give
them some cheating was tolerated. As partial justification for this dishonesty we
can claim that this result was never used in the proof of a theorem, but if your faith
has been shaken, a review of all the proofs given so far is n order. Tortunately,
such deception will not be necessary agam. We have now stated every property of
the real numbers that we will ever need. Henceforth, no more hes.

PROBLENMIS

1. TIind the least upper bound and the greatest lower bound (if they exist) of
the following sets. Also decide which sets have greatest and least elements
(i.e., decide when the least upper bound and greatest lower bound happens
to belong to the set).

(1) {l:n inN}.

n
N 1 .
(11) —:nmZandn #0¢.
n
(i) {x:x=0o0rx=1/nfor some n in NJ.
) {x:0<x< V2 and x is rational}.
V) fx:ixi4+x+1>0).
(vi) {x: xZ4+x—1<0.
(vi) {x:x <Oandx?>+x—1 <O}
I
(vii1) {— +(=1)":n1n N}.
n
2. (a) Suppose A # @ 1s bounded below. Let —A denote the set of all —x
for x m A. Prove that —A # #. that —A 1s bounded above, and that
—sup(—A) 1s the greatest lower bound of A.
(b) If A # ¥ 1s bounded below, let B be the set of all lower bounds of A.
Show that B # ¢, that B 1s bounded above, and that sup B 1s the greatest
lower bound of A.

3. Let f be a contmuous function on [a, b] with f(a) <0 < f(b).
(@) The proof of Theorem 7-1 showed that there is a smallest x m [a. b
with f(x) = 0. If there 18 more than one x m [a, b] with f(x) = 0,
is there necessarily a second smallest? Show that there is a largest x n
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*6.

[a,b] with f(x) = 0. (Try to give an easy proof by considering a new
function closely related to f.)

(b) The proof of Theorem 7-1 depended upon considering A = {x 1 a <
x < band f is negative on [a, x]}. Give another proof of Theorem 7-1,
which depends upon consideration of B = {x ca <x <band f(x) <
0}. Which point x in [a,b] with f(x) = 0 will this proof locate? Give
an example where the sets A and B are not the same.

(a) Suppose that f is continuous on [a, b] and that f(a) = f(b) = 0.
Suppose also that f(xg) > 0 for some xg in [a.b]. Prove that there are
numbers ¢ and d with ¢ < ¢ < xg < d < b such that f(c) = f(d) =0,
but f(x) > 0 for all x in (¢, d). Hint: The previous problem can be used
to good advantage.

(b) Suppose that f is continuous on [a, b] and that f(a) < f(b). Prove that
there are numbers ¢ and d with ¢ < ¢ < d < b such that f(c) = f(a)

and f(d) = f(b) and f(a) < f(x) < f(d) for all x in (¢, d).

(a) Suppose that y — x > 1. Prove that there 1s an mteger k& such that
X < k < y. Hmt: Let [ be the largest integer satisfving [ < x, and
consider [ + 1.

(b) Suppose x < y. Prove that there is a rational number r such that x <
r <y. Hint If 1/n < y—x,thenny —nx > 1. (Query: Why have parts
(a) and (b) been postponed until this problem set?)

(¢) Suppose that r < s are rational numbers. Prove that there is an irrational
number between r and s. Hint: As a start, you know that there 1s an
irrational number between 0 and 1.

(d) Suppose that x < y. Prove that there is an wrational number between x
and y. Hint: It is unnecessary to do any more work; this {ollows from

(b) and (c).

Aset A of real numbers is said to be dense if every open mterval contains a
point of A. For example, Problem 5 shows that the set of rational numbers
and the sct of irrational numbers are each dense.

(a) Prove thatif f 1s conunuous and f(x) = 0 for all numbers x m a dense
set A, then f(x) =0 for all x.

(b) Prove thati" f and g are continuous and f(x) = g(x) for all x m a dense
set A, then f(x) = g(x) for all x.

(¢) Ifwe assume instead that f(x) > g(x) for all x m A, show that f(x) >
g(x) for all x. Can > be replaced by > throughout?

Prove that il’ f is continuous and f(x + y) = f(x) + f(») for all x and y,
then there is a number ¢ such that f(x) = cx for all x. (This conclusion
can be demonstrated simply by combiming the results of two previous prob-
lems.) Point of information: "T'here do exist noncontinuous functions f satsfying
fx+y)y= f(x)+ f(y) for all x and v, but we caunot prove this now; in
fact, this simple question involves wdeas that are usually never mentioned in
undergraduate courses (sce reference [7] i the Suggested Reading).
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Suppose that f is a function such that f(a) < f(b) whenever a < b (Iig-
ure 6).
(a) Prove that lim f(x) and lim_f(x) both exist. Hint: Why is this prob-

A= E X—a

lem m this chapter?

(b) Prove that f never has a removable discontinuity (this termimology comes
from Problem 6-17).

(c) Prove that if f satisfies the conclusions of the Intermediate Value The-
orcm, then f 1s continuous.

If f 1s a bounded function on {0, 1], let || f]| = sup{ | f ()] xn [O. l]}

Prove analogues of the properties of || || in Problem 7-14.

Suppose @ > 0. Prove that every number x can be written uniquely in the
form x = ka + x', where & is an integer, and 0 < x’ < a.

(a) Suppose that ay.az.az.... 15 a sequence of positive numbers with
dyi1 < ay/2. Prove that for any ¢ > 0 there is some n with a, < e.

(b) Suppose P is a regular polygon mscribed inside a circle. If P’ 1s the
inscribed regular polygon with twice as many sides, show that the differ-
ence between the area of the cirele and the arca of P’ i1s less than half the
difference between the area of the circle and the area of” P (use Figure 7).

(¢c) Prove that there 1s a regular polygon P mscribed m a circle with area
as close as desired to the area of the circle. In order to do part (¢) you
will need part (a). This was clear to the Greeks, who used part (a) as the
basis for their entire treatment of proportion and area. By calculating
the arcas of polygons, this method (“the method of exhaustion™) allows
computations of 7 to any desired accuracy; Archimedes used it to show
that % <7< 27—2 But 1t has far greater theoretical importance:

*d) Using the fact that the areas of two regular polygons with the same num-
ber of sides have the same ratio as the square of their sides, prove that the
arcas of two circles have the same ratios as the square of their radii. Hint:
Deduce a contradiction from the assumption that the ratio of the areas
1s greater, or less, than the ratio of the square of the radn by mscribing
appropriate polygons.

Suppose that A and B are two nonempty sets of numbers such that x < y
for all x in A and all y in B.

(a) Prove that supA < y for all y in B.
(b) Prove that sup A < nf B.

Let A and B be two nonempty sets of numbers which are bounded above, and
let A+ B denote the set of all numbers x4y with x 1 A and v in B. Prove that
sup(A+B) = sup A+sup B. Hint: The inequality sup(A+B) < sup A+sup B
15 casy. Why? To prove that sup A +sup B < sup(A + B) it suflices o prove
that sup A +sup B < sup(A + B) + ¢ for all € > 0; begin by choosing x in A
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and y in B withsupA —x <e/2 andsupB — y < ¢/2.

FIGURE 8 f i } i % {

|
aj a as b; by, b

14. (a) Consider a sequence of closed intervals Iy = [ay, by]. I = [a2. ba]. . ...
Suppose that a, < a,; and b, < b, for all n (Figure 8). Prove that
there 1s a pomt x which is m every /,,.

(b) Show that this conclusion is false if we consider open intervals instead of
closed intervals.

The simple result of Problem 14(a) is called the “Nested Interval Theorem.” It
may be used to give alternative proofs of Theorems 1 and 2. "The appropriate
reasoning, outlined in the next two problems, llustrates a general method, called
a “bisection argument.”

*15.  Suppose f 1s continuous on [a,b| and f(a) < 0 < f(b). Then either
f(a+b)/2) =0, or f has different signs at the end points of the interval
[a, (a + b)/2]. or f has dillerent signs at the end points of [(a + b)/2. b].
Why? If f((a 4 b)/2) # 0, let I} be the interval on which f changes sign.
Now bisect 1;. Either f 1s 0 at the midpomnt, or f changes sign on one of the
two mtervals. Let [ be that interval. Continue in this way, to define I, for
each n (unless f 1s 0 at some midpoint). Use the Nested Interval Theorem
to find a pomt x where f(x) = 0.

*16.  Suppose f were continuous on [a. b], but not bounded on [a.b]. Then f
would be unbounded on either [a. (a +b)/2] or [(a+b)/2,b]. Why? Let I,
be one of these intervals on which f 1s unbounded. Proceed as in Problem 15
to obtain a contradiction.

17. (a) Let A = {x:x < «a}. Prove the following (they are all easy):

i) HxismAand y <x,then y1sin A.
(i) A F#W.
(in) A #R.

(v) I xis in A. then there is some number x” in A such that x < x'.

(b) Suppose, conversely, that A satisfies (i) (iv). Prove that A = {x 1 x <
sup A}.

*18. A number x is called an almost upper bound for A if there are only
finitely many numbers y in A with ¥ > x. An almost lower bound is
defimed smuilarly.

(a) Find all alimost upper bounds and almost lower bounds of the sets in
Problenr 1.

(b) Suppose that A is a bounded infuite set. Prove that the set B of all
almost upper bounds of A is nonempty; and bounded below.
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(c) It tollows from part (b) that nf B exists; this number is called the limit
superior of A, and denoted by Tim A or lim sup A. Find lim A for each
set A in Problem 1.

(d) Define lim A, and find 1t for all A in Problem 1.

*19.  If A 1s a bounded infinite set prove

(a) limA < I A.

(b) hm A <supA.

(¢) If lim A < sup A, then A contains a largest element.

(d) The analogues of parts (b) and (c) for lim.

\ C il
N\
i N
/ K/\
Y:\_/\/\\
! |
! I
| |
1 |
| |
| |
! !
¥ 1
shadow points
FIGURL 9
20. Let f be a continuous function on R. A point x 1s called a shadow point

of f if there is a number v > x with f(y) > f(x). The rationale for this
terminology is indicated in Iigure 9; the parallel lines are the rays of the sun
rising i the east (you are facing north). Suppose that all points of (a. b) are
shadow pomts, but that ¢ and b are not shadow pomts. Cleark: f(a) = f(D).

(a) Suppose that f(a) > f(b). Show that the pomnt where f takes on its
maximum value on [a, b] must be a.
(b) Then show that this leads to a contradiction, so that in fact we must have

fla) = fb).

This httle result, known as the Rising Sun Lemma, is instrumental m
proving several beautiful theorems that do not appear m this book: see

page 450.
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APPENDIX. UNIFORM CONTINUITY

bl

Now that we've come to the end of the “foundations,” it might be appropriate
to slip in one further fundamental concept. This notion is not used crucially in
the rest of the book, but it can help clarify many points later on.

We know that the function f(x) = x> is continuous at a for all a. In other

words,

if @ is any number, then for every & > 0 there is some § > 0
~ . ol 2
such that, for all x, i |x —a| < §, then |x= —a~| < e.

Of course, 8 depends on e. But § also depends on a —the § that works at a nmight
not work at b (Figure 1). Indeed, it’s clear that given & > 0 there is no one § > 0
that works for all a, or even for all positive a. In fact, the number a + 8/2 will
certainly satisfy |x —a| < 8, butif @ > 0, then

+52 2= 8+62>8
(12 a | =|a 4_a,

and this won't be < € once a > ¢/8. (This is just an admittedly confusing compu-
tational way of saying that f is growing faster and faster!)

On the other hand, for any & > 0 there will be one § > 0 that works for all a
in any interval [=N. N|. In fact, the § which works at N or =N will also work
everywhere else m the interval.

As a final example, consider the function f(x) = sin l/x, or the function whose
graph appears in Figure 18 on page 62. It is casy to see that, so long as & < |
there will not be one 8 > 0 that works for these functions at all points a in the
open iterval (0. 1.

These examples illustrate important distinctions between the behavior of various
continuous functions on certain itervals, and there is a special term to signal this
distinction.

The function f is uniformly continuous on an interval A if for every ¢ > 0
there is some 8 > 0 such that, for all x and y n A,

if |x —y| <8, then |f(x)— f(y)] <e.

We've scen that a function can be comtinuous on the whole line, or on an open
interval, without being uniformly continuous there. On the other hand, the func-
ton f(x) = x2 did turn out to be uniformly contimious on any closed interval.
This shouldn’t be too surprising — it’s the sanie sort of thing that occurs when we
ask whether a function is bounded on an interval —and we would be led to suspect
that any continuous function on a closed interval is also uniformly contimuous on
that interval. T order o prove this, we'll need to deal first with one subtle pomt.

Suppose that we have two intervals [a, b] and [b. ] with the conmmon cnd-
point b, and a function f that is continuous on [a, c]. Lete >0 and supposc that
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the following two statements hold:

(1) if x and y are in [a.b] and |x — y| < §;, then [ f(x) — f(¥)]| <&,
(11) if x and y arc n [b.¢] and |x — y| < 82, then | f(x) — f(¥)] < €.

We'd like to know if there is some § > 0 such that |f(x) — f(¥)| < & whenever
x and y are points in [a, ¢] with [x — y| < §. Our first inclination might be to
choose § as the minimum of §; and §>. But it is casy to see what goes wrong
(Iigure 2): we might have x in [a,b] and y in [b, ¢|, and then neither (1) nor (i)
tells us anything about | f(x) — f(y)]. So we have to be a little more cagey, and
also use continuity of f at b.

Let @ < b < ¢ and let f be continuous on the mterval [a.¢]. Let ¢ > 0, and
suppose that statements (i) and (i1) hold. Then there is a § > 0 such that,

if x and y are n [a, ¢] and |x — y| < §, then | f(x) — f(¥)]| < ¢.

Since f 1s continuous at b, there i1s a 83 > 0 such that,
if [x — b| < 83, then | f(x) — F(b)| < %
[t follows that
() if |x —b] <83 and |y — b| < 83, then | f(x) — f(y)] < e.

Choose § to be the mimmimum of 8y, 8>, and 83. We claim that this § works. In
fact, suppose that x and y are any two points in [a. ¢] with [x —y| < 4. If x and y
are both n [a, b], then | f(x) — f(¥)| < & by (1); and if x and y are both in [b. ¢].
then | f(x) — f(»)| < & by (11). The only other possibility is that

x<b<y or v<b<ux.

In either case, since |x — y| < &, we also have

|f(x) = f(¥)] < & by (ii). |}

x—bj < é§and |y —b| < 5. So

It f is continuous on [a, b], then f is uniformly continuous on |a, b|.

It’s the usual trick, but we've got to be a little bit careful about the mechanism of
the proof. For ¢ > 0 letCs say that f is €-good on |a, b] if there is some § > 0 such
that, for all y and z in |a, b],

il

y—z| <é§,then [f(y)— f(2)] <e.
Then we're trying to prove that f is e-good on [a, b] for all ¢ > 0.
Consider any particular € > 0. Let
A={x:a <x <band f is e-good on |a.x]}.

Then A # ¥ (since a is in A), and A 1s bounded above (by b), so A has a least
upper bound a. We really should write «;, since A and o might depend on €. But
we won't sinee we mtend to prove that o = b, no matter what ¢ is.
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Suppose that we had « < b. Since f is continuous at «, there is some §p > 0
such that, if |y —«| < 8¢, then | f(y) — f(a)| < €/2. Consequently, if |y —a| < g
and [z —a| < 8. then |[f(y) — f(2)] < &. So f 1s surely e-good on the mterval
[ — p.a + 8p]. On the other hand, since « is the least upper bound of A, it
is also clear that f 1s e-good on [a.«a — §p]. Then the Lemma mplies that f 1s
e-good on [a.a + 8|, so « + &y 1s n A, contradicting the fact that « is an upper
bound.

To complete the proof we just have to show that « = b is actually in A. The
argument for this is practically the same: Since f 1s continuous at b, there 1s some
8o > O such that, if b —38g < y < b, then |f(y) — f(b)| <¢&/2. So f is e-good on
[b — 89, b]. But f is also e-good on [a.bh — &), so the Lemma mplies that f 1s
g-good on |a, b]. §

PROBLEMS

“ uni-

1. (a) For which of the followmg values of « 1s the functon f(x) = x
formly continuous on [0, 00): « = 1/3,1/2, 2, 3?
(b) Find a tunction f that is continuous and bounded on (0, 1], but not
uniformly continuous on (0, 1].
(¢) Find a function f that is continuous and bounded on [0, 00) but which

1s not uniformly continuous on [0, 00).

2. (a) Prove thatif f and g are uniformly continuous on A, then so is f + g.
(b) Prove thatif f and g are uniformly continuous and bounded on A, then
fg 1s uniformly continuous on A.
(c) Show that this conclusion does not hold if one of them isn’t bounded.
(d) Suppose that f is uniformly continuous on A, that g is uniformly con-
tinuous on B, and that f(x) s m B for all x m A. Prove that g o f 1s
uniformly continuous on A.

3.  Use a “bisection argument” (page 142) to give another proof of Theorem 1.

4. Derive Theorem 7-2 as a consequence of Theorem 1.
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In 1604, at the height of

his scientific career, Galileo argued
that for a rectilinear motion

in which speed increases proportionally
to distance covered,

the law of motion should be

Just that (x = ¢t?)

which he had discovered

in the investigation of falling bodies.
Between 1695 and 1700

not a single one of the monthly issues
of Leipzig’s Acta Eruditorum was published
without articles of Letbniz,

the Bernoulli brothers

or the Marquis de PHopital treating,
with notation only slightly different from
that which we use today,

the most varied problems of
differential calculus, integral calculus
and the calculus of variations.

Thus in the space of almost precisely
one cenlury

wnfinitesimal calculus or,

as we now call it in English,

The Calculus,

the calculating tool par excellence,

had been forged;

and nearly three centuries of

constant use have not completely dulled
this incomparable instrument.

NICHOLAS BOURBAKI
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FIGURE 2

DERIVATIVES

The derwvative of a function 1s the first of the two major concepts of this section.
Together with the integral, it constitutes the source from which calculus derives
its particular flavor. While it is true that the concept of a function 1s fundamental,
that you cannot do anything without Immits or continuity, and that least upper
bounds are essential, everything we have done until now has been preparaton- af
adequate, this section will be easier than the preceding ones—for the really exciting
ideas to come, the powerful concepts that are truly characteristic of calculus.

Perhaps (some would say “certainly”) the interest of the ideas to be mtroduced
in this section stems from the intimate connection between the mathematical con-
cepts and certain physical ideas. Many definitions, and even some theorems, may
be described in terms of physical problems, often m a revealing way. In fact, the
demands of physics were the original mspiration for these fundamental ideas of
calculus, and we shall frequently mention the physical interpretations.  But we
shall always first define the ideas in precise mathematcal form, and discuss their
significance in terms of mathematical problems.

The collection of all functions exhibits such diversity that there i1s almost no
hope of discovermg any interesting general properties pertaining to all. Because
continuous functions form such a restricted class, we might expect to find some
nontrivial theorems pertaining to them, and the sudden abundance of theorems
after Chapter 6 shows that this expectation 1s justified. But the most mteresting
and most powerful results about functions will be obtamed only when we restrict
our attention even further, to functions which have even greater claim to be called
“reasonable,” which are even better behaved than most continuous functions.

| f(x) = Ix]

w1

&

FIGURE | (a) (b) (c)

Figure 1 illustrates certam types of misbehavior which continuous functions can
display. The graphs of these functions are “bent” at (0. 0), unlike the graph of
Iigure 2, where it is possible to draw a “tangent line™ at each point. The quotation
marks have been used to avoid the suggestion that we have defined “bent”™ or

149
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=
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FIGURLE 3

fx)=x°

FIGURE 4

“tangent hme,” although we are suggesting that the graph might be “bent” at a
pomt where a “tangent line” cannot be drawn. You have probably already noticed
that a tangent hne cannot be delined as a line which intersects the graph only
once——such a definiton would be both too restrictive and oo permissive.  With
such a definition, the straight line shown in Figure 3 would not be a tangent line
to the graph m that picture, while the parabola would have two tangent lines at
cach pomt (Figure 4), and the three functions in Figure 5 would have more than

one tangent lne at the points where they are “bent.”

-\ a

=

(@) (b) (c)

FIGURE 5

A more promising approach to the definition of a tangent line might start with
“secant lines,” and use the notion of hmits. If /2 # 0, then the two distinet ponts
(a, f(a)) and (a + h, f(a + h)) determine, as in Figure 6. a straight lne whose
stope 1s

fla+h)— f(a)
h .

(a+h, f(a+h))

fla+h)— f(a)

(a, f(a))

FIGURL 6

As Figure 7 illustrates, the “tangent hne” at (a. f(a)) seems (o be the hmit, m
some sense, of these “secant hines,” as h approaches 0. We have never before
tatked about a “lmi” of lines, but we can talk about the hmit of their slopes: the
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(a, f(a))

FIGURE 7
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slope of the tangent line through (a. f(a)) should be

. fla+h)— fla)
lim .
h—0 h

We are ready for a definition, and some comments.

The function f is differentiable at a if

e fla+h)— f(a)
11

exists.
h—0 h

In this case the mit is denoted by f’(a) and is called the derivative of f at
a. (We also say that f is differentiable if [ is differentiable at a for every a
m the domain of f.)

The first comment on our definition is really an addendum; we define the
tangent line to the graph of f at (a, f(a)) to be the line through (a, f(a))
with slope f’(a). This means that the tangent line at (a, f(a)) is defined only if
[ 1s differentiable at a.

The second comment refers to notation. The symbol f'(a) is certainly rem-
iniscent of functional notation. In fact, for any function f, we denote by f’the
function whose domain is the set of all numbers a such that f is differentiable
at a. and whose value at such a number a is

. fla+h)— f(a)
lim .
h—0 N

To be very precise: [’ is the collection of all pairs
Val 3 |

( . fla+h) - f(a))
a, lim

h—0 h

for which lill(l) [ fla+h)— f(a)]/h exists.) The function f”is called the derivative
h—

of f.

Our third comment, somewhat longer than the previous two, refers to the phys-
ical interpretation of the derivative. Consider a particle which is moving along a
straight line (Figure 8(a)) on which we have chosen an

.

‘origin” point O, and a
direction in which distances from O shall be written as positive numbers, the dis-
tance from O of points in the other direction being written as negative numbers.
Let s(r) denote the distance of the parucle from O, at time 7. The suggestive nota-
tion s(¢) has been chosen purposely: since a distance s(7) is determined for each

motion of the particle

t=5 1=4 i = )1:2

\ 4 < & <

Ime along which particle is moving
FIGURE 8(a)
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“distance” |

graph of s

FIGURE &(b)

“time”

number 7, the physical situation automatically supplies us with a certain function s.
The graph of s indicates the distance of the partucle from O, on the vertical axis,
in terms of the time, indicated on the horizontal axis (Figure 8(b)).
The quotient
sta+h)—s(a)
h
has a natural physical interpretation. It 1s the “average velocity” of the parucle
during the time mterval from a to a + h. For any particular a. this average speed

depends on /1, of course. On the other hand, the limit

.os(a+h) —s(a)
lim
h—0 h

depends only on a (as well as the particular function s) and there are important
physical reasons for considering this limit. We would like to speak of the “velocity
of the particle at time a,” but the usual definition of velocity is really a definition
of average velocity; the only reasonable definition of “velocity at time a” (so-called
“instantancous velocity”) 1s the limit

. sta+h)—s(a)
lim
h—0 h

Thus we define the (instantaneous) velocity of the particle at a to be s'(a).
Notice that s'(a) could easily be negative; the absolute value [s'(a)] 1s sometimes
called the (instantaneous) speed.

It 1s important to realize that mstantaneous velocity 1s a theoretical concept,
an abstraction which does not correspond precisely to any observable quantty.
While 1t would not be fair to say that instantaneous velocity has nothing to do
with average velocity. remember that s'(r) 1s not

st+h) —s)
h

for any partcular /i, but merely the hmit of these average velocities as i ap-
proaches 0. Thus, when velocities are measured n physics, what a physicist really
measures 1s an average velocity over some (very small) time interval; such a pro-
cedure cannot be expected to give an exact answer, but this is really no defect,
because physical measurements can never be exact anyway.

The velocity of a particle 1s often called the “rate of change of its position.” This
notion of the derivative, as a rate of change, applies to any other physical situation

.

in which some quantity varies with time. For example, the “rate of change of
mass” ol a growmg object means the derivative of the function m, where m(t) 1s
the mass at time .

In order to become familiar with the basic definitions of this chapter, we will
spend quite some time examining the derivatives of particular functions. Before
proving the miportant theorctical results of Chapter T, we want to have a good
idea of what the derivative of a function looks like. The next chapter is devoted
exclusively to one aspect of this problem  calculating the derivatve of compli-
cated funcuons. In this chapter we will emphasize the concepts, rather than the
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calculations, by considering a few simple examples. Simplest of all is a constant
function, f(x) = c. In this case

fla+h)— f(a) c—c
n

li1 = lim = 0.
h—0 h h—0 N

Thus f 1s differentiable at a for every number a, and f’(a) = 0. This means that
the tangent line to the graph of f always has slope 0, so the tangent line always
coincides with the graph.

Constant functions are not the only ones whose graphs coincide with their tan-
gent lines—this happens for any linear function f(x) = cx +d. Indeed

;o . fla+h) - f(a)
fia)= llzl—r»r(l) h
— lim cla+h)+d—[ca+d]
h—0 h
ch

= lim — = ¢;
h—0 h

the slope of the tangent line 1s ¢, the same as the slope of the graph of f.

., - 5
A refreshing difference occurs for f(x) = x=. Here

(@) = lim fla+h)— f(a)

h—0 h

h—0 h
a4+ 2ah+h? -4’
= lim
h—0 h

=lm2a+h
h—0

= 2a.

Some of the tangent lines to the graph of f are shown in Figure 9. In this picture
each tangent line appears to mtersect the graph only once, and this fact can be
checked fairly easily: Since the tangent line through (a, a®) has slope 2a, it is the
graph of the function

gx)=2a(x —a)+ a*
2
=2ax —a-“.

Now, if the graphs of f and g mtersect at a pomt (x. f(x)) = (x, g(x)), then

x? =2ax —a?®
or x%—=2ax +al=0:
so (x — u)2 =0
or x =a.

7. . 5 50 .
In other words, (a. a®) 1s the only pomt of intersection.
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2

—za

FIGURE

10

fx)=x3

,
slope 3a*

The function f(x) = x2 happens to be quite special in this regard; usually a
tangent hne will ntersect the graph more than once. Consider, for example, the
function f(x)= x3. In this case

fla+h) — f(a)

) = I
f(a) him

h
L (a+h -4}
=lm ——
h—0 h
a3 +3ath +3aht + 13— a}
= hm
h—0 h
o 3a*h +3ah® + 13
= hm
h—0 h
= lin})3a2 + 3ah + h*
h—
= 3a°.

Thus the tangent line to the graph of f at (a.a?) has slope 3a*. This means that
the tangent hne 1s the graph of

gx) = 3a%(x — a) + a’
= 3a*x — 2a°.

The graphs of f and g mtersect at the pomt (x, f(x)) = (x, g(x)) when

5
0 =3 a2

5
or x> —3a*x+2a° =0.

This equation 1s easily solved if we remember that one solution of the equation
has got to be x = a, so that (x — a) 1s a factor of the left side; the other factor can
then be found by dividing, We obtam

2 2

(x —a)(x”+ax —2a°) = 0.
It so happens that x? + ax — 2a® also has x — a as a factor; we obtain finally

(x —a)(x —a)(x +2a) =0.
Thus, as illustrated n Figure 10, the tangent line through (a, a’) also intersects
the graph at the point (—2a, —8a?). These two points are always distinct, except
when a = 0.

We have already found the derivative of sufhiciently many functions to illustrate

the classical, and still very popular, notation for derivatuves. For a given function f,
the dervative f” 1s often denoted by

df(x)
dx

For example, the symbol

dx

dx
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denotes the derivative of the function f(x) = x2. Needless to say, the separate
parts of the cxpression

df (x)

dx

are not supposed to have any sort of independent existence —the d’s are nol num-
bers, they cannot be canceled, and the entire expression is not the quotient of two
other numbers “df(x)” and “dx.” 'This notation 1s due to Leibniz (generally
considered an independent co-discoverer of calculus, along with Newton), and is
affectionately referred to as Leibnizian notation.* Although the notation d f (x)/dx
seems very complicated, in concrete cases it may be shorter; after all, the symbol
dx?/dx is actually more concise than the phrase “the derivative of the function
f(x) =x%”

The following formulas state i standard Leibnizian notation all the mformation
that we have found so far:

dc
="
dx
d(ax + b) B
T =a,
dx? e
dx
dx’ 5
— =3x".
dx *

Although the meaning of these formulas is clear enough, attempts at liteval
interpretation are hindered by the reasonable stricture that an cquation should
not contain a function on one side and a number on the other. For example. if
the third equation is to be true, then either df(x)/dx must denote f'(x), rather
than f', or else 2x must denote, not a number, but the function whose value at x
1s 2x. It is really impossible to assert that one or the other of these alternatives 1s
intended; in practice df (x)/dx sometimes means f” and sometimes means f7(x),
while 2x may denote either a number or a function. Because of this ambiguity,
most authors are reluctant to denote f'(a) by

df(x)
T((l)-

instead f'(a) 1s usually denoted by the barbarie, but unambiguous, symbol

df(x)

d'\' X=a

* Leibniz was led to this symbol by his intuitive notion of the derivatve, which he considered to be,
not the hmit of quotients [ f(x+h) — f(x)]/h, but the “value™ of this quotient when /1 is an “infinitchy
small” number. This “infinitely small” quanuty was denoted by dx and the correspondmg “mfinitcly
small” difference f(x+dx)— f(x) by df (x). Although this pomt of view is impossible to reconcile with
properties (P1)-(P13) ol the real numbers, some people find this notion of the derivative congenial.
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In addition to these difficulties, Leibnizian notation is assoctated with one more
ambiguity. Although the notation dx?/dx is absolutely standard, the notation
df(x)/dx is often replaced by df/dx. 'This, of course, 1s in conformity with the
practice of confusing a function with its value at x. So strong is this tendency that
functions are often indicated by a phrase like the following: “consider the function
y = x27 We will sometimes follow classical practice to the extent of using y
as the name of a function, but we will nevertheless carefully distinguish between
the function and its values—thus we will always say something like “consider the
function (defined by) y(x) = x~.

kbl

Despite the many ambiguities of Leibnizian notation, it is used almost exclu-
sively i older mathematical writng, and is stll used very frequently today. The
staunchest opponents of Leibnizian notation admit that it will be around for quite
some time, while its most ardent admirers would say that 1t will be around for-
ever, and a good thing too! In any case, Leibnizian notation cannot be ignored
completely.

The policy adopted in this book 1s to disallow Leibnizian notation withm the
text, but to include it in the Problems; several chapters contain a few (immediately
recognizable) problems which are expressly designed to illustrate the vagaries of
Leibnizian notation. Trusting that these problems will provide ample practice in
this notation, we return to our basic task of examining some simple examples of
derivatives.

The few functions examined so far have all been differentable. To fully ap-
preciate the significance of the derivative it is equally mmportant to know some
examples of functions which are not differentiable. The obvious candidates are the
three functions first discussed in this chapter, and illustrated in Figure 1; if they
turn out to be differentiable at 0 something has clearly gone wrong

Consider first f(x) = |x|. In this case

SO+ h)— f(0) _|_/1_|_
h T oh

Now |h|/h = 1for h > 0, and |h|/h = —1 for h < 0. This shows that

A A
) Ee—————

h—0 h

does not exist.

In fact,

| L) =10 _

li =ul
h 0 h
. fU)y = fO)
and  lim ———— = —l.
h—0 h

(These two limits are sometimes called the right-hand derivative and the left- |
hand derivative, respectively, of f at 0.
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fx) = /x|
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If a # 0, then f'(a) does exist. In fact,

ifix = 0,

iz <= 0

fx)=1
fex)=—1
The proof of this fact is left to you (it is easy if you remember the derivative of a
linear functon). The graphs of’ f and of f’ are shown in Figure 11.

I'or the function
.

e | B e )
Jx) = X =

a similar difhculty arises in connection with f"(0). We have

h?
R — 0y = P
h N )
S
h

Therefore,

Jh)y = F(0)

lim 0.
h—0- h
(h)y — f(0)
but  lim i) = ) =l

i— 0+ h

Thus f'(0) does not exist; f is not differentable at 0. Once again, however, f'(x)

exists for x # 01t is easy to see that

gy ol 2%, x =0
RS

The graphs of f and f" are shown in Figure 12.

Even worse things happen for f(x) = /|x|. For this function

1
— = —, h >0
fW—fO | bV
h P =7 |
L= h <0
h —h
In this case the right-hand limit
. fh) — f(0) _ 1
Im ——— = lim —
h—0 h h—0+ /h

does not exist; instead 1/v/1 becomes arbitrarily large as h approaches 0. And,
what’s more, —1/+/—h becomes arbitrarily large in absolute value, but negative

(Figure 13).
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flo)=x

FIGURE 14

-~ _

THEOREM 1

PROOF

The function f(x) = /x, although not differentiable at 0, is at least a lhttle
better behaved than this. The quotient
fy— £  Yho k'3 1 1
h hh _112/3_(3//7)3
simply becomes arbitrarily large as i goes to 0. Sometimes one says that f has

an “mfinite” derivative at 0. Geometrically this means that the graph of f has a
“tangent lne” which is parallel to the vertical axis (Figure 14). Of course, f(x) =

— ¥/x has the same geometric property, but one would say that f has a derivative
of “negative mfimty” at 0.

Remember that differentiability 1s supposed to be an improvement over mere
continuity. This idea is supported by the many examples of functions which are
continuous, but not differentiable; however, one important point remains to be
noted:

It f1s differentiable at a, then f 1s continuous at a.

fla+h— fla)

¥ ’ h) — =h I
hn—}}) f (@ 1) f(a) /1123) h :
. fla+h)— fla) .
= lim -hm h
= h h—0
= f'(a)-0
= ().

As we pointed out in Chapter 5, the equation lin%) fla+h)— f(a) =0 is equivalent
h—

to lim f(x) = f(a): thus f is continuous at a. |
X—da

It is very important to remember Theorem 1, and just as important to remember
that the converse is not true. A differentiable function is continuous, but a con-

tinuous function need not be differentiable (keep m mind the functuon f(x) = |x|,
and you will never forget which statement 1s true and which false).

The continuous functions examined so far have been differentiable at all pomts
with at most one exception, but it 1s easy to give examples of continuous functions
which are not differentiable at several pomts, even an infinite number (Figure 15).

Actually, one can do much worse than this. There 1s a function which is continuous

BAVAVAVAVAVAVAVA

FIGURL 15




FIGURE 17
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(c) o (d)

FIGURE 16

everywhere and differentiable nowhere! Unfortunately, the definition of this function will
be inaccessible to us until Chapter 24, and I have been unable to persuade the
artist to draw it (consider carefully what the graph should look like and you will
sympathize with her point of view). It is possible to draw some rough approxima-
tions to the graph, however; several successively better approximations are shown
n Figure 16.

Although such spectacular examples of nondifferentiability must be postponed,
we can, with a little ingenuity, find a continuous function which is not differentiable
at infinitely many points, a/l of which are in [0, 1]. One such function is illustrated in
Figure 17. The reader is given the problem of defining it precisely; it is a straight
line version of the function

il
) ,\“sm;. X

0, xi—=1:

This particular function f is itself quite sensitive to the question of differentiability.
Indeed, for h # 0 we have
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eq L
fiy— £O) h sin i 0 o
- =sin —.

h h I

Long ago we proved that lim sin 1/h does not exist, so f is not differentiable at 0.
T h—0)

Geometrically, one can see that a tangent line cannot exist, by noting that the
secant line through (0.0) and (h. f(h)) in Figure 18 can have any slope between
—1 and 1, no matter how small we require i to be.

FIGURE 18

This finding represents something of a triumph; although continuous, the func-
tion f seems somehow quite unreasonable, and we can now enunciate one math-
ematically undesirable feature of this function—1it is not differentiable at 0. Nev-
ertheless, one should not become too enthusiastic about the criterion of differen-
tiability. For example, the function

I
2 IS
)= X=sin T X N)

0, x =0

is differentiable at 0; n fact g'(0) = 0:

;3 & I
. glh)—g) Sk BT
Ihthn ——————— = lim
0 h h—0 h
= lim A sin —
h—0) h

=10

The tangent line to the graph of g at (0, 0) is therefore the horizontal axis (Fig-
ure 19).

This example suggests that we should seek even more restrictive conditions on a
function than mere differentiability. We can actually use the derivative to formulate
such conditions il we introduce another set of definitions, the last of this chapter.
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FIGURE 19

For any function f, we obtain, by taking the derivative, a new function f” (whose
domain may be considerably smaller than that of f). The notion of differentia-
bility can be applied to the function f', of course, yielding another function (f”)’,
whose domain consists of all points @ such that f” is differentiable at a. The func-
tion (f") 1s usually written simply f” and is called the second derivative of f.
If f"(a) exists, then f is said to be 2-times differentiable at a, and the number
f"(a) 1s called the second derivative of f at a.

In physics the second derivative is particularly important. If s(z) 1s the posi-
tion at ume ¢ of a particle moving along a straight line, then s”(r) is called the
acceleration at time ¢. Acceleration plays a special role in physics, because, as
stated in Newton’s laws of motion, the force on a particle is the product of its mass
and 1its acceleration. Consequently you can feel the second derivative when you
sit 1 an accelerating carn.

There is no reason to stop at the second derivative —we can define [ = ("),
S = (f"), etc. This notation rapidly becomes unwieldy, so the following abbre-
viation 1s usually adopted (it 1s really a recursive definition):

f=r.
f(/\-q-l,) — (f(k))f.
Thus
fO =
==

fO= "=
_f(4) — j.r/// — (_fm)’.

The various functions f%, for k& > 2, are sometimes called higher-order
derivatives of f.

"only for & > 4, but it is convenient to

Usually, we resort to the notation f*
have f% defined for smaller & also. In fact, a reasonable definition can be made
for £ namecly,

f(()) — f
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Leibnizian notation for higher-order derivatives should also be mentioned. The
natural Leibnizian symbol for f”(x), namely,

J (a’f(x))
dx

dx

=]

) = 22 1s abbreviated to

| d” f(x)
(dx)? '

d* f(x)
dx2

or more frequently to

Similar notation is used for £ (x).
The following example illustrates the notation f*', and also shows, in one very

(@) simple case, how various higher-order derivatives are related to the original func-
0 . 2 I B
tion. Let f(x) = x=. Then, as we have already checked,
fle)=2x,
f(x) =2x FH =2,
Fx)=0,
fPxy=0, ifk=3.
/ Figure 20 shows the function f, together with its various derivatives.
A rather more illummating example is presented by the following function,
(b) whose graph 1s shown in Figure 21(a):
2
: 2ot x>0
fx)= >
Fr(x) =2 —x%,. x=<0.

It is easy to see that

@)= 2a ‘ifa>10,
fta) =—-2a ifa <O.

Moreover,
(c) ; ; (h)y — f(O
h—0 h
= fith)
= lim :
h—0 h
. Now
ey =0,k=> 3 y
e . fith) . H
! lim = lim — =0
| hs0+ h h—0+ h
“(h) —h?
! anl (o B8 p el )
(d) h—0- h h0- -h
FIGURE 20 S0 ’l
1
£y =lim 22 _ g,
h—0 h

This mformation can all be summarized as follows:

File)=2x|l



o] =0
f) = 52 <0
(@)
f(x) = 2|x|
(b)
ff(x)y=2,x>0
ffx)y==-2,x <0
(©)

FIGURE 21
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It follows that f”(0) does not exist! Existence of the second derivative 1s thus a
rather strong criterion for a function to sausfy. Even a “smooth looking™ function
like f reveals some irregularity when exammed with the second derivative. This
suggests that the irregular behavior of the function
201
) = X< sin . x#0
0, x=0

might also be revealed by the second derivative. At the moment we know that
£ (0) = 0, but we do not know g'(a) for any a # 0, so it is hopeless to begin
computing ¢”(0). We will return to this question at the end of the next chapter,
after we have perfected the technique of finding derivatives.

PROBLEMS

1. (a) Prove, working directly from the definition, that if f(x) = 1/x, then
(@) = —1/a>, for a # 0.
(b) Prove that the tangent line to the graph of f at (a, 1/a) does not intersect
the graph of” f, except at (a. 1/a). '
2. (a) Prove that if f(x) = 1/x2, then f'(a) = —2/a> for a # 0.
Prove that the tangent line to f at (a, 1/a”) intersects f at one other

point, which lies on the opposite side of the vertical axis.

3. Prove thatif f(x) = Jx. then f'(a) = 1/(2V/a). for a > 0. (The expression
you obtain for [ f(a +h) — f(a)]/h will require some algebraic face hfting,

C

but the answer should suggest the right trick.)

4. Tor each natural number n, let S,(x) = x". Remembering that S;'(x) = 1,
Sy (x) = 2x, and S3'(x) = 32, conjecture a formula for S,'(x). Prove your
conjecture. (The expression (x + h)" may be expanded by the binomial
theorem.)

5. Find f'if f(x)=[x].
6. Prove, starting from the definition (and drawing a picture to itlustrate):
(@) 1if g(x) = f(x)+c. then g'(x) = f'(x):

(b) if g(x) = cf(x). then ¢g'(x) = cf’(x).

7. Suppose that f(x) = x3.

(a) Whatis f(9), f'(25). f'(36)?

(b) What is £'(3%). f'(5%). f(6*)?

(©) What is f'(a?), f'(x?)?

If you do not find this problem silly; you are missing a very important point:
f’(x‘") means the derivative of f at the number which we happen to be
calling x2: it is not the derivative at x of the function g(x) = f(x?). Just to
drive the pomt homie:

(d) Tor f(x)= x3, compare f'(,\‘z) and g'(x) where g(x) = j'(.x'z).
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10.

11.

| 5|

(a) Suppose g(x) = f(x+4c). Prove (starung from the definition) that g'(x) =
S (x 4+ ¢). Draw a picture to illustrate this. To do this problem you must
write out the definttions of g'(x) and f'(x 4 ¢) correctly. "The purpose
of Problem 7 was to convince you that although this problem is casy, 1t is
not an utter triviality, and there is something to prove: you cannot simply
put primc marks into the equation g(x) = f(x + ¢). To emphasize this
pomt:

(b) Prove thatif g(x) = f(cx), then g'(x) = ¢ f'(cx). Try to see pictorially
why this should be true, also.

(¢) Suppose that f is differentiable and periodic, with period a (i.c.,
f(x +a)= f(x)forall x). Prove that f” is also periodic.

Find f/(x) and also f’(x + 3) in the following cases. Be very methodical,
or you will surely slip up somewhere. Consult the answers (after you do the
problem, naturally).

() fo)=x+3)°.

()  flx+3)=x>.

(i) flr +3) = (x+5)".

Find f'(x) il f(x) =g +x),and il f(r) = g(t + x). The answers will not
be the same.

(a) Prove that Gahleo was wrong: if a body falls a distance s(¢) mn ¢ seconds,
and s" 1s proportional to s, then s cannot be a function of the form
s(t) = ct’.

(b) Prove that the following facts are true about s 1f s(1) = (a /)% (the first
fact will show why we switched from ¢ to a/2):

(1) §"(t) = a (the acceleration 1s constant).

(i) [s'()]* = 2as().

(¢) If s is measured in feet, the vatue of @ 1s 32. How many seconds do you
have to get out of the way of a chandcher which falls from a 400-foot
ceiling? If you don’t make 1t, how fast will the chandelier be going when
it hits you? Where was the chandeher when 1t was moving with half that
speed?

Imagine a road on which the speed hnut is specified at every sigle pomt. In
other words, there 1s a certamn function L such that the speed Imit x mules
from the beginning of the road i1s L(x). Two cars, A and B, are driving along
this road; car A’s position at time 7 1s a(r), and car B’s 1s b(1).

() What equation expresses the fact that car A always travels at the speed
limit? (The answer is not a’(t) = L(1).)

(b) Suppose that A always goes at the speed i, and that B's position at
time ¢ is A’s position at time ¢t — 1. Show that B is also gomg at the speed
it at all ames.

(¢) Suppose, mstead, that B always stays a constant distance behind A, Un-
der what conditions will B sull always travel at the speed himit?

’
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13.

14.

15.

16.
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Suppose that f(a) = g(a) and that the left-hand derivative of f at a equals
the right-hand derivative of g at a. Define h(x) = f(x) for x < a, and
h(x) = g(x) for x > a. Prove that /i is differentiable at a.

Let f(x) = x2if x is rational, and f(x) = 01f x is irrational. Prove that
f is diflerentiable at 0. (Don’t be scared by this function. Just write out the
definttion of f'(0).)

(a) Let f be a function such at |f(x)| < x2 for all x. Prove that f is
diflerentiable at 0. (If you have done Problem 14 you should be able to
do this.)

(b) This result can be generalized if x? is replaced by [g(x)|, where g has
what property?

Let @ > 1. If f sausfies | f(x)| < [x|%, prove that f is differentiable at 0.

Let 0 < B < 1. Prove that if f satisfies |f(x)] > |x|? and f(0) = 0, then f
1s not diflerentiable at 0.

Let f(x) = 0 for irrational x, and 1/¢ for x = p/g in lowest terms. Prove
that f is not differentiable at « for any a. Hnt: It obviously suffices to prove
this for irrational a. Why? If a = m.ajazaz... is the decimal expansion
of a, consider [ f(a 4+ h) — f(a)]/h for h rational, and also for

h=-0.00...0a,;1a,42....

(a) Suppose that f(a) = g(a) = h(a), that f(x) < g(x) < h(x) for all x,
and that f'(a) = h'(a). Prove that g is differentiable at a. and that
f(a) = g'(a) = h'(a). (Begm with the definition of g'(a).)

(b) Show that the conclusion does not follow if we omit the hypothesis

f(a) = g(a) = h(a).

Let f be any polynomial function; we will see in the next chapter that f
1s differentiable. The tangent hne to f at (a., f(a)) i1s the graph of g(x) =
f'(@)(x —a)+ f(a). Thus f(x) — g(x) 1s the polynomial function d(x) =
f(x)— f(@)(x —a) — f(a). We have already seen that if f(x) = x2, then
dx) = (x — a)2, and if f(x) = ,\‘3, then d(x) = (x — a)z(x + 2a).

(a) Find d(x) when f(x) = x*, and show that it is divisible by (x — a)?.

(b) There certainly seems to be some evidence that d(x) 1s always divisible by
(x —a)?. Figure 22 provides an intuitive argument: usually; lines parallel
to the tangent line will intersect the graph at two points; the tangent line
intersects the graph only once near the point, so the intersection should
be a “double intersection.” To give a rigorous proof, first note that

d(x) _ JS(x) = f(a)

X —da X —d

— f(@).

Now answer the following questions. Why is f(x) — f(a) dwisible
by (x —a)? Why is there a polynonial function & such that i(x) =
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23.

24,
25.

26.

27.

28.

d(x)/(x —a) for x # a? Why is hm h(x) =02 Why is i(a) = 02 Why

does this solve the problem?

(a) Show that f'(a) = Im[f(x) — f(a)]/(x —a). (Nothing deep here.)
X—a
(b) Show that derivatives are a “local property™: if f(x) = g(x) for all x in
some open interval containing a, then f'(a) = g'(a). (This means that
in computing f'(a), you can ignore f(x) for any particular x # a. Of
course you can’t ignore f(x) for all such x at once!)

(@) Suppose that f 1s differentiable at x. Prove that

fx+h)y— f(x—=h)
2h '

Hint: Remember an old algebraic trick —a number is not changed if the
same quantity 1s added to and then subtracted from it.

! j - }
£ = i,

**b) Prove, more generally. that

oo Sty = fx—k)
f('\)_h,}g]()* h+k i

Although we haven’t encountered something hke lim  before, its mean-
- B hk—0

ing should be clear, and you should be able to make an appropriate -8
definition. The important thing here is that we actually have lim | so

h.k—0?

that we are only considering positive i and k.

Prove that if' f is even, then f’(x) = — f/(—=x). (In order to minimize con-
fusion, let g(x) = f(—x); find g’(x) and then remember what other thing g
1s.) Draw a picture!

Prove that if f is odd, then f'(x) = f'(—x). Once again, draw a picture.

Problems 23 and 24 say that f" is even if f 1s odd, and odd if f is even.
What can therefore be said about f%?

Find f”(x) if

0 fa)y=x>
Gi)  fx) =x.
(i) f(x) = x*,
V) flx+3)=x.

If S,(x)=x",and 0 < k < n, prove that

S (k;(\.) . n! ‘.n—k
T T =Y

= k! ”)x" k)
k

(@) I'ind f'Coaf fx) = IxP. Find f7(x). Does f”(x) exist for all x?
(b) Analyze f stmlarly it f(x) = xforx >0and f(x)=—x*forx <0.




29,

30.
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Let f(x) =x"for x > 0 and let f(x) =0 for x < 0. Prove that £ exists
(and find a formula for i), but that f"(0) does not exist.

Interpret the following specimens of Leibnizian notation; each is a restate-
ment of some fact occurring in a previous problem.

dx"

ll,] — 1 n—1
' dx
dz | |
M —=—-——if z=-—.
(ii) or i ;
v d[f(x)+c]  df(x)
(111) = .
dx dx
. dlef(x)] df(x)
(1v) = .
dx dx
dz dy
(\-) E—a il z=y+ec.
dx? .
D === =3a4
(7 dx | | o
.o df(x+a) df(x)
vil) — = :
ll s d'\' =5 dX r=b+a
W difex) df(x)
(vii1) =c- .
dx x=h dx x=ch
(ix) df(cx) df(y)
X = G
' dx dy' |y

428 (P
dx* k



CHAPTER

THEOREM 1

PROOF

THEOREM 2

PROOF

DIFFERENTIATION

The process of finding the derivative of a function 1s called differentiation. From the
previous chapter you may have the impression that this process is usually laborious,
requires recourse to the definition of the derivative, and depends upon successfully
recognizing some limit. It is true that such a procedure is often the only possible
approach—if you forget the defimtion of the derivative you are likely to be lost.
Nevertheless, in this chapter we will learn to differentiate a large number of func-
tions, without the necessity of even recalling the definition. A few theorems will
provide a mechanical process for differentiating a large class of functions, which
are formed from a few simple functions by the process of addition, multuplication,
division, and composition. This description should suggest what theorems will be
proved. We will first find the dernivative of a few simple functions, and then prove
theorems about the sum, products, quotients, and compositions of differentiable
functions. The first theorem is merely a formal recognition of a computation
carried out in the previous chapter.

If fis a constant function, f(x) = ¢, then

f'(a) =0 for all numbers a.

fla+h)— f(a) . c—c¢
= lim
h h—0

fla) = lim =0. ]

The second theorem is also a special case of a computation in the last chapter.

If f is the identity function, f(x) = x, then

f'(a) =1 for all numbers a.

fla+h)— f(a)

f'(a) = lim

h—0 h

. at+h—a
= hlll —_—

h—0 h

. h
=lm-=1.}

h—0h

The derivative of the sum of two functions is just what one would hope — the
sum of the derivatives.

168
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THEOREM 4

PROOF

THEOREM 5

PROOF

10. Differentiation 169

If f and g are differentable at a, then f + g is also differentiable at a, and
(f +8)(a)= f'(a)+ g'(a).

(f+2)a+h) —(f+g)a)

(f +8)(a) = lim

h

= fla+h)y+gla+h)—]f(a)+ gla)]
T h—0 h

. {f(a +h) — fla) gla+h) — g(a)}
= lim +

h—0 I h

. fla+h)y— f(a) o gla+h)—gla)
= lim + lim

h—0 h h—0 h

= fla)+ g'(@). 1

The formula for the derivative of a product 1s not as simple as one might wish,
but it is nevertheless pleasantly symmetric, and the prool requires only a simple
algebraic trick, which we have found useful before—a number is not changed 1if
the same quantity 1s added to and subtracted from 1it.

If f and g are differentable at a, then f - g 1s also differentiable at a, and
(f &)@ = f(a) gla)+ fla)- ¢ (a).

(f-g)(a)=lim (f-gla+h) —(f g)a)

h—0 h
. fla+Mgla+h)— f(a)g(a)
— | b0
h—0 h
. Sla+mjga+h) —g@)] [fla+h) — f(a)|gla)
= lim +
h—0 h h
) y— o hy —
=lm f(a+h)-Lim glath - gla) + hm flath - fla) - lim g(a)
h—0 h—0 h h—0 h h—0

= f(a)-g'(@)+ f'(a)- g(a).

(Notice that we have used Theorem 9-1 to conclude that lin})f(a +h) = fla)) |
h—

In one special case Theorem 4 simplifies considerably:

If g(x) =cf(x)and f is differendable at a, then g is differentable at a, and

g'(a)=c- f(a).

If h(x) =¢,sothat g =/h - f, then by Theorem 4.

gay=(h- [)(a)
=h(a)- f'(a)+h(a)- f(a)
=c-flla)+0- f(a)
=c- fa). |}
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THEOREM 6

PROOF

Notice, m particular, that (=) (a) = — f'(a). and consequently (f — g)'(a) =
(f + [—gD)(a) = f'(a) — g'(a).

To demonstrate what we have already achieved, we will compute the derivative
of some more special functions.

If f(x) = x" for some natural number 72, then

f(a) = na""! for all a.

The proof will be by induction on n. For n = 1 this is simply Theorem 2. Now
assume that the theorem is true for 1, so that if f(x) = x", then

1

f(a) = na"" for all a.

n+l n+1 —

Let g(x) = x""1 If T(x) = x, the equation x x" - x can be written

g(x) = f(x) I(x) for all x;
thus g = f - I. It follows from Theorem 4 that

ga)y=(f D)= f'a)-I(a)+ f(a) I'(a)
=na" ' a+a" -1
=na" +a"
=+ Dad", for all a.

This is precisely the case n + 1 which we wished to prove. ||

Putting together the theorems proved so far we can now find f’ for f of the
form
= )
fx) = apx" +a,_1x" b+ arx® + apx + ap.

We obtam
o (efi=3 na, x4+ (n = Day,_ 1 x" "2+ -+ 2a2x +ay.
We can also find f”:
f(x) =n(n— Dayx" 2+ (1 — D — Da,_1x" 3 + -+ + 2as.

This process can be contimued easily.  Fach differentiation reduces the highest
power of x by 1, and eliminates one more a;. It is a good idea to work out the
derivatives £, f% and perhaps f©, until the pattern becomes quite clear. The
last mteresting dervative 1s
FU(x) = nlay:
for k > n we have
Ry =0.

Clearly, the next step m our program is to find the derivative of a quotient f/g.
ICis quite a bit simpler, and, because of Theorem 4, obviously suflicient to find
the dervatve of 1/g.
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PROOF

THEOREM 8
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If g 1s differentiable at a, and g(a) # 0, then 1/g is differentable at a, and
1\’ —o'(a)
(—) (a) = é—a
8 [g(a)}-

Before we even write

G)e+n-()
—Ja+h) —1{—|(a)
g 8

h

we must be sure that this expression makes sense— 1t 1s necessary to check that
(1/g)(a+h) 1s defined for suthciently small /2. This requires only two observations.
Since g is, by hypothesis, differentiable at a, it follows from Theorem 9-1 that g is
contmuous at a. Since g(a) # 0, it follows from Theorem 6-3 that there 1s some
8 > 0 such that g(a + h) # 0 for |h| < §. Therefore (1/g)(a + h) does make sense
for small enough /1, and we can write

1\ | 1 1
(7) (a+”)—(7> @ n s
lim & & = lim gla+h) g(@)
h—0 h h—0 h
. gla)—gla+h)
= lim -
h—0 h[g(a) - gla + h)]
oy —8@ ) — ga)] I
= lilm .
h—0 h gla)gla+h)
. —lgla+h) — g@)] . 1
= lm S —
h—0 h h—0 g(a) - gla + h)
3 —(),(a‘) - ——
. [g(a)]?

(Notice that we have used continuity of g at a once again.) ||

The general formula for the derivative of a quotient 1s now casy to derive.
Though not particularly appealing, it 1s important. and must simply be memo-
rized (I always use the mcantation: “bottom times derivative of top, minus top
times derivative of bottom, over bottom squared.™)

If f and g are diflerentiable at ¢ and g(a) # 0, then f/g is differendable at a.
and

Y gla) - f'(a) = f(a)- g'(a)
=~ (a) = = .
g [g(a)]-
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Since f/g = f-(1/g) we have
. r I !
(1) (a) = (f —) (a)
8 g
: 1 : 1y
I a)- (—) (a) + f(a) - (—) (a)
8 8

_ flla) | fla)(—g/(a))

gla) [g(a)]?
_ ['(a)-gla) = f(a)- g'(a) i
[g(@)]? )

We can now differentiate a few more functions. For example,

if x* =1 o' (x% + D2x) — (x* = 1)(2x) 4x
f )= ——, 1[ ~ %)= _ :
il f(x) T wen [ (x) , (x2+ 1)2 EERI
F X ) (x*+1) —x(2x) I — 2
1 flx) = ———. l > x) = . ;
it f(x) E T f(x) (x2+ 1)2 (x2 4+ 1)?
! I
if f(x)=—, then f'(x) = — — = (-1 yx2.
X 2

Notice that the last example can be generalized: if

i) =x "= = for some natural number n,
X

then

—pxl

Flo= ==t
‘l';”

thus Theorem 6 actually holds both for positive and negative integers. If we inter-
pret f(x) = x? to mean f(x) =1, and f'(x) =0-x"'to mean f'(x) = 0, then
Theorem 6 is true for n = 0 also. (The word “interpret” is necessary because it is
not clear how 0% should be defined and, in any case, 0- 07! is meaningless.)
Further progress in diflerentiation requires the knowledge of the derivatives of
certain special functions to be studied later. One of these is the sine function. For
the moment we shall divulge, and use, the following information, without proof:

sin'(a) = cosa for all a.
cos' (@) = —sina for all a,

This information allows us to differentiate many other functions. For example, if
Fie) = xS X,

then

f'(x) = xcosx +sinx,
[ (x) = —xsinx 4 cosx + cosx
= —xsmx + 2cosx;
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i
o ) . .
g(x)=sm-x =sInx - simx,
then
g (x) = sinx cosx + cos x sin x
= 2sin x COs X,
g (x) = 2[(sinx)(—sin x) + cos x cos x|
2 .2
= 2|cos” x —sin” x]:
if
2
h(x) = cos“x = COSX - COS X,
then

h'(x) = (cosx)(—sin x) + (—sin x) cos x
= —2sinx cos x,
7 . 2
h'(x) = =2[cos” x —sin” x].
Notice that
g)+h(x)y=0,
.« . . 2
hardly surprising, since (g + h)(x) = sin” x 4 cos> x = 1. As we would expect, we
also have g”(x) + h"(x) = 0.
The examples above mvolved only products of two functions. A function involv-

ing triple products can be handled by Theorem 4 also; in fact it can be handled
n two ways. Remember that f - g - /i is an abbreviation for

(f-@-h or [f-(g-h).

Choosing the first of these, for example, we have

(fg- @)= &) -hx)+(f g)h'(x)
= [f1()g(x) + f()g' ()] (x) 4+ f(x)go)h' (x)
= f1(0)g()h(x)+ f(0)g (XDh(x)+ fx)g(x)h'(x).

The choice of f - (g -/h) would. of course, have given the same result, with a
different intermediate step. The final answer is completely symmetric and casily
remembered:

(f - g-h) s the sum of the three terms obtamed by differentiating each of f.
g, and /i and multiplying by the other two.

For example, if
g R .
f(x)=x"smxcosx,
then
(v I8 e v 3 S e Nl e o
f(x) =3x7sinx cosx + x~ cosx cosx + x~(sinx)(—sinx).
Products of more than 3 functions can be handled similarly. For example, you
should have little difhculty deriving the formula

(f-g-h b)) = f(x)g)h()k(x) + fx)g (x)h(x)k(x)
+ () g(ON (k) + f(x)g)h(x)k'(x).
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You might even try to prove (by induction) the general formula:

H
reoe ) @)= f1x) oo fist QA () fia1(X) -  fu(x),
i=1
Differentiating the most interesting functions obviously requires a formula for
(f 2g)(x)mterms of f" and g'. To ensure that f o g be diflerentable at a, one
reasonable hypothesis would seem to be that g be differentiable at a. Since the
behavior of f o g near a depends on the behavior of f near g(a) (not near a), 1t
also seems reasonable to assume that f 1s differentiable at g(a). Indeed we shall
prove that if g 1s differentiable at @ and f 1s differentiable at g(a), then f o g is
differentiable at a, and

(fog)(a)= f'(ga)-g).

This extremely mportant formula is called the Chain Rule, presumable because
a composition of functions might be called a “chain”™ of functions. Notice that
(f og) is practically the product of f” and g’, but not quite: f” must be evaluated
at g(a) and g’ at a. Before attempting to prove this theorem we will try a few
applications. Suppose

yi () = sin x>,
Let us, temporarily, use S to denote the (“squaring™) function S(x) = x2. Then
f =sinoS.
Therefore we have
f(x) =sin(5(x)) - S'(x)
2
= cosx” - 2X.
Quite a different result is obtained if
. 5
f(x) =smm” x.
In this case
f =Sosm,
SO

f(x) = S'(sinx) - sin'(x)

= 25X COSX.

Notice that this agrees (as 1t should) with the result obtained by writing /= sin - sin
and using the product lormula.

Although we have mvented a special symbol, S, to name the “squaring™ function,
it does not take much pracuce o do problems like this without bothering o write
down special symbols for functons, and without even bothering to write down the
particular composition which f is—one soon becomes accustomed to taking f
apart in onc’s head. The followig differentiations may be used as practice for
such mental gymmnastics—if” you find it necessary to work a few out on paper, by
all means do so, but try o develop the knack of writing /" immediately after seemg
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the definition of f; problems of this sort are so simple that, if you just remember
the Chaim Rule, there 1s no thought necessary.

if f(x) =sin X then f'(x) = cos X 3x?

) = sin® x fl(x)=3 sin’ x - cos x

_ ! , | (—l)
)= s — 1) = cos o (==

X X ¥

f(x) = sin(sin x) f'(x) = cos(sin x) - cos x
Jle) = sin(x?® + 3x2) f(x) = cos(x> +3x%) - Bx? + 6.x)
f(x)= G -3 f(x) = 53(x3 +3x2)°2 . (3x% + 6x).

A function like

) 7) . 2972
fx)y=sm x~ = [smmx"]",
which is the composition of three functions,
f=SosmoS,

can also be differentiated by the Chain Rule. It is only necessary to remember
that a triple composition f o goh means (f og)oh or f o(goh). Thusif

. 2 9
fx)=smn"x-
we can write

f=(Sosin)oc S,
f=So(sines).

The derivative of either expression can be found by applying the Chain Rule
twice; the only doubtful pomt is whether the two expressions lead to equally simple
calculations. Asa matter of fact. as any experienced differentiator knows, it 1s much
better to use the second:

f=So(sinos).

We can now write down f’(x) in one fell swoop. To begin with, note that the first
function to be differentiated 1s S, so the formula for f'(x) begins
)
fy=2C )

. . i ~ ~ .
Inside the parentheses we must put sinx<, the value at x of the second function,
sin o §. Thus we begin by writing

- . i
f'(x) =2sinx”
(the parentheses weren't really necessary, aiter all).  We must now multiply this
much of the answer by the derivative of sine § at x; this part 1s casy-—it involves a
composition of two functions, which we already know how to handle. We obtain.,
for the final auswer,

. ?2) o]
f'(x) =2smx”-cosx” - 2x.
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The following example is handled similarly. Suppose

f(x) = sm(sm x2).

Without even bothering to write down f as a composition gohok of three functions,
we can see that the left-most one will be s, so our expression for f'(x) begins

f'(x) = cos( )

Inside the parentheses we must put the value of i o k(x); this 1s simply sin x2 (what

~ . . ) . ~ . . ~ . .
you get from sin(sin x~) by deleting the first sm). So our expression for f'(x) begins
", . i
f'(x) = cos(sin x7)

. . . . i .
We can now forget about the first sin i sim(sinx-); we have to multiply what we
. . . . . 2 . .
have so far by the derivative of the function whose value at x 1s sinx=— which 1s
again a problem we already know how to solve:

2 L . 2 2
f'(x) = cos(sinx~) - cosx~ - 2x.

Finally, here are the derivatives of some other functions which are the composition
of sm and S, as well as some other triple compositions. You can probably just
“see” that the answers are correct—if not, try writing out f as a composition:

if £(x) = sin((sinx)?) then f/(x) = cos((sin x)%) - 2sin x - cos.x
f(x) = [sm(sin .x’)]2 f'(x) = 2sin(sin x) - cos(sin x) - cos x
f(x) = sm(sin(sin x)) f'(x) = cos(sin(sin x)) - cos(sin x) - cos x
fx) = sinz(x sl x) £/ (x) = 2sin(x sin x) - cos(x sin x)

- [smx 4+ x cos x|
f(x)= sin(sin(x~ sin X)) f'(x) = cos(sin ('.vc2 S x)) - (‘os(.\'2 SIN )
- [2xsinx + x% cos x].

The rule for treating compositions of four (or even more) functions is casy-
always (mentally) put in parentheses starting from the right,

fo(golhok)),

and start reducing the caleulation to the dertvative of a composition of a smaller
number of functions:

(g (h(k(x))))
For example, if

CRIR= st (sin (x)) [f=Sosm=Se6sin
=S (sm - (S osm))|
then

', . .2 =) P
f(x)=2smsm”x) - cos(sm~x)-2sm. - COSN:
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if
f(x) = sin((sin ) [f=smz=SosinoS
= sin o (S o (sin o 5))]
then
f'(x) = cos((sin x2)?) - 2sinx? - cosx? - 2x;
if
() = sinz(sin(sin X)) [fll m yourself, if necessary]
then

f'(x) = 2sin(sin(sin x)) - cos(sin(sin x)) - cos(sin x) - cos x.

With these examples as reference, you require only one thing to become a master
differentiator—practice. You can be safely wrned loose on the exercises at the end
of the chapter, and it is now high time that we proved the Chain Rule.

The following argument, while not a proof, indicates some of the tricks one
might try, as well as some of the difficulties encountered. We begin, of course,
with the defimtion—

(fog)a+h) —(f og)a)
h
— 8@+ — flg@)
h—0 h

(f o2)(a) =hm
h—0

Somewhere mn here we would like the expression for g’(a). One approach is to
put 1t in by fat:
i S(gla+h)— f(gla) lim fgla+m) — f(gla)) gla+h) —gla)
h—0 h =0 gla+h)—gla) h i

This does not look bad, and it looks even better if we write
. (fog)a+h) —(fog)a)
lim
h—0 h

iy L@ et —g@]) - f(g@) . gla+h) —gla)
) gla+h)—g(a) h—0 h ’

The second limit 1s the factor g'(a) which we want. If we let g(a +h) — g(a) =k
(to be precise we should write k(h)), then the first limit 1s

. f(ga) + k) — f(g(a))

lim .

h—0 k

It looks as if this limit should be f'(g(a)), since continuity of’ g at @ implies that &
goes to 0 as i does. In fact, one can, and we soon will, make this sort of reasoning
precise. There is already a problem, however, which you will have nouced if you
are the kind of person who does not divide blindly. Even for i # 0 we might have
gla + h) — g(a) = 0, making the division and multiplication by g(a + h) — g(a)
meaningless. True, we only care about small i, but g(a + h) — g(a) could be 0
for arbitrarily small i. The easiest way this can happen is for g to be a constant
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THEOREM 9 (THE CHAIN RULE)

PROOF

function, g(x) = ¢. Then g(a +h) — g(a) = 0 for all h. In this case, f = g is also
a constant function, (f o g)(x) = f(c), so the Chain Rule does indeed hold:

(fog)(a)=0= f'(gla)) - g'(a).

However, there are also nonconstant functions g for which g(a +h) — g(a) = 0
for arbitrarily small /. For example, if @ = 0, the function g might be

|
o(x) = x2 sin ol = =all)

0, x=0.
In this case, g'(0) = 0, as we showed i1 Chapter 9. If the Chain Rule is correct, we
must have (f © g)(0) = 0 for any differentiable f, and this is not exactly obvious.
A proof of the Chain Rule can be found by considering such recaleitrant functions
separately, but it is easier simply to abandon this approach, and use a trick.

If g 1s differentiable at a, and [ 1s differentiable at g(a), then f o g is differentiable
at a, and

(f og)(a)= f'(g(a)) - g'(a).

Define a function ¢ as follows:
f(gla+h)) — f(gla))
o(h) = gla+h) — g(a) '
f(gla)), ifgla+h)y—gla)=0.

It should be mtuitively clear that ¢ is continuous at 0: When 7 is small.
gla + ) — g(a) 1s also small, so if g(a + ) — g(a) is not zero, then ¢(h) will
be close to f'(g(a)); and if it is zero, then ¢ (h) actually equals f'(g(a)), which
1s even better. Since the continuity of ¢ is the crux of the whole proof we will
provide a careful translation of this intuitive argument.

We know that f 1s differentiable at g(a). This means that

. flgla)y+ky— f(ga))
lim
k—0 k

if gla+h)—gla)#0

= f'(g(a)).
Thus, il € > 0 there 1s some number §” > 0 such that. for all &,
Sgla)y +k)— f(g(a))

k

Now g is differentiable at «, hence continuous at a, so there is a § > 0 such that,
for all A,

(1) if0 < |k|] <§'. then — flga)| < e.

(2) if|h] <&, then |gla +h) — gla)] < §'.
Consider now any i with || < 8. If k = g(a +h) — g(a) # 0, then

f(gla+h) — f(gla))  f(gla)+k)— f(gla))
gla+h) — gla) - k '

it follows from (2) that |k] < &', and hence from (1) that

Uy =

lp(h) — f'(gla)] < e.




10. Differentiation 179

On the other hand, if g(a + h) — g(a) = 0, then ¢(h) = f'(g(a)). so it is surely
true that

lp(h) — f'(gla))| < &.
We have therefore proved that
Ilin?}qﬁ(h] = f'(g(a)).

s0 ¢ is continuous at 0. The rest of the proof is easy. If' & # 0, then we have

flgla + m;] — f(g(a)) — 50 gla + h,'} — g(a)
1 1

even if g(a + h) — g(a) = 0 (because in that case both sides are 0). Therefore

s ) — f A vm
(F oog)ila) =hm flgtat+h) — flg@) . B <liny gla+h)—gla)
h—0 h h—0) h—0 h

= f'(gla)) - g'(a).

Now that we can differentiate so many functions so easily we can take another
look at the function

7 ] =
Fla)= X ::.m;. x#0

0, x =0,
In Chapter 9 we showed that f'(0) = 0, working straight from the definition (the
only possible way). For x # 0 we can use the methods of this chapter. We have
ALy o 1 I
fix)=2xsin — + 2008 = | — —= )=
3 X X
Thus
o 2xsm— —cos—, x #0
S (x) = X, X =
0. x =10

As this formula reveals, the first dervative f 1s indeed badly behaved at 01t is
not even continuous there. If we consider instead

]
o= x3sin—, x#0
S = x
0. A=)y
then
3 Acdle I e | - 0
ey 3x“sm 5 — X COS = 7E T
0, x =0.

In this case f’ is continuous at 0. but f”(0) does not exist (because the expres-
sion 3x“sin 1 /x defines a function which is differentiable at 0 but the expression
—x cos 1 /x does not).
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As you may suspect, increasing the power of x yet again produces another
mprovement. If

1
R .
Fl) = xX*sin ” x#0
0, se =1(0)
then
1

Flx) = 4x3sin = x2 cos PRl #0
0, b = 0}

It is easy to compute. right from the definition, that (f")'(0) = 0, and f”(x) is
easy to find for x # 0:
1 ]

3 o :
12x=sin — —4xcos — —2xcos— —sin —, x #0

S "(x) = X B X X
0, o= (0]

In this case, the second derivative f” 1s not continuous at 0. By now you may have
guessed the pattern, which two of the problems ask you to establish: 1f

1
2, .
x“"sin—, x#0

fx)= X
0. x =0,

then f/(0), ... . £"(0) exist, but £ is not continuous at 0; if

1
) .
v Hlgin -, x #£0

Sx)=1" X
0, 5o = (0}

then f/(0),.... f"(0) exist, and f“ is continuous at 0, but f* is not differ-
entiable at 0. These examples may suggest that “reasonable™ functions can be
characterized by the possession of higher-order dermvatives—no matter how hard
we try to mask the mfinite oscillation of f(x) = sin 1 /x, a derivative of sufficiently
high order seems able to reveal the underlying rregularity. Unfortunately, we will
see later that much worse things can happen.

After all these mvolved calculations, we will brmg this chapter to a close with
a minor remark. It 1s often tempting, and seems more elegant, to write some of
the theorems m this chapter as equations about functions, rather than about their
values. Thus Theorem 3 might be written

(f+8)' =[f+¢g.
Theorem 4 might be written as
(f-&=rfg+/f- s
and Theorem 9 often appears i the form

(fog) =(fog)g.
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Strictly speaking, these equations may be false, because the functions on the left-
hand side might have a larger domain than those on the right. Nevertheless, this
is hardly worth worrying about. If' f and g are differentiable everywhere in their
domains, then these equations, and others hike them, are true, and this is the only
case any onc cares about.

PROBLEMS

1.  Asawarm up exercise, find f'(x) for each of the following f. (Don’t worry
about the domain of f or f'; just get a formula for f'(x) that gives the right
answer when 1t makes sense.)

1) fx)=sin(x + x2).
(i)  f(x) =sinx +sinx>.
(m)  f(x) = sin(cosx).

(v)  f(x) = sm(sinx).

; . /COSX

V) fx) = sm( 7 )
v fO) = Slll((:)S .\')‘
(vit)  f(x) = sin(x + sin x).

(vit) f(x) = sin(cos(sin x)).

2. Find f'(x) for each of the following functions f. (It took the author 20 min-
utes to compute the derivatives for the answer section, and it should not take
you much longer. Although rapid calculation is not the goal of mathematics,
if you hope to treat theoretical apphications of the Chaimn Rule with aplomb,
these concrete applications should be child’s play- mathematicians like o

pretend that they can’t even add, but most of them can when they have to.)

1  fx) =sm((x+ 1)2(x +2)).

) fx)= Sill3(.t'2 + sin x).
i) f(x) = sin((x + sinx)?).
3

(iv)  f(x) =sin —

COS X~
(V) f(x) = sin(x sin x) + sin(sin x2).
Vi) f(x) = (cos )P,
(vit)  f(x) = sin® x sin x2 sin” x2.
(vill) f(x) = sin’ (sin”(sin x)).
(x) fx)=(x+ sin® x)°.
(x)  f(x) = si(sm(sin(sin(sin x)))).
(x1) f(x)= si11((si117x7 +D.
(xii) ()= (x> +) + 0+ 1)
(xiil) f(x) = sin(x> 4 sin(x2 + sin x2)).
(x1v) f(x) = sin(6 cos(6sin(6 cos Ox))).
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. R
S A~ s X

(xv) flx)=

1 +sinx
(xvi) f(x)=
xv1) f(x) 5
X = ——
X +smx
13
(xvil) f(x)=sin| . %3
sin | —
SIN X
=
N . o
(xvm) f(x) = sin i ‘
X — Sl X

Find the derivatives of the functions tan, cotan, sec, cosec. (You don’t have
to memorize these formulas, although they will be needed once in a while; if
you express your answers in the right way, they will be simple and somewhat

symmetrical.)

For each of the following functions f, find f'(f(x)) (not (f o f)'(x)).

@  fl) =

1 +x
@) f(x)=snx.
(i) filx) =x2:
dv) ) =5l

For each of the following functions f, find f(f'(x)).

" | I
@ fe)==
N

i) flx)=x2
(i) fx)=17.
(iv]  fieer=alifx:

Find /" in terms of g if

i f&x) =g+ ga)).
(1) fix) =g gla)).
(i) f(x) = gx + gkx)).
av) fx)=gx)(x—a).
V) fx)=gla)x—a).
M) fx +3)=g&x>).

(a) A circular object is increasing in size in some unspecified manner, but it
is known that when the radius 1s 6, the rate of change of the radius is 4.
Find the rate of change of the area when the radius 1s 6. (If 7(1) and A(1)
represent the radius and the area at time ¢, then the functions r and A
satisfy A = 72 a straightforward use of the Chain Rule is called for.)
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(b) Suppose that we are now informed that the circular object we have been
watching is really the cross section of a spherical object. Find the rate
of change of the volume when the radius 1s 6. (You will clearly need to
know a formula for the volume of a sphere; m case you have forgotten,
the volume 1s %7’[ times the cube of the radius.)

(¢) Now suppose that the rate of change of the area of the circular cross
section 1s 5 when the radius 1s 3. Find the rate of change of the volume
when the radius 1s 3. You should be able to do this problem in two
ways: first, by using the formulas for the arca and volume in terms of
the radius: and then by expressing the volume in terms of the area (to
use this method you will need Problem 9-3).

. . . . . P, ]
The arca between two varying concentric circles is at all tmes 97 m=. The
. . o2 .
rate of change of the arca of the larger circle 1s 107 in~/sec. How fast 1s the
. ~ . . . Dle )
circumference of the smaller circle changing when it has area 167 in-?

Particle A moves along the posttive horizontal axis, and particle B along the

graph of f(x) = —v3x. x < 0. At a certain time, A is at the pomt (5,0)
and moving with speed 3 units/sec; and B 1s at a distance of 3 units from
the origin and moving with speed 4 units/sec. At what rate is the distance
between A and B changing?

Let f(x) = x%sin 1/x for x # 0, and let £(0) = 0. Suppose also that / and k

are two functions such that

B(x) =sin*Gsinx + 1)) k() = fx+ 1)
h() =3 k(0) = 0.

Find

i) (foh)(0).

(@ (ko ).

(i) o(x?), where a(x) = h(x?). Exercise great care.
Fmd f7(0) il

|
g(x)sin—, x#0

X

0, & =0,

yalL =

and

g(0) = ¢g'(0) = 0.

Using the derivative of f(x) = 1/x, as found m Problem 9-1, find (1/g)"(x)
by the Cham Rule.

(a) Using Problem 9-3, find f'(x) for —1 <x < 1, if f(x) =V 1 —x2
(b) Prove that the tangent line to the graph of f at (a. v 1 —a?) intersects

the graph only at that pomt (and thus show that the elementary geometry
defintion of the tangent hne comeides with ours).
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20.

Prove similarly that the tangent lines to an ellipse or hyperbola intersect these
sets only once.

If f 4+ g is differentiable at a, are f and g necessarily differentiable at a?
If f-gand f are diflerentiable at a, what conditions on f imply that g is
differentiable at a?

(@) Prove that if' f 1s differentiable at a, then | f| 1s also differentiable at a,
provided that f(a) # 0.

(h) Give a counterexample ift f(a) = 0.

(¢) Prove that if f and g are differentiable at a, then the functions
max(f, g) and min(f, g) are differentiable at a. provided that f(a) #
gla).

(d) Give a counterexample if f(a) = g(a).

Give an example of functions f and g such that g takes on all values, and fog
and g are differentiable, but f sn't differentiable. (The problem becomes
trivial 1f we don’t require that g takes on all values; g could just be a constant
function, or a functon that only takes on values in some nterval (a, b), in
which case the behavior of  f outside of (a, b) would be irrelevant.)

(a) If g = f? find a formula for g’ (involving f).

(h) If g = ()%, find a formula for ¢’ (involving f”).

() Suppose that the function f > 0 has the property that
1

F.

Find a formula for f” m terms of f. (In addition to simple calculations,

)Y =f+

a bit of care 1s needed at one point.)

If f 1s three times differentiable and f'(x) # 0, the Schwarzian derwvative of f
at x 1s defined to be

DS (x) =

f”l(.\') - é (f//(x))z
[ 2\ fw)

(a) Show that
U(fog)=9f gl -g°+9g.

ax +b

(b) Show that ift f(x) = T with ad — be # 0, then @ f = 0. Cousc-

cx + ¢
quently, ¥ (f o g) = Yg.

Suppose that (@) and g (a) exist. Prove Lebniz’s formula:

f 9" @)=Y (Z)f‘“(m " @)

k=0
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Prove that if f™(g(a)) and g™ (a) both exist, then (f o g)™(a) exists. A
little experimentation should convince you that it 1s unwise to seek a formula
for (f o )™ (a). In order to prove that (f o g)™ (a) exists you will therefore
have to devise a reasonable assertion about ( f o g)™ (a) which can be proved
by induction. Try something like: “(f o g)® (a) exists and is a sum of terms
each of which is a product of terms of the form ... .”

(@) If f(x)=aux" +a,_1x" 1+ +ag, find a function g such that g’ = f.
Find another.
(b) If

by b b
fO)= 24+ 34 g n,
X< X

find a function g with g’ = f.
(c) Is there a function

b
ﬂnz%ﬁ+m+m+f+~+——

such that f'(x) = 1/x?

Show that there 1s a polynomial function f of degree n such that

(@) f'(x) =0 for precisely n — 1 numbers x.

(b) f'(x) =0 for no x, if n is odd.

(c) f'(x) =0 for exactly one x, if n is even.

(d) f'(x) =0 for exactly kK numbers x, if n —k is odd.

(a) The number a is called a double root of the polynomial function f if

f(x) = (x — a)*g(x) for some polynomial function g. Prove that a is a
double root of f if and only if a is a root of both f and f".

(b) When does f(x) = ax?+bx +c (a # 0) have a double root? What does
the condition say geometrically?

If fis differentiable at a, let d(x) = f(x) — f'(a)(x —a) — f(a). Find d'(a).

In connection with Problem 24, this gives another solution for Problem 9-20.

This problem is a companion to Problem 3-6. Let ay, ..., a, and by, ..., b,
be given numbers.

(a) If xq,...,x, are distinct numbers, prove that there is a polynomial func-
tion f of degree 2n — 1, such that f(x;) = f'(x;) = 0 for j # i. and
f(x)) =a; and f'(x;) = b;. Hint: Remember Problem 24.

(b) Prove that there is a polynomial function f of degree 2n—1 with f(x;) =
a; and f'(x;) = b; for all i.

Suppose that a and b are two consecutive roots of a polynomial function f,
but that a and b are not double roots, so that we can write f(x) =
(x —a)(x —b)g(x) where g(a) # 0 and g(b) # 0.

(a) Prove that g(a) and g(b) have the same sign. (Remember that @ and b
are consecutive roots.)
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(b) Prove that there is some number x with a < x < b and f'(x) = 0. (Also
draw a picture to illustrate this fact.) Hint: Compare the sign of f'(a)
and f'(b).

(¢c) Now prove the same fact, even if @ and b are multple roots. Hint: If
f(x) = —a)"(x —b)'g(x) where g(a) # 0 and g(b) # 0, consider the
polynomial function h(x) = f'(x)/(x — a)y"~I(x = pyn-1.

This theorem was proved by the French mathematician Rolle, in connection
with the problem of approximating roots of polynomials, but the result was
not originally stated in terms of derivatives. In fact, Rolle was one of the
mathematicians who never accepted the new notions of calculus. This was
not such a pigheaded attitude, in view of the fact that for one hundred years
no one could define hmits in terms that did not verge on the mystic, but on
the whole history has been partcularly kind to Rolle; his name has become
attached to a much more general result, to appear i the next chapter, which
forms the basis for the most important theoretical results of calculus.

Suppose that f(x) = xg(x) for some function g which is continuous at 0.
Prove that f is differentiable at 0, and find f'(0) in terms of g.

Suppose f is differentiable at 0. and that £(0) = 0. Prove that f(x) = xg(x)
for some function g which is continuous at 0. Hint: What happens if you try
to write g(x) = f(x)/x?
If f(x)=x""for n n N, prove that
k (n+k—1! ’(_”_k

=1

¢ — 1
= (—l)kl\'!(" +2 ).\‘—"""'. for x # 0.

FOw) = (=1)

Prove that it is impossible to write x = f(x)g(x) where f and g are differ-
entiable and f(0) = g(0) = 0. Hint: Differentiate.

What is f®(x) if

@ f)=1/(x —a)?
*b) f(x)y=1/(x%=1)?

Let f(x) = x?sin1/x il x # 0, and let £(0) = 0. Prove that f/(0),...,
F0) exist, and that £ is not continuous at 0. (You will encounter the
same basic difficulty as that i Problem 21.)

Let f(v) = x> sinl/xif x # 0, and let £(0) = 0. Prove that f/(0).....
FU(0) exist, that £ is contmuous at 0, aud that £ is not diflerenuable
at 0.
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In Leibnizian notation the Chain Rule ought to read:

df(g(x)) df(y) dg(x)
dx  dy et S
Instead, one usually finds the following statement: “Let y = g(x) and
z = f(y). Then dz dz dy ™

dx " dy dx’
Notice that the z in dz/dx denotes the composite function f o g, while the z
in dz/dy denotes the function f; it is also understood that dz/dy will be “an
expression involving y,” and that in the final answer g(x) must be substituted
for y. In each of the following cases, find dz/dx by using this formula; then
compare with Problem 1.

oo . 2
(1) =Sy, M= X XS,
W) Zz=smYy,; Y =<osX:
(i) zi=lsmity W= SHX:

(iv) z=snv, v=1cosu, W==sinx:
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SIGNIFICANCE OF THE DERIVATIVE

One aim in this chapter 1s to justify the time we have spent learning to find the
derivative of a function. As we shall see, knowing just a little about f” tells us a
lot about f. Extracting information about f from information about f’ requires
some difficult work, however, and we shall begin with the one theorem which is
really easy.

This theorem 1s concerned with the maximum value of a function on an interval.
Although we have used this term nformally in Chapter 7, it is worthwhile to be
precise, and also more general.

Let f be a function and A a set of numbers contained m the domain of f.
A pomt x in A is a maximum point for f on A if

f(x) = f(y) forevery yin A.

The number f(x) itself is called the maximum value of f on A (and we also
say that f “has its maximum value on A at x7).

Notice that the maximum value of f on A could be f(x) for several different x
(Figure 1); in other words, a function f can have several different maximum points
on A, although 1t can have at most one maximum value. Usually we shall be
interested in the case where A 1s a closed interval [a, b]; if f is continuous, then
Theorem 7-3 guarantees that f does indeed have a maximum value on [a, b|.

The definition of a mmimum of f on A will be left to you. (One possible
definition is the following: f has a minimum on A at x, if —f has a maximum
on A at x.)

We are now ready for a theorem which does not even depend upon the existence
of least upper bounds.

Let f be any function defined on (@, b). If x 1s a maximum (or a minimmum) point
for f on (a,b), and f 1s differentiable at x, then f'(x) = 0.

(Notice that we do not assume differentiability, or even continuity, of f at other
points.)

Consider the case where f has a maximum at x. Figure 2 illustrates the simple idea
behind the whole argument——secants drawn through pomts to the left of (x. f(x))
have slopes > 0, and secants drawn through points to the right of (x, f(x)) have
slopes < 0. Analytically, this argument proceeds as follows.

188
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If & is any number such that x +/ is m (a, b), then

fx) = f(x+h).
since f has a maximum on (a, b) at x. This means that

fx+h)— fx)<0.

Thus, if /& > 0 we have

n % : | fx+h)— f(x) <0
a x x+h b h -
and consequently
'IGURE 2 . x+h) — f(
FIGURE 2 hm ) = /) <0.
h—0+ ll

On the other hand, if & < 0, we have

fx +/zl) — f(x) =
1

0.
SO )
o LEHD = fC0

0.
h—0- h

By hypothesis, f 1s differentiable at x, so these two limits must be equal. in fact
| | equal to f'(x). This means that
a b

f(x)y<0 and f'(x) >0,

FIGURE 3 from which it follows that f'(x) = 0.

The case where f has a minimum at x is left to you (give a one-hine proof). ||

Notice (Figure 3) that we cannot replace (a. b) by [a. b] in the statement of the
theorem (unless we add to the hypothesis the condition that x is in (a, b).)

Since f'(x) depends only on the values of f near x, it is almost obvious how to
get a stronger version of Theorem 1. We begin with a definition which is illustrated
in Figure 4.

DEFINITION Let f be a function, and A a set of numbers contained in the domain of f.
A point ¥ in A 15 a local maximum [minimum)| point for f on A if
there 1s some § > 0 such that x is a maxinum [minimum] point for f on
AN(x —6.x+4+96).

THEOREM 2 If x 1s a local maximum or minimum for f on (a, b) and f is differentiable at x.

then f'(x) = 0.

PROOI  You should see why this is an easy application of Theorem 1. ||
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a local
minimum point

FIGURE 4

a local
maxinmuin point

The converse of Theorem 2 is definitely not true —it is possible for f'(x) to be 0
even if x is not a local maximum or mmmmum pomt for f. The simplest example
1s provided by the function f(v) = X3 in this case f(0) = 0, but f has no local
maximum or minimum anywhere.

Probably the most widespread misconceptions about calculus are concerned
with the behavior of a function f near x when f'(x) = 0. The pomt made in
the previous paragraph is so quickly forgotten by those who want the world to be
simpler than it 1s, that we will repeatit: the converse of Theorem 2 1s not true —the
conditon f'(x) = 0 does not imply that x 1s a local maximum or mmimum point
of f. Precisely for this reason, special termimology has been adopted to describe
numbers x which satisty the condition f'(x) = 0.

A critical point of a function f 1s a number x such that
f(x) = 0.

The number f(x)tself s called a critical value of f.

The critical values of f, together with a few other numbers, turn out to be the
ones which must be considered m order to find the maximum and minimum of a
given function f. To the unmitiated, finding the maximum and mimmum value
of a functon represents one of the most intriguing aspects of calculus, and there
1s no denying that problems of this sort are fun (until you have done your first
hundred or so).

Let us consider first the problem of finding the maximum or mmimum ol f
on a closed mterval [a,b]. (Then, if f 1s continuous, we can at least be sure
that a maximum and minimum value exist.) In order to locate the maximum and
minmmum of f three kinds of pomnts must be considered:

(1) The critical pomts of f i [a, b].
(2) The end points a and b.
(3) Pomts x i [a, b] such that f 1s not differentiable at x.

If x is a maximum point or a minimum point for f on [a. b|, then x must be in one
of the three classes histed above: for if x is not i the second or third group, then
x s in (a,b) and f is differentiable at x; consequently f'(x) = 0, by Theorem 1.
and this means that x 1s m the first group.

If there are many poimnts m these three categories, finding the maximum and
nminimum of £ may stll be a hopeless proposition, but when there are only a few
critical points, and only a few points where £ is not diflerentiable, the procedure is
fairly straiehtforward: one simply finds f(x) for cach x satistying f"(x) = 0, and
£ (x) for ecach x such that f is not diflerentiable at x and, finally, f(a) and f(b).
The biggest of these will be the maximum value of £, and the smallest will be the
minimum. A\ simple example follows.
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Suppose we wish to find the maximum and mmimum value of the function
7 (ow) = oy
on the interval [—1, 2]. To begin with, we have
fl(x)= 3x2 — 1,

so f'(x) =0 when 3x2 — 1 =0, that is, when

x=+1/3 or —1/3.

The numbers y/1/3 and —/1/3 both lie in [—1. 2], so the first group of candidates

for the location of the maximum and the mimmimum 1s

(H Vv1/3, =v1/3.
The second group contains the end pomts of the interval,
i — 1, 2.

The third group 1s empty, since f is differentiable everywhere. The final step 1s to
compute

FWVABY =13 = V13 =113 - /173 =-3/1/3.
FVIB3) = =VIBY = (=V173) = =313+ /173 =

Fl=1) =0, “
F(2) =6

3

Wit

1/3.

Clearly the mmmum value 1s —%\/m, occurring at /1/3, and the maximum
value 1s 6. occurring at 2.

This sort of procedure, if feasible, will always locate the maximum and minimum
value of a continuous [unction on a closed mterval. If the function we are dealing
with 1s not contimuous, however, or if we are seeking the maximum or mimimum
on an open mterval or the whole hne, then we cannot even be sure beforehand
that the maximum and mmmum values exist, so all the informaton obtained by
this procedure may say nothing. Nevertheless, a hittle mgenuity will often reveal
the nature of things. In Chapter 7 we solved just such a problem when we showed
that 1t 1 15 even, then the function

f) =x"4+a,1x" "+ +ap

has a mmmum value on the whole line. This proves that the mimimum value must
occur at some number x satisfying

~f = —2
0= f'(x) =nx" 'y (n— Da,_1x""=+---+ay.
If we can solve this equation, and compare the values of f(x) for such x, we can
actually find the minimum of f. One more example may be helpful. Suppose we
wish to find the maximum and mimimum, if they exast, of the function

(W) = ——
f@) =+

5
— X=
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FIGURE 6

on the open mterval (=1, 1). We have

U p——
x) = T

N

).—

so f'(x) = 0only for x = 0. We can see immediately that for x close to 1 or —1 the
values of f(x) become arbitrarily large. so f certainly does not have a maximum.
This observation also makes it easy to show that f has a mmimmum at 0. We just
note (Figure 5) that there will be numbers a and b, with

-l<a<0 and O0<b <,
such that f(x) > f(0) for
—l<x<a and b<x <l

This means that the mmimum of f on [a, b] 1s the mmmum of f on all of
(—1, . Now on [a,b] the mimmmum occurs either at 0 (the only place where
f"=0), or at a or b, and a and b have already been ruled out, so the minimum
value is f(0) = 1.

In solving these problems we purposely did not draw the graphs of f(x) = x?—x
and f(x)=1/(1— x2), but it is not cheating to draw the graph (Figure 6) as long
as you do not rely solely on your picture to prove anything. As a matter of fact, we
are now going to discuss a method of sketching the graph of a function that really
gives enough mformation to be used in discussing maxima and minima—in fact
we will be able to locate even local maxima and minmma. This method volves
consideration of the sign of f'(x), and rches on some deep theorems.

The theorems about derivatives which have been proved so far, always yield
mformation about f’in terms of information about f. This 1s true even of Theo-
rem |, although this theorem can sometimes be used to determine certain mforma-
tion about f, namely, the location of maxima and mimma. When the derwvative
was first introduced, we emphasized that f'(x) s not | f(x +h) — f(x)]/h for any
particular /1, but only a it of these numbers as i approaches 0; this fact becomes
pamfully relevant when one tries to extract mformation about f from information
about f'. The smplest and most frustrating illustration of the difficulties encoun-
tered is afforded by the followmg question: If f/(x) = 0 for all x, must f be a
constant function? It 1s impossible to imagine how f could be anything else. and
this conviction is strengthened by considering the physical interpretation —1if the
velocity of a particle 1s always 0, surely the particle must be standing sull! Never-
theless it 1s diflicult even to begin a proof that only the constant functions satisty
f'(x) =0 for all x. The hypothesis f(x) = 0 only means that

. S +h)y— f(xv)
lim =
h—0 h

0.

and 1t 1s not at all obviouts how one can use the information about the hmit o
derive information about the function.



.
a X
FIGURE 7

FIGURE 8

THEOREM 3 (ROLLE’S THEOREM)

R

|

f
a

FIGURE 9

FIGUREL 10

b

PROOF

11. Significance of the Derivative 193

The fact that f 1s a constant function if f’(x) = 0 for all x, and many other facts
of the same sort, can all be derived from a fundamental theorem, called the Nean
Value Theorem. which states much stronger results. Figure 7 makes 1t plausible
that if' f 1s differentable on [a. b|, then there is some x in (a, b) such that

fy 2 L) = f@)

) bsa

Geometrically this means that some tangent Ime 1s parallel to the line between
(a, f(a)) and (b, f(b)). The Mean Value Theorem asserts that this 1s true—there
1s some x m (a, b) such that f'(x), the instantancous rate of change of f at x, is
exactly equal to the average or “mean” change of f on [a, b], this average change
being [ f(b) — f(a)]/[b — a]. (For example, if you travel 60 miles m one hour,
then at some time you must have been traveling exactly 60 miles per hour) This
thecorem is one of the most important theoretical tools of calculus——probably the
deepest result about derivatives. From this statement you might conclude that the
proof is difficult, but there you would be wrong- - the hard theorems in this book
have occurred long ago, in Chapter 7. [t is true that if you try to prove the Mean
Value Theorem yourself you will probably fail, but this is neither evidence that the
theorem 1s hard, nor something to be ashamed of. The first proof of the theorem
was an achievement, but today we can supply a proof which 1s quite simple. It
helps to begin with a very special case.

If f is continuous on [a, b| and differentiable on (a. b), and f(a) = f(b), then
there 1s a number x in (a. b) such that f'(x) = 0.

If follows from the continuity of f on [a. b| that f has a maximum and a mmimum
value on [a. b}.

Suppose first that the maximum value occurs at a pomt x m (a.b). Then
f'(x) =0 by Theorem 1, and we are done (Figure 8).

Suppose next that the mmimum value of f occurs at some pomt x m (a.b).
Then, agam, f’(x) = 0 by Theorem 1 (Figure 9).

Fmally, suppose the maximum and mmmmum values both occur at the end
pomts. Since f(a) = f(b), the maximum and mummum values of f are equal,
so f1s a constant function (Figure 10), and for a constant function we can choose
any x in (a.b). |

Notice that we really needed the hypothesis that f is differentiable everywhere
on (a,b) m order to apply Theorem 1. Without this assumption the theorem is
false (Iigure 11).

You may wonder why a special name should be attached to a theorem as easily
proved as Rolle’s Theorem. The reason is, that although Rolle’s Theorem is a
special case of the Mean Value Theorem, 1t also yields a simple proof of the Mean
Value Theorem. In order to prove the Mean Value Theorem we will apply Rolle’s
Theorem to the function which gives the length of the vertical segment shown m
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FIGURE 12

COROLLARY 1

PROOY

Iigure 12; this is the difference between f(x), and the height at x of the hne L
between (a, f(a)) and (b, f(b)). Since L is the graph of

fb) — f(a)

b —a

glx) = [ } (x —a)+ f(a).

we want to look at

foo - [0

i ](x —a)— f(a).

As it turns out, the constant f(a) is irrelevant.

If f1s continuous on [a, b| and differentiable on (a, b), then there 1s a number x
m (a, b) such that

iy 2 L0 =@

b—a

Let
f(b)—f('a)} |
- | x— a).

b—a

h(x) = f(x)— [
Clearly, /1 1s continuous on [a, b] and differentiable on (a. b). and

h(a) = f(a).

h(b)y = f(h) — [
f(a).

Consequently, we may apply Rolle’s Theorem to /i and conclude that there is

b—ua

() =
f(b) f(a)} x —a)

I

some x m (a.b) such that

f(b) — f(a)

O0=h(x)= f'(x)— T

so that
, ‘(b) — ‘
f 2 SO = 1@
b—a

Notice that the Mean Value Theorem still fits into the pattern exhibited by
previous theorems——information about f yiclds information about f”. This nfor-
mationn is so strong, however, that we can now go in the other direction.

I £ is defined on an interval and f/(x) = O for all x in the mterval, then f is
constant on the mterval.

Let @ and b be any two points in the interval with @ # b. Then there is some x in
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(a, b) such that
! (b) — fla)
fx)= LG,
b—a

But f'(x) = 0 for all x in the interval, so

_ S = fla)
N b—a '

0

and conscquently f(a) = f(b). Thus the value of f at any two points in the
interval is the same, i.e., f is constant on the interval. |

Naturally, Corollary 1 does not hold for functions defined on two or more in-
tervals (Figure 13).

I / and g arc defined on the same mterval, and f'(x) = ¢'(x) for all x in the
mterval, then there i1s some number ¢ such that f = g + c.

Tor all x in the interval we have (f —g)'(x) = f'(x) —g'(x) = 0 so, by Corollary 1,
there is a number ¢ such that f — g =c. |}

The statement of the next corollary requires some terminotogy. which is illus-
trated in Figure 14.

A function 1s increasing on an mterval it f(a) < f(b) whenever a and b are
two numbers in the mterval with @ < b. The function f i1s decreasing on
an mterval if f(a) > f(b) for all @ and b m the mterval with a < b. (We
often say simply that f is increasing or decreasing, in which case the interval is
understood to be the domain of f.)

If f"(x) > Ofor all x in an interval, then £ 1s increasing on the interval; it f/(x) <0
for all x m the mterval, then f is decreasing on the interval.

Consider the case where f'(x) > 0. Let @ and b be two pomts in the mterval with
a < b. Then there is some x in (a. b) with

)~ fla)

Fx) b—a

But f'(x) > 0 for all x in (a. b), so

f(b) — f(a)
e,

b—a

0.

Since b —a > 0 it follows that f(b) > f(a).
The proof when f/(x) < 0 for all x is left to you. |
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a b

(a) an increasing function

(b) a decreasing [unction

FYIGURE 14

Notice that although the converses of Corollary 1 and Corollary 2 are true (and
obvious), the converse of Corollary 3 1s not true. If f is increasing, it is easy (o
see that f'(x) = 0 for all x. but the equality sign might hold for some x (consider
[ =x3).

Corollary 3 provides enough mnformation to get a good idea of the graph of
a function with a minmmal amount of pomt plotting. Consider, once more, the

5

function f(x) = x> —x. We have
f(x)y=3x>—1.
We have already noted that f'(x) = 0 for x = /1/3 and x = —/1/3, and it is

also possible 1o determine the sign of f'(x) for all other x. Note that 3x> =1 > 0
precisely when
3x% > 1

”
X7 >

.

(S —

x>1/3 or x<—/1/3:
thus 3x2 — 1 < 0 precisely when
—/1/3 <x </1/3.

Thus f 15 mereasing for x < —4/1/3, decreasing between —y/1/3 and /1/3,
and once again increasing for x > /1/3. Combming this mformation with the
following facts

(1) f(=V1/3) = /173,

FO/13) = -2/13.
2) f(x)=0forx=-1,0,1,

(3) f(x) gets large as x gets large, and large negative as x gets large negative,

W D

IS ]

1t is possible to sketch a pretty respectable approximation to the graph (Figure 15).

By the way, notice that the mtervals on which f increases and decreases could
have been found without even bothering 1o examine the sign of f’. For example,
since f7 is continuous, and vanishes only at —y/1/3 and /1/3. we know that f’
always has the same sign on the mterval (—y/1/3,/1/3). Smce f(=y1/3) >
f(/1/3), it follows that f decreases on this terval. Smmilarly, 7 always has the
same sign on (y/1/3,00) and f(x) is large for large x, so f must be increasing on
(V' 1/3.00). Another point worth noting: If f” is continuous, then the sign of f”
ot the interval between two adjacent eritical points can be determined simply by
finding the sign of f"(x) for any one x i this mterval.

Our sketch of the graph of f(x) = v? — x contains suflicient informaton
to allow us to say with confidence that —/1/3 1s a local maximum point, and that

V' 1/3 is a local minimum pomt. In fact, we can give a general scheme for decid-
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L 4

« N .
f Increasing

FIGURE 15

ing whether a critical point is a local maximum point, a local minimum point, or
neither (Figure 16):

(1) if f" > 0 in some interval to the left of x and f’ < 0 in some nterval to
the right of x, then x is a local maximum point.

(2) if f" < 0 in some interval to the left of x and f’ > 0 in some interval to
the right of x, then x is a local minimum point.

(3) if f" has the same sign in some interval to the left of x as it has m some
interval to the right, then x is neither a local maximum nor a local minimum
point.

(There is no point in memorizing these rules—you can always draw the pictures
yourself.)

The polynomial functions can all be analyzed in this way, and it is even possible
to describe the general form of the graph of such functions. To begin, we need a

N

Sl
Sl
1
|
]
sl
F o =

— —— s ——p —— -
f'>0 f <0 <0 f>0 />0 >0 <0 f <0
(a) (b) () (d)

FIGURE 16
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X1 X

FIGURE 17

FIGURI 18

result already mentioned m Problem 3-7: If

1

f)=ax" +a,1x"" + .- +a,

then f has at most n “roots,” i.c., there are at most n numbers x such that
f(x) = 0. Although this 1s really an algebraic theorem, calculus can be used
to give an casy proof. Notice that if x and xy are roots of f (IFigure 17), so that
f(x1) = f(x2) = 0, then by Rolle’s Theorem there 1s a number x between x)
and x7 such that f"(x) = 0. This means that it f has & different roots x| < x» <

- < xg, then f7 has at least K — 1 different roots: one between x; and x», one
between xa and a3, ete. It 1s now casy to prove by induction that a polynomial
function

f)=am™ + a1 x" P+ 4 ag

has at most n roots: The statement 1s surely true for n = 1, and if we assume that
it 1s true for n, then the polynomial

gly) = 1)11+1-r,l+l ar b”xn 4+ ...+ bg

could not have more than n + 1 roots, since if 1t did, ¢’ would have more than n
roots.

With this mformation it 1s not hard to describe the graph of

1

f(«") = (l,,X" S (l,,_].\'"_ + -+ ap.

The derivative, being a polynomial function of degree n — I, has at most
n — 1 roots. Therefore [ has at most n — 1 critical points. Of course, a criti-
cal point is not necessarily a local maximum or minimum point, but at any rate,
it @ and b are adjacent critical points of f, then f" will remain either positive or
negative on (a. b), since f’1s continuous; consequently, f will be either increasing
or decreasing on (a, b). Thus f has at most n regions of decrecase or increase.

As a specific example, consider the function

o

fx)=xt=2x
Since
f(x) = 4y3 —4x =dx(x — D(x + 1),

the eritucal pomts of [ are —1, 0, and 1, and

f(=D=-1,
f©0)=0,
Sy=-L

The behavior ol f on the intervals between the eritical points can be determined
by onc of the methods mentioned before. In particular, we could determine the
sign of [ on these intervals simply be examining the formula for f'(x). On the
other hand, from the three critical valies alone we can see (Iigure [8) that f
increases on (=1, 0) and decreases on (0, 1). To determine the sign of f” on
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(—o0, —1) and (1, o0) we can compute

fl(=2)=4.(=2) —4.(-2) = -24,
f2)=4.2>-4.2=24,

and conclude that f 1s decreasing on (—oo, —1) and increasing on (1, 00). These
conclusions also follow from the fact that f(x) is large for large x and for large
negative x.

We can already produce a good sketch of the graph; two other pieces of infor-
mation provide the finishing touches (Figure 19). First, it is easy to determine that
f(x)=0for x =0, ﬂ:\/z; second, 1t 1s clear that f is even, f(x) = f(—x), so the
graph is symmetric with respect to the vertical axis. The function f(x) = g By
already sketched in Figure 15, is odd, f(x) = — f(—x), and is consequently sym-
metric with respect to the origin. Half the work of graph sketching may be saved
by noticing these things in the beginning.

J(5) = = 2x?

(-v2,0) 1(0.0)

(v/2,0)
FIGURE 19

Several problems in this and succeeding chapters ask you to sketch the graphs
of functions. In each case you should determine

(
(

) the critical points of f,
the value of f at the critical points,

W N —
S

—
~

the sign of f’ in the regions between critical pomnts (if this 1s not already
clear),

(4) the numbers x such that f(x) = 0 (if possible),

(5) the behavior of f(x) as x becomes large or large negative (if possible).

Finally, bear in mind that a quick check, to sce whether the function is odd or
even, may save a lot of work.

This sort of analysis, if performed with care, will usually reveal the basic shape
of the graph, but sometimes there are special features which require a little more
thought. It is impossible to anticipate all of these, but one piece of information is
often very important. If' f is not defined at certain points (for example, if’ [ is a
rational function whose denominator vamshes at some points), then the behavior
of f near these points should be determmedl.

Ior example, consider the function

= Py
f(-’C)Z L—L
x—1
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which is not defined at 1. We have

(x=DQRx=2)— (x*=2x+2)

f(x)= x—1)
_ox(x— 2)
TSN
Thus
(1) the critical points of f are 0, 2.
Moreover,
(2) f(0) = =2,
fO)y=2.

Because f is not defined on the whole interval (0. 2), the sign of f” must be
determined separately on the mtervals (0, 1) and (1, 2), as well as on the intervals
(—00,0) and (2, oc). We can do this by picking particular pomts in each of these
intervals, or simply by staring hard at the formula for f’. Either way we find that

3) ff(x)>0 if x <0,
ff(x)y<0 if 0<x<l,
ff(x)y<0 if 1<x<?2,
ff(x)>=0 if  2<ux.

Finally, we must determine the behavior of f(x) as x becomes large or large
negative, as well as when x approaches 1 (this information will also give us another
way to determine the regions on which f increases and decreases). To examine
the behavior as x becomes large we write

x2—2x+2 1

Py e

clearly f(x) is close to x — I (and slightly larger) when x is large, and f(x) 1s close
to x — 1 (but slightly smaller) when x 1s large negative. The behavior of f near |
1s also easy to determine; since

1ir111(x3—2.\<+2) =10,

the fraction
x2—2x 42
x—1

becomes large as x approaches 1 from above and large negative as x approaches 1
from below.

All this mformation may seem a bit overwhelming, but there is only one way
that it can be pieced together (Figure 20); be sure that you can account for each
feature of the graph.

When this sketch has been completed, we might note that it looks like the graph
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FIGURE 20

of an odd function shoved over 1 unit, and the expression

2 —-2x+2 (x—D%r+1
x =1 x — 1

shows that this is indeed the case. However, this is one of those special features
which should be investigated only after you have used the other information to get
a good idea of the appearance of the graph.

Although the location of local maxima and minima of a function is always re-
vealed by a detailed sketch of its graph, it is usually unnecessary to do so much
work. There is a popular test for local maxima and minima which depends on the
behavior of the function only at its critical points.

Suppose f'(a) = 0. If f"(a) > 0, then f has a local minimum at a; if f"(a) < 0,
then f has a local maximum at a.

By definition,
f'a+h)— f'(a)
h '

" .
(a) = lim
[ h—0
Since f'(a) = 0, this can be written

S
f"(a) = lim 7'! s ”.

h—0) h
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(b)

flx)=x°

FIGURE 21

(c)

THEOREM 6

PROOF

Suppose now that f”(a) > 0. Then f’(a + h)/h must be positive for sufficiently
small /1. Therefore:

f'(a + h) must be positive for sufficiently small # > 0
and f'(a 4+ 1) must be negative for sufficiently small i < 0.

This means (Corollary 3) that f is increasing in some interval to the right of a
and f 1s decreasing in some interval 1o the left of a. Consequently, f has a local
minumum at da.

The proof for the case f”(a) < 0 is similar. |

3

Theorem 5 may be apphied to the function f(x) = x° — x, which has already

been considered. We have

ymE— 37— 1
il =10

At the critical pomnts, —/1/3 and /1/3, we have

f(—=/1/3)=-61/3 <0,
f'(J1/3)=6y1/3 > 0.

Consequently, —/1/3 is a local maximum point and /1/3 is a local minimum
point.

Although Theorem 5 will be found quite useful for polynomial functions, ftor
many functions the second derivative is so complicated that 1t is casier to consider
the sign of the first derivative. Moreover, if a 1s a critical point of f it may happen
that f"(a) = 0. In this case, Theorem 5 provides no information: it is possible
that a 1s a local maximum point, a local minmmum pomt, or neither, as shown
(Figure 21) by the functions

fx)=—x*  f)y=x*  fx)=x

mn cach case f(0) = f"(0) = 0, but 0 1s a local maximum pomt for the first, a
local mmimum point for the second. and neither a local maximum nor mmmmum
pomt for the third. This point will be pursued further in Part IV

It 1s interesting to note that Theorem 5 automatically proves a partial converse
of itself.

Suppose f"(a) exists. 1 f has a local minimum at a, then f”(a) > 0; 1 f has a
local maxmmum at a, then f"(a) < 0.

Suppose [ has local minunum at a. If f"(a) < 0, then f would also have a
local maxunum at «, by Theorem 5. Thus f would be constant m some interval
containing a, so that f”(a) = 0, a contradiction. Thus we must have " (a) = 0.

The case of a local maximun is handled similarly. i
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FIGURE 22
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(This partial converse to Theorem 5 is the best we can hope for: the > and <
signs cannot be replaced by > and <, as shown by the functions f(x) = x* and
flx)=—x4)

The remamder of this chapter deals, not with graph sketching, or maxmima and
minmma, but with three consequences of the Mean Value Theorem. The first 1s a
simple, but very beautiful, theorem which plays an mportant role in Chapter 15,
and which also sheds light on many examples which have occurred in previous
chapters.

Suppose that f 1s continuous at a, and that f'(x) exists for all x in some mterval

containing a, except perhaps for x = a. Suppose, moreover, that lim f”(x) exists.
A—>da

Then f'(a) also exists, and
f(a) = km f'(x).
X—>a
By definition,

e
Fia) = g L@ = F@

For sulficiently small i > 0 the functon f will be continuous on [a,a + /] and
differentiable on (a.a 4+ h) (a smilar assertion holds for suflicientty small i < 0).
By the Mean Value Theorem there 1s a number oy, n (a, a + h) such that

fla+h)— f(a)
h

= f/(ah)-

Now «y, approaches a as h approaches 0. because «; is m (a.a + h); since

hm f/(x) exsts, it follows that
X—a

: ' (a+h)— fla)y . .
f'(a) = hm f : = hm f'(ap,) = lim f'(x).

h—0 II h—0 xX—a

(It 1s a good idea to supply a rigorous £-6 argument for this final step, which we
have treated somewhat informatly.) |

Evenif' f is an everywhere diflerentiable function, 1t is still possible for f’ to be
discontinuous. This happens, for example, 1f

|

).

x“sin—, x#0
X

0, x =0.

W =

Accordmng to Theorem 7. however., the graph of' f" can never exhibit a disconu-
nuity of the type shown in Figure 22. Problem 61 outlines the proof of another
beautiful theorem which gives further mformation about the function f’, and Prob-
lem 62 uses this result to strengthen Theorem 7.

The next theorem, a generalization of the Mean Value Theorem. is of interest
mainly because of its apphications.
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THEOREM 8 (THE CAUCHY MEAN
VALUE THEOREM)

PROOF

THEOREM 9 (LHOPITAL'S RULE)

Il f and g are contmuous on [a, b] and differentiable on (a, b), then there is a
number x i (a, b) such that

[f (D) = f@)]g'(x) = [gd) — g(@)] f'(x).

(If g(b) # g(a), and g'(x) # 0, this equation can be written

f) = fl@)  f0)

gb)—gl@ gy
Notice that if g(x) = x for all x, then g'(x) = I, and we obtain the NMean Value
Theorem. On the other hand, applying the Mean Value Theorem to f and g
separately, we find that there are x and y in (a, b) with

f) = fla)  fix)

gb) —gl@) g’
but there 1s no guarantee that the x and y found m this way will be equal. These

remarks may suggest that the Cauchy Mean Value Theorem will be quite dithcult
to prove, but actually the simplest of tricks suffices.)

Let
hx) = f(x)[g®d) = gla)] — gx)[ f(b) — f(a)].

Then & 1s continuous on [a, b], differentiable on (a. b), and
h(a) = f(a)g(b) — g(a) f(b) = h(b).

It follows from Rolle’s Theorem that #'(x) = 0 for some x in (a, b), which means
that

0= f'(x)[g)—g@] — &) fb)— f(a)]. I

The Cauchy Mean Value Theorem 1s the basic tool needed to prove a theorem
which facilitates evaluation of hmits of the form

when

hm f(x) =0 and hmg()=0.

X—a X—d
In this case, Theorem 5-21s of no use. Every derivative 1s a hmit of this form, and
computing derivatives frequently requires a great deal of work. If'some derivatives
are known, however, many limits of this form can now be evaluated easily.

Suppose that
hm f(x) =0 and hm g(x) =0,

X—=>a X—a
and suppose also that hm f'(x)/g"(x) exists. Then hm f(x)/g(x) exasts, and
JE=>(1 X—d
. S) . S
hm = lm .
xoa g(x) x—a g'(x)

(Notice that Theorem 7 1s a special case.)
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The hypothesis that lim f(x)/g'(x) exists contains two implicit assumptions:
X—a

(1) there is an interval (a —§, a + ) such that f'(x) and g'(x) exist for all x in
(@ — 8, a+ §8) except, perhaps, for x = a,

(2) m this mterval g'(x) # 0 with, once again, the possible exception
of x =a.

On the other hand, f and g are not even assumed to be defined at a. If we define
f(a) = g(a) = 0 (changing the previous values of f(a) and g(a), if necessary),
then f and g are continuous at a. If a < x < a + §, then the Mean Value
Theorem and the Cauchy Mean Value Theorem apply to f and g on the interval
[a, x] (and a similar statement holds for a —§ < x < a). First applymng the Mean
Value Theorem to g, we see that g(x) # 0, forif g(x) = 0 there would be some x;
mn (a, x) with g'(x;) = 0, contradicting (2). Now applying the Cauchy Mean Value
Theorem to f and g, we sce that there is a number o, in (a.x) such that

[f(x)—0]g () = [g(x) — O] f/(cr)

or
f(x) _ S (o)
g(x) gl

Now «, approaches a as x approaches a, because a, 1s in (a,x); since we are
assuming that lm f"(y)/g'(v) exists, 1t follows that
y—a

S o .Sy
hmf =hmf( "):llmf ').
xa g(x)  xoa gllay)  yoa gl(y)
(Once again, the reader is mvited to supply the details of this part of the argu-
ment.) |}

PROBLEMS

1. TFor each of the following functions, find the maximum and minimum values
on the indicated intervals, by finding the points in the mterval where the
derivative is 0, and comparing the values at these pomnts with the values at
the end points.

i) f)=x*-x*-8x+1 on[-2,2].
() f)=x>+x+1 on [—1,1].
(i) f(x)=3x*=8x*+6x2 on [—% %]
. \ | :

(iv) f(x):m on [—5, 1].
W ey = X i
(V) f(x)_,r2+1 on {—1, 5].
vi) f(x)= I on |0, 5].

3
x<—1
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Now sketch the graph of each of the functions in Problem 1, and find all
local maximum and minimum points.

Sketch the graphs of the following functions.

: |
(1) J)=x-t=,
X
. . 3
() filx)=x+—.
X*
2
; X=
(I (e =
x4 —1
W) £ I
AV M=
o 1 + x=
n
. - =™ T R 3
(a) If a; < --- < a,, find the mmimum value of f(x) = E (x —a;)”.
=
n
*b) Now find the minimum value of f(x) = E |x — a;|. This is a problem
=
where calculus won't help at all: on the intervals between the ¢;’s the
function f 1s linear, so that the minimum clearly occurs at one of the a;,
and these are precisely the points where f is not differentiable. However,
the answer is easy to find if you consider how f(x) changes as you pass
from one such interval to another.
*¢) Let a > 0. Show that the maximum value of
f(x) l
)= e
‘ I+ x| 1= [x —a]
is (24 a)/(1 +a). (The derivauve can be found on each of the mtervals
(—00,0), (0, a), and (a, 00) separately.)
For each of the following functions, find all local maximum and minimum
points.
£, X ==3.5.9.9
S
A= 1r=3. x=>
Qi i =7
T % =9,
0, ¢ irrational
() L fie)= :
G /g, x = p/q inlowest terms.
G Foo) X, X rational
(111) )= .
: 0, x irrational.
Fx) I. x=1/nforsomeninN
(iv) FY= ‘
0, otherwise.
_. : [, il the decimal expansion of x contains a 5
(v) Jf(x)= :
' 0, otherwise.
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Prove the following (which we often use implicitly): If' f is increasing on (a. b)
and continuous at a and b, then f is increasing on [a, b]. In particular, if f
is continuous on [a, b] and f’ > 0 on (a, b), then f is increasing on [a. b].

A straight line 1s drawn from the point (0,a) to the horizontal axis, and
then back to (1, b), as in Figure 23. Prove that the total length is shortest
when the angles « and B are equal. (Naturally you must bring a function
mto the picture: express the length in terms of x, where (x, 0) is the pomt
on the horizontal axis. The dashed line in Figure 23 suggests an alternative
geometric proof; in either case the problem can be solved without actually
finding the point (x.0).)

(a) Let (xg. yo) be a point of the plane, and let L be the graph of the function
f(x) =mx 4+ b. Find the point X such that the distance from (xg. yp) to
(x, f(x))1s smallest. [Notice that minimizing this distance is the same as
minimizing its square. This may simplify the computations somewhat. |

(b) Also find x by noting that the line from (xp, yo) to (¥, f(x)) 1s perpen-
cicular to L.

(¢) Find the distance from (xq. vo) to L, 1.e., the distance from (xq, vo) to
(x, f(x)). [It will make the computations casier if you first assume that
b = 0; then apply the result to the graph of f(x) = mx and the pomt
(x0. yo — b).] Compare with Problem 4-22.

(d) Consider a straight hne described by the equation Ax + By + C =
0 (Problem 4-7). Show that the distance from (xg, yg) to this lne is

(Axg + Byo + C)/V A% + B.

The previous Problem suggests the following question: What 1s the relation-
ship between the critical points of f and those of f 27

Prove that of all rectangles with given perumeter, the square has the greatest
area.

Find, among all right circular cylinders of fixed volume V, the one with
smallest surface area (counting the arcas of the faces at top and bottom, as
in Figure 24).

A right triangle with hypotenuse of length a is rotated about one of its legs
to generate a right circular cone. Find the greatest possible volume of such
a cone.

Show that the sum of a positive number and its reciprocal is at least 2.

Find the trapezoid of largest arca that can be scribed i a semicircle of
radius a, with one base lying along the diaumeter.

Two hallways, of widths ¢ and b, meet at right angles (Figure 25). What
15 the greatest possible length of a ladder which can be carried horizontally
around the corner?
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A garden 1s to be designed i the shape of a circular sector (Figure 26), with
radius R and central angle 8. The garden is to have a fixed area A. Tor
what value of R and 6 (in radians) will the length of the fencing around the
perimeter be minimized?

A right angle 1s moved along the diameter of a circle of radius @, as shown
in Figure 27. What is the greatest possible length (A + B) intercepted on it
by the circle?

Ecological Ed must cross a circular lake of radius 1 mile. He can row across
at 2 mph or walk around at 4 mph. or he can row part way and walk the
rest (Figure 28). What route should he take so as to

(1) see as much scenery as possible?
(1) cross as quickly as possible?

(a) Consider points A and B on a circle with center O, subtending an angle
of « = LAOC (Figure 29). How must B be chosen so that the sum of
the areas of AAOB and ABOC 1s a maximum? Hint: Express things
mn terms of § = LAOB.

(b) Prove that for n > 3, of all n-gons inscribed m a circle, the regular n-gon
has maximum area.

The lower right-hand corner of a page is folded over so that it just touches
the left edge of the paper, as in Figure 30. If the width of the paper is @ and
the page 1s very long, show that the minimum length of the crease is 3v3a/4.
Figure 31 shows the graph of the derivative of f. Find all local maximum and
minimum points of f.

\f'

4
FIGURE 31 l 3 4
Suppose that f 15 a polynomial function, f(x) = x" + PE L TR BTG
with critical pomts —1. 1, 2, 3, 4, and corresponding critical values 6, 1. 2,
4, 3. Sketch the graph of f. disunguishing the cases n even and n odd.

(a) Suppose that the critical points of the polynomial function f(x) = x" +
ap1x" V4. 4agare —1,1,2,3,and f"(-1) =0, f/(1)> 0, f"2) <
0, f7(3) = 0. Sketch the graph of f as accurately as possible on the
basis of this information.

(b) Does there exist a polynomial function with the above propertes, except
that 3 1s not a critical pomnt?

Describe the graph of a rational function (in very general terms, similar to
the texts deseription of the graph of a polynomial function).
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30.

31.

32.
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(a) Prove that two polynomial functions of degree m and n, respectively,
mtersect in at most max(n, 1) points.

(b) For each m and n exhibit two polynomial functions of degree m and n
which intersect max(in, n) times.

Suppose f is a polynomial function of degree n with f > 0 (so n must be

even). Prove that f+ f'+ f"+ -+ f™ > 0.

(a) Suppose that the polynomial function f(x) = x" + a,_1x" ' 4+ +ag
has exactly k critical points and f”(x) # 0 for all critical points x. Show
that n — k 1s odd.

(b) FYor each n, show that if n —k 1s odd, then there is a polynomial function
f of degree n with k critical points, at each of which f” is non-zero.

(¢c) Suppose that the polynomial function f(x) = x" + 3 e mall Rt
has k local maximum points and k> local mimmum points. Show that
kr =k + 1if nis even, and k» = k; 1if 1 1s odd.

(d) Letn, ky, k2 be three mtegers with k> = ky+11f n 1s even, and k» = ky if
n 1s odd, and ky + k> < n. Show that there is a polynomial function f of

degree n, with &y local maximum points and k> local minimum points.
ki+ko

Hint: Pick aj < a> < -+ < ag 41, and try f'(x) = l_[ (x—a;)-(1 —I—xz)l

for an appropriate number /. i=1

(a) Prove thatif f'(x) > M for all x in [a, b], then f(b) = f(a)+ M(b—a).
(b) Prove thatif f'(x) < M forall x in [a, b], then f(b) < f(a)+ M(b—a).
(c) Formulate a similar theorem when | f'(x)| < M for all x in [a, b].

Suppose that f'(x) > M > 0 for all x in [0, 1]. Show that there is an interval
of length % on which | f| > M/4.

(a) Suppose that f'(x) > g'(x) for all x, and that f(a) = g(a). Show that
f(x)> gx) for x >aand f(x) < g(x) for x < a.

(b) Show by an example that these conclusions do not follow without the
hypothesis f(a) = g(a).

(¢) Suppose that f(a) = g(a), that f'(x) > g'(x) for all x, and that f"(xg) >
g (xg) for some xg > a. Show that f(x) > g(x) for all x > x.

Find all functions f such that

(a) f'(x)=snx.

(b) f"(x) = x>,

((‘) f”/(y.l‘) — xl_

Although it is true that a weight dropped from rest will fall s(r) = 161°
feet after ¢ seconds, this experimental fact does not mention the behavior of
weights which are thrown upwards or downwards. On the other hand, the
law s”(r) = 32 is always true and has just enough ambiguity to account for
the behavior of a weight released from any height, with any mital velocity:
For simplicity let us agree to measure heights upwards from ground level:
mn this case velocities are positive for rising bodies and negative for falling
bodies, and all bodies fall according to the law s”(1) = —32.
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FIGURE 32

33.

34.

35.

36.

37.

(a) Show that s is of the form s(t) = —161> 4+ ar + B.

(b) By setung ¢+ = 0 in the formula for s, and then in the formula for s’,
show that s(1) = — 162+ vgt + s, where sq is the height from which the
body is released at time 0, and v 1s the velocity with which it is released.

(¢) A weight is thrown upwards with velocity v feet per second, at ground
level. How high will it go? ("How high” means “what is the maximum
height for all times™.) What is its velocity at the moment it achieves its
greatest height? What 1s its acceleration at that moment? When will it
hit the ground again? What will its velocity be when it hits the ground
again?

A cannon ball is shot from the ground with velocity v at an angle « (Fig-
ure 32) so that it has a vertical component of velocity vsina and a hori-
zontal component v cosa. Its distance s(¢) above the ground obeys the law
s(t) = —16¢% 4 (vsina)r, while its horizontal velocity remams constantly
veosa.

(a) Show that the path of the cannon ball is a parabola (find the position at
cach time 7, and show that these points lie on a parabola).
(b) Find the angle @ which will maximize the horizontal distance traveled
by the cannon ball before striking the ground.
(a) Give an example of a function f for which hm f(x) exists, but
X—00
lim f’(x) does not exist.
X—>00
(b) Prove that if hm f(x) and hm f'(x) both exist, then lm f'(x) = 0.
X—>0 X—>00 X—>00
(c) Prove thatif hm f(x) exists and lim f”(x) exists, then Iim f”(x) = 0.
X— 00 X—00 x— 00
(See also Problem 20-22.)
Supposce that f and g are two diflerenuable functions which satsfy
fg — f'g = 0. Prove that if f(a) =0 and g(a) # 0, then f(x) =0 for all x
in an interval around ¢. Hint: On any mterval where f/g 1s defined, show
that 1t is constant.

Suppose that | f(x) — f(y)| < |[x — y[" for n > 1. Prove that f 1s constant by
considering f’. Compare with Problem 3-20.

A function f 1s Lipschitz of order « at x if there 1s a constant C such that
(B - fWI=Clx =y

for all y in an mterval around x. The funcuon f is Lipschitz of order a on an
interval 1f (x) holds for all x and y m the mterval.

(a) If f1s Lipschitz of order @ > 0 at x, then f 1s contimuous at x.

(b) It f s Lipschitz of order ¢ > 0 on an nterval, then f is umformly
continuous on this interval (see Chapter 8, Appendix).

(c) If f s dillerentiable at x, then f 1s Lipschiz of order 1 at x. Is the
converse truc?

() It fis differentiable on [a, b],1s f Lipschitz of order 1 on |a, b]?

(¢) If fis Lipschitz of order @ > | on [a, b], then f is constant on [a, b].
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Prove that it
ag  a a,
- — R —_ ()~
] i 2 n+1

then
apg+ax+---+a,x"=0

for some x mn (0, 1).

Prove that the polynomal function f, (x) = x3 = 3x + m never has two roots
m [0, 1], no matter what m may be. (This is an easy consequence of Rolle’s
Theorem. It s instructive, after giving an analytic proof, to graph fo and f>,
and consider where the graph of f,, lies in relation to then.)

Suppose that f 1s continuous and differentiable on [0, 1], that f(x) is m
[0, 1] for each x, and that f'(x) # 1 for all x in [0, 1]. Show that there 1s
exactly one number x in [0, 1] such that f(x) = x. (Half of this problem
has been done already, n Problem 7-11.)

(a) Prove that the function f(x) = x? — cos x satisties f(x) = 0 for precisely
two numbers x.
(b) Prove the same for the function f(x) = x> — x sinx — cos x.
*(c) Prove this also for the function f(x) = 2x% — xsinx — cos>x. (Some
prelminary estimates will be useful to restrict the possible location of the
zeros of f.)

(a) Prove that if f 1s a twice differentiable function with f(0) = 0 and
f(y=1and f'(0)y= f'(1) =0, then | f"(x)| > 4 for some x in (0, 1).
In more picturesque terms: A particle which travels a unit distance in
a unt time, and starts and ends with velocity 0, has at some time an
acceleration > 4. Hint: Prove that either f”(x) > 4 for some x m (0, %),
or else f”(x) < —4 for some x In (%, 1).

(b) Show that m fact we must have | f”(x)} > 4 for some x m (0, 1).

Suppose that f 1s a function such that f'(x) = 1/x forall x > 0 and f(1) =
0. Prove that f(xy) = f(x) + f(y) for all x,y > 0. Hint: Find ¢’(x) when
g(x) = flxy).

Suppose that f satisfies
ST+ flogo) = f(x)=0

for some function g. Prove that if f is 0 at two pomts, then f is 0 on the
mterval between them. Hint: Use Theorem 6.

Suppose that f 1s continuous ou [a, b], that it 1s n-times diflerentiable on
(a, b), and that f(x) = 0for n+1 different x i [a, b]. Prove that f™(x) =0
for some x m (a, b).
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46.

47.

48.

49.

50.

51.

Let xy,...,. v,+1 be arbitrary pomts n [a, b|, and let
n+1
Q(x) = l_[(x — Xi).
i=1

Suppose that f 1s (n + 1)-times differentiable and that P is a polynomial
function of degree < n such that P(x;) = f(x;) fori = 1...., n+ 1 (see
Problem 3-6). Show that for each x i [a, b] there is a number ¢ in (a, b)
such that i

’ f(n+ (C)

x)—Px)=0k) ———.

f(x) (x) = Q(x) PR

Himt: Consider the function

F()y=0)|[f@)—P®)| — 0| f(x)— Px)].

Show that F is zero at n + 2 difterent points in |a, b], and use Problem 45.

Prove that

% < V66 — 8 < %
(without computing v'66 to 2 decimal places!).

Prove the following shight generahization of the Mean Value Theorem: If f
1s continuous and differentable on (a, b) and hm f(y) and lir}l f(y) exist,
y—b

y—ar

then there 1s some x 1n (a, b) such that

hm f(y) — .lim+ fy)

y—b—

)=

bi—ta
(Your proof should begin: “This is a trivial consequence of the Mean Value
Theorem because ... 7))

Prove that the conclusion of the Cauchy Mecan Value Theorem can be written

m the form

f(b) = flay  f'(x)

g(by —gla) — g'(x)’
under the additional assumptions that g(b) # g(a) and that f'(x) and g'(x)
are never simultancously 0 on (a. b).

Prove that if f and g are continuous on [a. b| and differentable on (a. b).
and g'(x) # 0 for x n (a. b), then there 1s some x in (a, b) with

Fo - fE = f@

gx)  gb)—gx)

Hint: Multiply out first, to see what this really says.

What is wrong with the following use of F'Hépital’s Rule:
i x+x -2 . 3x2 41 . Ox
m —-——
ol x2—=3x4+2 =1 2x=3 =1 2

(The It s actually —4.)
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52.  Find the following limits:

(1) lim .

o x—0 tan x

. costx —1

(m)  hm B
x—0 B

53. Find £/(0) if

f)y=  =x 20

and g(0) = ¢'(0) =0 and g"(0) = 17.

54. Prove the following forms of 'Hépital’s Rule (none requiring any essentially
new reasoning).

(a) If hm f(x) = lim+g(x) = 0, and lim+ f'(x)/g'(x) = I, then

lim f(x)/g(x) = I (and similarly for limits from below).
x—at
(b) It im f(x) = lmg() = 0, and lim f(x)/g'(x) = oo, then

lim f(x)/g(x) = oo (and similarly for —oo, or if x — a is replaced

by x - aTorx — a”).

(¢) If lim f(x) = lm gx) = 0, and hm f'(x)/g'(x) = [, then
X—>00 X—00 X—>00

Im f(x)/g(x) = [ (and simiarly for —o0). Hint: Consider
xX—>00
lim f(1/)/8(1/x).

(d) H limﬁf(x) = Im g(x) = 0, and hm f'(x)/g'(x) = oo, then

Lim f(x)/g(x) = c0.

55.  There is another form of 'Hopital’s Rule which requires more than algebraic
manipulations: If Iim f(x) = hm g(x) = oo, and hm f'(x)/g'(x) = [,
X—>00 X—>00 X—>00

then lim f(x)/g(x) = 1. Prove this as follows.
X—00

(a) For every € > 0 there 1s a number a such that

’f@)
g'(x)

<e forx >a.

=

Apply the Cauchy Mean Value Theorem to f and g on [a, x] to show
that
f&)—fw)_l

, <¢ forx > a.
gx) —gla)

(Why can we assume g(x) — g(a) # 0?)
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56.

57.

58.

59.

*60.

61.

(b) Now write
S(x) _ f(x) = fla) . fx) 8(x) — gla)
gx)  gx)—gl@) f(x)— fla) g(x)

(why can we assume that f(x) — f(a) # 0 for large x?) and conclude
that

fx)
g(x)

—

< 2¢  for sufficiently large x.

To complete the orgy of variations on I'Hépital’s Rule, use Problem 55 to

prove a few more cases of the following general statement (there are so many

possibilities that you should select just a few; if any, that interest you):

If tm f(x) = lm gx)={ }and lm f'(x)/g'(x) = ( ), then lim
=[] =[] =[] =[]

f(x)/g(x) = ( ). Here [ ] can be @ or @™ or a~ or 0o or —c0, and { }

can be 0 or 00 or —o0, and () can be [ or 0o or —o0.

It f and g are differentiable and lim f(x)/g(x) exists, does it follow that

lim f"(x)/g'(x) exists (a converse to I'Hopital’s Rule)?

Prove that if” 7 is increasing, then every tangent hine of f mtersects the graph
of f only once. (In particular, this is true for the function f(x) = x"1if n 1s
even.)

Redo Problem 10-18 (¢) when
, 1
() =f=7
(Why is this problem is this chapter?)

(a) Suppose that f is differentiable on [a, b]. Prove that if the mmimum
of f on [a,b]is at a, then f'(a) > 0, and if it 1s at b, then f'(b) < 0.
(One half of the proot of Theorem 1 will go through.)

(b) Suppose that f'(a) < 0 and f'(b) > 0. Show that f'(x) = 0 for some x
n (a, b). Hint: Consider the minimum of f on [a, b]; why must it be
somewhere n (a, b)?

(¢) Prove thatif f'(a) < ¢ < f'(b), then f'(x) = cforsome x n (a. b). (This
result 1s known as Darboux’s Theorem. Note that we are nof assuming
that f"is continuous.) Hint: Cook up an appropriate function to which
part (b) may be apphed.

Suppose that f is differentiable in some mterval containing @, but that f7 is
discontinuous at a. Prove the following:

(a) The one-sided limits him f/(x) and lim f'(x) cannot botl exist. (This

X—>at X—a
is just a minor variation on Fheorem 7.)

() These one-sided hmits caunot both exist even il we allow hinits with the
value 400 or —oo. Hint: Use Darboux’s Theorem (Problem 60).
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It 1s easy to find a function f such that |f] is diflerentable but f 1s not.
For example, we can choose f(x) = | for x ratonal and f(x) = —1 for
x wrrational. In this example f 1s not even continuous, nor is this a mere
coincidence: Prove that if | f] is differentiable at a, and f is continuous at a,
then f is also differentiable at a. Hint: It sufhices to consider only a with
f(a) =0. Why? In this case, what must | f|(a) be?

(@) Let y # 0 and let n be even. Prove that x" + y" = (x + y)" only
when x = 0. Hint If x¢" + ¥" = (xo + y)", apply Rolle’s Theorem to
f)=x"4+y"—(x+y)" on [0, xp].

(b) Prove thatif y # 0 and n 15 odd, then x" + y" = (x + y)" only if x =0
or x = —y.

Suppose that f(0) =0 and f” is increasing. Prove that the function g(x) =
f(x)/x 1s increasing on (0. 00). Hint: Obviously you should look at g'(x).
Prove that it 1s positive by applying the Mean Value Theorem to f on the
right interval (it will help to remember that the hypothesis f(0) = 0 1s essen-
tial, as shown by the function f(x) =1+ ),
Use derivatives to prove that if n > 1, then

(I +x)'>1t+nx for—1<x<0Oand 0 < x
(notice that equality holds for x = 0).

Let f(x) = x* sin” 1/x for x # 0, and let f(0) = 0 (Figure 33).

(a) Prove that 0 1s a local mmimmum pomt for f.

(b) Prove that f'(0) = f7(0) = 0.

This function thus provides another example to show that Theorem 6 cannot
be mproved. It also illustrates a subtlety about maxima and minima that
often goes unnoticed: a function may not be increasing in any mterval to the
right of a local mmimum point, nor decreasing i any mterval to the left.

FIGURE 33

(a) Prove that il f'(a) > O and f’1s continuous at @, then f is ncreasing in
some interval contaiing a.

The next two parts of this problem show that coutinuity of f” is essential.

(b) If g(x) = x2sin 1/x, show that there are numbers x arbitrarily close 1o 0
with g'(x) = I and also with g'(x) = —1.
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() Supposc 0 < a < 1. Let f(x) = ax + x?sinl/x for x # 0, and let
f(0) = 0 (see Figure 34). Show that f is not increasing in any open
mterval contaming 0, by showing that in any interval there are points x
with f’(x) > 0 and also pomnts x with f’(x) < 0.

FIGURE 34

The behavior of f for @ > 1, which is much more diflicult to analyze, is
discussed in the next problem.

Let f(x) = ax + x%sin 1/x for x # 0, and let £(0) = 0. In order to find
the sign of f’(x) when a > 1 itis necessary to decide if 2xsin 1/x —cos1/x
is < —1I for any numbers x close to 0. It is a little more convenient to
consider the function g(y) = 2(sin y)/y — cos y for y # 0; we want to know
if g(v) < —1 for large y. This question is quite delicate; the most significant
partof g(v) is — cos y, which does reach the value —1, but this happens only
when siny = 0, and it is not at all clear whether g itself can have values
< —1. The obvious approach to this problem is to find the local mmimum
values of g. Unfortunately, it is impossible to solve the equation g'(y) = 0
explicitly, so more ingenuity 1s required.

(@) Show thatif g'(y) =0, then

2—y-
T——— ,
oL

<

cosy = (siny)

and conclude that

P dL ol
"‘-

g(y) = (smy)
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(b) Now show that if g’(y) = 0, then

P
. 4'\"'
sm-y = ———,
c 4+),4

and conclude that
2+ _vz

gV = ——.
V4 +y?

<

(¢) Using the fact that (24 y2)/V4 + y* > 1, show that if @ = 1, then f is

not mcreasing in any mterval around 0.
(d) Using the fact that hm (2 + y3)/V 4+ y4 = 1, show that if o > 1, then
y— 00

f s mereasing in some iterval around 0.
A function f is increasing at a if there is some number § > 0 such that

f(x)> fa) f a<x<a+$§
and :

f(x) < fla) f a—368<x <a.
Notice that this does 7ot mean that f is increasing in the interval (@ — §,
a + 8); for example, the function shown m Figure 34 is increasing at 0, but
1s not an mcreasing function m any open interval containing 0.

(a) Suppose that f i1s continuous on [0, 1] and that f 15 increasing at a for
every a in [0, 1]. Prove that f is increasing on [0, 1]. (First convince
voursell that there 1s something to be proved.) Hint: For 0 < b < 1,
prove that the mmmmum of f on [b, 1] must be at b.

(b) Prove part (a) without the assumption that f 1s continuous, by consider-
ing for cach b in [0, 1] the set S, = {x: f(y) = f(b) for all y in [b.x]}.
(This part of the problem is not necessary for the other parts.) Hint
Prove that S, = {x : b < x < 1} by considering sup Sp.

(¢) If f is increasing at ¢ and f is differentiable at a. prove that f'(a) = 0
(this 1s easy).

(d) If f'(a) > 0, prove that f 1sincreasing at a (go right back to the definition
of f'(a)).

(¢) Use parts (a) and (d) to show, without using the Mean Value Theorem,
that if* f 1s continuous on [0, 1] and f'(a¢) > O for all ¢ m [0, 1], then f
1s mcreasing on [0, 1].

(f) Suppose that f is continuous on [0, 1] and f'(¢) = 0 for all @ n (0, 1).
Apply part (e) to the function g(x) = f(x) + ex to show that f(l) —
f(0) > —e. Smilarly; show that f(1) — f(0) < € by considering h(x) =

ex — f(x). Conclude that f(0) = f(1).

This partcular proof that a function with zero dervative must be constant has
many points in common with a proof of H. A. Schwarz, which may be the
first rigorous proof ever given. lts discoverer, at least, scemed to think 1t was.
See his exuberant letter in reference [54] of the Suggested Reading,
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T,

(a)

(@)

(b)

If f 1s a constant function, then every pomt is a local maximum pomt
for f. Itis quite possible for this to happen even if f is not a constant
function: for example, if f(x) = 0 for x < 0 and f(x) = | for x >
0. But prove, using Problem 8-4, that if f is continuous on [a, b] and
every pomt of [a,b] i1s a local maximum pomt, then f is a constant
function. The same result holds, of course, if every point of [a, b] is a
local mimimum point.

Suppose now that every point is either a local maximum or a local mini-
mum point for the continuous function f (but we don’t preclude the pos-
sibility that some points are local maxima while others are local minima).
Prove that f 1s constant, as follows. Suppose that f(ag) < f(bg). We
can assume that f(ag) < f(x) < f(by) for ap < x < by. (Why?) Using
Theorem 1 of the Appendix to Chapter 8, partition [ag, bg| into mtervals
on which sup f —inf f < (f(by) — f(ap))/2; also choose the lengths of
these intervals to be less than (bg—ag)/2. Then there is one such interval
fay,b1] with ay < a; < by < bp and f(ay) < f(by). (Why?) Continue
mductively and use the Nested Interval Theorem (Problem 8-14) to find
a poimt x that cannot be a local maximum or minimum.

A point x 1s called a strict maximum point for f on Aif f(x) > f(y)
for all y in A with y # x (compare with the definition of an ordmary
maximum point). A local strict maximum point is defined in the
obvious way. Find all local strict maximum pomts of the function

0, x irrational

0 = 1 2
g —, X = — m lowest terms.
q q

It seems quite unhkely that a function can have a local strict maximum
at every pomt (although the above example might give one pause for
thought). Prove this as follows.

Suppose that every pomt is a local strict maximum point for f. Let
xy be any number and choose a; < x; < by with by —ay; < 1 such
that f(x;) > f(x) for all x in [ay,b]. Let x2 # x; be any point in
(ay, by) and choose a; < a> < x2 < by < by with by —ap < % such that
f(x2) > f(x) for all x n [az, b2]. Continue m this way, and use the
Nested Interval Theorem (Problem 8-14) to obtamn a contradiction.
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APPENDIX. CONVEXITY AND CONCAVITY

Although the graph of a function can be sketched quite accurately on the basis
of the information provided by the derivative, some subtle aspects of the graph are
revealed only by examining the second derivative. These details were purposely
omitted previously because graph sketching 1s complicated enough without wor-
rying about them, and the additional information obtained is often not worth the
effort. Also, correct proofs of the relevant facts are sufficiently difficult to be placed
in an appendix. Despite these discouraging remarks, the information presented
here 1s well worth assimilating, because the notions of convexity and concavity are
far more 1important than as mere aids to graph sketching. Moreover, the proofs
have a pleasantly geometric flavor not often found n calculus theorems. Indeed,
the basic definition is geometric in nature (see Figure 1).

A function f is convex on an interval, if for all @ and b in the interval, the line
segment joining (a, f(a)) and (b, f (b)) lies above the graph of f.

The geometric condition appearing in this definition can be expressed in an
analytic way that i1s sometimes more useful in proofs. The straight line between
(a, f(a)) and (b, f(b)) is the graph of the function g defined by

f(b)—f(a)(
a

= x —a)+ f(a).

gx) =

Thus line lies above the graph of f at x if g(x) > f(x), that 1s, if

M(x —a)+ f(a) > f(x)
b—a
or
b _
&2——&% —a) > f(x)— f(a)
= (@}
or

fO)— fla)  f&) - f@)

b—a X—a

We therefore have an equivalent definition of convexity.

A function f is convex on an interval if for «, x, and b m the interval with

a < x < b we have _
fx)— f(a) _ f(b) — f(a)

X—a b—a
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(a, f(a))

(b, f (b))

FIGURE 2

"\

THEOREM 1

PROOF

If the word “over” in Definition 1 is replaced by “under” or, equivalently, if the
mequality in Definition 2 1s replaced by

J@) = fla)  fO)— fla)

X —a b—a

we obtain the definttion of a concave function (Figure 2). It is not hard to see that
the concave functions are precisely the ones of the form — f, where f is convex.
For this reason, the next three theorems about convex functions have immediate
corollaries about concave functions, so simple that we will not even bother to
state them.

Figure 3 shows some tangent lines of a convex function. Two things seem to be
true:

(1) The graph of f lies above the tangent hine at (a, f(a)) except at the point
(a. f(a)) ttself (this point is called the point of contact of the tangent hine).

(2) If a < b, then the slope of the tangent line at (a. f(a)) is less than the slope
of the tangent line at (b, f(b)); that 1s, f' 1s increasing.

As a matter of fact these observations are true, and the proofs are not ditheult.

FIGURE 3

Let f be convex. If f is differentiable at a, then the graph of f lies above
the tangent hne through (a, f(a)), except at (a, f(a)) iself. If @ < b and f 1s
differentiable at @ and b, then f'(a) < f'(b).

If O < hy < hy, then as Figure 4 indicates,

fla+hy) — f(a) _ fla+hy) — f(a)
/11 113 '

(h
A nonpictorial proof can be derived immediately from Definition 2 applied to
a <a+hy <a+ h. Inequahity (1) shows that the values of

il ) ENA(@)
h
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|
a a+hy a+ ha

FIGURE 4

decrease as h — 0", Consequently,
fla+h)— f(a)
h
(in fact f'(a) 1s the greatest lower bound of all these numbers). But this means that
for h > 0 the secant line through (a, f(a)) and (a + h, f(a + h)) has larger slope
than the tangent line, which implies that (@ + h, f(a + h)) lies above the tangent
line (an analytc translation of this argument is easily supplied).
For negative h there is a similar situation (Figure 5): if hy < hy < 0, then
fla+hy) — fla) fla+hy)— fl(a)
> .
I ha
This shows that the slope of the tangent line is greater than
fla+h) — f(a)
h

(in fact f’(a) is the least upper bound of all these numbers), so that f(a + h) lies
above the tangent line if & < 0. This proves the first part of the theorem.

fl(a) < for h > 0

forh <0

]
a+hy a+h a

FIGURE 5
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FIGURE 7

LEMMA

PROOFV

FIGURE 6

Now suppose that a < b. Then, as we have already seen (Figure 6),

fla+ (b—a))— fla)
=

f(a) since b —a >0
b—a
= b—a
and
t — b)) — f(
fl(b) > jo+ e =70 sincea—b <0
a—b
_ fla)— fb)  f(b)— fla)
B a—b - b —a i

Combining these inequalities, we obtain f"(a) < f'(b). |

Theorem 1 has two converses. Here the proofs will be a little more difhcult.
We begin with a lemma that plays the same role in the next theorem that Rolle’s
Theorem plays in the proof of the Mean Value Theorem. It states that if f’
1s increasing, then the graph of f lies below any secant line which happens to be
horizontal.

Suppose f is differentiable and f" is increasing. If @ < b and f(a) = f(b), then
filx)= fla) = f(b) fora < x < b:

Suppose that f(x) = f(a) = f(b) for some x in (a,b). Then the maximum of
f on [a,b] occurs at some pomnt xo m (a, b) with f(xg) = f(a) and, of course,
f'(xg) = 0 (Figure 7). On the other hand, applying the Mean Value Theorem to
the interval [a, xo], we find that there is x; with @ < x| < xp and

_ flxo) = fl@)
Xp = -

f(xyp) 0.

contradicting the fact that f is increasing. i



THEOREM 2

PROOF

FIGURL 8

THEOREM 3

PROOF
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We now attack the general case by the same sort of algebraic machinations that
we used in the proof of the Mean Value Theorem.

If f is differentiable and f” is increasing, then f is convex.

Let a < b. Define g by

[) _B
o) = F(x)— fO-f@ .

b—a

It is easy to see that g’ 1s also increasing; moreover, g(a) = g(b) = f(a). Applying
the lemma to g we conclude that

gx) < fla) f a<x<hbh.

In other words, if @ < x < b, then

fb) — fla)

fx)— (x—a) < f(a)
b—a
or
fx)— fla) _ fb)— f(a)
X —a b—a ’

Hence f is convex. ||

If f s differentiable and the graph of f lies above cach tangent line except at the
pomt of contact, then f is convex.

Let a < b. It 1s clear from Figure 8 that if' (b, f(b)) lies above the tangent line at
(a. f(a)), and (a. f(a)) hes above the tangent line at (b, f(b)), then the slope of
the tangent line at (b, (b)) must be larger than the slope of the tangent line at
(a, f(a)). The following argument just says this with equations.

Since the tangent line at (a, f(a)) is the graph of the function

g(x) = fla)(x —a) + fla).
and since (b, f(b)) lies above the tangent line, we have
(1) f) > f(a)b—a)+ fla).
Similarly, since the tangent line at (b, f(b)) 1s the graph of
h(x) = f'(b)y(x —b) + f(b),
and (a. f(a)) lies above the tangent line at (b, f (b)), we have
2) fa@)> f'(b)a—b)+ f(b).
It follows from (1) and (2) that f'(a) < f'(b).

1t now follows from Theorem 2 that f is convex. |

If a function f has a reasonable second derivative, the mformation given in these
theorems can be used to discover the regions in which f is convex or coucave.
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Consider, for example, the function

fx) =

A

l +x

For this [unction,

)=t o
fix (14 x°)°
Thus f'(x) =0 only for x =0, and f(0) = 1, while

flx)y>=0 if x <0,
Fa)y=0 if =0

Moreover,
f(x) >0 forall x,
f(x) > 0 asx — oo or —o0,
f s even.

FIGURE 9

The graph of f therefore looks something like Figure 9. We now compute

(1 +x22(—2)+2x- [2(1 +=x2) -2x]
(14 x2)*

f”{_r} L
_23x%-1)
T (0437

It 1s not hard to determine the sign of f”(x). Note frst that f”(x) = 0 only when
x =/1/3 or —/1/3. Since [ is clearly continuous, it must keep the same sign
on each of the sets

(—50; =/T/B);
(=/1/3,v/1/3),
(v'1/3, 00).
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Since we easily compute, for example, that

ff=H= 1>o0,
£7(0)= -2 <0,
ffh= 3>0,

we conclude that

f" > 0on (=00, —+/1/3) and (y/1/3, o).
" <0on (—=/1/3,/1/3).

Since f” > 0 means f’1s increasing, it follows from Theorem 2 that f is convex on

(—o0, =/ 1/3) and (y/ 1/3, 00), while on (—+/1/3, y/1/3) f 1s concave (Figure 10).

fisconvex  fisconcave  f is convex

-V1/3 J1/3

FIGURE 10

Notice that at (y/1/3, %) the tangent line lies below the part of the graph to the

right, since f is convex on (y/1/3, 00), and above the part of the graph to the left,
since f 1s concave on (—y/1/3,/1/3); thus the tangent line crosses the graph. In

general, a number a is called an inflection point of f if the tangent line to the

graph of f at (a. f(a)) crosses the graph; thus J/1/3 and —m are inflection
pomnts of f(x) = 1/(1 + x2). Note that the condition f”(a) = 0 does not ensure
that @ 1s an inflection point of f; for example, if f(x) = x* then f7(0) = 0, but
[ 1s convex, so the tangent line at (0, 0) certainly doesn’t cross the graph of f. In
order to conclude that @ is an inflection point of a function f, we need to know
that f” has different signs to the left and right of a.

This example illustrates the procedure which may be used to analyze any func-
tion f. After the graph has been sketched, using the mformation provided by f”,
the zeros of f” are computed and the sign of f” is determined on the intervals
between consecutive zeros. On intervals where f” > 0 the function is convex;
on intervals where f” < 0 the function is concave. Knowledge of the regions of
convexity and concavity of f can often prevent absurd misinterpretation of other
data about f. Several functions, which can be analyzed in this way, are given in
the problems, which also contain some theoretical questions.



226  Denwatives and Integrals

THEOREM 4
PROOF
fle)—+
fb)+
fla) +
| | |
T T T
a b @
FIGURE 11
FIGURE 12

‘To round out our discussion of convexity and concavity, we will prove one further
result that you may already have begun to suspect. We have seen that convex and
concave functions have the property that every tangent line intersects the graph
just once; a few drawings will probably convince you that no other functions have
this property, but the only proof I know is rather tricky.

If f is differenuable on an interval and mtersects each of its tangent lines just
once, then f 1s either convex or concave on that mterval.

There are two parts to the proof.

(1) First we claim that no straight line can intersect the graph of f in three different
pomts. Suppose, on the contrary, that some straight hne did intersect the graph
of f at (a, f(a)), (b, f(b)) and (c, f(c)), with a < b < ¢ (Figure 11). Then we

would have »
f) = fla) _ fle) =~ fla)

b—a c—a

(1)

Consider the function

g(x) = for x mn [b, ¢].

fx)— fla)
c a

Equation (1) says that g(h) = g(c). So by Rolle’s Theorem, there 1s some number x
m (b, ¢) where 0 = g'(x), and thus

0=&—a)f(x)—[fx)— f(a)]

or
_ S(x)— f(a)

X —da

f(x)

But this says (Figure 12) that the tangent hne at (x, f(x)) passes through (a, f(a)),
contradicting the hypotheses.
(2) Suppose that ag < by < cp and a; < by < ¢; are pomts in the interval. Let

X = (1 = tag + ra;
yi = (1 = 1)by + 1h; O0<r<l.
= —=1t)ecg+1c;

Then xg = ag and x; = a; and (Problem 4-2) the pomts x, all he between ag
and aj, with analogous statements for y, and z;. Moreover,

X < Vi1 < %y f()r () <t < ]

Now consider the function

_ fO) — f(xp) ~ S@) - f(xp)

Ye — %4 Zr — X

forO<r<1.

g(1)

By step (1), g(r) # O for all 1 in [0, }]. So cither g(r) > 0 for all r m [0, 1] or
g(1) < 0 forall 7 in [0, }]. Thus, cither £ is convex or f is concave. |
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PROBLEMS

1.

*6.

*7.

Sketch, indicating regions of convexity and concavity and points of inflection,
the functions in Problem 11-1 (consider (iv) as double starred).

Figure 30 in Chapter 11 shows the graph of f’. Sketch the graph of f.

Show that f is convex on an interval if and only if for all x and y in the
interval we have

fax+(—ny) <tf()+ =0 f(y). forO<rt <.
(This is just a restatement of the defiition, but a useful one.)

(a) Prove thatif f and g are convex and f is increasing, then fog is convex.
(It will be easiest to use Problem 3.)

(b) Give an example where g o f 1s not convex.

(¢) Suppose that f and g are twice differentiable. Give another proof of the
result of part (a) by considering second derivatves.

(a) Suppose that f is differentiable and convex on an interval. Show that
either f is increasing, or else f is decreasing, or else there is a number ¢
such that f1s decreasing to the left of ¢ and mcreasig to the right of c.

(b) Use this fact to give another proof of the result in Problem 4(a) when f
and g arc (one-time) differentiable. (You will have to be a hittle careful
when comparing f'(g(x)) and f'(g(y)) for x < y.)

(¢) Prove the result n part (a) without assuming f differentiable. You will
have to keep track of several diflerent cases, but no particularly clever
ideas are needed. Begin by showing thatif @ < b and f(a) < f(b), then
f 1s increasing to the right of b; and if’ f(a) > f(b), then f is decreasing
to the left of a.

Let f be a twice-differentable function with the following properties:
f(x) > 0 for x = 0, and f is decreasing, and f'(0) = 0. Prove that
f"(x) =0 for some x > 0 (so that in reasonable cases f will have an inflec-
tion point at x—an example is given by f(x) = 1/(14+x2)). Every hypothesis
in this theorem is essential, as shown by f(x) =1 — x2, which is not positive
for all x; by f(x) = x2, which is not decreasing; and by f(x) = 1/(x + 1),
which does not satisty f'(0) = 0. Hint: Choose xg > 0 with f"(xg) < 0. We
canmot have f'(v) < f'(xg) for all y > xg. Why not? So f’(x1) > f'(xq) for
some x| > xg. Consider f” on [0, xy].

(a) Prove that if’ f is convex, then f([x + v]/2) < [f(x)+ f(»)]/2.

(b) Suppose that f satisties this condition. Show that f(kx + (1 —k)y) <
kf(x)+ (F —k)f(y) whenever k 1s a rational number, between 0 and 1,
of the form m /2", Hint: Part (a) 1s the special case n = 1. Use induction,
employing part (a) at each step.

(¢) Supposc that f sausfies the condition m part (a) and f is continuous.
Show that f 1s convex.
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*8.
*Q,
g
S
| % i
a b c *10.
(@)
11.
Q
(0]
P
F——————
a b C
(b)

FIGURE 13

H
For n > 1, let py, ..., py be positive numbers with Z D=1

i=1
n

(@) Tor any numbers xy, ..., x, show that Z pix; lies between the smallest

and the largest x;. i=1
n—1 n—1
(b) Show the same for (1/¢) Z pix;, where t = Z Di-
i=1 =1l
n H
(c) Prove Jensen’s inequality: 1f' f is convex, then f (Z p,-x,) < Z pi f(xp).
Hint: Use Problem 3, noting that p, = 1 —1. (Plarlt (b)1s nee(ile(li to show
n—1
that (1/1) Z pix; is i the domain of fif xy, ..., x, are.)
=1

(a) Forany function f, the right-hand derivative, linol [fla+h)— f(a)]/h,is
h—0"

denoted by f7 (@), and the left-hand derivative is denoted by f’ (a). The
proof of Theorem | actually shows that f} (a) and f’ (a) always exist if
S 1s convex on some open interval containing a. Check this assertion,
and also show that f] and f’ are increasing, and that f' (a) < f] (a).

(b) Conversely, suppose that f is convex on [a, b] and g is convex on [b, ¢],
with f(b) = g(b) and f’(b) < g (b) (Figure 13(a)). If we define h
on [a.c] to be f on [a.b] and g on [b.c], show that i 1s convex on
[a,c]. Hmt: Given P and Q on opposite sides of O = (b, f (b)), as in
Figure 13 (b), compare the slope of O Q with that of PO.

(c) Show thatif f is convex, then f(a) = f’(a)if and only if’ fI is con-
tinuous at a. (Thus f is differentiable precisely when f7 is continuous.)
Hint: [f(b) — f(a)]/(b — a) is close to ' (a) for b < a close to a, and
f1(b) is less than this quotient.

(a) Prove that a convex function on R, or on any open interval, must be
continuous.

(h) Give an example of a convex function on a closed interval that is not
continuous, and explain exactly what kinds of discontinuities are possible.

Call a function f weakly convex on an interval if for @ < b < ¢ in this interval
we have '
f@) = fla)y _ f0) — fla)

X —a ol b—a

(a) Show that a weakly convex function is convex if and only if its graph
contains no straight line segments. (Sometimes a weakly convex function
is simply called “convex,” while convex functions in our sense are called
“strictly convex™.)

(b) Reformulate the theorems of this section for weakly convex functions.
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Find two convex functions f and g such that f(x) = g(x) if and only if x
1s an integer. Hint: First find an example where g is merely weakly convex,
and then modify it, using the result of Problem 9 as a guide.

A set A of pomts in the plane is called convex if A contains the line segment

joining any two points in it (Figure 14). For a function f, let A; be the set

of points (x,v) with y > f(x), so that A, is the set of points on or above
the graph of f. Show that A; is convex if and only if [ is weakly convex,
in the terminology of the previous problem. Further information on convex
sets will be found in reference [18] of the Suggested Reading,

(a) a convex subset of the plane (b) a non-convex subset of the plane

FIGURE 14



CHAPTER

DEFINITION

INVERSE FUNCTIONS

We now have at our disposal quite powerful methods for mvestigating functions;
what we lack is an adequate supply of functions to which these methods may
be applied. We have studied various ways of forming new functions from old—
addition, multiphication, division, and composition-—but using these alone, we can
produce only the rational functions (even the sine function, although frequently
used for examples, has never been defined). In the next few chapters we will
begin to construct new functions in quite sophisticated ways, but there is one
important method which will practically double the usefulness of any other method
we discover.

[ we recall that a function is a collection of pairs of numbers, we might hit upon
the bright idea of simply reversing all the pairs. Thus from the function

f:{(192)’ (3’4)’ (5’9)5(13’8)}3
we obtain
g=1{2,1),4.3).9.5.8.13)}.

While f(1) =2 and f(3) =4, we have g(2) = | and g(4) = 3.
Unfortunately, this bright idea does not always work. If

S= {1 2), (84355 I (LSS

then the collection

{(2,1).(4,3).9,5),4,13)}

i1s not a function at all, since 1t contams both (4, 3) and (4, 13). It is clear where
the trouble lies: f(3) = f(13), even though 3 # 13. This is the only sort of thing
that can go wrong, and it is worthwhile giving a name to the functions for which
this does not happen.

A function f 1s one-one (read “one-to-one”) i’ f(a) # f(b) whenever a # b.

The identity function 7 is obviously one-one, and so is the followmg modifica-
tion:

X S

[J S
SRV N

X,
gx)y=4 3, «x
X

N

The function f(x) = x? is not onc-one, since f(—1) = f(1), but if we define
2
(g ('\‘) = X", X Z. ()

230
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(and leave g undefined for x < 0), then g is one-one, because g is increasing (since
g'(x) =2x > 0, for x > 0). This observation is easily generalized: If » is a natural

number and
fGy=x", x>0,

then f is one-one. If n 1s odd, one can do better: the function
flx)y=x" for all x

1s one-one (since f'(x) = nx""1'> 0, for all x # 0).

It 1s particularly easy to decide from the graph of f whether f is one-one: the
condition f(a) # f(b) for a # b means that no horizontal line intersects the graph
of f twice (Figure 1).

a one-one function a function that is not one-one

(@) (b)

FIGURE 1

If we reverse all the pairs in (a not necessarily one-one function) f we obtain. n
any case, some collection of pairs. It is popular to abstain from this procedure un-
less f 1s one-one, but there 1s no particular reason to do so-—instead of a definition
with restrictive conditions we obtain a definition and a theorem.

DEFINITION For any function f, the inverse of f, denoted by f~1, is the sct of all pairs
(a, b) for which the pair (b, a) is in f.

THEOREM 1 f~1is a function if and only if f is one-one.

PROOF  Suppose first that f is one-one. Let (a, b) and (a. ¢) be two pairs in f~!. Then
(b,a) and (c,a) are m f, so a = f(b) and a = f(c¢); since f is onc-one this
implies that b = ¢. Thus f~! is a function.

Conversely, suppose that f~1is a function. If f(b) = f(c), then f contains
the pairs (b. f(b)) and (c. f(c)) = (c, f(b)).so (f(b),b) and (f (D), c) arc in f‘l.

Since f~!is a function this inmiplies that b = ¢. Thus f is onc-one. i
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The graphs of f and f~! are so closely related that it is possible to use the
graph of f to visualize the graph of f~!. Since the graph of ! consists of all
pairs (a, b) with (b, a) in the graph of f, one obtains the graph of £~ ! from the
graph of f by interchanging the horizontal and vertical axes. If f has the graph
shown in Figure 2(a),

P —

THAOTLA

9 —

T

/ |

\

FIGURE 2(a)
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This procedure is awkward with books and impossible with blackboards, so it is
fortunate that there is another way of constructing the graph of f~'. The points
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(a.b) and (b,a) are reflections of each other through the graph of I(x) = x,
which is called the diagonal (Figure 4). To obtain the graph of f~! we merely
reflect the graph of f through this line (Figure 5).

(a, b)
[ ] ,
//
s l
//dlagona
7/
(GEd)E I
[ ] 7/
/
7/
P o(h,a)
4 .
o d.c)
V4
7/
Ve
/
7/
7/
Ve
e
FIGURE 4 FIGURE 5

Reflecting through the diagonal twice will clearly leave us right back where we
started; this means that (f~1)~! = £, which is also clear from the definition. In
conjunction with Theorem 1, this equation has a significant consequence: if f
is a one-one function, then the function f~! is also one-one (since (f~")~!is a
function).

There are a few other simple manipulations with mverse functions of which you
should be aware. Since (a, b) 1s in f precisely when (b, @) 1s in £, it follows that

b= f(a) means the same as a= f_l(b).

Thus f~'(b) is the (unique) number a such that f(a) = b; for example, if’ f(x) =
X3, then f71(b) is the unique number a such that a’ = b, and this number is, by
definition, v/b.

The fact that f~'(x) is the number y such that f(y) = x can be restated in a
much more compact form:

fU ) = x, for alt x in the domain of £

Morcover,

N f)) =x, for all x in the domam of f;

this follows from the previous equation upon replacing f by f I, These two
unportant equations can be written

i iin Rk
flof=1
(except that the right side will have a bigger domai if the domain of f or £~ is

not all of R).
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FIGURE 6

e

]

THEOREM 2
FIGURE 7

PROOF

Since many standard functions will be defined as the inverses of other functions,
it 1s quite mportant that we be able to tell which functions are one-one. We have
already hinted which class of functions are most casily dealt with—increasing and
decreasing functions are obviously one-one. Morcover, if f is increasing, then f~!
is also increasing, and if f is decreasing, then f~! is decreasing (the proof is left
to you). In addition, f is increasing if and only if — f 1s decreasing, a very useful
fact to remember.

It is certainly not true that every one-one function is either mcreasing or decreas-
ing. One example has already been mentioned, and is now graphed in Figure 6:

X, x#3,5
glx)y=4¢4 3, x=5
5, x=3.

Figure 7 shows that there are even continuous one-one functions which are neither
increasmg nor decreasing. But if you try drawing a few pictures you will soon
suspect that every one-one continuous function defined on an interval is either
increasing or decreasing,

If f is continuous and one-one on an mterval, then f 1s either mcreasing or
decreasing on that interval.

The proof proceeds in three casy steps:

(1) If @ < b < c are three points n the mterval, then

either (1) f(a) < f(b) < f(c)
or (i1) fla) > f(b) > f(c).

Suppose, for example, that f(a) < f(c). If we had f(b) < f(a) (Figure 8), then
the Intermediate Value Theorem applied to the interval [b, ¢] would give an x with

—
a b c
FIGURE 8
b < x < cand f(x) = f(a), contradicting the fact that f is one-one on [a.c].
Swunilarly, f(h) > f(c) would lead to a contradiction, so f(a) < f(b) < f(c).
Naturally, the same sort of argument works for the case f(a) > f(c).

2)If @ < b < ¢ < d are four points in the mnterval, then

cither (1) fla) < f(b) < f(c) < f(d)

or (11) fla) > f(b) > f(c) > f(d).

For we can apply (I)toa <b < cand then to b < ¢ < d.
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(3) Take any @ < b in the interval, and suppose that f(a) < f(b). Then f is
mncreasing: For if ¢ and d are any two points, we can apply (2) to the collection
{a,b, c,d} (after arranging them in increasing order). |

Henceforth we shall be concerned almost exclusively with continuous increasing
or decreasing functions which are defined on an interval. If' f is such a function,
it is possible to say quite precisely what the domain of f~! will be like.

Suppose first that f is a continuous increasing function on the closed mterval
[a.b]. Then, by the Intermediate Value Theorem, f takes on every value between
f(a) and f(b). Therefore, the domain of f~! is the closed interval [f(a), f(b)].
Similarly, if’ f is continuous and decreasing on [a. b], then the domain of f~! s
Lf(B). fla)].

If f is a continuous ncreasing function on an open interval (a, b) the analysis
becomes a bit more difhicult. To begin with, let us choose some point ¢ in (a, b).
We will first decide which values > f(c) are taken on by f. One possibility is that
f takes on arbitrarily large values (Figure 9). In this case f takes on a/l values
> f(c), by the Intermediate Value Theorem. If; on the other hand, f does not
take on arbitrarily large values, then A = { f(x) : ¢ < x < b} is bounded above,
so A has a least upper bound « (Figure 10). Now suppose y is any number with
f(c) <y < a. Then f takes on some value f(x) > y (because « is the least
upper bound of A). By the Intermediate Value Theorem, f actually takes on
the value y. Notice that f cannot take on the value « itself; for if @ = f(x) for
a < x < b and we choose t with x <t < b, then f(t) > «, which i1s impossible.

Precisely the same arguments work for values less than f(c): either f takes on
all values less than f(c) or there is a number B8 < f(c) such that f takes on all
values between B and f(c), but not 8 itself.

This entire argument can be repeated if f 1s decreasing, and if the domain of f
is R or (a,00) or (—00.a). Summarizing: if f is a continuous increasing, or
decreasing, function whose domain 1s an mterval having one of the forms (a, b),
(=00, b), (a,o0), or R, then the domain of f‘l 1s also an interval which has one
of these four forms, and we can easily fit the remaining types of mtervals, (a, b],
[a.b], (=00, b], and [a, o0), into this discussion also.

Now that we have completed this preliminary analysis of continuous one-one
functions, it is possible to begin asking which important properties of a one-one
function are inherited by its inverse. For continuity there is no problem.

If f is continuous and one-onc on an interval, then £~ ! is also continuous.

We know by Theorem 2 that f is either increasing or decreasing. We might as
well assume that f is mcreasing, since we can then take care of the other case by
applying the usual trick of considering — f. We might as well assume our interval
Is open, since it is easy to see that a continuous increasing or decreasing function
on any interval can be extended to one on a larger open interval.

We must show that

lin} _f"l(x) =f )

X—0
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fla)+4
Sla)y=>

f@)—é

FIGURE 11

(fa),a) =

FIGURE 12

for cach b in the domain of f=!. Such a number b is of the form f(a) for some a
m the domain of f. For any € > 0, we want to find a § > 0 such that, for all x,

i fla)—6 <x < f(a)+ 38, thena —¢ < f"'(x) < a+e.

Figure 11 suggests the way of finding § (remember that by looking sideways you
see the graph of f~!): since

a—&e<a<da-+e,

it follows that

fla—¢€) < f(a) < f(a+¢e);

we let § be the smaller of f(a+¢)— f(a) and f(a)— f(a—¢). Figure 11 contains
the entire proof that this § works, and what follows is simply a verbal account of
the mformation contamed in this picture.

Our choice of § ensures that

fla—¢) < fa) =68 and f(a)+6 < fla+e).

Consequently, if
fla)—6 <x < f(a)+ 4,

then
fla—¢) <x < fla—+e¢).

Since f 1s increasing, ' is also increasing, and we obtain

Y fa—e)y < ) < ' (fa+e).

1.€.,
— ]| R
a—¢e< f(x)<a-+e,

which is precisely what we want. |

Having successfully investigated continuity of £~ it is only reasonable to tackle
differentiability. Again, a picture indicates just what result ought to be true. Fig-
ure 12 shows the graph of a one-one function f with a tangent line L through
(a. f(a)). If this entre picture is reflected through the diagonal, it shows the graph
of f‘I and the tangent Iine L' through (f(a). a). The slope of L’ is the reciprocal
of the slope of L. In other words, it appears that

1
‘_l ’
a)) = .
() (f(a)) @)
This formula can equally well be written in a way which expresses (f_l)’([)) i
rectly, for cach b in the domain of £~ 1:

|
( '_])'(/ = —_—
S =T0TT0)

Unlike the argument for continuity, this pictorial “proof™ becomes somewhat
mvolved when formulated analytically. "FPhere 1s another approach which might
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be tried. Since we know that

FO ) = x,

it is tempting to prove the desired formula by applying the Chain Rule:

-1 1
S0 -(f D)) =1,
SO
(fﬁl)’(-\') = %
J'f )
Unfortunately, this is not a proof that £~V is differentiable, since the Chain Rule
cannot be applied unless f~!is already known to be differentiable. But this argu-
ment does show what (f~1)(x) will have to be if f~1 i differentiable, and it can
also be used to obtain some mmportant preliminary mformaton.

If f is a continuous one-one function defined on an interval and f'(f~(a)) = 0,
then £~ is not differentiable at a.

We have

FOF o)) =x.

If f~1 were differentiable at a, the Chain Rule would imply that

O Nay - (Y @) =1,
hence
0-(f Y =1,

which is absurd. ]

A simple example to which Theorem 4 applies is the function f(x) = x*. Since
0y =0and 0= f 1(0), the function ! is not differentiable at 0 (Figure 13).
Having decided where an iverse function cannot be differentiable, we are now
ready for the rigorous proof that in all other cases the derivative 1s given by the

bl

formula which we have already “derived” in two different ways. Notice that the

following argument uses continuily of f~', which we have already proved.

Let f be a continuous one-one function defined on an interval, and suppose that
£ is differentiable at f~1(b), with derivative f'(f~'(b)) # 0. Then f~'is differ-
entiable at b, and

1
( _1),(1 = =
SO0 = 25Ty

let b = f(a). Then

. f_](b +h) - f'l(b)
lumn
h—0 h
) f‘l(b +h)—a
= lim
h—0 h
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Now every number b + h in the domain of f~! can be written in the form
b+h= fla+k)

for a unique k (we should really write k(h), but we will stick with k for simplicity).
Then

] f"{b—l—h)—a
lim
h—0 h

. fYUf@a+k)—a
= lim —
h—-0  fla+k)—=b

: k
7 Ilrlgtll fla+k)— fla)

We are clearly on the right track! It is not hard to get an explicit expression for k;
since

b+h= fla+k)

we have
fYb+h =a+k
or

k= fYb+h) — f ).

Now by Theorem 3, the function f~! is continuous at b. This means that k
approaches 0 as h approaches 0. Since
. Jla+k) — f(a)
lim
k—0 k

= fla)=f'(f7'®B) #0,
this implies that

(f () = |

(b))

The work we have done on mverse functions will be amply repaid later, but here
is an immediate dividend. For n odd, let

TH G =tk for all x:

for n even, let

J’n[‘) —x Xo= 0,

Then f, is a continuous one-one function, whose inverse function is

)= YE=x""
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By Theorem 5 we have, for x # 0,

; |
)= T
1
= ]
B | ]
T oyl
Zl"l'“'“”_l.
n
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Thus, it f(x) = x“, and a is an integer or the reciprocal of a natural number, then
f'(x) = ax?'. It is now easy to check that this formula is true if a 1s any rational

number: Let @ = m/n, where m is an integer, and »n is a natural number; if

f(\} . "_m}u - (A_U”)m‘

then, by the Chain Rule,

3 m—1 1 i
l:(l) —m (.l‘””) = _“.(UH) 1
n

- L/ m=Q/m]+ [ /m~1]
n
m r

— _".Im,fn] I_
n

Although we now have a formula for f’(x) when f(x) = x“ and a 1s rational,
the treatment of the function f(x) = x“ for wrrational a will have to be saved

for later—at the moment we do not even know the meaning of a symbol like x

=
V2

Actually, mverse functions will be mvolved crucially in the definition of x“ for
irrational a. Indeed, in the next few chapters several important functions will be

defined in terms of their inverse functions.

PROBLEMS
1. Find f~! for each of the following f.

() fx)y=x3+1.

i) f@x)=@x—1)>

X x rational
—x, X irrational.

i) o) = I

o Lz —x2 x>0

) fie) = I 1—x% %<0
X X o= s

i) S avais m=ai, i =1, n—1
@1, X = an.

(vi) f&)=x+[x].
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10.

11.
*12.
13.

(vi)  f(O.ayazaz...) = 0.apajas . ... (Decunal representation is being used.)

(vi) f(x) =

1 —x2

,—l <x < 1.

Describe the graph of f~! when

(1) f 1s increasing and always positive.

(1) f 1s increasing and always negative.

(i) f 1s decreasing and always positive.

(v)  f 1s decreasing and always negative.

Prove that if f is increasing, then so is f~!, and similarly for decreasing
functions.

If fand g are increasing, is f + g2 Or f-g? Or fog?

(a) Prove that if f and g are one-one, then f o g is also one-one. Find
(fog) Vinterms of f~' and g~'. Hint: The answer is not f~' o g™\
(b) Find g~ " in terms of f~1if g(x) =1+ f(x).

ax+b

Show that f(x) = ; is one-one if and only if ad — be # 0, and find

£~"in this case.
On which mtervals [a, b] will the tollowing functions be one-one?

@) flo)=x>—3x2
() fx)=x>+x.
() f)=+x3)7L

: e
(1\’) f(l)_xz—l—l.

Suppose that f 1s differentiable with derivative f’(x) = (1 + x3H=V2, Show
that g = ! satisfies g"(x) = %g(x)z.

Suppose that f is a one-one function and that f ~! has a derivative which is
nowhere 0. Prove that f 1s differentiable. Hint: There 1s a one-step proof.

As a follow up to Problem 10-17, what additional condition on g will msure
that f 1s differentiable?

Find a formula for (f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>