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Indications 
1. !The!problems!were!elaborated!concerning!two!aspects:!

a. To!cover!merely!all!the!subjects!from!the!syllabus;!
b. The!average!time!for!solving!the!items!is!about!15!minutes!!per!a!short!problem;!

2. In!your!folder!you!will!find!out!the!following:!
c. Answer!sheets!!
d. Draft!sheets!
e. The!envelope!with!the!subjects!in!English!and!the!translated!version!of!them!in!your!mother!

tongue;!
3. The!solutions!of!the!problems!will!be!written!down!only!on!the!answer!sheets!you!receive!on!your!desk.!

PLEASE&WRITE&ONLY&ON&THE&PRINTED&SIDE&OF&THE&PAPER&SHEET.&&DON’T&USE&THE&REVERSE&SIDE.!The!
evaluator!will!not!take!into!account!what!is!written!on!the!reverse!of!the!answer!sheet.!!!

4. The!draft!sheets!is!for!your!own!use!to!try!calculation,!write!some!numbers!etc.!BEWARE:!These!papers!
are!not!taken!into!account!in!evaluation,!at!the!end!of!the!test!they!will!be!collected!separately!.!
Everything!you!consider!as!part!of!the!solutions!have!to!be!written!on!the!answer!sheets.!!

5. Each!problem!have!to!be!started!!on!a!new!distinct!answer!sheet.!!
6. On!each!answer!sheet!please!fill!in!the!designated!boxes!as!follows:!

a. In!PROBLEM!NO.!box!write!down!only!the!number!of!the!problem:!i.e.!1!–!15!for!short!
problems,!!16!–!19!for!long!problems.!Each!sheet!containing!the!solutions!of!a!certain!
problem,!should!have!in!the!box!the!number!of!the!problem;!!

b. In!Student!ID!–!fill!in!your!ID!you!will!find!on!your!envelope,!consisted!of!3!leters!and!2!
digits.!!

c. In!page!no.!box!you!will!fill!in!the!number!of!page,!starting!from!1.!We!advise!you!to!fill!this!
boxes!after!you!finish!the!test!

7. We!don’t!understand!your!language,!but!the!mathematic!language!is!universal,!so!use!as!more!
relationships!as!you!think!that!your!solution!will!be!better!understand!by!the!evaluator.!If!you!want!to!
explain!in!words!we!kindly!ask!you!to!use!short!English!propositions.!!

8. Use!the!pen!you!find!out!on!the!desk.!It!is!advisable!to!use!a!pencil!for!the!sketches.!!
9. At!the!end!of!the!test:!

a. Don’t!forget!to!put!in!order!your!papers;!
b. Put!the!answer!sheets!in!the!folder!1.!Please!verify!that!all!the!pages!contain!your!ID,!correct!

numbering!of!the!problems!and!all!pages!are!in!the!right!order!and!numbered.!This!is!an!
advantage!of!ease!of!understanding!your!solutions.!!

c. Verify!with!the!assistant!the!correct!number!of!answer!sheets!used!fill!in!this!number!on!the!
cover!of!the!folder!and!sign.!

d. Put!the!draft!papers!in!the!designated!folder,!Put!the!test!papers!back!in!the!envelope.!!
e. Go!to!swim!!

GOOD LUCK !   
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Problem 1. Lagrange Points 

The Lagrange points are the five positions in an orbital configuration, where a small object is stationary 

relative to two big bodies, only gravitationally interacting with them. For example, an artificial satellite relative to 

Earth and Moon, or relative to Earth and Sun. In the Figure 1 are sketched two possible orbits of Earth relative to 

Sun and of a small satellite relative to the Sun. Find out which of the two points 1
3L and 2

3L  could be the real 

Lagrange point relative to the system Earth – Sun, and calculate its position relative to Sun. You know the 

following data:  the Earth - Sun distance km1015 7
S  dE ⋅= and the Earth – Sun mass ratio 332946/1/ S =MME  

 

Problem 1. Marking scheme Lagrange Point 
1. Correct derivation of forces’ equilibrium  6 points 
2. Correct identification of the Lagrange point  2 points 
3. Correct calculation of the position of Lagrange point  2 points  
4. Deduction for incorrect value  1 point  

 
 

According to the notations in fig.1.1 and fig. 2.1  
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The value has to be positive, thus the "

3L  is the position of one Lagrange point  ......................... 2p 
Km54,37w ≈  ............................................................................................................................. 2p 

 
 

Problem 2. Sun gravitational catastrophe!  

In a gravitational catastrophe, the mass of the Sun mass decrease instantly to half of its actual value. If you 

consider that the actual Earth orbit is elliptical, its orbital period is year T 10 =  and the eccentricity of the Earth 

orbit is .0167,00 =e   

Find the period of the Earth`s orbital motion, after the gravitational catastrophe, if it occurs on: a) 3rd of 

July  b) 3rd of January.  

Problem 2. Marking scheme Sun gravitational catastrophe!  
 

- Correct analyze of the initial conditions when the catastrophe occurs ( A)  5 points 
- Correct calculations (B) 5 points 

o Correct use of laws of conservation 2 points 
o Finding out that in the first case the orbit will be elliptic, relations (1)  
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Figure 2.1  

and (2)   2 points 
o Correct conduct of calculations  1 point  

 
Detailed  solution 
 

(A) The orbit of Earth is elliptical, so the shape of the orbit after the solar catastrophe will depend on 
the moment when the decrees of the mass of the Sun will occur.  

Initial analysis of the problem 
a) In 3rd July the Earth is at the aphelion. The speed of the Earth is smaller than the speed 

of Earth on a circular orbit with radius ( ).1 00max,0 ear += .  
b) In 3rd January the Earth is at perihelion. The speed of the Earth is bigger than the speed 

of Earth on a circular orbit with radius ( ).e1ar 00max,0 −= .  
Conclusion (A)  the period should  be calculated only for situation a). The expected trajectory in this case 

is an elliptic one. The possibility that Earth hit the Sun is available too.  
 

(B) Calculations:  
In 3rd July the distance from Sun is 

maximum: fig. 2.1,  
( ).1 00max,0 ear +=  

Before the catastrophe:  
aph,0v - the speed of Earth on aphelion, 

 0a - big Earth’s elliptical orbit semi axis 

0v - the speed of Earth if its orbit is 

circular with radius 00 ar =   
 
According to Keppler’s second law and 

the law of energy conservation (see figure 2.1) the 
following relations can be written : 
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Conclusion – According to the relations (1) and (2) the new orbit of the Earth could be an elliptic one.     
 

For the new elliptical Earth orbit: 
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b) In 3rd of January the Earth is at perihelion. In that moment the Erath speed is larger than the speed 

necessary for an Earth’s circular orbit. Thus the  trajectory of the Earth after the catastrophe will be an open 
trajectory, i.e. an hyperbolic or parabolic orbit.  

 
Conclusion it is not necessary to calculate the period of revolution or could be issued as infinite  
 

Problem 3. Cosmic radiation  

During studies concerning cosmic radiation, a neutral unstable particle – the 0π meson was identified. The 

rest-mass of meson 0π is much larger than the rest-mass of the electron. The studies reveal that during its flight, the 

meson 0π disintegrates into 2 photons.  
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Find an expression for the initial velocity of the meson 0π , if after its disintegration, one of the photons has 

the maximum possible energy maxE  and, consequently, the other photon has the minimum possible energy minE . 

You may use as known c - the speed of light. 

Problem 3. Marking scheme Cosmic radiation  
 

- Correct use of general laws of conservation (A) 5 points 
- Correct applying of the laws of conservation for the conditions stated   

in the problem (B) 4 points 
- Correct conduct of calculations and final solution (C) 1 point 

 
Detailed solution 
 
(A) 
In the disintegration process the laws of energy conservation and the law of the conservation of momentum 

are both obeyed.  
In the general case the law of conservation of the momentum is represented in the down below figure. 

 
 
the total initial energy of  the 0π meson is  

42
0

222 cmcpE +=  
And its kinetic energy is  

2
0c cmEE −=  

The expressions of the 2 conservation laws written after the disintegration are: 
;21 ppp !!!
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 The energy of the photon 1 can be calculated using the notations in the figure  
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Similar the second photon energy is: 
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(B) 
If one of the photon has the maximum possible energy maxE  and consequently the other photon has the 
minimum possible energy minE the law of momentum conservation is sketched: 
  

. 
Thus the relations become very simple: 
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Problem 4. Mass function of a visual binary stellar system 

For a visual binary stellar system consisted of the stars 1σ  and ,2σ  the following relation represents the 
mass function of the system: 

( )
( )

,sin; 2
21

33
2

21 MM
iMMMf

+
=  

where 1M  is the mass of star 1σ ,  2M  is the mass of star 2σ  and  i  is the angle between the plane of the stars’ 
orbits and a plane perpendicular on the direction of observation. 

The recorded spectrum of radiations emitted by the star 1σ , during several months, reveals a sinusoidal 

variation of radiation wavelength, with the period T = 7 days and a shift factor ( ) .001,0/z =λλΔ=      
a. Prove that the mass function of the system is:  
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Where: i sinv1 ⋅  is the maximum speed of star  1σ  relatively to the observer; −K   the gravitational constant , i is 
the angle between the plane of the orbits and the plane normal to the observation direction.  
Assumptions: The orbits of the stars are circular,  

b. Derive an expression for the mass function of the system. The following values are known: 
m/s;10x3 8 c =   .kgNm10x67,6 2211 −−=  K  

 

 

Problem 5. The Astronaut saved by … ice from a can! 

An astronaut, with mass kg,100 M = get out of the space ship for a repairing mission. He has to repair a 

satellite standing still relatively to shuttle, at about  m 90d =  distance away from the shuttle. After he finished his 

job he realizes that the systems designated to assure his come-back to shuttle were broken. He also observed that  

he has air only for 3 minutes. He also noticed that he possessed a hermetically closed cylindrical can (base section
2cm 30S = ) firmly attached to its glove, with g200 m = of ice inside. The ice did not completely fill the can.  

Determine if  the astronaut is able to arrive safely to the shuttle, before his air reserve is empty. Briefly 

explain your calculations. Note that he cannot throw away anything of its equipment, or touch the satellite.  

You may use the following data: K 272T = / the temperature of the ice in the can, Pa 550ps = - the 

pressure of the saturated water vapors at the temperature K 272T = ; K)J/(kmol 8300R ⋅= - the constant of 

perfect gas; kg/kmol 18=µ  - the molar mass of the water.  

Problem 5. Marking scheme The Astronaut saved by … ice from a can! 
 
 

- A. For the use with an adequate  justify of one of the relationships (4)  3 points  
- B. Reasoning The student describe correctly the processes before and after  

the can is opened.   4points 
- C. Calculations according to the reasoning, and/or as support for reasoning 2 points 
- D. Correct result 1 point 
Detailed solution 
 

Theoretical considerations: 
  

The incident particle flux on a wall (i.e. a certain direction on a surface) is: 
 

v
6
1

00 ⋅⋅⋅⋅=Ω⋅=Φ Snmm  (3) 

,3
0

300 ρ===⋅=⋅
V
m

a
Nm

a
Nmnm  

where: 0m  is the mass of one molecule; −m mass of the gas in the cube ; −V volume of the cube ; −ρ the density 
of the gas ; 

,
RT
pµ

ρ =  
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where −p the pressure of the gas in the cube; The relation (3) – the mass flux relation becomes: 

A  .3
6
13

6
1v

6
1

RT
SpRTS
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µ
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ρ ⋅⋅⋅=⋅⋅⋅=⋅⋅⋅=Φ   (4) 
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ρ ⋅⋅⋅=⋅⋅⋅=⋅⋅⋅=Φ  (5) 3points 

 
B.  Reasoning  
 
Because the cylindrical can is not full of ice, in the empty part of it there are saturated vapors, i.e the mass flux of 
the molecule which  sublimate is equal with mass flux of gass which transform into ice.  Thus the pressure in the 
can is the saturated vapor pressure sp  and it has the corresponding maximum density sρ  See figure 6.2 
 
 
 

 
 

Fig. 6.2 
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ρ ⋅⋅⋅=⋅⋅⋅  

.21 Φ=Φ  
After the can was opened, there be no molecules which sublimate thus the mass flux of the molecules 

which gather the ice become null. So the pressure becomes  ( ).2/sp  
Thus the force acting on the astronaut will be  
 

C. Calculations according to the reasoning, and/or as support for reasoning  2 points 

,
2
s SpF ⋅=  

Opening the can the astronaut will be accelearated with: 
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The total time of the acceleration movement will be the total time of ice sublimation: 
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D. Correct result   
The  travel distance in this time will be : 

m,93
2

s10225ms00825,0
2

2222

   aL ≈
⋅⋅

==
−τ  

The astronaut could arrive safely in at the shuttle if he didn’t lose to much time by solving the problem.  
 

 

 

Problem 6. The life –time of a star from the main sequence  

The plot of the function  ( ) ( )( )SS M/MfL/L loglog =   for data collected from a large number of stars is 

represented in figure 3. The symbols represents: L and M the luminosity respectively the mass and of a star and SL  

and respectively SM   the luminosity and the respectively the mass of the Sun. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Find an expression for the life- time for each star in the Main Sequence from Hertzprung – Rossell diagram 

if the time spent by Sun in the same Main Sequence is .Sτ Consider the following assumptions:  for each star the 
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percentage of its mass which changed into energy is η , the percent of the mass of Sun which changes into energy 

is Sη , the  mass of each star is  SnMM =  and the luminosity of each star remains constant, during its entire life 

time.  

Problem 6. Marking scheme The life –time of a star from the main sequence 
 

- A. The analysis of the graph  6 points  
o Obtaining the formula (1) from the linearity of the graph      
o Correct use of the luminosity formula (2) for finding out the final formula 4 points 

Detailed solution 
 

 
 
 
 

A. The analysis of the graph : 
The graph is linear:  

;axbaxy =+=  
From the graph it can be obtain 
the following data: 
 

;loglog
SS M
Ma

L
L

⋅=
 

;5,3
1
5,3tan ==

Δ
Δ

==
x
y

a α  

 
 

 
.~ 5,3ML  (1) 

The total energy of the star is: 
 

,2McE =  
So the emitted energy due to the 
mass variation of the star is: 
 

,2 McE Δ=Δ  
According to the text  

;MM η=Δ  

.2 McE η=Δ  
By using the definition of the luminosity : 
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,
2

L
Mc η

τ =  (2) 

Which represents the life-time of the star. 
  

By using the results from the graph analysis  

,5,35,3
S

S M
M
LL ⋅=  

Thus : 
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−⋅= M
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If use the same calculations for the Sun it can be obtain  
;2SS cME =  
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Which is the life-time of the Sun 
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Problem 7. The effective temperature on the surface of a star 

A star emits radiation with wavelength values in a narrow range λ<<λΔ , i.e. the wavelength have values 

between  λ  and   λ  and  λΔ+λ  . According to Planck's relationship (for an absolute black body), the following 

relation define, the energy emitted by star in the unit of time, through the unit of area of its surface, per  length-unit 

of the  wavelength range: 

( ).1
2

5 −
= hc/kλc

2

e
πhcr

λ
 

The spectral intensities of two radiations with wavelengths  1λ  and respectively 2λ , both in the range  λΔ

measured on Earth are ( )11I λ  and, respectively ( ).I 22 λ   

a. Establish the equation which, in a general case, allows determining the effective temperature 

on the surface of the star using only spectral measurements.  

b. Find out the approximate value of the effective temperature on the star surface if kThc λ>> .  

c. Find out the relation between wavelength 1λ  and ,2λ  if ( ) ( ),I2I 2211 λ=λ  when .kThc λ<<   
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You know: −h Planck’s constant; −k Boltzmann’s constant; −c speed of light in vacuum.  

 

Problem 7. Marking scheme The effective temperature on the surface of a star 
 
a. Identifying the expression of spectral intensity and correct use of the given relation for obtaining the 

relation (1) 4 points  
b. correct use of the assumption kThc λ>> and find out relation (2) 3 points 
c. correct use of the assumption .kThc λ<< and find out relation (3) 3 points 
 
Detailed solution  
 
a. We start from the definition of r: 
 

λΔ⋅π⋅Δ

Δ
=

λΔ⋅⋅Δ
Δ

= 2
stea R4t

E
St
Er where R is the radius of the star 

( )1e
hc2r Tk/hc5

2

−λ

π
=

λ

 
 

Considering d as the distance from the star to the Earth, the definition- relation of the spectral intensity can 
be written as follows: 

 

( ) 2d4
t
E

I
π

λΔ⋅Δ

Δ

=λ
 

( ) ( );1ed
Rhc2I kT/hc52

22
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π
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λ
 

Particularly for each wavelength: 
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The ratio of the 2 above relations  
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   (1) 

  
Represents an equation which allow to find out the temperature of star’s surface T by using spectral 
measurements  

b. If we consider that  
,kThc λ>> then: 

 kT/hckT/hc 11 e1e λλ ≈−  and   
kT/hckT/hc 22 e1e λλ ≈−  

The relation (1) becomes  
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c. If  ,kThc λ<<  then: 
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1

<<
Tk
hc
λ Tk

hc1
Tk

hc11e
11

kT/hc 1
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=−

λ
+≈−λ  

;1
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<<
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λ Tk
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λ
=−

λ
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The relation (1) becomes: 
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λ .2,12 1

4
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Problem 8. Gradient temperatures 

The spectra of two stars with different temperatures 1T  and respectively 2T  were compared. In the 

spectrum of each star, two very close spectral lines corresponding to the wavelength with values 1λ and 

respectively 2λ   were found.  For each line of this spectral lines, the difference between the corresponding visual 

apparent magnitudes of the stars are 
111 ,2,1 mmm λλλ −=Δ and  

222 ,2,1 mmm λλλ −=Δ . 
1,1

m λ is the apparent 

magnitude of the star 1 for the wavelength 1λ , 
2,1

m λ  is the apparent magnitude of the star 1 for the wavelength 2λ  

, 
1,2

m λ is the apparent magnitude of the star 2 for the wavelength 1λ , 
2,2

m λ  is the apparent magnitude of the star 2 

for the wavelength 2λ  .  

Determine the temperature 1T  of one of the two stars, if the  temperature 2T  of the other star is already  

known,  by using the Plank expression of black body radiation:  
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( ) ( ) ,12 1

5

−
−= hc/kλc

2

e
λ
πhcλr  

where: −h Planck’s constant; −k  Boltzmann’s constant; −c speed of light in vacuum. You will consider that  

.Tkhc λ>>  

Problem 8. Marking scheme .  Gradient temperatures 
 

- Finding out the relations (1) and (2) by the correct using of the  
approximation  .Tkhc λ>>  4 points 

- Correct using of the Pogson’s formula 3 points 
- For correct conduct of calculations and obtaining the final formula (5) 3points 

 
Detailed solution 
 
By using the Plank expression the spectral intensities for the two wavelengths in the doublet emitted by the  

star number 1 are:  

 

And by considering  

  (1) 

Respectively, the spectral intensities for the two wavelengths in the doublet emitted by the  star number 2 
are: 

 

And by considering  

  (2) 

Using the Pogson formula for star 1 and 2 and for result: 

 

 
 

 (3) 

Similar the Pogson formula for  : 

 

 

(4) 
Using the relations (3) and (4)  
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Because  

 

 

(5) 

 

Problem 9. Pressure of light  

One particle of star dust is in static equilibrium at a certain distance from Sun. Assuming that the particle is 

spherical and its density is ρ , calculate the diameter of the particle.  

The following assumption may be useful for solving the problem:  

The pressure of electromagnetic radiation is equal with the volume density of the electromagnetic radiations   

 
Problem 9. Marking scheme .  Pressure of light 

- Correct use of the formula (1) for the pressure of light 3 points 

- Correct identify of the equilibrium condition  3 points 

- Correct solution and reasoning   4 points 
 
 

 
The pressure of the emitted radiation is  

c
wp Dplanet,

rad

φ
==  

2

24

cD
RT

p planetplanet
rad

σ
=   (1) 

As seen in the below image, the pressure due to the solar radiation is effectively acting on an equivalent 
plane disc with the diameter d of the spherical star dust particle  
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Fig.12 b 
 

Thus the force acting by the Sun radiation on the star-dust particle is: 

=⋅=⋅=
4

2

Srad,
2

Srad,Srad,
dprpF π

π ,
4

2

2
S

2
S

4
S d
cL
RT πσ

⋅  

The equilibrium condition is  
,gSrad, FF =  

 Where gF  is the gravitational attraction force between  Sun and the star-dust particle.  
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Problem 10. The density of the star 

In a very simple model, a star is assumed to be a sphere of gas in a state of equilibrium in its on 

gravitational field. The stellar gas is consisted of plasma, i.e. hydrogen and helium atoms, completely ionized. Find 

an expression for the value of the mass of the star  if you know: −r radius of the star; −T the temperature of the 

star; −n the relative proportion of hydrogen in the mass of the star;  −Hµ molar mass of the hydrogen; −Heµ

molar mass of the helium; −R universal gas constant; −K gravitation constant. You may use the formula of the 

pressure of radiation inside the star  ,
3
1 4

rad aTp =  where  a is a known  constant. The rotation of the star is 

negligible. 

SUN 

SUN 

edabsorbP
 

emisP  

rad,Sp  

Srad,F
!

 

Srad,F
!

 

d
 

d
 

gF
!
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Problem 10. Marking scheme The density of the star 
 

- Correct reasoning for finding the expression of the inner stellar gas (2)  2 points 

- Correct expression for the equilibrium condition 2 puncte 

- The correct conduct of calculations, and obtain the final correct result 2 puncte 

- Correct solution and reasoning   4 points 
        Detailed solution 

 
 The hydrostatic equilibrium inside the star means that in each point of the inside of the star the 

gravitational forces are compensated by the hydrostatic pressure forces. That means that the mater of the 
star remains localized in a region of space.  

The total pressure of the stellar gas has two components: the pressure due to the movement of the 
stellar –gas particles ( )gazp  and the pressure due to the emitted radiation by the stellar-gas particles ( )radp , 
thus: 

;radgaztotal ppp +=  
;HeHgaz ppp +=  

;
3
1

rad aTp =  

=totalp ( )
.

3
11

HeH

HHe aTRTnn
+

−+

µµ
µµ

ρ (1) 

In order to calculate the gravitational pressure of the stellar /gas let’s consider a narrow cylinder with 
section area SΔ ,along the radius of the star . See the figure bellow. If the total gravitational force acting on this 
cylinder is gF

!
 than the gravitational pressure exert by the gas –column is SFp g Δ= /grav  
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Fig. 15 a 
 

In order to calculate gF
!

 let divide the cylinder in n identically small cylinders each of it with height  
rΔ  and mass  mΔ  Considering an homogenous star : 
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Thus the gravitational pressure is 

2

3

g
g 2

3
4

1
r

rSr

SS
F

p

π
ρρ ⋅⋅Δ⋅⋅

Δ
=

Δ
=  

22
g 3
2

ρπKrp =  

Using the relations (1) and (2) in the  pressures equilibrium relationship  
nalgravitatiototal pp =  

Results : 
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This is an second degree equation in ρ  
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Where the coefficients are  
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Problem 11. Space – ship orbiting the Sun  

A spherical space –ship orbits the Sun on a circular orbit, and spin around one of its axes.  The temperature 
on the exterior surface of the ship is NT . Find out the apparent magnitude of the Sun and the angular diameter of 

the Sun as seen by the astronaut on board of the space – ship. The following values are known:, ST  - the effective 

temperature of the Sun;  SR - the radius of the Sun;  0d  - the Earth –Sun distance;  0m - apparent magnitude of 

Sun measured from Earth; NR  - the radius of the space –ship. 

 

Problem 11. Marking scheme Space – ship orbiting the Sun 
 

- Correct use of the formulas (1) for the apparent brightness 3 points 

- Correct use of the formula (2) by using Pogson formula 3 points 

- Correct solution and reasoning   4 points 
        Detailed solution 

 
According to the  Stefan – Boltzmann law,  the luminosity of the Sun is: 

,44 2
S

4
S

2
S unununsunsun RTRQL πσπ ⋅=⋅= (1) 

At distance  d from the Sun , where the space ship is the energy  which passes the unit of surface in an unit of time 
is: 

.
4
4

4 2

2
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4
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2
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d,S d
RT
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un π
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π
φ

⋅
==

(2)
 

The space ship receive through its entire surface, in the unit of time,  the energy: 

.
4
4 2
2

2
S

4
S

ship
unun

received R
d
RTP π

π
πσ

⋅
⋅

=  

Corresponding to its temperature, ,NT  according the Stefan -  Boltzmann law, the emitted energy by 
starship through its hole surface in the unit of time : 

.4 2
N

4
NNemis, RTP πσ ⋅=  

When the temperature stabilized at thermic equilibrium : 
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the distance of orbiting the Sun of the space ship is:
 

,
2 2
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S
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T
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The angular diameter of the Sun as seen from the space ship : 
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According the Pogson formula written for Sun seen from Earth and space ship the following relation 
occurs: 
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The apparent magnitude of the Sun as seen from the space ship  
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Problem 12. The Vega star in the mirror 

Inside a photo camera a plane mirror is placed along the optical axis of the lens of the objective (as seen in 

figure 13). The length of the mirror is half of the focal distance of the lens of the objective. The photo camera is 

oriented as on the photographic plate situated in the focal plane of the photo camera are captured two images with 

different illuminations of the Vega star. Find out the difference between the apparent photographical magnitudes of 

the two images of the Vega stars.  

 

 
Figure 12 
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Problem 12. Marking scheme The Vega star in the mirror 
 

The light beam arriving from  Vega Star can be considered paraxial, due to the distance from it to the 
observer on Earth. The explanation for the existence of two distinct images of the star is that the optical axis of the 
objective is not parallel with the light beam from the star. 

The images on the camera plate are symmetrical placed relative to the principal optical axis. 
  

 
 

 
 

Fig. 12 
 

Each of the point images of the Vega Star  1Σ  and  2Σ  didn’t concentrate the same light fluxes. In the 
down below figure it can be seen the sections of the lens which correspond to each image. The sector APBC is 
passed by the light which concentrates in the image 2Σ   and the light passing the sector ACBQ concentrates into 
the point image 1Σ See the picture in figure 13  . 
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Fig.13 b 

The ratio between the light fluxes concentrated into the two image points will directly depend on the ratio 
of the two sectors areas.  

From the geometry of the figure 2 results :   
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Using the Pogson formula : 
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Problem 13. Stars with Romanian names 

Two Romanian astronomers Ovidiu Tercu and Alex Dumitriu  from The Astronomical Observatory of the 

Museum Complex of Natural Sciences in Galati Romania, recently discovered – in September 2013- two variable 

stars. They used for that a telescope with the main mirror diameter of 40 cm and a SBIG STL-6303e CCD camera.  
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With the accord of the AAVSO (American Association of Variable Stars Observers), the two stars have 

now Romanian names: Galati V1 and respectively Galati V2. The two stars are circumpolar, located in Cassiopeia 

and respectively in Andromeda constellation. The two stars are visible above the horizon, form the territory of 

Romania, all over the year. The galactic coordinates of the two stars are: 

( )!! 35.11;371.1141VGalati 11 −== g G    and ( )!! 177.16;266.1132VGalati 22 −== g G   . 

Another star, discovered by the Romanian astronomer Nicolas Sanduleak, has also a Romanian name – 

Sanduleak -69° 202; it explodes as the supernova SN 1987. This star was localized in the Dorado constellation 

from the  Large Magellan Cloud, by the coordinates:  

;03,28355 sminh=α ;"79,11'1669  !−=δ ;7,279 !=G  .9,31 !−=g  

Estimate the angular distance between the stars  Galati V1 and Galati V2 
 
 
 
 

Problem 13. Marking scheme Stars with Romanian names 
 
1. Correct geometrical calculations  5 points 
2. Correct calculations  5 points 

 
 
 
In the figure bellow the two stars 1σ  and ,2σ  are located  using the galactic coordintates ( )11;gG  and 

respectively ( ).; 22 gG on the geocentric celestial sphere. The spherical triangles  21 Aσσ  ( )11;gG  and respectively  
may be considered rectangular plane triangles because the angles 12 GGG −=Δ  ( )11;gG  and respectively 

12 ggg −=Δ  are very small  
Thus: 
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121 σσσσ +=  
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Fig. 

 
;A1 gr Δ⋅=σ  

;cosA 222 GgrGr Δ⋅⋅=Δ⋅=σ  
,21 ϕσσ Δ⋅= r  

Where  ϕΔ  is the angular distance between two stars 
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( ) ( ) ( ) ;942,4105,196,0827,4 222 !!! ≈−⋅+−=Δϕ  

( ) ( ) ( ) ,946,4827,4105,198,0 222 !!! ≈−+−⋅=Δϕ  
The angular distance between  Galați V1 and Galați V2. 
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Problem 14. Apparent magnitude of the Moon 

You know that  the absolute magnitude of the Moon is m25,0=LM . Calculate the values of the apparent 

magnitudes of the Moon corresponding to the following Moon –phases :  full-moon and the first quarter. You 

know: the Moon – Earth distance - km385000LP  d = , the Earth – Sun distance - UA1PS  d = , the Moon –Sun 

distance, UA1LS  d =  

 

Problem 14. Marking scheme Apparent magnitude of the Moon 
 
1. General analysis of the problem   6 points 
2. The analysis of the 2 particular situations 4 points 

 
 
 

The apparent magnitude of a planet from the Solar System depends on the phase angle ( ).Ψ=MM   
The apparent magnitude of the body is given by the relation: 
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unde: −S,Bd the distance between the body and the Sun; −O,Bd distance between the body and observer; 

AU;10  d = −Ψ the phase angle ; ( )−Ψp the phase function : 

( ) ,sin1cos1
3
2

!
"

#
$
%

&
Ψ+Ψ(

)

*
+
,

- Ψ
−⋅=Ψ

ππ
p  

 Ψ as seen in the figure bellow is given by the cosine law. 

 
 

Fig. 
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In particularaly for the Moon  
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( )
.log5,2 4
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⋅
⋅+=

pd
dd

Mm MEM
MM  

Particular cases: 
1) Full moon 

;0=Ψ  
;1cos =Ψ  ;0sin =Ψ  

( ) ;
3
2

=Ψp  

AU;1S  dM = SU;10256AU00256,0km385000 5   dME
−⋅=≈= ;S10 U d =  

 
 

.25,125,1225,05,12 mmmm −=−=−= MM Mm  
2) First Quarter 

;90!=Ψ  
;0cos =Ψ  ;1sin =Ψ  

( ) ;2,0
3
2
≈=Ψ

π
p  

Moon Sun 

Earth 
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SMd
 

MEd
 

SEd  
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( )
;10491520

2,0
1065536 10
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4
0

22
S, −

−

⋅=
⋅

=
Ψ⋅

⋅

pd
dd MEM  

 
.5,1075,1025,075,10 mmmm −=−=−= MM Mm  

 

Problem 15. Absolute magnitude of a cepheide  

The cepheides are cariable stars, whom luminosities and luminosities varies due to volume oscillations. 
The period of the oscilations of a cepheide star is:  

,2
KM
RRP π=  

where: −R the radius of the  cepheide; −M the mass of the cepheid (constant during oscillation); 
( );tRR = ( ).tPP =  

Demonstrate that the absolute magnitude of the cepheide  ,cefM  depend on the period of cepheide’s 
pulsation P according the following relation: 

,log
3
10log5,2

m
m

cef PkM ⋅"
#

$
%
&

'−⋅−=  

where k is  constant; ( );tPP = ( ).cefcef tMM =  
 
 

Problem 15. Marking scheme Apparent magnitude of the Moon 
 
 

,2
KM
RRP π=  

rezults 

;4 32
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The absolute brightness is: 
,4 24

cefcef RTL πσ ⋅=  
And the apparent brightness : 

,
4

4
4 2

cefP,

24
cef

2
cefP,

cef
cef d

RT
d
LE

π
πσ

π
⋅

==  

 cefP,d  is the distance between the observer on Erath and the cepheide  

.
4
4

4

2
cefP,

3/4
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4
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PKMT
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π
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%

&
'
(

)⋅⋅
=  

Similarly for Sun  
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By using the Pogson formula: 

( );4,0log Scef
S

cef mm
E
E

−−=  
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π constant; 

 
 
 

;log
3
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log5,2log5 1
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Scef Pk

d
d
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;log5,2log5,2log5 1
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d
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=k constant; 

.log
3
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