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Indications

1. The problems were elaborated concerning two aspects:

a. To cover merely all the subjects from the syllabus;

b. The average time for solving the items is about 15 minutes per a short problem;

2. Inyour folder you will find out the following:

c. Answer sheets

d. Draft sheets

e. The envelope with the subjects in English and the translated version of them in your mother
tongue;

3. The solutions of the problems will be written down only on the answer sheets you receive on your desk.
PLEASE WRITE ONLY ON THE PRINTED SIDE OF THE PAPER SHEET. DON’T USE THE REVERSE SIDE. The
evaluator will not take into account what is written on the reverse of the answer sheet.

4, The draft sheets is for your own use to try calculation, write some numbers etc. BEWARE: These papers
are not taken into account in evaluation, at the end of the test they will be collected separately .
Everything you consider as part of the solutions have to be written on the answer sheets.

5. Each problem have to be started on a new distinct answer sheet.

6. On each answer sheet please fill in the designated boxes as follows:

a. In PROBLEM NO. box write down only the number of the problem: i.e. 1 — 15 for short
problems, 16 — 19 for long problems. Each sheet containing the solutions of a certain
problem, should have in the box the number of the problem;

b. In Student ID —fill in your ID you will find on your envelope, consisted of 3 leters and 2
digits.

c. In page no. box you will fill in the number of page, starting from 1. We advise you to fill this
boxes after you finish the test

7. We don’t understand your language, but the mathematic language is universal, so use as more
relationships as you think that your solution will be better understand by the evaluator. If you want to
explain in words we kindly ask you to use short English propositions.

8. Use the pen you find out on the desk. It is advisable to use a pencil for the sketches.

9. At the end of the test:

a. Don’t forget to put in order your papers;

b. Putthe answer sheets in the folder 1. Please verify that all the pages contain your ID, correct
numbering of the problems and all pages are in the right order and numbered. This is an
advantage of ease of understanding your solutions.

c. Verify with the assistant the correct number of answer sheets used fill in this number on the
cover of the folder and sign.

d. Putthe draft papers in the designated folder, Put the test papers back in the envelope.

e. Gotoswim

GOOD LUCK!
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Problem 1. Lagrange Points

The Lagrange points are the five positions in an orbital configuration, where a small object is stationary
relative to two big bodies, only gravitationally interacting with them. For example, an artificial satellite relative to

Earth and Moon, or relative to Earth and Sun. In the Figure 1 are sketched two possible orbits of Earth relative to
Sun and of a small satellite relative to the Sun. Find out which of the two points L31and L23 could be the real

Lagrange point relative to the system Earth — Sun, and calculate its position relative to Sun. You know the

following data: the Earth - Sun distance d,; =15-107 kmand the Earth — Sun mass ratio M, / M =1/332946
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Problem 1. Marking scheme Lagrange Point
1. Correct derivation of forces’ equilibrium 6 points
2. Correct identification of the Lagrange point 2 points
3. Correct calculation of the position of Lagrange point 2 points
4. Deduction for incorrect value 1 point

According to the notations in fig.1.1 and fig. 2.1
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The final relation
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(12mg+M,)
The value has to be positive, thus the L"3 is the position of one Lagrange point ......................... 2p
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Problem 2. Sun gravitational catastrophe!

In a gravitational catastrophe, the mass of the Sun mass decrease instantly to half of its actual value. If you

consider that the actual Earth orbit is elliptical, its orbital period is 7, = 1 year and the eccentricity of the Earth

orbitis e, = 0,0167.

Find the period of the Earth's orbital motion, after the gravitational catastrophe, if it occurs on: a) 3rd of

July b) 3rd of January.

Problem 2. Marking scheme Sun gravitational catastrophe!

- Correct analyze of the initial conditions when the catastrophe occurs ( A) 5 points
- Correct calculations (B) 5 points
2 points

o Correct use of laws of conservation
o Finding out that in the first case the orbit will be elliptic, relations (1)
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and (2) 2 points
o Correct conduct of calculations 1 point

Detailed solution

(A) The orbit of Earth is elliptical, so the shape of the orbit after the solar catastrophe will depend on
the moment when the decrees of the mass of the Sun will occur.
Initial analysis of the problem

a) In 3" July the Earth is at the aphelion. The speed of the Earth is smaller than the speed
of Earth on a circular orbit with radiusr, . = a, (1+e,).
b) In 3" January the Earth is at perihelion. The speed of the Earth is bigger than the speed

of Earth on a circular orbit with radiusr, . =a, (1-¢,).

Conclusion (A) the period should be calculated only for situation a). The expected trajectory in this case
is an elliptic one. The possibility that Earth hit the Sun is available too.
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(B) Calculations: S SeM \\T{,O .
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Conclusion — According to the relations (1) and (2) the new orbit of the Earth could be an elliptic one.

For the new elliptical Earth orbit:
rper = rO,aph;
Vin = Toer = a(l - e);

min

l+e,

M

a0(1+eo)=a(1—e),a=a0 1
-e

Vper = VO,aph’

per Vi-¢’

Where v este is the Earth’s speed on a circular orbit with the radius » = @, when the mass of the Sun becomes

M=M,/2;

\/1+e 1-e,
V,|—— =V, ;
l-e 1+e,
V=JKM=JK%= kMo 4 _ o

r 2a a, \2a 2a

l+e
e=1-2¢,; a=a,—
2e,
Conclusion
T, - 2mr, _ 2ma,
Vo Vo
2m 2ma
T=—=—,
v v
T av, l+g 2a_1+60\/§ l+e,
I, a, v 2 \a, Z2e, 2e,

3/2

T= TO\/E(“-GOJ ~ 230 years

b) In 3 of January the Earth is at perihelion. In that moment the Erath speed is larger than the speed
necessary for an Earth’s circular orbit. Thus the trajectory of the Earth after the catastrophe will be an open
trajectory, i.e. an hyperbolic or parabolic orbit.

Conclusion it is not necessary to calculate the period of revolution or could be issued as infinite

Problem 3. Cosmic radiation
During studies concerning cosmic radiation, a neutral unstable particle — the 7° meson was identified. The
rest-mass of meson s7° is much larger than the rest-mass of the electron. The studies reveal that during its flight, the

meson s7° disintegrates into 2 photons.
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Find an expression for the initial velocity of the meson 7° , if after its disintegration, one of the photons has

the maximum possible energy £ _ and, consequently, the other photon has the minimum possible energy £ . .

You may use as known ¢ - the speed of light.

Problem 3. Marking scheme Cosmic radiation

- Correct use of general laws of conservation (A)

5 points
- Correct applying of the laws of conservation for the conditions stated
in the problem (B) 4 points
- Correct conduct of calculations and final solution (C) 1 point

Detailed solution

(A)

In the disintegration process the laws of energy conservation and the law of the conservation of momentum
are both obeyed.

In the general case the law of conservation of the momentum is represented in the down below figure.

mesonc T[O

the total initial energy of the ;7° meson is

2 4
E’ =p°c’ +mic

And its kinetic energy is
E,=E-m,c’
The expressions of the 2 conservation laws written after the disintegration are:
D=D +Dy;
E+my’ =E +E,,
The energy of the photon 1 can be calculated using the notations in the figure

2.
E=FE +my";

p,sinf, = p,sind,;
E . E, .
—Lsinf, = —%sinb,;
c c

4.
s

2 2.2 2
E° =p°c’ +m;c
2.2 2 2 .4
pc =E —mjc;

E=E +E,;
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E,=E-E =(E, +myc*)-E;

m, ¢’ 1
E = 0 .
2 E +myc® —cosOE.(E. +myc?)
Similar the second photon energy is:
mozc4 1

E, =

2 E +myc? —cosO,\E(E, +my,c?)
B)

If one of the photon has the maximum possible energy E__ and consequently the other photon has the

minimum possible energy E . the law of momentum conservation is sketched:

T 7 f2 fl
o P> < o o >
nl — —
pmm pmax
Thus the relations become very simple:
m,v
myv =
v2
I-=
C
m,C
E_ =—2= (1+—),
2
vV
2=
C
2
m,C v
Emm = 0 > (1__),
A\
2./1-
Cc
V= CEmax _Emin . (C)
Emax +Emin

Problem 4. Mass function of a visual binary stellar system

For a visual binary stellar system consisted of the stars 0, and 0,, the following relation represents the
mass function of the system:
M; sin’ i
(M 1+ M, )2 ’
where M is the mass of stard;, M, is the mass of star0, and i is the angle between the plane of the stars’
orbits and a plane perpendicular on the direction of observation.
The recorded spectrum of radiations emitted by the star o, , during several months, reveals a sinusoidal
variation of radiation wavelength, with the period T = 7 days and a shift factor z = (M)/ A =0,001.
a. Prove that the mass function of the system is:
3 . 3.
f(Ml;M2)= M, sin lz = ! (V]'Sini)S,
(4, + M " 2K

AURAE
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Where: v, -sinj is the maximum speed of star O, relatively to the observer; K — the gravitational constant , i is

the angle between the plane of the orbits and the plane normal to the observation direction.
Assumptions: The orbits of the stars are circular,
b. Derive an expression for the mass function of the system. The following values are known:

c=3x10*m/s; K =6,67x10" Nm’kg™.

Problem 5. The Astronaut saved by ... ice from a can!
An astronaut, with mass M =100kg, get out of the space ship for a repairing mission. He has to repair a

satellite standing still relatively to shuttle, at about d =90m distance away from the shuttle. After he finished his
job he realizes that the systems designated to assure his come-back to shuttle were broken. He also observed that

he has air only for 3 minutes. He also noticed that he possessed a hermetically closed cylindrical can (base section
S =30 cm?) firmly attached to its glove, with m = 200 gofice inside. The ice did not completely fill the can.

Determine if the astronaut is able to arrive safely to the shuttle, before his air reserve is empty. Briefly

explain your calculations. Note that he cannot throw away anything of its equipment, or touch the satellite.

You may use the following data: T =272 K/ the temperature of the ice in the can, p, =550Pa- the

pressure of the saturated water vapors at the temperature T =272 K; R =8300 J/(kmol- K)- the constant of

perfect gas; u =18 kg/kmol - the molar mass of the water.

Problem 5. Marking scheme The Astronaut saved by ... ice from a can!

- A. For the use with an adequate justify of one of the relationships (4) 3 points
- B. Reasoning The student describe correctly the processes before and after

the can is opened. 4points
- C. Calculations according to the reasoning, and/or as support for reasoning 2 points
- D. Correct result 1 point

Detailed solution
Theoretical considerations:

The incident particle flux on a wall (i.e. a certain direction on a surface) is:

(D=m0-9=é-m0-n-S-\7 (3)
myn=mg N _m_
a’ a’ V ’
where: m, is the mass of one molecule; m —mass of the gas in the cube ; V' —volume of the cube ; o —the density
of the gas ;
up

2

RT
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where p — the pressure of the gas in the cube; The relation (3) — the mass flux relation becomes:

A q)=l'p'S'V—— e ol 3RT pS: ’3_,11 4)
6 6 RT RT

.p.S.\—,=é.&.S. Ml=é'p‘5' ,;_‘L]l‘ %) 3points

B. Reasoning

Because the cylindrical can is not full of ice, in the empty part of it there are saturated vapors, i.e the mass flux of
the molecule which sublimate is equal with mass flux of gass which transform into ice. Thus the pressure in the

can is the saturated vapor pressure p, and it has the corresponding maximum density p_ See figure 6.2

> >

vapori saturati

d)zJ/ Ps Tcp1 pi2 [

gheati
a b
~ ~
Fig. 6.2
D =D piimation =%.ps 'S"_’=é psS- %;
D, = (I)salid_ificatwn = é.ps SV =é p,S- %;

D, =D,.

After the can was opened, there be no molecules which sublimate thus the mass flux of the molecules
which gather the ice become null. So the pressure becomes ( ./ 2).

Thus the force acting on the astronaut will be

C. Calculations according to the reasoning, and/or as support for reasoning 2 points
FoPig
2

Opening the can the astronaut will be accelearated with:
F _p,-S _550Nm™-30-10" m’
M 2M 2-10% kg

The total time of the acceleration movement will be the total time of ice sublimation:

=0,00825ms™

a=
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1 - p, -S- U Ds H
6 \ RT
D. Correct result
The travel distance in this time will be :
at’ _ 0,00825ms™-225-10% s
2 2

The astronaut could arrive safely in at the shuttle if he didn’t lose to much time by solving the problem.

L=

~93m,

Problem 6. The life —time of a star from the main sequence
The plot of the function log(L/Ls ) =f (log(M/M s )) for data collected from a large number of stars is
represented in figure 3. The symbols represents: L and M the luminosity respectively the mass and of a star and L

and respectively M ¢ the luminosity and the respectively the mass of the Sun.

4 P
P
3 @ /{
,74
2 L

o2
L 1 s
log — e
0 ®
-1 4

A
-0,5 0 0,5 1,0

tna M

Figure 6

Find an expression for the life- time for each star in the Main Sequence from Hertzprung — Rossell diagram

if the time spent by Sun in the same Main Sequence is 7. Consider the following assumptions: for each star the
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percentage of its mass which changed into energy is 1, the percent of the mass of Sun which changes into energy

is 1M, the mass of each star is M = nM ¢ and the luminosity of each star remains constant, during its entire life

time.

Problem 6. Marking scheme The life —time of a star from the main sequence

- A. The analysis of the graph 6 points
o Obtaining the formula (1) from the linearity of the graph
o Correct use of the luminosity formula (2) for finding out the final formula 4 points

Detailed solution

A. The analysis of the graph :

The graph is linear:
y=ax+b=ax; 4 » g
From the graph it can be obtain ‘l{
the following data: _ 2
3P 0 /{
P/
log— =a-log—; 10 X
S S L / A
Ay 35 log— 7S

a=tana=—="-=3,5; L, 0]

1 0, T

1,0 ™
A
g 1 X
L~M>.(1) _1» Ve
The total energy of the star is: ]
_ ) A A A \f
E=Mc, 0.5 0 0,5 1,0 log—
So the emitted energy due to the - M.
mass variation of the star is: '
AE =c’AM,
According to the text
AM =nM;

AE =c*nyM.

By using the definition of the luminosity :

AE

—=L;(Q2)

At

At =T;

2
cnM
. _ L:

T
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2
T=c77M

, 2)

Which represents the life-time of the star.

By using the results from the graph analysis

Ly 3,5
L= 33 M7,
S
Thus :
2 3,5
cnM
T = L . 1\4'2’5 .
Lg
If use the same calculations for the Sun it can be obtain
E, =M’
‘nM
_C Ny
TS =—,
L

Which is the life-time of the Sun

Problem 7. The effective temperature on the surface of a star
A star emits radiation with wavelength values in a narrow range AA << A, i.e. the wavelength have values
between A and A and A+ AA . According to Planck's relationship (for an absolute black body), the following

relation define, the energy emitted by star in the unit of time, through the unit of area of its surface, per length-unit

of the wavelength range:

2rhe’
r=/15 ohme 1)

The spectral intensities of two radiations with wavelengths A, and respectively 7\.2 , both in the range AA

measured on Earth are [, (}\,1 ) and, respectively I, (7»2 )
a. Establish the equation which, in a general case, allows determining the effective temperature
on the surface of the star using only spectral measurements.

b. Find out the approximate value of the effective temperature on the star surface if sc >> AkT .

c. Find out the relation between wavelength A, and A,, if [, (7\1 ) =2I, (7»2 ), when hc << AKT.
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You know: h —Planck’s constant; k — Boltzmann’s constant; ¢ — speed of light in vacuum.

Problem 7. Marking scheme The effective temperature on the surface of a star

a. Identifying the expression of spectral intensity and correct use of the given relation for obtaining the
relation (1)

4 points
b. correct use of the assumption sc >> AkT and find out relation ) 3 points
c. correct use of the assumption hc << AkT. 344 find out relation (3) 3 points

Detailed solution

a. We start from the definition of r:

r= AE = AE2 where R is the radius of the star
At-S .., AN At-4mR7-AM
25the?
r= 25 (e

Considering d as the distance from the star to the Earth, the definition- relation of the spectral intensity can
be written as follows:

AE
-0tk
1x)- dzxzsf(cehhc“k;RT Z1)
Particularly for each wavelength:
18- oy ) e

The ratio of the 2 above relations

I](?»l) _ (7\2 )5 . ehe/MkT _ g

1, (}\’2 ) )\_1 Qhe/MKT _ | (1)

Represents an equation which allow to find out the temperature of star’s surface T by using spectral
measurements

b. If we consider that
hc >> AKT,then:

ehc/)\]kT -1 he/MKT he/nkT 1~ ehc/)»sz

~¢ and e
The relation (1) becomes
5 e 5
L) _ (xz ) e _ (xz ) R

" The/nKT
e 1

Ay
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c. If he<<AkT, then:

he  qerrat g ip ey he
kAT kA, T kA, T
he <<lje"™ T _1=1+ he _,__he
kAT kh,T kh,T
The relation (1) becomes:

he
L) (%) KT ()
L) (%) he {3,

kA, T

4

I, =2I,; (%) =24 =2-42=124,.

Problem 8. Gradient temperatures

The spectra of two stars with different temperatures T, and respectively T, were compared. In the

spectrum of each star, two very close spectral lines corresponding to the wavelength with values A, and

respectively A, were found. For each line of this spectral lines, the difference between the corresponding visual

apparent magnitudes of the stars are Amk1 =m;;, —m,, and Arnk2 =m,, —-m,, . m, is the apparent

magnitude of the star 1 for the wavelength A,, m;,; is the apparent magnitude of the star 1 for the wavelength A

2

, My, is the apparent magnitude of the star 2 for the wavelength A, m,, is the apparent magnitude of the star 2

for the wavelength 7\.2 .

Determine the temperature T, of one of the two stars, if the temperature T, of the other star is already

known, by using the Plank expression of black body radiation:



THEORETICAL TEST
Short problems

Page 16 from 30
AStronomy and ASTTOBYRIES

)= 2 (e )

where: h — Planck’s constant; &k — Boltzmann’s constant; ¢ —speed of light in vacuum. You will consider that

he >> kAT.

Problem 8. Marking scheme . Gradient temperatures

- Finding out the relations (1) and (2) by the correct using of the
approximation hc >> kAT.

4 points
- Correct using of the Pogson’s formula 3 points
- For correct conduct of calculations and obtaining the final formula (5) 3points

Detailed solution

By using the Plank expression the spectral intensities for the two wavelengths in the doublet emitted by the
star number 1 are:

27he? 27he?

H(A)=ﬂm;ﬁ(ﬂz)=am;

And by considering he >> kAT;
_ 27he’ —hel AT,

)= e () = T )

Respectively, the spectral intensities for the two wavelengths in the doublet emitted by the star number 2

arc:

27hc? 27he?

)HS ol _ ;rz(ﬂ?): ;t;(ehc/,gkrz _1);

And by considering hc >> kAT

rz(ﬂﬂ)=

2
_ 2nhc —hel AT, |
- 5

- ’ _ 27hc’ ~hel2kT2
2(1'1) E ; 2()‘2) ﬂé e

Using the Pogson formula for star 1 and 2 and for A ,result:

log% - _074(””1,/1] =My, )= =0,4-Am, ;

2)

log QML) _ g 4. Am,
’ 1 (3)

Similar the Pogson formula for A,,:
5 (Xz
L (}‘z )

S~

log

- —04(m,, -m,, )=-04-Am,

he/Mk(UT,-U/T) _ .
loge =-0,4-Am,_ @)
Using the relations (3) and (4)

log e"/ =1/ B/T) _ log e/ AHIB1T) _ g 4-Am, +0,4-Am, ;
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logehc/ﬂqk(l/Tz—l/Tl) + loge—hc//hk(l/Tz—l/ﬂ) -_0 4'Am32 +0 4°Am11‘

%(%_%)(%-%)] loge = 0,4(Am, - Am, }

0.4 .

Because 108€=0,43; loge ~0,93;
L—L—_093.M__0 .k’L’lz(Am/h_Amkz),
L, T, 7 he(l 1 ’ ne(h -A)

\a 4,

. he(t ~2)
? el - 24,)+ 0,93 kA ATy (Am, ~Am, )

-~
1

(3

Problem 9. Pressure of light

One particle of star dust is in static equilibrium at a certain distance from Sun. Assuming that the particle is

spherical and its density is p, calculate the diameter of the particle.
The following assumption may be useful for solving the problem:

The pressure of electromagnetic radiation is equal with the volume density of the electromagnetic radiations

Problem 9. Marking scheme . Pressure of light

- Correct use of the formula (1) for the pressure of light 3 points
- Correct identify of the equilibrium condition 3 points
- Correct solution and reasoning 4 points
The pressure of the emitted radiation is
¢planet,D
prad =ws=
c
4 2
_ GTplanet Rplanet 1
Pra == o7 (1

As seen in the below image, the pressure due to the solar radiation is effectively acting on an equivalent
plane disc with the diameter d of the spherical star dust particle
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VAAAANA

Fig.12 b

Thus the force acting by the Sun radiation on the star-dust particle is:

wd®  OT,R: nd’
4 cly 4

M

2
Frogs = Pradas " = Pras

The equilibrium condition is

F F

rad,S = g’
Where F, is the gravitational attraction force between Sun and the star-dust particle.

o Rs md® _ e
cD; 4 D¢
= oV = 4 4nd’
pPV=p—=—=P5 ¢ =P
4p2 2 3
UTSIZQS 'm’;=Kpﬁd MZS;
cDq 4 6 Dy

,_3. 0 TR
2 pK M,

Problem 10. The density of the star

In a very simple model, a star is assumed to be a sphere of gas in a state of equilibrium in its on
gravitational field. The stellar gas is consisted of plasma, i.e. hydrogen and helium atoms, completely ionized. Find

an expression for the value of the mass of the star if you know: » —radius of the star; 7" — the temperature of the
star; n - the relative proportion of hydrogen in the mass of the star; (4, —molar mass of the hydrogen; w,, -

molar mass of the helium; R —universal gas constant; K — gravitation constant. You may use the formula of the
pressure of radiation inside the star p_, = gaT4, where a is a known constant. The rotation of the star is

negligible.
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Problem 10. Marking scheme The density of the star

- Correct reasoning for finding the expression of the inner stellar gas (2) 2 points
- Correct expression for the equilibrium condition 2 puncte
- The correct conduct of calculations, and obtain the final correct result 2 puncte
- Correct solution and reasoning 4 points

Detailed solution

The hydrostatic equilibrium inside the star means that in each point of the inside of the star the
gravitational forces are compensated by the hydrostatic pressure forces. That means that the mater of the
star remains localized in a region of space.

The total pressure of the stellar gas has two components: the pressure due to the movement of the
stellar —gas particles ( Do ) and the pressure due to the emitted radiation by the stellar-gas particles ( Drad ),

thus:
ptoml =pgaz +prad;
pgaz =pH +pHe;

1
prad = gaT’

nuy, +\1-n 1
ptoral = p ful-le ( )luH RT + —aT(l)
Uy Uy 3
In order to calculate the gravitational pressure of the stellar /gas let’s consider a narrow cylinder with

section area AS ,along the radius of the star . See the figure bellow. If the total gravitational force acting on this

cylinder is F'g than the gravitational pressure exert by the gas —column is Py = F o /AS
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Fig.15 a

In order to calculate Fg let divide the cylinder in n identically small cylinders each of it with height

Ar and mass Am Considering an homogenous star :

F-K Am-M, _K Am-M, KAm'zM (1_£)

Ar ? Ar r 2r
r—— [1-—
2 2r

M=L M, =M- M=M (1_£) .

P (r Ar)S’ r r
F,~ KA’"M(1 25)

r r
FzzKAsz(l 35)

r r

£ nr’ n 2 r 2n
F =Km-zM n—l’ n—lzl;
£ r 2n  2n 2

Thus the grav1tat10nal pressure is

4
Fg
Pe=Ag T AS 2
Pe= %errzpz

Using the relations (1) and (2) in the pressures equilibrium relationship

ptotal = pgravitational

Results :

%]ﬂ{erZ — pnAuHe +(1_n)1ul-l RT+laT,

3 Uy Uy 3

27[]{”2 _p2 _ nlul-le +(1_n)AuH RTp—laT =0’
3 Uy Uy 3

This is an second degree equation in O
Ap>*-Bp-C=0

Where the coefficients are

A =%ﬂKr2
3
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B = nque + (1 B n)ALlH RT
Uy Uy
1
=—al
3

The positive solution is the valid one 1.e.

nlLtHe +(1_n)AuH RT + nluHe +(1_n)/uH RT 2 +§.7TI<}"2(,ZT
9

B+~B*+44C Uy Uy, Uy Uy,
SV P 4
g:rKr2

Problem 11. Space — ship orbiting the Sun

A spherical space —ship orbits the Sun on a circular orbit, and spin around one of its axes. The temperature

on the exterior surface of the ship is Ty . Find out the apparent magnitude of the Sun and the angular diameter of
the Sun as seen by the astronaut on board of the space — ship. The following values are known:, T - the effective
temperature of the Sun; R - the radius of the Sun; d, - the Earth —Sun distance; m,- apparent magnitude of

Sun measured from Earth; R - the radius of the space —ship.

Problem 11. Marking scheme Space — ship orbiting the Sun

- Correct use of the formulas (1) for the apparent brightness 3 points
- Correct use of the formula (2) by using Pogson formula 3 points
- Correct solution and reasoning 4 points

Detailed solution

According to the Stefan — Boltzmann law, the luminosity of the Sun is:
Lsun =Y’ 4‘7[R82un = O'TSA:M ) 4.7[]252,4” > (1)
At distance d from the Sun , where the space ship is the energy which passes the unit of surface in an unit of time
is:
b= L, oOf -4nR;
4 4 4ad’ (2)
The space ship receive through its entire surface, in the unit of time, the energy:
4 2
P4 vad = O-TvSun '4.7271{5”" .-7[]{2;,- .
receive 4]%1 snip
Corresponding to its temperature, 7}, according the Stefan - Boltzmann law, the emitted energy by
starship through its hole surface in the unit of time :
P_. . =0Ty 4R},

emis,N
When the temperature stabilized at thermic equilibrium :
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P

received, N — * emis,N

T - 4nR;

the distance of orbiting the Sun of the space ship is:

d = TS2RS
21

The angular diameter of the Sun as seen from the space ship :

2
g 2B 4 In
d "\

According the Pogson formula written for Sun seen from Earth and space ship the following relation

occurs:

lg—ES’Nava = —0,4(m-m,)
S 2

2-lg(%) = —O,4(m —mo)

The apparent magnitude of the Sun as seen from the space ship

2d,T;
RST 82

m=m,-5"-1g

Problem 12. The Vega star in the mirror

Inside a photo camera a plane mirror is placed along the optical axis of the lens of the objective (as seen in

figure 13). The length of the mirror is half of the focal distance of the lens of the objective. The photo camera is

oriented as on the photographic plate situated in the focal plane of the photo camera are captured two images with

different illuminations of the Vega star. Find out the difference between the apparent photographical magnitudes of

the two images of the Vega stars.

VEGA
star Lens
objective
._____________________?,__
I
I
< r

____________
-

Photographic
plate ag
112 o 2,
‘7 i ﬁ aaaaaa \I‘-}/' / 2
Plane mirror 4~
Z,

____________
~

Figure 12
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Problem 12. Marking scheme The Vega star in the mirror

The light beam arriving from Vega Star can be considered paraxial, due to the distance from it to the
observer on Earth. The explanation for the existence of two distinct images of the star is that the optical axis of the
objective is not parallel with the light beam from the star.

The images on the camera plate are symmetrical placed relative to the principal optical axis.

Fig. 12

Each of the point images of the Vega Star X and X, didn’t concentrate the same light fluxes. In the
down below figure it can be seen the sections of the lens which correspond to each image. The sector APBC is
passed by the light which concentrates in the image X, and the light passing the sector ACBQ concentrates into

the point image X, See the picture in figure 13 .
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Fig.13 b

The ratio between the light fluxes concentrated into the two image points will directly depend on the ratio
of the two sectors areas.

From the geometry of the figure 2 results :
r
MN =0OM; NZ, =0C =§;

£(CBO)=30"; £(BOC)=60"; £(AOB)=120";

S, 87+ 343
——=— =4,
S, 47-33
Using the Pogson formula :
ol -4nR;, B
4} ‘
log5 =log fdw 5 =—0,4(m, -m, ),
E, oly 4nR5 g
4md},

log% = —0,4(m1 - mz),

2

m
m, —m, =1,5".

Problem 13. Stars with Romanian names
Two Romanian astronomers Ovidiu Tercu and Alex Dumitriu from The Astronomical Observatory of the
Museum Complex of Natural Sciences in Galati Romania, recently discovered — in September 2013- two variable

stars. They used for that a telescope with the main mirror diameter of 40 cm and a SBIG STL-6303e¢ CCD camera.
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With the accord of the AAVSO (American Association of Variable Stars Observers), the two stars have
now Romanian names: Galati V1 and respectively Galati V2. The two stars are circumpolar, located in Cassiopeia
and respectively in Andromeda constellation. The two stars are visible above the horizon, form the territory of

Romania, all over the year. The  galactic coordinates of the two  stars  are:
Galati V1(G, =114.371"; g, =—11.35" ) and Galati V 2(G, =113.266"; g, =—16.177").

Another star, discovered by the Romanian astronomer Nicolas Sanduleak, has also a Romanian name —
Sanduleak -69° 202; it explodes as the supernova SN 1987. This star was localized in the Dorado constellation

from the Large Magellan Cloud, by the coordinates:
a=5"35""28,03%; 8 = —69°16'11,79"; G = 279,7°; g=-319".

Estimate the angular distance between the stars Galati V1 and Galati V2

Problem 13. Marking scheme Stars with Romanian names

1. Correct geometrical calculations 5 points
2. Correct calculations 5 points

In the figure bellow the two starso; and ©O,, are located using the galactic coordintates (Gl; gl) and
respectively (Gz; g, ) on the geocentric celestial sphere. The spherical triangles 0, Ao, (Gl; gl) and respectively
may be considered rectangular plane triangles because the angles AG =G, -G, (Gl;gl) and respectively

Ag =g, — g, are very small
Thus:

0,0, = \/(01 A)z + (02 A)2 )

or:

0,0, = \/(01 B)2 + (Uz B)2 )
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Galactic North Pole

-
-
-

galactic
, equator

Nodul Galactic -
ascendending node .~<. __
f the North Poté Gl

Fig.

O, A=r"Ag;
0,A=r,"AG=r-cosg, AG;
0,0, =1r-Ag,
Where Ag is the angular distance between two stars
r-Agp= \/(r-Ag)2 +(r-cosg2 -AG)Z;
Ap= \/(Ag)2 + (cosg2 -AG)2 ;
0,B=r-AG=r-cosg,  AG;
Ap= \/(cos g AG)2 + (Ag)2 ;
(G, =114371; g, = -11.35°} (G, =113.266"; g, = -16.177"}
AG=G,-G =-1105;Ag=g,-g, =-4827;
cosg, =0,98; cosg, =0,96;
Ap=(-4827°F +(0.96) (- 1105 ] ~4,942°;

Ap=(098) -(-1105° ] +(-4827 =446,
The angular distance between Galati V1 and Galati V2.
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Problem 14. Apparent magnitude of the Moon

You know that the absolute magnitude of the Moon is M, = 0,25™. Calculate the values of the apparent
magnitudes of the Moon corresponding to the following Moon —phases

full-moon and the first quarter. You
know: the Moon — Earth distance - |, =385000km, the Earth — Sun distance - d,x =1 AU, the Moon —Sun

distance, d; ¢ =1AU

Problem 14. Marking scheme Apparent magnitude of the Moon
1.

General analysis of the problem

6 points
2. The analysis of the 2 particular situations

4 points

The apparent magnitude of a planet from the Solar System depends on the phase angle M = M (‘If)
The apparent magnitude of the body is given by the relation:

dls-d
m=M + 2,5-10gM,
d, p(lp)
unde: d ps —the distance between the body and the Sun; d 30 —distance between the body and observer;
d, =1AU; W —the phase angle ; p(‘P)—the phase function :

p(‘P)=%' [(l—g)cosq’+lsin‘lf},

T T
W as seen in the figure bellow is given by the cosine law.

S The body fro
{:2% un d Solar System
_____________ B.S

\ :\ P
\‘ \ IP ///
\\ \\ //
\ 7
dos\, el
e
//
g dB,O
Fig.
2 2 2
Coslp=dBO +d s —dos

2d o dys
In particularaly for the Moon
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cosW = ;
2dME dMS
p(‘I’)= 2. [(1—2)cosllf+lsinllf};
3 V4 T

m. =M. +2 5.10gM
T g plw)
Particular cases:
1) Full moon
W =0;
cosW=1; sin¥W=0;
2
V)=—;
p(¥)=3

d,s =1AU; d,, =385000km =~ 0,00256 AU = 256-10~ SU; d, =1SU;

m,, =M, -12,5" =0,25" -12,5™ = -12,25™.
2) First Quarter
¥ =90°";
cosW=0; sinW¥ =1,

p(w)= 2 ~02;
37
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d2 'd2 . -10
us Qe 055361077 _ 491559.19-10,
d, p(lp) 0,2

m,, =M, -10,75" =0,25" =10,75™ = -10,5".

Problem 15. Absolute magnitude of a cepheide

The cepheides are cariable stars, whom luminosities and luminosities varies due to volume oscillations.
The period of the oscilations of a cepheide star is:

P=2aR |2
KM
where: R —the radius of the cepheide; M — the mass of the cepheid (constant during oscillation);
R=R(t) P=P(t)
Demonstrate that the absolute magnitude of the cepheide M ., depend on the period of cepheide’s

pulsation P according the following relation:

m

M, =-25" -logk—(%) -log P,

where k is constant; P = P(t), M =M, (t )

Problem 15. Marking scheme Apparent magnitude of the Moon

e
KM

rezults
47°R° KMP* (KM \"
p2 T ‘R =3 _ . p23.
9 2 2 b
KM 4 47T
2/3
R? = KMz P
4
The absolute brightness is:
Lcef = O‘T;:if '4J7"R2’
And the apparent brightness :
L T - 4nR’

cef cef

2

E ——
cef 2 2
4‘7rdP, cef 4"ﬂdP, cef

d, ... is the distance between the observer on Erath and the cepheide
2/3

Rt P I
4

cef 2
4ﬂdP,cef

Similarly for Sun
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Ly oTy - 4nR;
> 4md 4rdl,

By using the Pogson formula:

E
lOgE;ef = _0’4(mcef - mS);

S

d
M, =M, —5m10g‘ Bt —2,5-logh;
| PS| Es
3/2
T 4] 4
4
e = k, =constant;
T - R 'dP,cef
d
M . =M,-5" log‘P;Cef -2,5-logk, —E-logP;
s 3
m ‘dP,cef
M, -5"1og -2,5-logk, =-2,5-logk;
|

k = constant;

M ., =-2,5logk —%-logP.



