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ALL THE CORRECT SOLUTIONS WHICH ARE DIFFERENT  FROM THE AUTHOR’S SOLUTION 

WILL BE EVALUATED AND MARKED ACORDINGLY TO THE MARKING SCHEME.    

 

 

1. EAGLES ON THE CARAIMAN CROSS ! 1 

LONG PROBLEM 1. MARKING SCHEME  - EAGLES ON THE CARAIMAN CROSS 3 

2.  FROM ROMANIA …. TO ANTIPOD! …WITH A BALLISTIC MESSENGER 13 

LONG PROBLEM 2. MARKING SCHEME  - FROM ROMANIA …. TO ANTIPOD! … A BALLISTIC MESSENGER 14 
 

 

 

1. Eagles on the Caraiman Cross ! 

 

The tallest cross built on a mountain peak  is located on a plateau situated on the top of the peak called 

Caraiman in Romania at  altitude mH 2300  from the sea level. Its height, including the base-support is 

mh 3.39 . The horizontal arms of the cross are oriented on the N-S direction. The latitude at which the Cross is 

located is .45  
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A. On the evening of 21
st
 of March 2014, the vernal equinox day, two eagles stop from their flight, first 

near the monument, and the second, on the top of the Cross as seen in figure 1. The two eagles are in the same 

vertical direction. The sky was very clear, so the eagles could see the horizon and observe the Sun set. Each eagle 

began to fly right at the moment it observed that the Sun disappeared completely.  

At the same time, an astronomer is located at the sea-level, at the base of the Bucegi Mountains. Assume 

that he is in the same vertical direction as the two eagles.  

Assuming the atmospheric refraction to be negligible, solve the following questions: 

1) Calculate the duration of the sunset, measured by the astronomer.  

2) Calculate the durations of sunsets measured by each of the two eagles and indicate which of the eagles 

leaves the Cross first. What is the time interval between the moments of the flights of the two eagles.  

The following information is necessary: 

The duration of the sunset measurement starts when the solar disc is tangent to the horizon line and stops when the 

solar disc completely disappears.  

The Earth’s rotational period is h24 TE  , the radius of the Sun  km1096.6 5

S  R  , Earth – Sun 

distance km1096.14 7

S  dE  , the latitude of the Heroes Cross  is 
45 . km6370 RE   

 

N S 

h 

Figure 1 
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B) At a certain moment the next day, 22
nd

 March 2014, the two eagles come back to the Heroes Cross. One 

of the eagles lands on the top of the vertical pillar of the Cross and the other one land on the horizontal plateau, just 

at the tip of the shadow of the vertical pillar of the Cross, at that moment of the day when the shadow length is 

minimum.  

1) Calculate the distance between the two eagles and the second eagle’s distance from the cross.  

2) Calculate the length of the horizontal arms of the Cross ,bl  if the shadow on the plateau of one of the 

arm of the cross at this moment has the length  m7b  u    

C) At midnight, the astronomer visits the cross and, from its top, he identifies a bright star at the limit of 

the circumpolarity. He named this star “Eagles Star”.  Knowing that due to the atmospheric refraction the horizon 

lowering is '34 , calculate: 

1) The “Eagles star” declination; 

2) The “Eagles star” maximum height above the horizon. 

Long problem 1. Marking scheme  - Eagles on the Caraiman Cross 

 

 

1) 10 

2) 10 

B1) 10 

B2) 10 

C1) 5 

C2) 5 

 

 

 

 

1 The following notations are used: SD  the diameter of the Sun, SEd  Earth-Sun distance,   angular 

diameter of the Sun as seen from the Earth: 

 

 
 

Fig. 1 

According the fig. 1 the angular diameter of the Sun can be calculated as follows 
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The figure 2 presents the Sun’s evolution during sunset as seen by the astronomer. In an equinox day the 

Sun moves retrograde along the celestial equator. There are marked the following 3 positions of the Sun: 

 dosT - The solar disc is tangent to the equatorial plane above the standard horizon – the start of the sunset; 

 dosS - The center of the solar disc on the celestial equator in the moment of the sunset starts; 

sosT  - The solar disc is tangent to the equatorial plane bellow the standard horizon – the end of the sunset 

osSs - The center of the solar disc on the celestial equator in the moment of the sunset ends; 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The duration of the sunset is  . During this time the center of the Sun moves along the equator from dosS

to sosS . The vector-radius of the Sun rotates in equatorial plane with angle  and in vertical plane with angle . i.e. 

the angular diameter of the Sun as seen from the Earth. 

Considering that the Sun travels the distance x2  along the equatorial path with merely constant i.e. during 

time   and that the spherical right triangle VTS dosdos can be considered a plane one the following relations can be 

written: 
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2) If the atmospheric refraction is negligible the eagle on the top of the cross V1 on figure 3 is on the same 

latitude  , as the astronomer but at the altitude H. Thus from the point of view of the V1 the horizon line is below 

the standard horizon line with an angle ,1  

 
 

Fig. 3 
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For the observer V1 the Sun will go below the lowered horizon after moving down under the standard 

horizon with angle 1 and moving along the equator with an angle ,1 as seen in fig. 4 
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Fig.5 
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Which represents the total duration of sunset for V1 at altitude H. 

Similarly for eagle 2V at the same latitude  ,  but altitude hH   (the top of the cross), the lowering 

effect on the horizon is measured by angle 2  thus 
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Which represents the delay of the start moment of the sunset for V2 due to the altitude  hH   . 

 

Similar the total duration of the sunset for the observer V2 : 
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We may note the following:  

- the horizon- lowering   is increased by the increase of the altitude; 

 .;21   H hHH  

- the delay of the moment of sunset start is increased by the increase of the altitude: 

 .;21   H hHH  

- the total duration of sunset  is reduced by the increase of the altitude: 

 .;0 21   H hHH  

Conclusions:  

If we consider 0t the moment of sunset star  for the astronomer   

- for 1V  the sunset starts at 71,80 t min and ends at min6450,11min9350,2min71,8 00  t  t   

- for V2  the sunset starts at 77,80 t min and ends at min7009,11min9309,2min77,8 00  t  t   

- Thus eagle from the plateau leaves first the cross; 

- The time between the leaving moments is: 

354,3min0559,0min6450,11min7009,11 00    t tt s. 

 

b)  

As seen in fig. 6 the length of the cross on the plateau will be minimum when the Sun passes the local 

meridian, i.e. the height of the Sun above the horizon will be maximum: 

 .90max   h  

Thus the shadow of the horizontal arms of the cross is superposed on the shadow of the vertical pillow. 
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Fig. 6 

 

In this conditions : 
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The distance between the two eagles is  

  .m3,39tan90cotcotcotmin  hhhhu   
 

 

2) In the above mentioned conditions the shadow of the arm oriented toward South  is on the vertical 

pillow of the cross, as seen in fig. 7:  
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Fig. 7 
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Which represents the length of the cross arm. 

 

C) 

1) For an observer situated in the center O of the celestial topocentric sphere, at latitude ,  at sea level, al 

the stars are circumpolar ones see fig. 8. Their diurnal parallels, parallel with the equatorial parallel, are above the 

real local horizon  00SN . The star 0  is at  the  circumpolar limit because its parallel touches the real local 

horizon in point 0N but still remains above it. Thus  0  is a marginal circumpolar star. Without taking into 

account the atmospheric refraction:  

From the isosceles  triangle  00 NO   results the 0 declination: 
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Fig. 8 

 

By taking into account the atmospheric refraction the horizon line changes to line S'N' , with angle 

'34' , as seen in fig. 9. The star  0 remains a circumpolar one but above the limit. In this conditions the 

star ' gather the limit conditions its declination been min

'

min   . In this conditions for an observer situated in 

the center of the topocentric celestial sphere, at latitude   and altitude zero, the star  '  , with declination 

min0

'

min   is on the limit of the circumpolarity.   
From the isosceles triangle 'ON'   the declination ' will be : 

 
 

Fig. 9 
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For the observer at latitude  , but at height h, taking into account the effect of lowering of the horizon 

the star " will meet the problem requirements see figure 10. The new horizon is S"N"  and  declination of 

" is min0

"

min   . Star 0 remains a circumpolar one but above the limit.  

From the isosceles triangle  "ON"   the declination of star " will be: 

 
Fig. 10 
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By taking into account the refraction effect and the altitude effect, from triangle NO in figure 11, the 

declination will be  

 
 

Fig. 11 
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2) The maximum height above the horizon will be 
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b) The schetch of the trajectory  
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In order to hit the point the trajectory of the missile has to be an elypse with the Earth center in the center 

of the Earth.
 
 Se știe că:  
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e) Accordin to Kepplers laws: 
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f) The integral luminosity of Sun: 
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Dacă For a circumsolar surface  with radius ,PSr  see picture bellow the solar radiation enegy 

passing through the surface in one second is .SL  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Density of solar flux  

.constant
4 2

PS

SS

Soareemis,

Soareemis,

Soare, PS


r

L

S

L

S

t

E

St

E
r


  

.2

L,Sincident, PS
RF runFullMoon    

Dacă L  este albedoul Lunii, rezultă: 

 

 

 

 

Sfera circumsolară a cărei 

rază este egală cu distanța de  

la Soare la Pământ (Lună) 
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,
incident,

reflectat,

L

FullMoon

FullMoon

F

F
  

unde    F PlinaLunareflectat, fluxul energetic al radiațiilor reflectate de Luna Plină spre observatorul de pe Pământ; 

.2

Lre,Soa„Lincident,Lreflectat, PS
RFF rFullMoonFullMoon    

În consecință, densitatea fluxului energetic ajuns la observator, după reflexia pe suprafața Lunii, 

este: 

.
22 2

PL

2

L
Soare,L2

PL

reflectat,

observator, PS r

R

r

F
r

FullMoon  

  moon






   

Symilarly  

.
44 2

proiectilD,

2

proiectil

Soare,proiectil2

proiectilD,

proiectilreflectat,

observatorproiectil, PS r

R

r

F
r

  

  






   

În expresia anterioară s-a avut în vedere faptul că densitatea fluxului energetic al proiectilului la 

observator rezultă din distribuirea prin suprafața sferei cu raza .proiectilP,r  

Utilizând formula lui Pogson, vom compara magnitudinea aparentă vizuală a Lunii Pline cu 

magnitudinea aparentă vizuală a proiectilului balistic: 

 ;4,0log proiectilPlinaLuna

observatorproiectil,

observatorLuna,
mm  

 

 





 









2

proiectilD,

2

proiectil

Soare,proiectil

2

PL

2

L
Soare,L

observatorproiectil,

observatorLuna,

4

2
loglog

PS

PS

r

R

r

R

r

r

 














;

2

log

2

proiectilD,

2

proiectil

proiectil

2

PL

2

L
L

r

R

r

R









 

 ;4,0

2

log proiectilL

2

proiectilD,

2

proiectil

proiectil

2

PL

2

L
L

mm

r

R

r

R











 

 ;4,02log proiectilL

2

PL

proiectilD,

2

proiectil

L

proiectil

L mm
r

r

R

R





























 

;12,0L  ;1proiectil   

1738L R km; 400proiectil R mm; 

;maxmaxproiectilobservatormax,proiectilD, Rrhrr     ;33
2

1
max Rr   

maxh     km;870031
2

1
33

2

1
 RRR   
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384400Luna,observatorPL  rr km; ;7,12 m

L m  

 ;4,0log22loglog2log proiectilL

PL

proiectilD

proiectil

L

proiectil

L mm
r

r

R

R







 

   ;4,0
km384400

km8700
log22log

m400,0

m1738000
log212,0log proiectilL mm 

 

 

 

 
  

   ;4,0
384400

8700
log22log

400,0

1738000
log212,0log proiectilL mm   

 ;4,0290528253,3301029995,027597956,13920818754,0 proiectilL mm   

;7,124,23 proiectil

mm m  

;7,10 m

proiectil m  

;6m

max m ,maxproiectil mm   

The projectile wasn’t seen when it was at its apogee 

 
 

 

 

 


