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Practical round: solutions 

The gravitational constant is γ or G = 6.67x10-11 m3 kg-1 s-2    

Problem β-6. The first gravitational wave detection.  

6.1. 1 pt 

 
The initial masses of the two black holes are 36+/-4M⊙ and 28+/-4M⊙. Their 

Schwarzschild radii are calculated using Rs = 2GM/c2
 , which gives 107+/-12 km and 

83+/-12 km. The errors are calculated using (ΔRs/Rs = ΔM/M). 

 
6.2. 2.5 pts 

 

A good estimate of the precision of the measurements can be gained by comparing the 
Hanford and Livingston signals. At the time of the merger, we see two strong maxima 

and a minimum of the signal. For them, the time-axis intercepts for the Livingston signal 
are approximately at: 
 

[0.4190, 0.4215, 0.4234, 0.4259] s 
 
while for the Hanford signal, they are at: 

 
[0.4193, 0.4217, 0.4239, 0.4259] s 

 
These correspond to half-periods of: 
 

[0.0025, 0.0019, 0.0025] sec 
[0.0024, 0.0022, 0.0020] sec 

 
for the two signals, respectively. 
 

Assuming those measurements are both independent and representative for the time of 
the merger, taking the average and standard deviation of those, we get the half-period of 

the signal to be: 
 
0.0023±0.0003s 

 
An attempt at a more accurate determination can be made by building a P(t) diagram.  

 
The signal has close to symmetric minima and maxima, and the trends of both the 
maxima and the minima are consistent across both the odd and even peaks. This 

symmetry implies that the signal is emitted from a binary system with two components of 
roughly equal masses, as confirmed by the LIGO results.  

 



Therefore, from the symmetry of the configuration of the system, the signal must be 
identical irrespective of which of the initial black holes is closer to us while they orbit 
each other. Thus, the signal must have a period of exactly half of the orbital period of the 

black holes. Therefore, the orbital period at the time of the merger must be 4 times 
larger than the half-period of the signal quoted above. 

 
Thus, we can conclude that the orbital period is: 
 

T = 0.0092 ± 0.0012 s 
 
6.3. 2 pts 

 
Assuming circular orbits and Newtonian mechanics, we can apply Kepler's third law:  

 
a3/T2 = G(M1+M2)/(4π2) 

 
where the semi-major axis at the moment of the merger is simply: 
 

a = Rs1+Rs2 = 2G(M1+M2)/c2 
 

We can combine the two equations above to solve for the total mass: 
 
M1+ M2 = Tc3/(25/2πG) 

 
Using the value for the period we obtained in II.b, we find: 

 
M1+M2=105±13M⊙ 

  
6.4. 1.5 pts 

 
In Newtonian mechanics, the gravitational potential energy of the system is  
 

EP = –GM1M2/a. 
 

For a circular orbit the kinetic energy is EK = |EP|/2, and so the mechanical energy is 
given by 
 

E = –GM1M2/(2a), 
 

which at large separations tends to zero. Assuming, the orbits are close to circular, and 
using a semi-major axis of a=Rs1+Rs2 at the time of the merger, we obtain that the 
change in mechanical energy of the binary system until the moment of the merger is 

given by: 
 

ΔE = (M1M2/(M1+M2))(c
2/4) 

 
which should equal the total energy emitted in gravitational waves. Plugging in the 

numerical results obtained so far, and the assumption M1=M2, we find:  



ΔE = 6.6 ± 0.8M⊙c2. 
 

6.5. 2 pts 

 

We will find the period around t~0.32s. The two maxima are around that time are at: 
 
0.316±0.005s and 0.344±0.005s 

 
The period of the signal is then 0.028±0.005s (errors added in quadrature). This implies 

an orbital period which is twice larger (see II.b): 
 
Ti=0.056±0.010s at 0.10 s before the outburst 

 
Combining the expression for the mechanical energy: 

E = –GM1M2/(2a) 
 
with Kepler's third law: 

 
a3/T2=G(M1+M2)/(4π2), 

 
we can find the mechanical energy in the initial moment. We obtain: 
 
Ei = 2.0±0.5M⊙c2  

 
Our previous estimate of E was made in 6.4.: 
 
E = 6.6±0.8M⊙c2 at t = 0.4226±0.0002s  

 
Thus, the change of mechanical energy of the system is: 
ΔE0.1 = Ei – E = 4.6±0.9M⊙c2 

 
over a time interval of 0.1s 

 
This corresponds to average power of emission for the chosen time interval, which 

equals: 
 
P = ΔE0.1/Δt = 8 ± 2 × 1048 W  

 
6.6. 2 pts 

 
We are told that the flux (F) is proportional to h2. We also know that for any wave, F is 
inversely proportional to the square of the distance (d). Then h and d must be inversely 

related (F ~ h2, F ~ 1/d2  h ~ 1/d). Thus, we can set up the following ratio: 
 

h1/h2=d2/d1 
 
for any two points outside the black holes. 

 



Right next to the two black holes (at a distance Rs ~ Rs1+ Rs2)  from the center of 
masses), the strain is h0 = v2/c2. We can estimate the distance d via 
 

h/h0 = Rs/d  d = Rs(v/c)2/h 
 

where h is the strain measured here on Earth. From the figure, h ~ 1x10-21. 
 
If we approximate the orbital velocity at the time of merging as circular, if would be  

 
v2 ~ G(M1+M2)/(Rs1+Rs2)  (v/c)2 ~ 0.5 

 
Therefore, to an order of magnitude d ~ 1.7 Gpc. 
 
6.7. 1pt 

 
Supermassive black holes span the range from 106M⊙ to 1010M⊙. Using a 

cosmological distance of dmin ~ 1Gpc to such merging sources, combined with our result 

for how the strain scales with distance from the previous part of the problem: 
 

h ~ 0.5(Rs1+Rs2)/d 
 
we get: 

 
h ~ from 10-17 to 10-13 

 
for the signal from such merging SMBHs. To be detectable, we need a non-trivial signal-
to-noise ratio, and thus we can put the minimum sensitivity requirement at 

 
hmin ~ from 10-18 to 10-14 for the range of masses, corresponding to SMBHs.  

 
 

 

 

 

 

 


